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Abstract—Invertible grayscale is a special kind of grayscale
from which the original color can be recovered. Given an input
color image, this seminal work tries to hide the color information
into its grayscale counterpart while making it hard to recognize
any anomalies. This powerful functionality is enabled by training
a hiding sub-network and restoring sub-network in an end-
to-end way. Despite its expressive results, two key limitations
exist: 1) The restored color image often suffers from some
noticeable visual artifacts in the smooth regions. 2) It is very
sensitive to JPEG compression, i.e., the original color information
cannot be well recovered once the intermediate grayscale image
is compressed by JPEG. To overcome these two limitations,
this paper introduces adversarial training and JPEG simulator
respectively. Specifically, two auxiliary adversarial networks are
incorporated to make the intermediate grayscale images and final
restored color images indistinguishable from normal grayscale
and color images. And the JPEG simulator is utilized to simulate
real JPEG compression during the online training so that the
hiding and restoring sub-networks can automatically learn to
be JPEG robust. Extensive experiments demonstrate that the
proposed method is superior to the original invertible grayscale
work both qualitatively and quantitatively while ensuring the
JPEG robustness. We further show that the proposed framework
can be applied under different types of grayscale constraints and
achieve excellent results.

Index Terms—Invertible Grayscale, Adversarial Training,
JPEG Robust

I. INTRODUCTION

NOwadays the vast majority of images are shot as color
images. However, in some real user scenarios such

as black-and-white digital printing, photography rendering,
and abstract stylization, they need to be converted to the
grayscale counterparts instead. Essentially, converting a color
image to a grayscale image is a dimensionality reduction
problem. In the past decades, a lot of different methods have
been proposed for color-to-grayscale conversion. Among them,
the most commonly used techniques are based on simple
weighted averages of the red, green and blue channels, such
as extracting the lightness channel in the CIELab color space
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Fig. 1: The illustration of invertible grayscale. Given an input
color image, this special type of grayscale image can be
inverted back to a similar color image.

[1]. There also exist some other advanced methods designed
by considering different perceptual factors or constraints,
like contrast preserving [2], [3] and saliency preserving [4].
However, all conversion procedures proposed in these methods
are irreversible. In other words, it is difficult to get the original
color information back from the converted grayscale image.

A lot of methods[5], [6], [7], [8], [9] have been proposed for
reversible color-to-gray conversion. However, most of them are
not robust to regular distortion. Recently, the pioneering work
[10] proposes an innovative CNN-based color-to-grayscale
conversion method named ”Invertible GrayScale” (IG). As
shown in Figure 1, different from previous methods, it aims
to propose an invertible grayscale image that can fully restore
its original color and ensure the users cannot recognize any
anomalies in it. To achieve this goal, they leverage a deep
convolutional neural network (CNN) to learn this conversion
process rather than using pre-defined or handcrafted rules.
Thanks to the strong ability of CNN, invertible grayscale
images are so robust that they can revert themselves back
to the color version with Gaussian noise. The whole system
consists of two parts: one hiding sub-network to convert a
color image to grayscale, and one restoring sub-network to
invert the grayscale back to the color image correspondingly.
These two sub-networks are jointly trained in an end-to-end
way so that the restored color image should be similar to the
original color image as much as possible.

Notwithstanding its demonstrated expressive results, we
find two key limitations still exist in [10], which are shown
in Figure 2. The first one is that some noticeable visual
artifacts often appear in the smooth regions of the grayscale
and restored color images. This is because, compared to
texture regions, it is more difficult to hide color information
in smooth regions while ensuring unnoticeable. Thus some
explicit supervision should be provided to instruct the system
to put more effort into smooth regions to generate visually
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Fig. 2: Example results to illustrate the two key limitations in the baseline invertible grayscale method [10]. The left part is
to show the artifacts in smooth regions while the right is to show the sensitivity to the JPEG compression of intermediate
grayscale images.

pleasant results. However, the system proposed in [10] just
treats texture regions and smooth regions in the same way.

The second limitation of [10] is that the grayscale images
converted by [10] are very sensitive to JPEG compression, i.e.,
the hidden color information will be damaged and cannot be
well recovered anymore after JPEG compression. However,
the JPEG image format is widely used in real application
scenarios, and users are likely to save the converted grayscale
images in the JPEG format rather than lossless PNG format
to save space. The main reason why the method [10] is
not robust to JPEG compression is that the network does
not see any compressed grayscale images during training by
default. Therefore, in order to achieve JPEG robustness, JPEG
compression should be incorporated into the training process.
This is a non-trivial task because the real JPEG compression
process is conducted in the DCT domain and uses some
discrete sampling strategies, thus making it impossible to be
differentiable.

Motivated by these two limitations, this paper proposes a
JPEG robust invertible grayscale method. Following a similar
framework as [10], the overall system still consists of one
hiding sub-network and one restoring sub-network, but adver-
sarial training and one JPEG simulator are newly introduced.
Specifically, we first incorporate two auxiliary adversarial
discriminator networks after these two sub-networks. Rather
than explicitly telling the network where are the smooth
regions containing unpleasant artifacts, we believe these two
discriminators can easily identify the artifacts regions and help
the system to produce visually pleasant grayscale and restored
color images automatically.

To obtain JPEG robustness, though it is hard to use the real
JPEG compression process directly in the end-to-end training,
we insert one differentiable JPEG simulator layer between
the hiding sub-network and restoring sub-network to simulate
the compression process. This simulation is based on two
observations: 1) The non-differentiability of JPEG compres-
sion comes from the intermediate quantization step for the
frequency-domain coefficients. 2) Quantizing the coefficient is
equivalent to limit the amount of information passed through
specific frequency channels. Therefore in this simulation layer,

we use a fixing mask to constrain that only low-frequency
DCT coefficients can be passed. Thanks to the differentiability
of this operation, this simulator can guide the learning of the
hiding and restoring sub-networks by backpropagation to make
them JPEG robust.

To train our system, a step-wise training strategy is adopted.
Specifically, we first train a basic model of invertible grayscale
following [10], then incorporate the aforementioned adversar-
ial discriminator networks into the training and get a better
model without visual artifacts. Finally, the JPEG simulator
is utilized to achieve JPEG robustness. To demonstrate our
superiority, extensive experiments have been conducted and
show that our method can achieve better-restored color images
for grayscale images with or without JPEG compression at the
same time.

We further extend the proposed framework to other special
types of intermediate grayscale images, i.e., simple edge maps
and halftone images. Even though in this challenging case
where rich texture and color information need to be hidden,
experiments demonstrate the hiding sub-network and restoring
sub-network can still collaborate well and produce visually
pleasant results.

To summarize, our contributions are four-fold:
• We propose a JPEG robust invertible grayscale method

and achieve much better results than our baseline [10].
• To avoid visual artifacts in smooth regions shown in [10],

we incorporate two auxiliary adversarial discriminator
networks to instruct the system to achieve more visually
pleasing results.

• We leverage one JPEG simulator between the hiding sub-
network and restoring sub-network during the training
stage, and make our method more robust to real JPEG
compression.

• Extensive experiments and analyses have been conducted.
They not only demonstrate the superiority of our method
but show powerful generalization ability of the proposed
framework, which may inspire more innovative works in
this field.

The rest of this paper is organized as follows. We review
the related work in Section II, and the detailed technique
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parts are elaborated in Section III. Then the training strategy
is presented in Section V. In Section VI, comprehensive
experiments and analysis are provided. Finally, the conclusion
and future work are given in Section VII.

II. RELATED WORK

A. Image Steganography

Formally, steganography is the process of concealing some
types of messages (e.g., text, image, or video) within some
types of covers (e.g., file, message, image, or video) in a
way that the hidden message can be extracted after. Since
invertible grayscale [10] is just to hide color information
into the grayscale image, so it can be regarded as a special
application of image steganography. In the past, a wide variety
of steganography methods [11], [12], [13], [14] have been
proposed in the literature. Most relevant to our work are
methods for blind image steganography [15], [16], [17], where
the message is encoded in an image and the decoder does not
have access to the original cover image. As for visual quality
influence, since Least-Significant Bit (LSB) based methods
[18], [19] only modify the lowest-order bits of each image
pixel depending on the bits of the secret message, it is very
difficult to find the visual appearance change of the stego
image which has embedded the target message. Very recently,
rather than use pre-define low-order bits, Zhu et al. [20] uses
a deep network to hide messages instead. However, they both
have very limited hiding capacity, when hiding too much
information, these methods will modify the picture a lot and
cause many artifacts. For our problem, because 16 bits of
color information should be hidden in each image pixel, these
methods will totally fail. Even worse, to ensure perfectly
recovering the hidden bits, many extra error-correction bits
should also be included in these methods, which further
increases the burden of the hiding system. Another difficulty of
our task is that we need to recover high-fidelity cover images
(grayscale structure) and messages (color information) at the
same time.

B. Adversarial Networks

In the pioneering work [21], Goodfellow et al. propose
the first Generative Adversarial Network (GAN) framework
to generate realistic-looking images from random noise via
adversarial learning. It is a generative deep model that pits two
networks against one another. During training, the generator
network G is trained to fool the discriminator network D which
in turn tries to distinguish between the generated samples from
G and the real samples. The key ingredient of this work is its
proposed adversarial loss, which demonstrates its superpower
in helping achieve visual realism in many image translation
works [22], [23], [24], [25], [26].

Similarly, in this work, we try to leverage two patch-
level discriminator networks to distinguish the generated
grayscale images and the restored color images from the
real grayscale/color images respectively, while the hiding sub-
network and restoring sub-network try to generate realistic
visually pleasant grayscale/restored color images to fool the
discriminators. By jointly training them together, the gradient

of discriminators can backpropagate to the two sub-networks
and instruct them to produce much more visually pleasing
results.

C. Color-to-grayscale Conversion

With the fast development of digital photography, most
images captured by modern devices are color images. But con-
sidering the compatibility, cost or aesthetic issues, grayscale
images are still widely used in some application scenarios.
Color-to-grayscale conversion is a very classical research
problem and has been extensively studied in the past decades.
Naturally, it is a type of dimension reduction problem and
often suffers from information loss. Common naive meth-
ods include extracting the lightness/luminance channel in the
CIELab/YUV color space. However, they would diminish
salient chromatic structures and lose important appearance
features/contrast.

To better preserve the color contrast, many advanced color-
to-grayscale methods have been proposed, which can be cat-
egorized into global and local methods respectively. In global
methods, Gooch et al. [4] use chrominance and luminance
differences to create grayscale target differences between
nearby image pixels, then solve an optimization problem to
get the final grayscale representation. Kuk et al. extends the
idea of [4] by considering both the global and local contrasts.
Rasche et al. [27] constructs a linear mapping from R3 space
to R1 space that keeps the perceived distances between points
in R3 and that in R1 as much as possible.

In local methods, different pixels are often processed differ-
ently and usually rely on local chrominance edges for enhance-
ment. For example, Bala et al. [28] introduce high-frequency
chrominance information into the luminance channel to pre-
serve the distinction between adjacent colors. Neumann et
al. [29] regard the color and luminance contrast as a gradient
field and obtain the grayscale image via fast direct integration
in that field. Smith et al. [30] use a two-step approach to
first globally assign gray values and determine color ordering
then locally enhance the grayscale to reproduce the original
contrast. Different from these traditional color-to-grayscale
conversion methods, we want the grayscale image to keep the
color information and can roll back to the original color image
with a decoder.

D. Image Colorization

Colorization aims to add meaningful and visually appealing
colors to a grayscale image. Without explicit guidance, this is
a highly ill-pose and multimodal problem. Previous coloriza-
tion methods can be roughly categorized into example-based
methods and learning-based methods. For the former type,
user scribbles [31], [32], [33] or reference color images [34],
[35], [36], [37] are provided as extra hints. These algorithms
often first set the colors of some sparse seed pixels based
on user scribbles or some correspondence matching methods,
then propagate these colors to other unspecified pixels with the
Markov Random Field model. The main drawbacks of such
methods are intensive manual work or high reliance on a good
reference.
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Fig. 3: The pipeline of our system. It consists of one hiding sub-network H, one restoring sub-network R, one JPEG simulator
J, and two discriminator networks Dg,Dc. H and R learn how to hide and restore color information respectively, while
Dg,Dc are used to judge whether the generated grayscale/color images are real enough and guide the learning of H,R. J
simulate the JPEG compression process and make H,R more JPEG robust.

Thanks to the great success in deep learning, many learning-
based methods [38], [39], [40], [41] have been proposed
recently. By leveraging large-scale datasets like ImageNet,
these methods can learn how to colorize a grayscale image
automatically. They either model this problem as a regression
problem [39], [40] or a classification problem [38], [41].
The biggest advantage of such methods is no need for any
extra user guidance, but their colorization results are often
very conservative. Recently, some hybrid colorization methods
[42], [43], [44], [45], [46], [47], [48], [49] are designed
by combining the merits of the above example-based and
learning-based methods. Though our restoring sub-network
can invert the grayscale images back to the original color
images, it is based on the color information pre-hidden in
specially designed grayscale images from the hiding sub-
network. Therefore, it does not suffer from the ambiguity
problem in the classical colorization algorithms.

E. Reversible Color-to-gray Conversion

Reversible color-to-grayscale conversion aims at embed-
ding the chromatic information of a full-color image into its
grayscale version such that the original color image can be
reconstructed in the future when necessary. There are many
methods for reversible color-to-gray conversion. Conventional
algorithms mainly focus on the quality of the reconstructed
color image, which makes the intermediate grayscale image
visually undesirable and suspicious[8]. To obtain stronger
reversibility, many advanced methods[5], [9], [7], [6], [50]
focused on designing specific encoding methods. Different
from these methods, our method aims to ensure the great visual
quality of intermediate grayscale images and strong robustness
simultaneously.

III. JPEG ROBUST INVERTIBLE GRAYSCALE

Given an input color image Ic, the goal of the baseline
invertible grayscale method [10] is to generate a special type
of grayscale image Ig that can be further inverted into a color
image Ir. Ideally, Ir should be identical to Ic without any

color information loss. To achieve this goal, one hiding sub-
network H is used to hide the original color information of Ic
in Ig , and another restoring sub-network R produces the final
color image Ir only based on Ig , formally:

Ig = H(Ic)

Ir = R(Ig) = R(H(Ic))
(1)

Due to the inherent difficulty in hiding two-channel color
information in a single-channel grayscale image, we observe
that the intermediate grayscale images and restored color
images from the baseline method [10] often contain some
unpleasant artifacts, especially in smooth regions as shown
in the left part of Figure 2. Intuitively, it is more difficult to
hide information in smoothing regions than texture regions
while ensuring unnoticeable, which is also common sense
in traditional image steganography methods. To address this
problem, we want to give some guidance to the hiding sub-
network and restoring sub-network and let them learn better
hiding/extracting strategies. However, designing explicit guid-
ance rules by hand is not easy and may incur some bias.
Motivated by the success of adversarial learning, we introduce
two adversarial discriminator networks after the hiding sub-
network and restoring sub-network respectively. By showing
a large scale of real grayscale images and color images, we
expect these discriminators can guide the learning of target
sub-networks explicitly by gradient back-propagation.

In the original paper of [10], another limitation noted by
Xia et al. is that their system is very sensitive to JPEG
compression. In other words, if the intermediate grayscale
image Ig is compressed by JPEG, the original invertibility
will be destroyed and result in an awful restored color image
Ir as shown in the right part of Figure 2. The underlying
reason is that the baseline method [10] has not considered
the JPEG compression process during training. Therefore, the
very natural idea is to incorporate JPEG compression into the
training. However, the indifferentiable sampling operation in
real JPEG makes it a non-trivial task. To alleviate this problem,
we resort to introducing one differentiable JPEG simulator
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between the hiding sub-network and the restoring sub-network
instead.

Combining the above two points, our whole system is
shown in Figure 3. Specifically, it also consists of one hiding
sub-network H and one restoring sub-network R following
[10], but introduces two auxiliary adversarial discriminators
Dg,Dc and one JPEG simulator J. Below we elaborate on
the details of these parts, corresponding loss functions, and
training strategy.

A. Network Structures

Hiding Sub-network H. In this task, we can regard our hiding
sub-network as a special kind of encoder, which encodes the
color information of the input image Ic into its corresponding
grayscale image Ig that is invertible. Since this grayscale is
the final product for visualization, we also require the encoded
grayscale to be close to a general type of grayscale image that
conforms to the input. We inherit the auto-encoder like the
architecture of IG [10]. In the encoder part, one convolution
layer first encodes the input image Ic to a feature map,
then two enhancing residual blocks are used before feeding
it into the following two down-sample blocks. Each down-
sample block consists of two consecutive convolutional layers
with stride 2 and 1 respectively. Given the downsampled
feature maps, another four enhancing residual blocks are
further used. Symmetrically in the decoder part, two upsample
blocks first upsample the downsampled feature maps back
to the original resolution. Each upsample block consists of
one nearest neighbor upsampling layer and two convolutional
layers. Then, the upsampled feature maps are also enhanced
by two residual blocks. Finally, one simple convolutional layer
is used to predict the final single-channel grayscale image Ig .
Note that 3× 3 kernel size is adopted in all the convolutional
layers unless especially specified.

Restoring Sub-network R. Compared to hiding sub-network,
the restoring sub-network R can be regarded as a color
decoder that extracts the information hidden in the invertible
grayscale. For the detailed network structure, it simply consists
of one convolutional layer, eight residual blocks, and two
convolutional layers. To constrain the value range of the output
image, one tanh layer is added. Though R does not involve
any downsample or upsample operation, we empirically find
it is strong enough for information extraction.

Discriminator Network Dg,Dc. Dg,Dc are introduced to
guide the learning of H,R as auxiliary networks which are
only used during the training stage. Currently, there are two
different types of discriminator networks that are widely used:
global-based or patch-based. Given an input image I , the
global-based discriminator will predict only one label that
indicates I is real or fake, while the patch-based discriminator
will predict the labels of all the fix-sized sliding patches in I
to indicates each of them is real or fake.

In our motivation, we want the discriminator network to
instruct H,R to differentiate smooth regions and texture
regions and put more effort into avoiding unpleasant artifacts
in smooth regions. Patch-based discriminators (PatchGAN)
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Fig. 4: The working principle of the JPEG simulator. To
simulate the indifferentiable quantization process in real JPEG
compression, an information gate mask is used to mask out the
top-k high-frequency components in 8 × 8 DCT coefficients
block where k is randomly picked from 32 to 64.

are adopted for Dg,Dc respectively. Another advantage of
PatchGAN is that it can be applied to arbitrarily large images
rather than fix-sized images in global-based discriminators.
The detailed network structure of PatchGAN is very simple.
It just consists of one convolutional layer at the head, several
downsample convolutional layers with stride 2 to enlarge the
receptive field of each patch, and two convolutional layers to
get the final predictions for each patch.

JPEG Simulator J. Since we want the synthesized invertible
grayscale to be robust to JPEG compression and the deep
network often highly relies on explicit supervised training, the
JPEG compression process should be involved in the training
process. Motivated by [20], we leverage a mask-based JPEG
simulator to simulate the real JPEG compression algorithm.
To better understand the motivation of the JPEG simulator J,
we first introduce the working principle of JPEG compression
briefly. Specifically, it will divide the image into 8×8 regions,
then computes a discrete cosine transformation (DCT) for each
region, and the computed DCT coefficients represent different
frequency components. Finally, these frequency-domain coef-
ficients will be quantized for the latter Huffman-coding. Con-
sidering the whole process, its inherent non-differentiability
is because of the intermediate quantization step, thus make
gradient-based end-to-end learning impossible.

To alleviate this problem, the above quantization step is
replaced by one JPEG gate mask which controls how many
coefficients should be remained, because it has the same capa-
bility of limiting the amount of information flow theoretically.
In the implementation, a stride 8 convolutional layer with
kernel size 8 × 8 is used as the DCT transformation, and
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each filter learns a DCT basis vector. Correspondingly, the
output activations of this layer are just the computed DCT
coefficients, which further pass the above JPEG gate mask.
Finally, the masked activations are fed into another transpose
convolutional layer which acts as inverse DCT and gets the
JPEG simulated image. During training, the gate mask only
keeps top-k low-frequency DCT coefficients. Compared to the
implementation of [20] that adopts a fixed k, we randomly pick
k from range [32, 64] to make the learning robust to different
compression levels.

B. Loss Functions

To train our network, the overall loss functions can be
roughly categorized into four parts: invertible losses Lcinv
for final restored color images, conformity losses Lgcon for
intermediate grayscale images, quantization loss `q , adversar-
ial losses Ld for both grayscales and restored color images.
Among them, grayscale conformity losses and quantization
loss are inherited from the baseline method [10].

L = Lcinv + Lgcon + `q + Ld (2)

1) Invertible Losses
To ensure the final restored color image Ir be identical to

the original input color image Ic as much as possible, two
kinds of loss functions are adopted: one basic reconstruction
loss `cr and one structure-preserving loss `cs.

Lcinv = λ1 ∗ `cr + λ2 ∗ `cs (3)

Reconstruction Loss. The basic reconstruction loss simply
adopts the pixel level Mean Square Error to constrain the
similarity, i.e.,

`cr =
1

N
∗ ‖Ic − Ir‖2 (4)

Here N is the total pixel number of Ic. This loss can guarantee
the hiding sub-network H and the restoring sub-network R
can collaborate well to make Ir overall similar to Ic.

Structure Preserving Loss. As shown in Figure 2, some
artifacts often appear in smooth regions of the final restored
color image, thus incur some structure distortion compared to
the original color image. To avoid such a structure distortion
problem, we use the traditional structure similarity index
loss (SSIM loss), which is more consistent with the human
perception than the above absolute difference measurements.
To put it formally, give a pair of images x, y, three different
aspects of similarities are included according to human percep-
tion: luminance similarity l(x, y), contrast similarity c(x, y)
and structure similarity s(x, y). These similarities are mainly
based on the summary statistics of relative measures including
mean, variance, and covariance under sliding windows of size
ξ × ξ with a step size of ξ along both horizontal and vertical

directions. For each sliding window, each similarity function
is computed as follows:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

s(x, y) =
σxy + C3

σxσy + C3

(5)

where µ, σ are the mean and standard deviation respectively.
C1 = (K1L)

2, C2 = (K2L)
2 and C3 = 1

2C2 are variables to
stabilize the division with weak denominator, L is the dynamic
range of the pixel-values, K1 = 0.01 and K2 = 0.03 are small
constants. To enforce independence among those measures,
the final SSIM index is constructed as the product of those
metrics with exponential constant weights α, β, γ (equal to
1 by default). Replacing the x, y with Ic, Ir, the final loss
function is:

`cs = l(Ic, Ir)
α · c(Ic, Ir)β · s(Ic, Ir)γ (6)

2) Conformity Losses Besides requiring the consistency of
restored color images, the intermediate generated grayscale
images should be visually pleasant and similar to one specific
type of grayscale images (e.g., simple luminance channel or
advanced color2gray [4]). Here, we roughly adopt the losses
proposed in [10] but modify them a lot to make them general
to different types of grayscale images. It consists of three parts:
basic conformity loss `gc , contrast loss `gc , local structure loss
`gs .

Lgcon = λ3 ∗ `gb + λ4 ∗ `gc + λ5 ∗ `gs (7)

Basic Conformity Loss. This loss is to ensure the intermediate
generated grayscale image Ig roughly conforms to one pre-
defined type of grayscale image fc→g(Ic) of the input color
image. By contrast, Xia et al. only considers the special
luminance channel based grayscale in [10]. Since the color
information is designed to be hidden in Ig , so Ig should not
be completely equal to fc→g(Ic). Therefore, it is okay once
the difference between Ig and fc→g(Ic) is below a threshold
of τ :

`gb =
1

N
‖max(|Ig − fc→g(Ic)| − τ, 0)‖1 (8)

Here, |·| is an element-wise absolute value operator, and ‖·‖1
is the L1 norm function. Empirically, τ is set as 70 by default
to allow a loose search space.

Contrast Loss. This loss is designed to preserve the contrast
of the original color image Ic in the intermediate grayscale
image Ig . In [10], Xia et al. find the perceptual loss [51] is
a good metric to achieve this goal.

`gc =
1

N
‖V GGk(Ig)− V GGk(Ic)‖2 (9)

where V GGk(·) denotes the VGG features extracted at layer k
(“conv4 1” by default). Note that, because the original VGG
network is trained for color images, Ig is repeated 3 times
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along the channel dimension before feeding into the VGG
network.

Local Structure Loss. Similarly, to make the local structure
of the intermediate grayscale Ig conforms to that of the
original color image Ic, a local variation-based structure loss
is proposed in [10].

`gs =
1

N
‖V ar(Ig)− V ar(Ic)‖1 (10)

where V ar(·) is a function that calculates the mean of local
variation of an image. Ideally, with this loss, the original
texture structure or local smoothness can be maintained in
Ig .

3) Quantization Loss. To guarantee a great learning per-
formance of H,R, they adopt floating-point precision by
default like most common modern CNN models. For hiding
or extracting color information, this is okay. But in real
applications, the output grayscale image Ig is often saved
in 8-bit unsigned integer precision. Without special guidance,
many quantization errors will appear in the final restored color
images. To alleviate this problem, Xia et al. [10] propose a
quantization loss to encourage pixel values generated by H
close to integers as much as possible, formally:

`q = λ6 ∗ ‖
255
min
d=0

(‖Ig −Md‖)‖1 (11)

where min(·) is the element-wise minimum operator. Md is
a constant matrix with value d, whose size is same as Ig .
Minimizing this loss is equivalent to making the pixel values
of Ig to be integers as far as possible. It is shown in [10], this
loss can suppress the quantization artifacts significantly.

4) Adversarial Losses. To remove the artifacts in smooth
regions and produce more visually pleasant results, two aux-
iliary discriminator networks are introduced after H and R
respectively. Specifically, the objective of discriminator Dg

is to distinguish the generated grayscale image Ig from a
real grayscale image, while the hiding sub-network H tries
to generate high-quality grayscale image Ig to fool Dg.
During the training of Dg, we use the real grayscale image
dataset (denoted as Irg ) generated by one special color-to-
grayscale conversion method fcg as positive samples and use
the generated grayscale images (denoted as Ifg ) as negative
samples. And the corresponding adversarial loss Lgd is defined
as:

`gd = E
x∈Irg

log(Dg(x)) + E
y∈Ifg

log(1−Dg(y))] (12)

During training, the goal of H is to minimize the above
objective function while Dg is to maximize it instead.

Similarly, for the discriminator Dc, we denote the real color
image dataset and the restored color image dataset as Irc and
Ifc . And the final adversarial loss Lcd is defined as:

`cd = E
x∈Irc

log(Dg(x)) + E
y∈Ifc

log(1−Dg(y))] (13)

TABLE I: Quantitative comparisons of different training strat-
egy combinations with PSNR, where PSNR-g and PSNR-
c represent the PSNR value of intermediate grayscale and
final restored color images respectively. Obviously, combining
strategy-wise and mix training strategies can produce the best
quantitative results.

Strategy only Stage-wise only Mix Stage-wise + Mix
PSNR-g 32.73 32.12 36.00
PSNR-c 37.44 35.98 40.56

Because the restored image dataset Ifc involves H,R at the
same time, this loss will encourage the collaboration of H,R
to produce more visually pleasant restored color images. So,
the total adversarial losses Ld is the sum of `cd and `gd:

Ld = λ7 ∗ `gd + λ8 ∗ `cd (14)

In the following experiments, we will demonstrate these two
adversarial losses are both very helpful in training.

C. Training Strategy

To train our system, we combine two important training
strategies: step-wise training and mix training. Figure 5 and
Table I are the qualitative and quantitative comparison results
to show the importance of stage-wise training and mix training.
Below are the motivations and details of these two strategies.

Step-wise Training. Synthesizing JPEG robust invertible
grayscale is a challenging task because we need to guarantee
the visual quality of the intermediate grayscale images and
final color images, and JPEG robustness at the same time.
In fact, these three objectives are a little contradictory, thus
making straightforward end-to-end training very difficult. To
alleviate the training problem, we train our model in three
steps by default in our experiment. In the first step, we train
a basic model which only consists of the hiding sub-network
H and restoring sub-network R. This model is to implement
the basic invertible grayscale that can invert back to color
version like [10]. Then in the second step, we add the two
auxiliary discriminators Dg,Dc to make the above learned
H and R collaborate better so that the images generated by
them cannot be distinguished by Dg,Dc. Finally, in the third
step, we incorporate the JPEG simulator between H and R
to simulate the real JPEG compression procedure. Combining
the above three steps, the training process is much easier and
able to generate visually better results.

Mix training. As described before, we want the JPEG sim-
ulator can simulate the real JPEG compression procedure
well and make our system JPEG robust. However, we find
always using this simulator will make the model biased to
simulated JPEG images, and perform worse on real clean
images. Besides, we also want our model to see some real
JPEG images rather than only the simulated ones to avoid
training bias. Therefore, we feed different types of training
images in the system. Specifically, at each training step, one
batch consists of 8 images of three different types: 2 real JPEG
images, 4 simulated JPEG images, and 2 clean images. Since
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Ground Truth Only Mix Training Only Stage-wise Training Mix + Stage-wise Training Zoom-in Regions

Fig. 5: Visual comparison examples of different training strategies. Obviously, by combining both stage-wise training and mix
training, our method can achieve both much visually better intermediate grayscale images (top row) and final restored color
images (bottom row).

TABLE II: Descriptions of Loss Functions

Losses Function Weight
Basic reconstruction loss `cr To ensure the final restored color images be identical to the original color images λ1 : 3
Structure-preserving loss `cs To eliminate artifacts in the smooth regions λ2 : 0.1
Basic conformity loss `gb To make the intermediate grayscales conform to one pre-defined type of grayscale images λ3 : 1
Contrast loss `gc To make the contrast of intermediate grayscales conform to original color images λ4 : 1e− 7
Local structure loss `gs To make the local structure of intermediate grayscales conform to original color images λ5 : 0.5
Quantization loss `q Forcing pixel values of the intermediate grayscales to be integers as far as possible λ6 : 1
Adversarial grayscale loss `gd Adversarial losses on grayscales for adversarial training λ7 : 0.01
Adversarial color loss `cd Adversarial losses on color images for adversarial training λ8 : 0.01

the real JPEG process is not differentiable, these JPEG images
will break the gradient flow between H and R. So they can
only guide R directly but influence H indirectly by R.

IV. EXPERIMENTS

A. Implementation Details

Our network is trained on 16000 images randomly sam-
pled from the PASCAL-VOC2012 dataset, and each image
is scaled to 256 × 256 in the training phase. We train the
network with batch size as 8 for 400k iterations. Following
the aforementioned step-wise training strategy, our model is
trained with three steps. For the hiding sub-network and
restoring sub-network in all these three steps, the Adam
optimizer with a polynomial learning rate decay strategy is
used. Specifically, the initial learning rate of the first step is
1e− 4 and decayed to 1e− 6 in the first 200k iterations. The
learning rate of the second and third step is initialized to be
1e−5 and decayed into 1e−7 in 100k iterations respectively.
For the discriminator networks Dc, Dg , we also adopt the
Adam optimization method with the initial learning rate of
2e − 4. Based on previous work, we set our loss weights as:
: λ1 = 3, λ2 = 0.1, λ3 = 1, λ4 = 1e − 7, λ5 = 0.5, λ6 =
1, λ7 = 0.01, λ8 = 0.01 in the below experiments by default.
The weights of existing methods’ losses are basically inherited
from [10], others are set for balancing gradients. For better
understanding, we enumerate these losses in Table II

TABLE III: Quantitative PSNR comparison results with the
baseline method [10]. It can be seen that our method can not
only achieve much better intermediate grayscale images but
restore better final color images both from clean and JPEG
compressed grayscale images.

Methods Grayscale Restored Color JPEG Restored color
Baseline [10] 33.76 40.16 25.88

Ours 36.00 40.56 33.13

B. Experiments Results

To demonstrate our superiority, we compare our method
with the baseline method [10] both quantitatively and qualita-
tively.

Quantitative Evaluation. As mentioned before, the objective
of our system can be categorized into three aspects: 1) the
intermediate grayscale images should overall conform to the
basic grayscale images defined by fc→g without noticeable
artifacts, 2) the final restored color images should be identical
to the original color images, 3) the system should be robust to
JPEG compression. To quantitatively measure these ingredi-
ents, PSNR is used as the default evaluation metric here. Note
that for the evaluation of JPEG robustness, the intermediate
grayscale images will be first compressed before being fed
into the restoring sub-network.

As shown in Table III, our method achieves higher PSNR
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TABLE IV: Importance of structure preserving loss. Our
method can achieve better performance with structure preserv-
ing loss on PSNR.

methods Grayscale Restored Color JPEG-95 Restored color
Without SSIM 35.21 40.21 32.33

With SSIM 36.00 40.56 33.13

than the baseline method [10] on both the intermediate and
final results. Specifically, for the case where the intermediate
grayscale images are saved without JPEG compression, our
method can generate visually better intermediate grayscale im-
ages and final restored images simultaneously. This means that
the hiding sub-network H and the restoring sub-network R
learn to collaborate very well. Even H hides color information
in an unnoticeable way, R is still able to extract it out. For the
case when the intermediate grayscale images are compressed
by JPEG, the performance of the baseline [10] will degrade
a lot. By contrast, our method can still achieve a reasonable
PSNR value of 33.13.

Qualitative Evaluation. As shown in the Fig.6, our method
can achieve much better restored color images than [10] when
the intermediate grayscale images are JPEG compressed. Here
“bs-*” means the results of the baseline method [10], “*-clean”
and “*-jpeg” are the restored results for grayscale images that
are not JPEG compressed and JPEG compressed respectively.

C. More Discussions

In this section, we will first conduct some ablation studies to
justify the importance of our design, then give more extension
experiments to show the properties and generalization abilities
of our method.

Importance of Adversarial Losses. As described in the intro-
duction part, the baseline method [10] often suffers from some
artifacts in smooth regions, which motivates us to incorporate
the discriminators into our network. To demonstrate the im-
portance of newly added adversarial losses, we provide some
detailed cases in Figure 7 whose artifacts are significantly
suppressed by incorporating adversarial losses when compared
to the baseline [10].

Importance of Structure Preserving Loss. For the final
restored color image Ir, only a pixel-level mean square loss
is used in the baseline method [10]. Though it can roughly
guarantee Ir to be overall similar to the original input color
image, it does not consider the structure conformity explicitly.
However, as shown in Figure 6, when the intermediate image
is compressed by JPEG, the original structure cannot be
preserved well in the final restored color image, which is
especially worse for smooth regions. Motivated by this, a
new SSIM based structure-preserving loss is introduced in our
method. To show its effectiveness, we conduct two control
experiments with/without SSIM loss. As shown in Table IV,
incorporating SSIM loss can help get better results for both
clean and JPEG compressed restored images.

Difference with CycleGAN. Our method looks like a cyclic
conversion between color and grayscale images, and seems
to be solvable using CycleGAN[24]. However, CycleGAN
only guarantees that the output images conform to the cor-
responding image classes (either grayscale or color). Due to
the unsupervised nature of CycleGAN, there is no guarantee
that the generated grayscale conforms to the corresponding
input color image as required in our case. The key ingredient
of CycleGAN is cycle loss which requires cycle supervision
in the training process. In our method, given an original
color image, the hiding sub-network learns how to hide the
color/texture information into a special type of invertible
grayscale image so that the restoring sub-network can recover
the original color/texture back from it. In other words, there
is no cycle supervision in our framework.

To further detail the difference between CycleGAN and our
work, we conduct a specific experiment in Fig.8. As shown in
the left of Fig.8, the CycleGAN cannot guarantee the restored
color information conforms to the corresponding input color
information at all. As shown in the right of Fig.8, our restoring
sub-network cannot generate a color image from a normal
grayscale because no color information is hidden in a normal
grayscale, while CycleGAN can generate a proper color image
by guessing.

Difference with Colorization Methods. The core of our
method is that we can accurately recover a grayscale back to its
original color version. However, recent colorization methods
can also colorize a grayscale to a color image. Different from
colorization methods, our method focuses on the hiding and
extracting of color information. To further show the difference,
we also adopt experiments for comparison.

As shown in Fig.9 , our method can accurately invert
the grayscale back to its color version by extracting color
information while colorization methods colorize the grayscale
by guessing.

Fixed or Random k in JPEG Simulator. In our method,
we introduce a JPEG simulator to simulate the real JPEG
compression procedure. Analogy to the real JPEG compression
quality, we can control the compression degree in the JPEG
simulator by changing the number of DCT coefficients k that
will be kept. Here, DCT coefficients sorted by zigzag represent
information from low to high frequencies. By experiments, we
find dropping too many DCT coefficients (i.e., small k) makes
the model difficult to converge and hurts the restored image
quality of clean grayscale images with JPEG compression. On
the other hand, if we keep too many DCT coefficients (i.e.,
large k), the learned model cannot obtain strong robustness to
real JPEG compression. To solve this problem, we randomly
sample k from a range of [32-64] rather than using a fix k like
[20]. As the baseline, we also conduct two control experiments
with a fix k as 32 and 48 respectively. We utilize LPIPS to
evaluate perceptual quality.[52] LPIPS evaluates the distance
between two image patches. A higher score means a larger
difference, while a lower score means a larger similarity.

As shown in Table V and Figure 10, our training strategy
with random k in JPEG Simulator can achieve better perfor-
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our-jpegbs-jpeg our-cleanbs-cleangt-color

Fig. 6: Visual comparisons of JPEG-95 robustness to the baseline method [10]. Obviously, our method can achieve much better
restored color images than [10] when the intermediate grayscale images are JPEG compressed. Here “bs-*” means the results
of the baseline method [10], “*-clean” and “*-jpeg” are the restored results for grayscale images that are not JPEG compressed
and JPEG compressed respectively.

TABLE V: PSNR Comparisons of fixed or random k in JPEG
simulator.

methods Grayscale Restored Color JPEG-95 Restored color
Fixed 32 33.99 32.75 29.54
Fixed 48 35.93 38.64 29.58

Ours (32-64) 36.00 40.56 33.13

mance than the fixed ones. There are several reasons for this
result. On the one hand, with random k during training, the
model can learn robustness to real JPEG compression with
different compression qualities. On the other hand, we find
adopting a fixed k specific will make the model overfit this
specific k easily.

Robustness to Gaussian Noise. In real scenarios, the inter-
mediate grayscale images might suffer from some degradation.
To evaluate the robustness of our method, we deliberately add
some Gaussian noises into the intermediate grayscale images
and try to recover their color back. Two examples are given
in Figure 11. It can be seen that our method shows great
robustness, and the restored color images are still visually
pleasing.

Robustness to Different JPEG Compression Qualities. As
shown in Table VI, with a lower JPEG quality quality, the
intermediate grayscale images will be severely compressed,
and more hidden color information will be damaged, thus
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Ground Truth With Adversary Without Adversary

Fig. 7: Examples to show the importance of the newly added
adversarial losses, which significantly remove the artifacts in
the smooth regions.

Fig. 8: The Input-c is a normal color image, and Input-g is
a normal grayscale image. Middle-g is built by our hiding
sub-network H and the color-to-gray generator of CycleGAN,
GA. Restore-c is built by our restoring sub-network R and
gray-to-color generator of CycleGAN, GB.

causing worse final restored color images. It indicates that our
method cannot handle very severe JPEG compression either.
However, by incorporating the JPEG simulator during training,
our method consistently outperforms the baseline method [10]
by a large margin. To provide more objective results, we
draw two plots to demonstrate our advantages on PSNR and
SSIM[53] in Fig.12a and Fig.12b.

Robustness to Webp Compression Methods. In real scenar-
ios, the intermediate grayscale images might suffer from other
compression methods, such as Webp compression. To evaluate
the scalability of our method, we take additional experiments
on Webp compression. We compress intermediate grayscale
images by Webp and try to recover their color back. As shown
in Fig.12c and Fig.12d. , the experiment results show that our

Fig. 9: Examples to show the difference of our method
and general colorization methods. Our method can accurately
invert the grayscale back to its color version while colorization
methods cannot reconstruct accurate color information.

method can resist Webp compression.

Extension to Different Types of Grayscale. In this paper,
by default we adopt the vanilla grayscale images as the
intermediate images. However, conformity loss is not always
required. We tried to cancel the conformity loss and invertible
ability stay. As shown in Fig.13 , our network can stay
invertibility if we cancel the gray conformity loss. However,
the visual quality of intermediate results will be terrible.
With the constraint, our method can provide undistinguishable
intermediate results while keeping the same invertibility.

The previous experiment indicates to us that the proposed
framework is very general and may be applied to other types
of intermediate images. So we try to define fc→g as other
extremely difficult types of images, i.e., the edge map of the
original color image and the halftone images.

In the first case, the intermediate images need to contain
both the simple color information and the complex texture
information simultaneously, which is very challenging. This
task can be regarded as a special type of edge2image transla-
tion problem [22], where texture/color information is already
hidden in the input edge. We test our model on the CelebA
dataset [54] and use the Canny algorithm to pre-generate the
edges. During training, to ensure the intermediate generated
image conforms to the edge map, we increase the weight of
Lgcon in Equation 2. More detail, we increased the weight of
λ3 by 1000% and set τ to 10 in Equation 8. In Figure 14,
two examples are provided to show the effectiveness of this
special application. Even though texture information and color
information are highly suppressed in this special type of edge
map, our restoring sub-network can still generate visually
plausible results.

In the second case, we use the same configuration for
halftone images. Halftone images are binary images that
served as analog representations and are widely used in digital
image printing. Since only dots varying either in size or in
spacing are used, a large portion of image information is lost
in halftone images, making it extremely difficult to recover
the original shape and textures. However, as shown in Fig-
ure 15, our method can still synthesize plausible intermediate
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Fig. 10: Robustness comparison on fixed or random k strategies.

Fig. 11: Examples to show the robustness of our method for the cases where the intermediate images are degraded with
Gaussian noises. It shows that our restoring sub-network can learn to restore hidden information from degraded intermediate
images well.

TABLE VI: Robustness comparison to different JPEG compression qualities with PSNR. It shows that the final restored color
images will become worse when the intermediate grayscale images are more JPEG compressed, but our method outperforms
the baseline method [10] consistently.

methods JPEG-75 JPEG-80 JPEG-85 JPEG-90 JPEG-95 JPEG-100
Ours 22.79 23.56 24.90 27.76 33.13 38.83

Xia [10] 20.22 20.45 21.02 22.13 25.88 36.10
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Fig. 12: Robustness comparison to JPEG and Webp. L/A/B represent the corresponding color channel in LAB space.

Fig. 13: The Input-c is a normal color image and Normal-g
is a grayscale image generated by the Input-c with existing
color-to-gray method. Latent-g is synthesized by our hiding
sub-network. Restore-c is built by our restoring sub-network.

halftone-like images and recover their fidelity afterward.

V. CONCLUSION

In this paper, we propose a JPEG robust invertible grayscale
system. This system consists of two sub-networks: hiding
sub-network and restoring sub-network. Given an original
color image, the hiding sub-network learns how to hide the
color/texture information into a special type of invertible
grayscale image so that the restoring sub-network can recover
the original color/texture back from it. We improve the per-
formance of this system from two aspects: 1) Two auxiliary

Fig. 14: Extension to the case where the intermediate images
are edge-like images. It shows that our hiding sub-network
can learn how to suppress the texture information and color
information into the edge maps well so that the restoring sub-
network can get visually plausible reconstruction results.

adversarial discriminators are leveraged to avoid the visual
artifacts in smooth regions. 2) JPEG simulator is incorpo-
rated to make the system robust to real JPEG compression.
Extensive experiments demonstrate our superior performance
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Fig. 15: Extension to the case where the intermediate images
are halftone-like images. Despite the super inner difficulty, our
method can still work quite well.

over the baseline method [10]. We further extend the proposed
framework to other types of intermediate grayscale images,
i.e., edge maps and halftone images. Though it is challenging
to hide texture and color information simultaneously in the
simple edge map without noticeable artifacts, the proposed
framework is still able to recover the original color images
and generate visually pleasant results.
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