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a b s t r a c t 

The application of adversarial embedding in single image steganography exhibits its advantage in resisting 

convolutional neural network (CNN)-based steganalysis. As an important technique to move the steganog- 

raphy from the laboratory to the real world, batch steganography is developed based on the single image 

steganography, which uses a series of images as carriers. Furthermore, existing pooled steganalysis also 

applied CNN architecture for feature extraction, which aims to detect batch steganography. Therefore, it 

is reasonable and meaningful to introduce adversarial embedding in batch steganography to resist pooled 

steganalysis. However, as far as we know, there is no work about adversarial batch steganography. Ad- 

versarial batch image steganography should be able to resist pooled steganalysis which takes a group of 

images as a unit, therefore the loss function of the single image steganalyzer can not be directly used 

for adversarial embedding. In addition, adversarial embedding should be combined with batch strategy. 

In this paper, we propose a general framework of adversarial embedding for batch steganography, in 

which a new loss function is designed and the batch strategy is combined with adversarial embedding. 

By this framework, we can adapt most adversarial embedding algorithms for single image steganography 

to batch steganography. To verify the efficiency of the proposed framework, we design an algorithm called 

ADVersarial Image Merging Steganography (ADV-IMS) based on ADVersarial EMBedding (ADV-EMB), and 

carry out a series corresponding experiments. Experimental results show the proposed method signifi- 

cantly improves the security performance of batch steganography against pooled steganalysis and keeps 

a high-security level against single image steganalysis. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Steganography is a technique used to create a covert commu- 

ication channel, which hides secret information into multimedia 

uch as text and images without arousing any suspects. In the 

ast decades, digital image steganography is well developed. The 

ost effective steganographic schemes are categorized as content- 

daptive steganography, which usually consists of a heuristically 

efined distortion function and a method for encoding the message 

o minimize the total distortion [1] . Based on this framework, the 

ear-optimal Syndrome-Trellis Codes (STC) [2] is developed for en- 

oding, and various distortion functions [3–5] are devised. Nowa- 

ays, many researchers have attempted to introduce deep learning 

nto the field of steganography [ 6–8,42 ]. These methods can au- 

omatically learn the steganographic strategy without any domain 

nowledge. 
∗ Corresponding author. 
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Since the steganographer in the real world has access to 

ore than one object, batch steganography is proposed to move 

teganography from the laboratory to the real world, which hides 

ecret messages into a group of images [9] . Batch steganography 

tudies how to distribute payload across a group of images based 

n the distortion definition and STC embedding of single image 

teganography. In [10] , Ker et.al proposed five strategies for non- 

daptive steganography algorithms, i.e., even, max-greedy, max- 

andom, linear, sqroot. In the even strategy, the message is dis- 

ributed evenly into all available covers regardless to their capac- 

ty. In the max-greedy strategy, the steganographer wants to em- 

ed the message into the fewest possible number of covers, thus 

e iteratively chooses the covers with highest capacity yet to be 

sed, and embeds a portion of the message equal to the capacity of 

he image. The max-random strategy is the same as max-greedy, 

xcept that the covers used for embedding are chosen in a ran- 

om order. In the linear strategy, the message is distributed into 

ll available covers proportionately to their capacity. In the sqroot 

trategy, the message is spread among all images with the length 

f the fragments being proportional to the square root of their ca- 

https://doi.org/10.1016/j.sigpro.2020.107920
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2020.107920&domain=pdf
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acities. Furthermore, some works [11–13] investigate the stegano- 

raphic capacity of images with the greedy strategy as the default 

trategy. In [14] , Cogranne et.al proposed three strategies for adap- 

ive steganography, i.e., Image Merging Sender ( IMS ), Detectabil- 

ty Limited Sender ( DeLS ) and Distortion Limited Sender ( DiLS ). In

MS, the steganographer merges all images into one and lets the 

mbedding algorithm spread the payload. In DeLS and DiLS, each 

mage from the bag contributes with the same value as the KL 

ivergence and distortion, respectively. These strategies move the 

teganography closer to the real world. 

Opposite to steganography, steganalysis aims at revealing the 

xistence of the secrets. Single image steganalysis is taken as a 

inary classification problem, conventional methods utilize artifi- 

ial features [15,16] and an ensemble classifier [17] , while other 

tate-of-the-art methods are implemented by a deep convolutional 

eural network (CNN) [18–20] . Besides, pooled steganalysis is usu- 

lly used to detect batch steganography, most of which leverages 

nsupervised detection methods along with low-dimensional ste- 

analysis features [21–25] . With the development of the deep neu- 

al network-based steganalyzer, CNN architecture is used for fea- 

ure extraction in pooled steganalysis [26] , which significantly im- 

roves the performance of pooled steganalysis. As a result, even 

f the steganographer uses batch strategies, the eavesdropper can 

asily find her by CNN-based pooled steganalysis. 

However, many researches of computer vision show that adding 

ell-designed small noises to the image context will dramatically 

islead the image classification network with high confidence, 

nd the well designed noise is called adversarial noise [27,28] . 

ince single image steganalyzer can be regarded as a binary clas- 

ifier, many steganography experts combine the adversarial attack 

ith steganography embedding to resist CNN-based steganalyzers. 

hang et al., [ 29 ] first proposed a method that generates enhanced 

overs by iteratively adding adversarial noises to cover image, so 

hat the stegos generated from the enhanced covers are misclas- 

ified as covers by the steganalyzer. Li et al., [ 30 ] split the cover

mage into two parts thus separating the embedding perturbations 

nd adversarial noises. Ma et al., [ 31 ] modified the pixel bits by ±1

ccording to the direction of adversarial noises under the frame- 

ork of single-layered STC and introduced an unbalanced distor- 

ion function for ternary embedding according to the adversarial 

radients. Tang et al., [ 32 ] proposed the ADVersarial EMBedding 

ADV-EMB) method which generates adversarial stego with a min- 

mum amount of adjustable elements and achieved good security 

erformance. These methods demonstrate that the performance of 

xisting steganographic algorithms can be improved by combining 

teganography with adversarial attack. 

Although existing adversarial embedding algorithms work well 

gainst single image steganalyzer, they can’t be directly applied to 

dversarial batch steganography. Firstly, adversarial stegos in single 

mage steganography are designed to counter single image stegan- 

t

Fig. 1. Single image steganalysi

2 
lyzer which is usually modeled as an end-to-end supervised clas- 

ifier. However, adversarial batch steganography should be able to 

esist pooled steganalysis which usually uses unsupervised meth- 

ds and takes a batch of images as a detection unit. In pooled ste- 

analysis, it should be noted that there is no differentiable end- 

o-end loss function that is often used in adversarial embedding. 

herefore, batch adversarial steganography is a different problem 

rom existing adversarial steganography. Secondly, batch steganog- 

aphy distributes the payload among a batch of images rather than 

 single image, in addition to the distortion design and STC em- 

edding, payload spreading strategies should also be considered to 

mprove the confidentiality. 

To realize adversarial batch steganography countering CNN- 

ased pooled steganalysis, we design a general loss function for 

ooled steganalysis, and propose a general scheme for adversarial 

atch steganography which combines batch strategies and adver- 

arial embedding together. To our knowledge, this is the first work 

f adversarial batch steganography. Our innovations are as follows: 

• Proposing a general framework of adversarial batch steganogra- 

phy against pooled steganalysis. 
• Designing a loss function for adversarial batch steganography, 

which is called as MMD-loss. 
• Implementing the proposed method based on ADV-EMB al- 

gorithm, and analyzing its performance on resisting different 

pooled steganalysis methods and single image steganalysis. 

The rest of this paper is organized as follows. In Section 2 , we

nalyse the difference between adversarial single image steganog- 

aphy and adversarial batch steganography, and give the back- 

round knowledge about Maximum Mean Discrepancy (MMD). In 

ection 3 , we propose a general framework for adversarial batch 

teganography by designing a novel loss function, and detail its im- 

lementation based on Adversarial Embedding (ADV-EMB) method. 

he experiment settings and experimental results are given in 

ection 4 . Finally, in section 5 , we conclude our work and look for-

ard to the future work. 

. Preliminary 

.1. Single adversarial steganography (SAS) vs. batch adverasrial 

teganogarphy (BAS) 

As illustrated in Fig. 1 , single image steganalysis is usually re- 

arded as a binary classification problem, and usually a supervised 

achine learning method is applied. Therefore, the objective for 

dversarial examples is to fool the well trained classifier. Let F
e a deep neural network to be attacked. For an input image X , 

he last layer of the network F outputs the predicted probability, 

hich is denoted as F(X ) . The output of the last feature layer is

aken as the steganalysis feature used in pooled steganalysis, which 
s vs. pooled steganalysis. 
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s denoted as H(X ) . For a single image steganalyzer, the input X is

dentified as a stego if F(X ) > 0 . 5 , else it is taken as a cover. 

Traditional steganographic embedding and extraction proce- 

ures are described as Eq. (1) , 

Emb (X , m ) = arg min P(Y ) ∈C(m ) D (X , Y ) 
Ext (Y ) = P(Y ) H 

T = m , 
(1) 

here D (X , Y ) is the modification cost when change X to Y , P(Y )

s a parity function shared between the sender and the receiver 

e.g., P (Y ) = Y mod 2 ), H 

T ∈ { 0 , 1 } n ×m is a parity-check matrix of

he binary code C(n ; n − m ) . C(m ) = { z ∈ { 0 , 1 } n | z H 

T = m } is the

oset corresponding to syndrome m . State-of-the-art methods of 

dversarial embedding in single image steganography adjusts the 

teganography distortion of different modified direction (+1/1) ac- 

ording to the direction of adversarial noise. With the help of ad- 

ersarial noise, the secret message is embedded into the cover C 

esulting in an adversarial stego S ∗, keeping H( S ∗) ≤ 0 . 5 at the

ame time, and the adversarial noise can be obtained by back 

ropagating the loss function of the steganalyzer. 

By contrast, pooled steganalysis takes a group of images as 

 whole, and utilizes the trained classifier as the feature extrac- 

or. Then unsupervised machine learning methods (e.g., hierarchi- 

al clustering [33] and local outlier detection [34] ) are applied to 

etect the steganographer, so there is none differentiable loss func- 

ion can be used to obtain the adversarial noise. Though in some 

ases, pooled steganalysis pooling the results of single images, the 

oss function used to train single image steganalyzer can’t be di- 

ectly used to attack pooled steganalysis. Therefore, we design an 

ffective loss function using the average distance between the ste- 

onographer and normal users in feature domain to attack pooled 

teganalysis from its middle link. 

In addition, adversarial embedding in batch steganography em- 

eds secret messages into a group of images I = { I i } and generates

 group of adversarial stegos S = { S i } , which aims at finding a so-

ution of S ∗ that make the detector mistake the stego group S ∗ as 

lean. To adapt the adversarial embedding methods in single im- 

ge steganography to batch steganography, a proper batch strategy 

o distribute payload among images is also required. 

.2. Maximum mean discrepancy (MMD) 

Maximum Mean Discrepancy (MMD) is used to measure the 

imilarity of the distribution between X and Y, which is calculated 

s Eq. (2) , 

MD (X , Y ) 

= 

[ 

1 

N 

2 
1 

N 1 ∑ 

i, j=1 

K (X i , X j ) −
2 

N 1 N 2 

N 1 ,N 2 ∑ 

i, j=1 

K (X i , Y j ) + 

1 

N 

2 
2 

N 2 ∑ 

i, j=1 

K (Y i , Y j ) 

] 

1 
2 

, 

(2) 

here N 1 / N 2 is the number of samples of X / Y , X i / Y i represents

amples of X / Y . It calculates the norm of the difference between

wo different distributions, which corresponds to an � 2 distance 

n some Hilbert space implicitly defined through a positive def- 

nite kernel function K(X , Y ) . Radial Basis Function (RBF) kernel 

s a common used kernel function, which is calculated as Eq. (3) , 

nd can be proved as a linear combination of all polynomial kernel 

unctions. 

(X i , Y j ) = exp 

(
− ‖ X i − Y j ‖ 

2 

2 σ 2 

)

= exp 

( 

− 1 

2 σ 2 

∑ 

k 

(X i,k − Y j,k ) 

) 2 

(3) 

here X i,k and Y j,k are respectively the k th dimension of sample X i 

nd Y j . 
3 
. Adversarial batch steganography 

.1. Knowledge of the steganographer 

We have the assumption that the well-trained feature extrac- 

ion network in pooled steganalysis is available to the steganogra- 

her. Besides, both the steganographer and the eavesdropper have 

ccess to some normal social users’ data. Though the steganogra- 

her has no access to the data gathered by the eavesdropper, she 

an collect some other normal users’ data. 

.2. Motivation 

It has been shown that an attacker may significantly poison a 

lustering process by adding a relatively small percentage of at- 

ack samples to the input data, and that some attack samples may 

e obfuscated to be hidden within some existing clusters [36] . The 

ttack samples can be designed in various ways, including by min- 

mizing the distance among corresponding elements in the target 

luster. Besides, by adjusting the stegnographic distortion with the 

radient of the loss function of the steganalyzer, the generated ad- 

ersarial stego can confuse the steganalyzer. Therefore, we define 

he loss function as the average distance between the steganogra- 

her and other normal users. 

In single image steganography, the steganalyzer can be mis- 

ed by adjusting the conventional steganographic distortion accord- 

ng to the gradient map of the loss function of the steganalyzer. 

n batch steganography, by adjusting the conventional stegano- 

raphic distortion according to the gradient map of the designed 

osss function, the steganographer with adversarial stegos is moved 

loser to other normal users, especially much closer to its neigh- 

ors. When the distance gets small enough that as between normal 

sers, our method can attack distance-based steganalysis, such as 

ierarchical clustering. 

In other hand, when the steganographer moves closer to normal 

sers, the distance of the kth closest sample of the steganographer 

k-distance) becomes smaller, and so is the reachability between 

he steganographer and its k-neighbors. the reachability between p

nd o is described as follows: 

each _ dist k (p, o) = max { k-distance (o) , d(p, o) } (4) 

here d(p, o) represents the distance between p and o. Thus the 

ocal reachability density (lrd) gets greater, since 

rd(p) = 

1 ∑ 

o∈ N k (p) reach _ dist k (p,o) 

| N k (p) | 
(5) 

hen, the Local Outlier Factor (LOF) becomes smaller. 

OF k (p) = 

∑ 

o∈ N k (p) 
lrd(o) 
lrd(p) 

| N k (p) | = 

∑ 

o∈ N k (p) lrd(o) 

| N k (p) | /lrd(p) (6) 

ig. 2 demonstrates the difference between the steganographer 

ith adversarial stegos and the steganographer with conventional 

tegos in feature domain. 
Fig. 2. Illustration of adversarial steganography. 
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.3. Proposed framework 

We measure the distance between different users by the MMD 

istance [35] between their feature presentation of images, thus 

he distance between two actors X and Y is represented as 

MD (H(X ) , H(Y)) , which measures the similarity of the distribu- 

ion of the two actors’ images in feature domain. And our goal is 

o embed messages to a batch of images and keep the distribu- 

ion of the stegos as similar as normal users as possible. To embed 

nd extract secret messages effectively, the embedding scheme of 

TC in steganography is generally used in practice, which can effi- 

iently embed secret messages into images, and extract messages 

rom stegos exactly. The embedding and extraction procedures are 

escribed as Eq. (1) , and more details can refer to reference [2] .

he advantages of utilizing STC is not only it can embed and ex- 

ract secret messages effectively, but it can also reduce the dis- 

ance between single cover and stego to some extent by minimiz- 

ng the embedding distortion, so the distance between steganogra- 

her S and normal user U can be reduced. Therefore, we apply the 

teganography embedding scheme of STC to batch steganography. 

he problem of adversarial attack against pooled steganalysis can 

e defined as Eq. (7) , 

rg min 

S 

1 

N 

∑ 

U∈W 

MMD (H(S) , H(U )) 

.t. P(S) H 

T = m , (7) 

here W is the normal users’ data gathered by the steganographer, 

nd N is the number of users in W . 

To solve the problem defined in Eq. (7) , we define the loss func-

ion as Eq. (8) when the parameters of the network φ is given, and 

all it MMD-loss. U is a batch of images of the normal user in W, 

hich are gathered by the steganographer, and A represents the 

mage batch of the steganographer. 

 MMD (W, A;φ) = 

1 

N 

∑ 

U∈W 

MMD (H(A ) , H(U )) (8) 

We apply STC for secrets embedding, and employ EVEN 

10] and IMS (Image Merging Sender) [14] strategies for spreading 

ayload among a batch of images. EVEN is a non-adaptive batch 

trategy, which spread payload evenly in every image, and IMS 

s one of the state-of-art adaptive batch strategy, which merges 

he cover images together and then lets existing single image 

teganography algorithms to distribute the payload. We adopt 

hese two strategies for ablation experiments to valid the effective- 

ess of adaptive strategy, and to explore how the proposed meth- 

ds perform on both conditions. 

We employ the designed differentiable loss function and the 

wo batch strategies to batch adversarial embedding based on ad- 

ersarial embedding methods of single image steganography. Ac- 

ording to batch strategies, each algorithm can be implemented 

s two versions, i.e., Adversarial EVEN Steganography (ADV-EVEN) 

nd ADVersarial Image Merging Steganography (ADV-IMS) , which 

re detailed as follows. 

1. ADV-EVEN evenly distributes payload to every image, and ap- 

plies adversarial embedding to each image individually, taking 

Eq. (8) as the loss function to obtain the gradient used in ad- 

versarial embedding. 

2. ADV-IMS first merges a batch of images into one, and then per- 

form single image adversarial embedding on the merged large 

image with the merged gradient map of the merged image ob- 

tained from Eq. (8) as the loss function. 

The proposed general framework of adversarial batch steganog- 

aphy in this section can transplant most adversarial embedding 

ethods(e.g., cover enhancing method [29] and gradient based 
4 
ethod [31] ) in single image steganography to batch adversarial 

teganography. The designed framework attacks pooled steganaly- 

is from its middle link rather than the end, which can be seemed 

s a type of feature attack. Therefore, it can resist most CNN-based 

ooled steganalysis, including unsupervised methods (e.g., hierar- 

hical clustering [33] and local outlier factor (LOF) [34] ) and su- 

ervised methods (e.g., count positive methods [9] ). 

In Section 3.4 , we will show the detail implementation of the 

roposed framework based on the state-of-the-art ADV-EMB [32] . 

.4. Practical implementation of adversarial embedding (ADV-EMB) 

or batch image steganography 

In Section 3.3 , we propose a general framework for adversar- 

al batch steganography, by which we can adapt existing adver- 

arial embedding methods of single image steganography to batch 

teganography. In this section, we detail the implementation of 

DV-EVEN and ADV-IMS based on the state-of-the-art ADV-EMB 

32] . 

Tang et al. proposed ADV-EMB which generates adversarial 

tego images with minimum amount of adjustable elements and 

chieved good performance. In this section, we show how to 

dapt ADV-EMB to the proposed adversarial batch steganographic 

cheme (i.e., ADV-EVEN and ADV-IMS) in spatial domain. 

Typical additive distortion function for ternary embedding in 

ingle image steganography is defined as Eq. (9) , 

 (X, Y ) = 

H ∑ 

i =1 

W ∑ 

j=1 

(ρ+ 
i, j 

δ(R i, j − 1) + ρ−
i, j 

δ(R i, j + 1)) , (9) 

here H and W are respectively the height and width of each im- 

ge, R i, j = X i, j − Y i, j is the difference between the pixels in the i th

ow and jth column of cover X and stego Y, δ(·) is an indication 

unction as Eq. (10) , 

(x ) = 

{
1 , if x = 0 , 

0 , else , 
(10) 

nd ρ+ 
i, j 

and ρ−
i, j 

are respectively the cost of increasing and de- 

reasing X i, j by 1. In most schemes, ρ+ 
i, j 

= ρ−
i, j 

, leading to equal 

robabilities of increasing or decreasing X i, j . However, by asym- 

etrically updating ρ+ 
i, j 

and ρ−
i, j 

during embedding, steganography 

ecurity can be further improved, e.g., the CMD (Clustering Modifi- 

ation Direction) strategy [37,38] and ADV-EMB [32] . In [32] , Tang 

t al. proposed to divide the pixels into two groups, i.e., common 

roup and adjustable group. Firstly embed part of secret messages 

nto common group. Then asymmetrically update ρ+ 
i, j 

and ρ−
i, j 

of 

he adjustable group according to the direction of adversarial noise, 

nd embed the remaining secrets into adjustable elements accord- 

ng to the adjusted asymmetrical distortion. The minimum amount 

f adjustable elements can be found heuristically. 

In adversarial batch steganography, we define the update rules 

s Eqs. (11) and (12) , where ρ+ 
k,i, j 

and ρ−
k,i, j 

are respectively the 

ost of increasing and decreasing the element of i th row jth col- 

mn in k th image by 1, and α is a parameter in the range of [0,1],

 MMD (W, Z;φ) is calculated as Eq. (13) , and Z represents the im- 

ge batch of the steganographer whose common group have been 

mbedded with part of secrets. 

 

+ 
k,i, j 

= 

⎧ ⎨ 

⎩ 

ρ+ 
k,i, j 

/α, if − ∇ z k,i, j 
L MMD (W, Z;φ) > 0 

ρ+ 
k,i, j 

, if − ∇ z k,i, j 
L MMD (W, Z;φ) = 0 

ρ+ 
k,i, j 

· α, if − ∇ z k,i, j 
L MMD (W, Z;φ) < 0 

(11) 

 

−
k,i, j 

= 

⎧ ⎨ 

⎩ 

ρ−
k,i, j 

/α, if − ∇ z k,i, j 
L MMD (W, Z;φ) < 0 

ρ−
k,i, j 

, if − ∇ z k,i, j 
L MMD (W, Z;φ) = 0 

ρ−
k,i, j 

· α, if − ∇ z k,i, j 
L MMD (W, Z;φ) > 0 

(12) 
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 MMD (W, Z;φ) = 

1 

N 

∑ 

U∈W 

MMD (H(Z) , H(U )) (13) 

 MMD (W, Z;φ) is differentiable, and its gradient can be calculated 

s Eq. (14) . 

 z k,i, j 
L MMD (W, Z;φ) = 

1 

N 

∑ 

U∈W 

∇ z k,i, j 
MMD (H(Z) , H(U )) 

·∇ z k,i, j 
H(Z) · ∇ z k,i, j 

H(U ) (14) 

e represent H(Z) as X , and H(U ) as Y , then we have, 

 z k,i, j 
MMD (H(Z) , H(U )) = ∇ z k,i, j 

MMD (X , Y ) 

= 

[ 

1 

N 

2 
1 

N 1 ∑ 

i, j=1 

∇ z k,i, j 
K(X i , X j ) 

− 2 

N 1 N 2 

N 1 ,N 2 ∑ 

i, j=1 

∇ z k,i, j 
K(X i, j ) 

+ 

1 

N 

2 
2 

N 2 ∑ 

i, j=1 

∇ z k,i, j 
K(Y i , Y j ) 

] 

1 
2 , (15) 

here 

 z k,i, j 
K(X i , X j ) = − 1 

σ 2 
exp 

(
− ‖ X i − X j ‖ 

2 

2 σ 2 

)
(X i, j − X j, j ) (16) 

lgorithm 1 Adversarial even steganography (ADV-EVEN). 

nput: A batch of images I = { I 1 , . . . , I B } H×W , secret message m of

length M 

utput: adversarial stego batch S ∗ = { S ∗1 , . . . , S ∗B } H×W 

1: Initialize the parameter β = 0 , 	L MMD = e 10 , L MMD = e 10 ; 

2: {P 

+ = { ρ+ 
1 
, . . . , ρ+ 

B 
} , P 

− = { ρ−
1 
, . . . , ρ−

B 
}} = C omput eC ost(I) ; 

3: while 	L MMD < 0 do 

4: for I i ∈ I do 

5: { I com 

i 
, I 

adj 
i 

} = Rand omDi v id e (I i ) ; 

6: Z 

i 
c = EmbedCommon (I i , I 

com 

i 
, P 

+ , P 

−, M 

B (1 − β)) ; 

7: end for 

8: G = { g 1 , . . . , g B } = ∇ z k,i, j 
L MMD (W, Z;φ) ; 

9: for I i ∈ I do 

0: { q + 
i 

, q −
i 
} = U pdat eC osts (ρ+ 

i 
, ρ−

i 
, g i ) ; 

11: Z i = Embed Adj ustable (Z 

i 
c , I 

adj 
i 

, q + 
i 

, q −
i 

, M 

B β) ; 

2: end for 

3: L ′ 
MMD 

(W, Z;φ) = 

1 
N 

∑ 

U∈W 

MMD (H(Z) , H(U )) 

14: Update S ∗ = Z; 

5: Update β by β + 	β; 

6: 	L MMD = L ′ 
MMD 

− L MMD ; 

17: end while 

18: return S ∗

The details of ADV-EVEN are described in Algorithm 1 . When 

e want to embed M bits secrets into a batch of cover im- 

ges { I 1 , . . . , I B } H×W , a conventional steganographic cost function 

e.g., HILL [4] and SUNIWARD [5] ) is used to compute conven- 

ional embedding costs, obtaining { ρ+ 
1 

, . . . , ρ+ 
B 
} and { ρ−

1 
, . . . , ρ−

B 
} 

implemented by C omput eC ost() ). For each image, Rand omDi v id e ()
s implemented to randomly divide pixels into two groups, i.e., 

ommon group of H × W × (1 − β) pixels and adjustable group of 

 × W × β pixels. We first embed 

M 

B (1 − β) bits secrets into the 

ommon group using conventional embedding costs by steganog- 

aphy coding such as STC [2] (implemented by EmbedCommon () ). 

he resultant image batch is denoted as Z c = { Z 

k 
c } H×W . Then com-

ute the gradients of the MMD-loss with respect to the input of 
5 
 c , and update the embedding costs of the adjustable elements by 

qs. (11) and (12) (implemented by U pdat eC osts () ). Finally, we run 

mbed Adj ustable () for each image to embed 

M 

B β bits into the ad- 

ustable elements by using the updated embedding costs and the 

ame coding scheme. 

Theoretically, the optimal β for each images in a batch is dif- 

erent from each other, thus a batch of paramters β = { β1 , . . . , βB }
hould be determined to minimize the adjustable elements. It is 

 direct but time-consuming idea to exhaustively search all pos- 

ible combinations of β value. After weighing pros and cons, we 

ecide to share the same parameter in the experiments, i.e., β1 = 

2 = . . . = βB = β . 

lgorithm 2 Adversarial image merging steganography (ADV-IMS). 

nput: A batch of images I = { I 1 , . . . , I B } H×W , secret message m of

length M 

utput: adversarial stego batch S ∗ = { S ∗1 , . . . , S ∗B } H×W 

1: Initialize the parameter β = 0 , 	L MMD = e 10 , L MMD = e 10 ; 

2: {P 

+ = { ρ+ 
1 
, . . . , ρ+ 

B 
} , P 

− = { ρ−
1 
, . . . , ρ−

B 
}} = C omput e _ cost(I) ; 

3: while 	L MMD < 0 do 

4: I L = Merge (I) ; 

5: ρ+ 
L 

= Merge (P 

+ ) , ρ−
L 

= Merge (P 

−) ; 

6: { I com 

L 
, I 

adj 
L 

} = Rand omDi v id e (I L ) ; 

7: Z Lc = EmbedCommon (I L , I 
com 

L 
, ρ+ 

L 
, ρ−

L 
, M(1 − β)) 

8: Z c = Reshape (Z Lc ) = { Z 

i 
c } H×W , i = 1 , . . . , B , 

9: G = { g 1 , . . . , g B } = ∇ z c,k,i, j 
L MMD (W, Z c ;φ) ; 

0: g L = Merge (G) 

11: { q 

+ 
L 
, q 

−
L 
} = U pdat eC osts (ρ+ 

L 
, ρ+ 

L 
, g L ) ; 

2: Z L = Embed Adj ustable (Z lc , I 
adj 
L 

, q 

+ 
L 
, q 

−
L 
, Mβ) ; 

3: Z = Reshape (Z L ) = { Z 1 , . . . , Z B } H×W , 

4: L ′ 
MMD 

(W, Z;φ) = 

1 
N 

∑ 

U∈W 

MMD (H(Z) , H(U )) . 

5: Update S ∗ = Z , update β by β + 	β . 

6: 	L MMD = L ′ 
MMD 

− L MMD . 

17: end while 

18: return S ∗

Algorithm 2 shows the detail implementation of ADV-IMS. Con- 

entional steganographic cost function (e.g., HILL [4] and SUNI- 

ARD [5] ) is also first used to compute conventional embedding 

osts, obtaining { ρ+ 
1 

, . . . , ρ+ 
B 
} and { ρ−

1 
, . . . , ρ−

B 
} (implemented by 

 omput eC ost() ). Then a group of images I = { I 1 , . . . , I B } H×W are

eshaped into one-dimensional vectors respectively and merged 

ogether to obtain I L of size 1 × L by Merge () , where L = B ×
 × W . The pixels of the merged image are randomly divided 

nto two groups, i.e., common group of B × H × W × (1 − β) pix- 

ls and adjustable group of B × H × W × β pixels, which is imple- 

ented by Rand omDi v id e () ). We first embed M(1 − β) bit mes-

ages into the common group by EmbedCommon () using conven- 

ional distortion, and the resultant image is represented as Z lc . 

hen split Z lc into Z c = { Z 

1 
c , . . . , Z 

B 
c } H×W by Reshape () , and com- 

ute the gradients of the MMD-loss with respect to the input of Z c .

pdat eC osts () updates embedding cost of adjustable group accord- 

ng to Eqs. (11) and (12) . Next, the remaining Mβ bit messages are 

mbedded into adjustable group using updated embedding cost 

implemented by Embed Adj ustable () ) obtaining Z L . Finally reshape 

 L into B images of original size, i.e., { Z 1 , . . . , Z B } H×W . 

In order to minimize the number of adjustable elements for 

oth ADV-EVEN and ADV-IMS, we update the parameter β by 
′ = β + 	, where the initial value of β is 0, until the MMD-loss 

oes not decrease any more. The experimental results show that 

hough it is a local optimal solution, it works well. 
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. Experiments 

We proposed a general framework which can adapt a class of 

dversarial embedding for single image steganography to batch 

teganography, and in Section 3 , we detail its implementation 

ased on ADV-EMB. In this section, we carry out experiments, the 

etwork we used for steganalysis and feature extraction are all SR- 

et [20] . To evaluate the performance, following experiments are 

onducted: 

i) We evaluate the performance of the proposed methods in the 

presence of an adversary-unaware detector who trained his fea- 

ture extractor or single image steganalyzer with conventional 

stego images, the network structure and the details about train- 

ing process can refer to [20] . This corresponds to a white-box 

attack in adversarial examples [39] and it is the most favorable 

case for the steganographer. Three pooled steganalysis attack 

are considered, i.e., Hierarchical Clustering [33] , Local Outlier 

Factor (LOF) [34] ) and Sign Test [9] . In addition, for local outlier

factor, we consider different situations for the steganographer, 

i.e.,different numbers of actors and different images number of 

each actor. 

ii) It is also a possible case in practice that the eavesdropper uti- 

lizes single image steganalyzer to detect stegos generated by 

batch steganography. So we also evaluated the proposed meth- 

ods on an adversary-unaware single image steganalyzer, i.e. SR- 

Net steganalyzer [20] . 

ii) To explore whether the proposed method has strong transfer- 

ability against other steganalyzers,we conducted experiments 

by using other advanced methods, i.e., YeNet and artifacial fea- 

ture based model to perform the same pooled steganalysis and 

single image steganalysis tasks. 

v) For ADV-IMS, we also evaluate its performance on the presence 

of an adversary-aware feature extractor which is re-trained 

with adversarial stego images. This is a challenging case for the 

steganographer. 

.1. Experiment settings 

.1.1. Image set 

Experiments are carried out on the imagesets of BOSS [40] and 

OWS [41] , both containing 10,0 0 0 spatial images. We resize the 

mages to the size of 256 × 256 using the MATLAB imresize() func- 

ion, and get the original cover imageset with 20,0 0 0 images. Then 

e divide the dataset into four non-overlapped part: (i) 90 0 0 im- 

ges for training the feature extractor, which is represented as 

 1 ; (ii) 10 0 0 images for generating the normal users’ data col- 

ected by the steganographer, represented as D 2 ; (iii) D 3 contains 

0 0 0 images used for generating normal actors’ images collected 

y the eavesdropper; (iv) D 4 contains 50 0 0 images for generating 

teganographer’s image batch. 

.1.2. Simulated situation 

We assume the situation that there are N A actors, including one 

teganographer and N A − 1 normal users, each actor has N I images. 

he attacker aims to distinguish the steganographer from other 

ormal users. We simulate normal users and steganographers with 

mages in the dataset in the following ways: 

• Randomly sample N I images from D 2 / D 3 without repetition to 

simulate a normal user collected by the steganographer / eaves- 

dropper. Then put them back before simulating the next normal 

user. 
• Randomly divide D 4 into 50 0 0 /N I groups, each group contains 
N I images, representing a steganographer. m

6 
.1.3. Steganographic schemes 

We employ even [10] and IMS [14] as batch strategies together 

ith the steganographic distortion defined by HILL [4] and SUNI- 

ARD [5] , and the relative payload is set as { 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 }
it per pixel (bpp). We compare our method with conventional 

atch steganography and two state-of-art single image adversarial 

teganography [30,32] . For convenience and clarity of expression, 

e represent two state-of-art single image adversarial steganogra- 

hy as ADV-SIG1 and ADV-SIG2 respectively. 

.1.4. Steganalysis and performance evaluation 

We consider both pooled steganalysis and single image ste- 

analysis which are both based on SRNet [20] . 

In single image steganalysis, SRNet [20] is used as steganalyzer. 

ince the proposed algorithm only operates on stego image which 

oes not affect the false alarm ratio, we mainly use missed detec- 

ion ratio P MD to measure the performance, which is calculated as 

 MD = 

F N 

N stego 
, (17) 

here F N represents the number of stegos that are taken as covers, 

nd N stego is the total number of stegos. Besides that, we also show 

alse alarm ratios and average errors of single image steganalysis 

esults. 

In supervised pooled steganalysis, we use SRNet as single image 

teganalysis and then we pool the results of all the images to make 

 final decision, here we use Sign Test and more details can be 

ound at reference [9] . 

In unsupervised pooled steganalysis, we use SRNet to extract 

teganalysis features. We first train it as a single image stegana- 

yzer using covers on dataset D 1 and corresponding conventional 

tegos, then remove its last layer and take the remaining network 

s the feature extractor φC,S , which outputs a 512-dimensional fea- 

ure set. Note that D 1 is used for training the SRNet as a single im-

ge steganalyzer, and a single image rather than an actor is taken 

s a unit during training process. When we obtain the trained fea- 

ure extractor, we can calculate the MMD distance [35] of the each 

air of actors in feature domain to measure their similarity. After 

hat, two popular anomaly detection schemes (hierarchical cluster- 

ng [33] and Local Outlier Factor (LOF) [34] ) are applied to discover 

he steganographer. 

To realize hierarchical clustering, we use the MATLAB function 

inkage () to create cluster tree with Single as default method, and 

ut the hierarchical cluster tree at the second layer to divide the 

ata into two classes by MATLAB function cluster () . Ideally, for 

he steganographer detection task, all the innocent users should 

e clustered as a cluster and the other cluster only consists of 

he steganographer. We evaluate the proposed scheme by overall 

dentification accuracy rate (AR) as [24] , which is presented as the 

umber of correctly detected steganographic actors over the se- 

ected total number of steganographic actors, i.e., 

R = 

N correct 

N total 

, (18) 

here, N correct is the number of correctly detected steganographer, 

nd N total represents the selected total number of steganographers. 

LOF method calculates the value of local outlier factor (LOF) for 

ach actor, which reflects the anomaly degree of the actor, and the 

etails can be found at reference [34] . We rank actors according to 

heir LOF value in descending order and use the Top-5 accuracy as 

he benchmark to measure the performance. 

Besides, we also apply sign test for steganographer detection to 

easure the perforance of our method under supervised detection. 
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Fig. 3. Performance of the steganographer against different pooled steganalysis. 
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.2. Performance against an adversary-unaware pooled steganalysis 

In this part, we assume the steganographer is aware of the exis- 

ence of pooled steganalysis but is unaware of the exactly unsuper- 

ised methods the eavesdropper used (LOF or hierarchical cluster). 

e also assume the steganographer is aware of the knowledge of 

he feature extractor φC,S . But the steganalyst is unaware of the ad- 

ersarial operation and still uses the current feature extractor φC,S . 

To validate the effectiveness of the proposed scheme, we set 

 A = 50 and N I = 50 in the experiments, and simulate practical sit- 

ation that the eavesdropper has collected digital images of 49 

ormal users and a steganographer, and he tries to find out the 

teganographer among them. For each steganographer generated 

rom D 4 , we conducted 20 repeated simulation experiments, and 

e reselect 49 normal actors from D 4 for each repeat experiment. 

Fig. 3 shows the performance of the proposed methods against 

ifferent pooled steganalysis, including Hierarchical Clustering, LOF 

nd Sign Test. It can be seen that the generated adversarial ste- 

os performs well in resisting both supervised and unsupervised 

ooled steganalysis, and the advantage of ADV-IMS is significant. 

y adjusting the stegnographic distortion with the gradient of the 

esigned loss function, the steganographer gets closer to other nor- 

al users in feature domain, thus the steganographer are hidden 

ithin its neighbor cluster, and it can not only interfere the unsu- 

ervised pooled steganalysis but also confuse the supervised clas- 

ifier. 

There are two factors contribute to the improvement, i.e., adap- 

ive batch strategy and adversarial embedding, to valid their effec- 

iveness respectively, we carry out a series ablation experiments: 

• Removed both the component to obtain the groundtruth, i.e., 

EVEN. 
• Removed the component of adversarial embedding and only 

leave batch strategy in our method, i.e., IMS. 
• Remove the adaptive batch strategy and leave adversarial em- 

bedding, i.e., ADV-EVEN. 
• Remove none of them, i.e., ADV-IMS 

As shown in Fig. 3 , ADV-EVEN outperforms traditional EVEN 

nd ADV-IMS outperforms IMS, which indicate the effectiveness 

f the adversarial embedding methods. By comparing IMS with 

VEN, we can see the effectiveness of IMS strategy. It should be no- 

iced that ADV-EVEN performs just a little better than EVEN, while 

DV-IMS performs much better than IMS, which indicate that our 
7 
ethod is more effective when the batch strategy adaptively dis- 

ributes payload among images. 

To confirm the statistical significance of the improved accuracy, 

e apply a t -test to evaluate the statistical significance of the pro- 

osed algorithms. The hypotheses are 

 0 : μ1 = μ2 , H 1 : μ1 > μ2 (19) 

here μ1 and μ2 are the mean values of detection accuracy of 

riginal method (EVEN or IMS) and the improved method (ADV- 

VEN or ADV-IMS). H 0 represents that there is no significant dif- 

erence between them, while H 1 means that the improved accuracy 

o exists rather than random chance. 

The statistic t is calculated as follows: 

 = 

μ1 − μ2 

S w 

√ 

1 
n 1 

+ 

1 
n 2 

(20) 

here 

 w 

= 

1 

n 1 + n 2 + 1 

[(n 1 − 1) S 2 1 + (n 2 − 1) S 2 2 ] , (21) 

 1 and n 2 are the numbers of testing times, and S 1 and S 2 are the 

tandard deviations of the original and improved algorithms, re- 

pectively. By looking up the t -score table of the standard normal 

istribution, the corresponding p -value can be obtained. A lower 

 -value indicates a lower probability that H 0 holds. If the p -value 

s less than a threshold, H 0 is rejected, and the improvement is 

eemed statistically significant and reliable. 

The significance level for the test is set to 0 . 05(t 0 . 025 (5) =
 . 5706) . Under different payloads and steganographic schemes, in 

ost cases, the test statistic t values are larger than the corre- 

ponding quantile 0 . 05(t 0 . 025 (5) , which implies the detection im- 

rovements have statistical significance. 

To further explore the proposed methods, we consider different 

ituation and change the number of actors and batch size, we set 

 A = 10 , 50 , 100 and N I = 10 , 50 , 100 in the experiments, and uti-

ize average rank of the steganographer detected by LOF as secu- 

ity measurement, larger rank value indicates better security per- 

ormance of the algorithm. The results are shown in Figs. 4 and 

 . It demonstrated that though the results are a little sensitive to 

atch size and actor number, the proposed ADV-IMS method per- 

orms best. 
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Fig. 4. Performance of the steganographer with different batch size against LOF. 

Fig. 5. Performance of the steganographer in the situation of different numbers of actors against LOF. 
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.3. Performance against adversary-unaware single image 

teganalysis 

Section 4.2 shows the generated adversarial stegos improve 

he security of traditional steganography algorithms on resist- 

ng pooled steganalysis. But in practice, besides pooled steganal- 

sis, the steganographer also faced with single image steganal- 

sis. Therefore, in this part, we explore the performance of the 

enerated adversarial stegos on resisting single image steganaly- 

is, here we use SRNet 1 as steganalyzer. We assume the stegana- 

yst is unaware of the adversarial operation and still uses the SR- 

et trained with conventional stegos as steganalyzer even though 
1 http://dde.binghamton.edu/download/ 

E

t

w

8 
he steganographer leverages adversarial steganography and batch 

trategy. 

We apply HILL and SUNIWARD as steganographic algorithms to 

enerate stegos at different payloads. Then the ensemble classifier 

s trained with 10,0 0 0 pairs of covers and the stegos at a fixed

ayload. Tables 1 and 2 show the results of single image steganal- 

sis, the stegos are generated based on HILL distortion and SUNI- 

ARD distortion respectively. The proposed method only operates 

n stgoes other than covers, it only influence the missed detection 

atio. Therefore, the false alarm ratios of different algorithms are 

he same at the same payload, and we only focus on the missed 

etection error P MD . 

It can be seen that the adversarial stegos generated by ADV- 

VEN and ADV-IMS significantly outperform EVEN and IMS respec- 

ively. However, our methods perform not as well as ADV-SIG2 

hen resist steganalyzer of single image, since the proposed batch 

http://dde.binghamton.edu/download/
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Table 1 

P MD of single image steganalysis using adversarial-unaware SRNet when the teganographer uses HILL [4] distortion. 

Batch 

steganography 

Test 

set 

0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 

P FA = 0 . 3146 ± 0 . 0023 P FA = 0.2239 ± 0.0018 P FA = 0.1894 ± 0.0032 P FA = 0.1597 ± 0.0034 

ADV-SIG1 [30] Z ADV-SIG1 from D 4 0.9625 ± 0.0024 0.9417 ± 0.0019 0.9122 ± 0.0026 0.7624 ± 0.0035 

ADV-SIG2 [32] Z ADV-SIG2 from D 4 0.9925 ± 0.0035 0.9916 ± 0.0050 0.9822 ± 0.0026 0.8224 ± 0.0037 

EVEN [10] S EVEN from D 4 0.3721 ± 0.0019 0.2998 ± 0.0028 0.2232 ± 0.0021 0.1851 ± 0.0029 

ADV-EVEN Z ADV-EVEN from D 4 0 . 4899 ± 0 . 0035 0 . 4888 ± 0 . 0029 0 . 2709 ± 0 . 0019 0 . 2025 ± 0 . 0031 

IMS [14] S IMS from D 4 0.5956 ± 0.0037 0.5623 ± 0.0025 0.4387 ± 0.0034 0.3216 ± 0.0041 

ADV-IMS Z ADV-IMS from D 4 0 . 8233 ± 0 . 0037 0 . 7985 ± 0 . 0029 0 . 7514 ± 0 . 0024 0 . 6743 ± 0 . 0032 

Table 2 

P MD of single image steganalysis using adversarial-unaware SRNet when the teganographer uses SUNIWARD [5] distortion. 

Batch 

steganography 

Test 

set 

0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 

P FA = 0 . 3380 ± 0 . 0017 P FA = 0.2318 ± 0.0036 P FA = 0.1629 ± 0.0028 P FA = 0.1217 ± 0.0034 

ADV-SIG1 [30] Z ADV-SIG1 from D 4 0.9131 ± 0.0041 0.8829 ± 0.0028 0.8397 ± 0.0033 0.7844 ± 0.0029 

ADV-SIG2 [32] Z ADV-SIG2 from D 4 0.9725 ± 0.0035 0.9496 ± 0.0028 0.8999 ± 0.0027 0.8346 ± 0.0031 

EVEN [10] S EVEN from D 4 0.3521 ± 0.0030 0.2551 ± 0.0032 0.1898 ± 0.0032 0.1649 ± 0.0027 

ADV-EVEN Z ADV-EVEN from D 4 0 . 5343 ± 0 . 0021 0 . 2917 ± 0 . 0032 0 . 2316 ± 0 . 0035 0 . 1293 ± 0 . 0031 

IMS [14] S IMS from D 4 0.5145 ± 0.0020 0.4238 ± 0.0029 0.3427 ± 0.0026 0.2319 ± 0.0032 

ADV-IMS Z ADV-IMS from D 4 0 . 7697 ± 0 . 0025 0 . 7746 ± 0 . 0034 0 . 7541 ± 0 . 0041 0 . 6518 ± 0 . 0031 

Table 3 

Transferability results: detection errors of IMS and ADV-IMS using other advanced methods. 

Steganalyzer/Feature extractor Batch steganography LOF Hierarchical clustering Sign test Single-steganalysis 

SRNet 

[20] 

IMS 0.31 0.32 0.58 0.46 

ADV-IMS 0.38 0.63 0.86 0.56 

Ye- 

Net 

[19] 

IMS 0.39 0.37 0.61 0.51 

ADV-IMS 0.42 0.45 0.72 0.52 

SPAM 

[15] /SRM 

[16] 

IMS 0.41 0.37 0.63 0.49 

ADV-IMS 0.43 0.42 0.69 0.48 
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Table 4 

Average rank of the steganographer detected by the LOF [34] al- 

gorithm. Compared with the adversarial-unaware steganalysis results 

of ADV-IMS and ADV-SIG, the adversarial-aware steganalyzer de- 

creases the security of ADV-IMS and ADV-SIG. However, either on 

the adversarial-aware or adversarial-unaware condition, the proposed 

ADV-IMS method outperforms ADV-SIG. 

Batch steganography 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 

EVEN 1.02 1.01 1.01 1.00 

ADV-EVEN-AW 1.45 1.15 1.09 1.00 

IMS 1.79 1.71 1.21 1.17 

ADV-IMS-AW 3.34 1.69 1.32 1.20 
dversarial steganography scheme adjusts the embedding cost ac- 

ording to the MMD-loss of features, and it attacks the stegana- 

yzer from its middle link rather than the end. Intrinsically, it sac- 

ifices some targeted performance for more generality. MMD-loss 

s more generic than the cross entropy loss of the steganalyzer, 

hile cross entropy loss performs better in resisting single im- 

ge steganalyzer. since the feature extractor is not only a part of 

ooled steganalysis, but also a part of the steganalyzer, thus the 

roposed ADV-IMS can resist both single image steganalyzer and 

ooled steganalysis whereas ADV-SIG can’t resist pooled steganal- 

sis (as shown in Section 4.2 ). Especially for a steganographer with 

mall payload (0.1 bpp) generated by ADV-IMS based on SUNI- 

ARD distortion, the detection accuracy of pooled steganalysis us- 

ng hierarchical clustering is reduced to 0.46, and the missed de- 

ection ratio of single image steganalysis achieved 0.77. 

To confirm the statistical significance of the improved accuracy, 

e also apply a t -test to evaluate the statistical significance of the 

roposed algorithms. The significance level for the test is also set 

o 0 . 05(t 0 . 025 (5) = 2 . 5706) , which is usually recommended as a

onvenient cut off level to reject the null hypothesis, given that it 

ere true. We underline the missed detection error in Tables 1 and 

 , where the improvement of the improved method compared to 

he original algorithm is statistically significant. 

.4. Transferability of adversarial embedding 

In order to investigate the case where the adversarial stego 

mages are analyzed by steganalyzers other than the target one, 

e conducted experiments by using other advanced methods, i.e., 

eNet [19] and artifact feature based model to perform the same 

asks. Since the low-dimensional features are more suitable for un- 

upervised pooled steganalysis, we use SPAM [15] feature in LOF 

nd clustering methods, while in sign test and single image ste- 

analysis, we use SRM [16] . The payload of a batch of images is set
9 
s 0.1 bpp with the stegnographic distortion defined by HILL. The 

etection errors are reported in Table 3 , showing that ADV-IMS 

utperforms IMS on resisting different pooled steganalysis meth- 

ds. 

.5. Performance against an adversary-aware steganalyzer 

In this section, we assume that the steganalyzer is aware of the 

teganographer’s adversarial strategy, one of his possible reactions 

s to re-train the feature extractor with adversarial stego images. 

ere we only evaluate the performance on resisting LOF detection. 

e generate adversarial stegos from training set D 2 as described in 

lgorithm 2 with SUNIWARD distortion, and add them to the train- 

ng set for training the feature extractor. Then we evaluate perfor- 

ance of the retrained feature extractor of detecting adversarial 

tego batch of the steganographer which is generated from D 4 . In 

his way, we ensure that the steanographer did not use any prior 

nowledge of the eavesdropper’s image set. 

The results are shown in Table 4 . The proposed methods per- 

orms less effecient on resisting an adversarial-aware steganalyzer. 

ince the adsversarial-aware steganalyzer is trained not only on 
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onventional stego images but also on adversarial stego images. 

owever, the adversarial stegos still perform better than conven- 

ioanl stegos, which imply that the adversarial stego images dis- 

urb steganalyzer in detecting conventional stego images. 

. Conclusion 

In this paper, we proposed an adversarial embedding scheme 

or batch steganography to counter pooled steganalysis, and we 

esigned the ADV-IMS algorithm which significantly improved the 

teganographic security compared with single image adversarial 

mbedding and conventional steganography. The experimental re- 

ults verified the efficiency of the proposed method. However, 

here are still some defects in our method and we would like to 

mprove them in future works. For example, the proposed method 

erforms poorly when faced with adversarial-aware pooled ste- 

analysis. Recently, there are many new works about adversarial 

mbedding in single image steganography, it worths investigating 

he performance of these approaches when be applied to batch 

teganography. From the perspective of the eavesdropper, adversar- 

al stegos challenge conventional steganalysis methods. Except for 

etraining, it should be considered how to detect the steganogra- 

her who uses adversarial batch steganography. 
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