
ADVERSARIAL EXAMPLES DETECTION BEYOND IMAGE SPACE

Kejiang Chen? Yuefeng Chen† Hang Zhou? Chuan Qin? Xiaofeng Mao† Weiming Zhang? Nenghai Yu?

? University of Science and Technology of China
† Alibaba Group

ABSTRACT

Deep neural networks have been proved that they are vulnerable
to adversarial examples, which are generated by adding human-
imperceptible perturbations to images. To defend these adversarial
examples, various detection based methods have been proposed. How-
ever, most of them perform poorly on detecting adversarial examples
with extremely slight perturbations. By exploring these adversarial
examples, we find that there exists compliance between perturbations
and prediction confidence, which guides us to detect few-perturbation
attacks from the aspect of prediction confidence. To detect both
few-perturbation attacks and large-perturbation attacks, we propose a
method beyond image space by a two-stream architecture, in which
the image stream focuses on the pixel artifacts and the gradient stream
copes with the confidence artifacts. The experimental results show
that the proposed method outperforms the existing methods under
oblivious attacks and is verified effective to defend omniscient attacks
as well.

1. INTRODUCTION

Deep neural networks have been very successful in recognizing visual
objects, and state-of-the-art neural networks even perform better than
humans on large-scale image classification tasks[1, 2]. However,
their robustness has raised concerns, and recently researches show
that they are fragile to adversarial-based perturbations[3, 4]. These
adversarial examples are threatening if neural networks are utilized
in crucial real applications, such as autonomous driving and identity
recognition.

To solve this, plenty of works have been proposed to defend ad-
versarial examples in DNNs, and can be roughly categorized into 1)
defense that focuses on making the underlying model robust to adver-
sarial examples, and 2) detection that attempts to distinguish adversar-
ial example from innocent inputs [5]. Most defense methods[6, 7, 8]
modify the target models, and the expensive retraining process makes
them impractical for massive data classification. Generally, the ac-
curacy will decrease, which is not acceptable for big tasks, such as
malicious image detection. The detection can be deployed in bypass
without affecting the original task. Additionally, it can also be used
in conjunction with robust defense.

There are many detection methods proposed recently from differ-
ent aspects, including prediction logits [9, 10], pixel artifacts [11, 12]
and the layer consistency [13, 14]. SRM [15] owns the-state-of-art
performance, which detects the artifacts from the aspect of steganal-
ysis. However, SRM depends heavily on the artifacts. Recently,
novel attacks, such as Decoupled Direction and Norm (DDN) [16]
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Clean PGD DDN

Adversarial Perturbation

Prediction Logit

Confidence GradientFig. 1. The comparison between the clean image and adversarial
images in terms of perturbation (zoomed 30 times), prediction logits
and confidence gradient. The confidence of slight perturbation adver-
sarial example (DDN) is low, and that of adversarial examples with
many and large perturbations (PGD) is high, indicating that there
exists compliance between perturbation and prediction confidence,
which guides us to detect adversarial examples from pixel artifacts
and gradient artifacts.

and Elastic-net Attacks to DNNs (EAD) [17], deceive the classifica-
tion model with few or exiguous perturbations, and the experiments
show that these adversarial examples cannot be detected by SRM
effectively.

In this paper, we first analyze the prediction logits of clean exam-
ples and adversarial examples, and find that there exists compliance
between perturbation and prediction confidence. Generally, the pre-
diction confidence can be defined as the advantage of the rank-1
predicted logit to the rank-2 predicted logit. As shown in Figure 1,
for few-perturbation attack (DDN), the prediction confidence is low.
For large perturbation attack (PGD), prediction confidence is high. In
conclusion, the stronger the perturbation, the higher of the prediction
confidence. The phenomenon indicates that the prediction confidence
can be used for detecting few-perturbation attacks.

Inspired by LID and MAD, we further propose confidence gra-
dient to gather more discriminative information from the classifi-
cation model. The confidence loss is defined as the cross-entropy
between predicted logit and its one-hot version, representing predic-
tion confidence. Afterwards, the confidence gradient is computed by
back-propagation, which includes the information of both prediction
confidence and classification model.

For detecting few-perturbation attacks as well as large-perturbation
attacks, we propose a novel adversarial example detection through
exploiting both pixel artifacts and confidence artifacts (abbreviated
as PACA). The method is under a two-stream framework, where the
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image stream is used to capture pixel artifacts and the gradient stream
is used to catch gradient artifact.

We apply our method to detect various attacking methods in-
cluding `1, `2 and `∞ constraint on the widely used ImageNet and
Caltech-256 datasets under different threat models including oblivi-
ous adversaries and omniscient adversaries, where the former adver-
saries only deceive the classification model and the latter adversaries
know both the classification model as well as the detection model and
try to deceive both.

The results demonstrate that compared to the baseline, the pro-
posed method improves the detection accuracy against adversarial
attacks under oblivious adversaries in most cases. Besides, we demon-
strate that the omniscient adversaries have to craft adversarial ex-
amples with larger noises to successfully mislead the classification
equipped with our detection.

2. RELATED WORK

There are many detection methods proposed recently from different
aspects. [11, 12] detects adversarial examples by exploiting the
image artifacts. Feature Squeezing (FS) [9] processes the input image
and discriminates according to the change of the prediction. Local
Intrinsic Dimensionality (LID) [13] and Mahalanobis Adversarial
Detection (MAD) [14] detects adversarial examples based on the
consistency within the model. It has been pointed out [12] that
Spatial Rich Model (SRM) [15] owns the-state-of-art performance,
which detects the artifacts from the aspect of steganalysis. SRM
has superior performance than FS, LID, and MAD when detecting
well-known attacks. However, we implement the detection task on
the newly proposed methods with few perturbations, such as DDN
and EAD, and find that they cannot be detected by SRM effectively,
motivating us to design a novel method to detect these imperceptibly
adversarial examples.

3. METHODOLOGY

In this section, we first analyze the properties of these examples,
which guide us to the new method.

3.1. Analysis

Figure 2 shows the distribution of prediction confidence of 500 clean
images and different types of adversarial images. It is oblivious that
the prediction confidence is discriminative between clean images
and adversarial images crafted by few-perturbations attacks (DDN,
EAD). This phenomenon implies us to detect few-perturbations at-
tacks (DDN, EAD) from the perspective of confidence artifacts. For
large-perturbation attacks, we can detect them from pixel artifacts.

3.2. Pixel Artifacts and Confidence Artifacts (PACA)

To detect both large-perturbation attacks as well as few-perturbation
attack, we propose a novel method to exploit both pixel artifacts and
confidence artifacts by a two-stream architecture, named PACA.

The PACA consists of a gradient generator, two identical sub-
networks with different inputs, and a score fuser. Given an image,
the gradient generator will generate its gradient, which reflects the
information of both prediction confidence and classification model.
Then the image and the gradient are fed to two sub-networks to get
the immediate scores. Finally, the score fuser mixes the immediate
scores, and output the final result. The detail of every part will be
explained in the following subsections.

Fig. 2. The distribution of the prediction confidence of clean images
and adversarial images.
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Fig. 3. The two-stream convolutional neural network for adversarial
example detection. There are three different types of layers, shown
in different shapes, and their architectures are defined at the bottom.
The kernel size of the convolution in Layer 1 is 5× 5 to obtain large
reception field and others are 3× 3 without specific instruction. The
number in parentheses under the text “Layer” denotes the number
of kernels. BN, GCP and FC represent batch normalization, global
covariance pooling and fully connected layer, respectively.

3.2.1. Gradient Generator

Drawing lessons from LID and MDA that the information of the
model does help detection, we are about to gather more information
from the classification model with the prediction confidence. At first,
we design a loss function, named confidence loss:

L = −
∑n

i
ti log (yi) (1)

where yi = ezi∑n
j e

zj , n is the class number, and t is the one-hot

vector of the predicted logits z. It should be noticed that one-hot
vector t is the predicted label of the input image, not the true label.
Small confidence loss corresponds to the high confidence of the
classification of the input image. For fully employing the information
of the classification model, we compute the gradient of image by
back-propagating confidence loss to the image. In implementation,
the absolute value of gradient is fed into the sub-network.

3.2.2. Subnetwork

The image x and the gradient |g| are then fed to the sub-network. As
for the image stream, the task of the backbone is to classify an input
image as a clean or an adversarial image:

y =

{
x, clean
x+ δ, adversarial

(2)

where x is the clean image, and δ denotes the adversarial perturbation.
It should be noticed that the perturbation δ is quite small compared
to x. Thus common neural architectures may not perform well on
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discrimination for they possibly diminishing the perturbation signal,
i.e. average pooling will suppress noise-like perturbation signals by
averaging adjacent pixels. Actually, this task is similar to steganalysis,
which means to classify the cover image and stego image (adding
slight perturbation on cover image for hiding secret message). More-
over, the traditional high-dimension human-design features (SRM)
has been verified effective to detect adversarial examples. Recently,
neural network based steganalysis methods [18, 19] perform better
than SRM. Drawing insights from these neural network based ste-
ganalysis, we design the backbone network shown in Figure 3, which
has the following characteristics:

• Average pooling layer is abandoned in the front layers. Be-
cause average pooling layer is a low-pass filter, it reinforces
content and suppresses noise-like perturbation signals by aver-
aging adjacent pixels.

• The perturbation signal will decay as the layers increases with-
out shortcut connections, resulting in unsatisfying detection
performance. As a result, shortcut connections are adopted to
preserve the weak perturbation signal.

• Global covariance pooling (GCP)[20] is introduced for gath-
ering more information. Compared to the first-order statistic
(i.e. global average pooling), more useful information can be
obtained from the higher-order statistics.

As for the gradient stream, we adopt the same bone neural net-
work as that of the image stream, resulting from its strong discrimina-
tion ability.

3.2.3. Score Fuser

The image and gradient sub-networks are denoted by FI, FG, respec-
tively. With the input image as well as the gradient, we can obtain
immediate scores zI = FI(x), zG = FG(g). Then the immediate
scores are mixed to get the final output:

z′ = zI + zG (3)

4. EXPERIMENTS

We now present the experimental results to demonstrate the effective-
ness of our method on improving detection performance.

4.1. Setup

4.1.1. Datasets

We use two widely studied datasets ImageNet [21] and Caltech-
256 [22]. The ImageNet dataset contains 1.2 million training images
and the other 50,000 images for testing. Caltech-256 is composed
of 256 object categories containing a total of 30,607 images, and we
divided it into the training set and testing set by a ratio of 8:2. Here,
all images are resized to 224 × 224 × 3 color images to match the
classification model.

4.1.2. Target Models

Different target models are adopted to show the generality of the
PACA. For Caltech-256, VGG16 [23] is adopted as the classifica-
tion model. We train the model on the training set using Adam
optimizer with learning rate 0.001. For ImageNet, pretrained model
ResNet34 [24] provided in torchvision is directly adopted. The clas-
sification accuracy on the testing set are 78% for ImageNet, 79% for
Caltech-256.

(a) PACA-ImageNet (b) SRM-ImageNet

(c) PACA-Caltech-256 (d) SRM-Caltech-256

Fig. 4. The generalizability detection accuracy (%) of PACA and
SRM on two datasets. The detection accuracy of PACA is higher
than SRM in most cases, meaning that the transferability of PACA is
better than SRM.

4.1.3. Attack Methods

For each target model, we generate adversarial examples from the
testing set and use only those that can attack successfully before
deploying any countermeasure to the target model in all of our ex-
periments. We conduct untargeted attacks to each target model with
five representative attack algorithms, SF, EAD, C&W, DDN, and
PGD attacks, as introduced in Section 2. These attacks cover `1, `2
and `∞ constraint attacks. We use the default setting for SF, EAD,
and DDN. C&W under `2 constraint is adopted. We use confidence
κ = 1 and the number of iterations are 1 and 500, respectively. For
PGD, ε = 0.03, α = 0.005 and the number of iterations is 10. Our
implementations are based on the foolbox and Advertorch.

4.1.4. Treathen Models

• Oblivious adversaries have a full access and knowledge to
classifier F but are not aware of detector D in place.

• Omniscient adversaries know the model details of both classi-
fier F and detector D.

4.1.5. Training Details of PACA

The Adamax optimizer was used with a mini-batch of 32 shuffled
clean and adversarial images. The batch normalization parameters
were learned via an exponential moving average with decay rate 0.05.
For the fully-connected classifier layer, we initialized the weights
with xavier uniform distribution and no bias. The learning rate is
0.001 and dropped by a factor of 0.1 at 30, 70 and 150 epochs,with a
total budget of 200 epochs. All the experiments are implemented by
PyTorch, and the codes will be released later. For quick convergence,
we suggest initializing the model with the parameters of the pretrained
model which detects large-perturbation adversarial examples.

4.2. Performance under the Oblivious Adversary

Table 1 and Table 2 give the detection performance under the oblivi-
ous attack. The detection methods FS, LID, MDA, SRM are adopted
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Table 1. Detection accuracy (%) under the Oblivious Adversary on
ImageNet.

FS LID MDA SRM PACA

SF 61.30 59.67 66.38 53.39 98.30
EAD 54.75 60.88 68.70 74.82 89.22
C&W 55.47 64.25 68.87 87.24 96.05
DDN 69.63 61.41 68.52 65.62 91.47
PGD 95.55 99.21 99.55 99.68 99.32

Table 2. Detection accuracy (%) under the Oblivious Adversary on
Caltech-256.

FS LID MDA SRM PACA

SF 59.97 73.94 80.61 82.82 97.19
EAD 52.07 71.42 74.08 83.48 90.71
C&W 58.25 70.29 73.24 97.59 97.97
DDN 61.17 69.49 74.19 78.10 97.29
PGD 100 97.13 99.97 99.78 99.32

for comparison. PGD is easiest to be detected, and the detection accu-
racy of all detection methods is nearly 100%. EAD is one of the most
difficult methods to be detected, for its perturbation is slight as well as
its confidence is not quite low. For the methods except PGD, the pro-
posed method PACA outperforms other methods on two datasets with
a clear margin. The advantage of detection accuracy even approaches
20% with respect to all methods when detecting DDN. These results
verify the effectiveness of PACA under the oblivious adversary.

We have also tested the generalization detection performance,
since in most cases the detector has no knowledge of which algorithm
the adversary adopted. The generalization detection experiments
show the generalizability of detection methods among different at-
tacks. Figure 4 shows generalizability heatmaps by PACA comparing
with SRM on two datasets. The detectors are trained with one of the
attacks listed in the columns and tested against one another listed in
the rows. For SRM, the transfer performance is unsatisfying, since
many results are around 50% on both datasets. Compared with SRM,
PACA owns far better generalizability. The PACA detector trained
on SF or EAD can detect other attacks effectively on two datasets.
Analyzing these two attacks, we find that they are both under `1 con-
straint. Similarly, the detector trained on DDN and C&W has ability
to detect other methods, for they are under `2 constraint.

4.3. Performance under the Omniscient Adversary

When the adversaries have full knowledge of the classifier as well
as the detector, they can generate adversarial examples deceiving
both. Actually, this attack is also named second-round attack, which
has been used to evaluate the performance of detectors in [25, 26].
Following [26]’s setting, here we evaluate the performance of the
proposed scheme. Adopt C&W as the original attack, and then
modify the C&W attack by introducing to its adversarial objective an
additional loss term for penalizing being detected:

min {‖δ‖2 + JF (x+ δ) + JD(x+ δ)} (4)

where JF , JD are the loss of classifier F and proposed detector D,
respectively. The modified version is named C&W-PACA. Attack
successful rate and average `2 distance between adversarial and clean
images are utilized to measure the defense ability. Large `2 distance
means that it is more hard to generate adversarial examples. Table
3 shows that the successful rate of C&W-PACA is far smaller than
that of C&W, and the `2 distance of modified attack is higher in both
datasets, indicating that PACA does enhance the defense ability.

Table 3. The attack successful rate and the average `2 distance of
C&W and C&W-PACA on ImageNet and Caltech-256.

Attacks Successful rate `2 distance

ImageNet C&W 77.80% 0.1430
C&W-PACA 7.00% 0.1594

Caltech-256 C&W 77.50% 0.1463
C&W-PACA 8.90% 0.1600

Table 4. Detection accuracy (%) of variant detectors of PACA.
Operations DDN C&W

PACA 91.47 96.05
Remove image stream 91.07 68.47

Remove gradient stream 76.19 92.16
GCP→GAP 89.36 94.23

Remove short-cut connection 89.04 66.35
Single logits + FC 75.75 60.61

4.4. Ablation Study

To inspect the effect of each component of PACA, we conduct the
control experiments on ImageNet by removing or replacing the com-
ponent. DDN and C&W are chosen as the attack methods, which
represent different perturbation attacks. The results are shown in
Table 4. PACA performs best among different settings. Gradient
stream performs well on detecting DDN, while the image stream
does better in detecting C&W. That is to say, two steams are comple-
mentary for they can cope with different attacks. Besides, replacing
the GCP or removing shortcut connection will destroy the detection
performance, meaning that these architectures play positive roles in
PACA. Moreover, we also investigate the performance of directly
using prediction logit for classification rather than using the gradi-
ent. Three fully-connected layers and ReLU activation are adopted
for classification, and the number of neurons are 512, 32, respec-
tively. The results in the last row in Table 4 show that only using
logits assembled by fully-connected layers for classification is un-
desirable, the detection accuracy is lower than that of merely using
gradient stream (Remove image stream), indicating that the gradient
stream does favor to detection, which exploits the information of the
classification model.

5. CONCLUSION

The newly proposed methods like DDN, EAD which only require
slight perturbation are hard to detect by existing detection methods.
Through exploring the perturbation and the predicted logits of these
adversarial examples, we find there exists compliance between per-
turbation and prediction confidence. Slight perturbation leads to low
prediction confidence. For fully exploiting the confidence informa-
tion as well as the classification model, the gradient is introduced
by back-propagating the confidence loss to the images, where the
confidence loss is defined as the cross-entropy between prediction
logits and its one-hot vector. To make use of the information of image
artifacts as well, we propose a two-stream convolutional neural net-
work for detecting different types of attacks, including image stream
and gradient stream. Extensive experiments have been performed
to evaluate the performance of the proposed PACA, and the results
show that PACA owns stronger detection ability as well as better
generalizability in most cases.
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