
Deep Model Intellectual Property Protection
via Deep Watermarking

Jie Zhang , Dongdong Chen , Jing Liao , Weiming Zhang , Huamin Feng,

Gang Hua , Fellow, IEEE, and Nenghai Yu

Abstract—Despite the tremendous success, deep neural networks are exposed to serious IP infringement risks. Given a target deep

model, if the attacker knows its full information, it can be easily stolen by fine-tuning. Even if only its output is accessible, a surrogate

model can be trained through student-teacher learning by generating many input-output training pairs. Therefore, deep model IP

protection is important and necessary. However, it is still seriously under-researched. In this work, we propose a new model

watermarking framework for protecting deep networks trained for low-level computer vision or image processing tasks. Specifically,

a special task-agnostic barrier is added after the target model, which embeds a unified and invisible watermark into its outputs. When

the attacker trains one surrogate model by using the input-output pairs of the barrier target model, the hidden watermark will be learned

and extracted afterwards. To enable watermarks from binary bits to high-resolution images, a deep invisible watermarking mechanism

is designed. By jointly training the target model and watermark embedding, the extra barrier can even be absorbed into the target

model. Through extensive experiments, we demonstrate the robustness of the proposed framework, which can resist attacks with

different network structures and objective functions.

Index Terms—Deep model IP protection, model watermarking, image processing

Ç

1 INTRODUCTION

IN recent years, deep learning has revolutionized a wide
variety of artificial intelligence fields such as image recog-

nition [1], [2], medical image processing [3], [4], [5], [6],
speech recognition [7], [8] and natural language processing
[9], and outperforms traditional state-of-the-art methods by
a large margin. Despite its success, training a good deep
model is not a trivial task and often requires the dedicated
design of network structures and learning strategies, a large
scale high-quality labeled data and massive amount of com-
putation resources, all of which are expensive and full of
great business value. For some companies, these trained
models are indeed their core competitiveness. Therefore, IP
protection for deep models is not only important but also
essential for their success.

However, compared to media IP protection, deep model
IP protection is much more challenging because of the

powerful learning capacity of deepmodels [10], [11]. In other
words, given one specific task, numerous structures and
weight combinations can obtain similar performance. This
actually makes the IP infringement rather convenient. In the
white-box case, where the full information including the
detailed network structure and weights of the target model
is known, one typical and effective attackwaywould be fine-
tuning or pruning based on the target model on new data-
sets. Even in the black-box case where only the output of the
target model can be accessed, the target model can still be
stolen by training another surrogate model to imitate its
behavior through student-teacher learning [12], [13]. Specifi-
cally, we can first generate a large scale of input-output train-
ing pairs based on the target model, and then directly train
the surrogate model in a supervised manner by regarding
the outputs of the targetmodel as ground-truth labels.

Very recently, some preliminary research works [10],
[11], [14], [15] emerge for deep model IP protection. They
often either add a weight regularizer into the loss function
to make the learned weight have some special patterns or
use the predictions of a special set of indicator images as the
watermarks. Though these methods work pretty well to
some extent, they only consider the classification task and
the white-box attacks like fine-tuning or pruning. But in real
scenarios, labeling the training data for low-level computer
vision or image processing tasks is much more complex and
expensive than classification tasks, because their ground-
truth labels should be pixel-wise precise. Examples include
removing all the ribs in Chest X-ray images and the rain
streaks in real rainy images. In this sense, protecting such
image processing models is more valuable. Moreover,
because the original raw model does not need to be pro-
vided in most application scenarios, it can be easily
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encrypted with traditional algorithms to resist the white-
box attack. Therefore, more attention should be paid to the
black-box surrogate model attack.

Motivated by this, this paper studies the IP protection
problem for image processing networks that aims to resist
the challenging surrogate model attack [16]. Specifically, a
new model watermarking framework is proposed to add
watermarks into the target model. When the attackers use a
surrogate model to imitate the behavior of the watermarked
model, the designed watermarking mechanism should be
able to extract pre-defined watermarks out from outputs of
the learned surrogate model.

For better understanding, before diving into the model
watermarking details, let us first discuss the simplest spatial
visible watermarking mechanism shown in Fig. 1. Suppose
that we have a lot of input-output training pairs and we
manually add a unified visible watermark template to all
the outputs. Intuitively, if a surrogate model is trained on
such pairs with the simple L2 loss, the learned model will
learn this visible watermark into its output to get lower loss.
That is to say, given one target model, if we forcibly add
one unified visible watermark into all its output, it can resist
the plagiarism from other surrogate models to some extent.
However, the biggest limitation of this method is that the
added visible watermarks will seriously degrade the visual
quality and usability of the target model. Another potential
threat is that attackers may use image editing tools like Pho-
toshops to manually remove all the visible watermarks.

Inspired by the above observation, we propose a general
deep invisible model watermarking framework as shown in
Fig. 2. Given a target model M to be protected, we denote
its original input and output images as domain A and B
respectively. Then a spatial invisible watermark embedder
H is used to hide a unified target watermark d into all the
output images in the domain B and generate a new domain
B0. Different from the aforementioned simple visible water-
marks, all the images in the domain B0 should be visually
consistent to domain B. Symmetrically, given the images in
domain B0, another watermark extractor R will extract the
watermark d0 out, which is consistent to d. To protect the IP
of M, we will pack H and M into a whole for deployment.
The key hypothesis here is that when the attacker uses A
and B0 to learn a surrogate model SM, R can still extract the
target watermark out from the output B00 of SM.

We first test the effectiveness of our framework by using
traditional spatial invisible watermarking algorithms such
as [17], [18] and [19], which work well for some special

surrogate models but fail for most other ones. Another com-
mon limitation is that the information capacity they can
hide is relatively low, e.g., tens of bits. In order to hide high
capacity watermarks like logo images and achieve better
robustness, a novel deep invisible watermarking system is
proposed. As shown in Fig. 3, it consists of two main parts:
one embedding sub-network H to learn how to hide invisi-
ble watermarks into the image, and another extractor sub-
network R to learn how to extract the invisible watermark
out. To avoid R generating watermark for all the images no
matter whether they have invisible watermarks or not, we
also constrain R not to extract any watermark out if its input
is a clean image. Moreover, to make R generalize better for
outputs of any surrogate model, an extra adversarial train-
ing stage is incorporated. In this stage, we pick one example
surrogate model and add its outputs into R0s training.

For forensics, we leverage both the classic normalized cor-
relation metric and a simple classifier to judge whether the
extracted watermark is valid or not. Through extensive
experiments, the proposed framework shows its strong abil-
ity in resisting the attack from surrogate models trained with
different network structures like Resnet andUNet and differ-
ent loss functions likeL1,L2, perceptual loss, and adversarial
loss. By jointly training the target model and watermark
embedding, we find the functionality of H can be even
absorbed intoM, makingM awatermarkedmodel itself.

The contributions of this paper can be summarized in the
following five aspects:

� We introduce the IP protection problem for image
processing networks. We hope it will help draw
more attention to this seriously under-explored field
and inspire more great works.

� Motivated by the loss minimization property of deep
networks, we innovatively propose to leverage the
spatial invisible watermarking mechanism for deep
model watermarking.

� A novel deep invisible watermarking algorithm
along with the two-stage training strategy is
designed to improve the robustness and capacity of
traditional spatial invisible watermarking methods.

� We extend the proposed framework to multiple-
watermark and self-watermark case, which further
shows its strong generalization ability.

� Both the classic normalized correlation metric and
a watermark classifier demonstrate the strong

Fig. 1. The simplest watermarking mechanism by adding unified visible
watermarks onto output of the target model, which will sacrifice the
visual quality and usability. Fig. 2. The proposed deep watermarking framework by leveraging spa-

tial invisible watermarking algorithms.
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robustness to surrogate model attack with different
network structures and loss functions.

Compared with the preliminary conference version [16],
we have made significant improvements and extension in
this manuscript. The main difference are from four aspects:
1) We rewrite the theoretical analysis Section 3.2 to make it
more clear and solid; 2) We design a new classifier based
watermark verification mechanism in Section 3.4.4; 3) We
extend our framework to multiple watermarks and self-
watermarked models in Sections 3.4.5 and 3.4.6; 4) More
corresponding experimental results and analysis are given
in Sections 4 and 5.

2 RELATED WORK

2.1 Media Copyright Protection

Compared to model IP protection, media copyright protec-
tion [20], [21], [22], [23], [24], [25] is a classic research field
that has been studied for several decades. The most popular
media copyright protection method is watermarking. For
image watermarking, many different algorithms have been
proposed in the past, which can be broadly categorized into
two types: visible watermarks like logos, and invisible
watermarks. Compared to visible watermarks, invisible
watermarks are more secure and robust. They are often
embedded in the original spatial domain [17], [18], [19],
[26], or other image transform domains such as discrete
cosine transform (DCT) domain [27], [28], discrete wavelet
transform (DWT) domain [29], and discrete Fourier trans-
form (DFT) domain [30]. However, all these traditional
watermarking algorithms are often only able to hide several
or tens of bits, let alone real logo images. More importantly,
we find only spatial domain watermarking work to some
extent for this task and all other transform domain water-
marking algorithms totally fail.

In recent years, some DNN-based watermarking
schemes have been proposed. For example, Zhu et al. [31]
propose an auto-encoder-based network architecture to
realize the embedding and extracting process of water-
marks. Based on it, Tancik et al. [32] further realize a camera

shooting resilient watermarking scheme by adding a simu-
lated camera shooting distortion to the noise layer. In [33], a
full-size image is proposed to be used as watermark under
the hiding image in image framework. Compared to these
media watermarking algorithms, model watermarking is
much more challenging because of the exponential search
space of deep models. But we innovatively find it possible
to leverage spatial invisible watermarking techniques for
model protection.

2.2 Deep Model IP protection

Though IP protection for deep neural networks is still seri-
ously under-studied, there are some recent works [10], [11],
[14], [34], [35], [36], [37] that start paying attention to it. For
example, based on the over-parameterized property of deep
neural networks, Uchida et al. [10] propose a special weight
regularizer to the objective function so that the distribution
of weights can be resilient to attacks such as fine-tuning and
pruning. One big limitation of this method is not task-
agnostic and need to know the original network structure
and parameters for retraining. Adi et al. [11] use a particular
set of inputs as the indicators and let the model deliberately
output specific incorrect labels, which is also known as
“backdoor attack”. Similar scheme is adopted in [14] and
[38] for DNN watermarking on embedded devices.
Recently, Fan et al. [39] find all the above backdoor based
methods are fragile to ambiguity attack. To overcome this
limitation, a special digital passport layer is embedded into
the target model and trained in an alternative manner. But
this special passport layer often needs to make some net-
work structure changes and causes performance degrada-
tion. So in the recent work [40], Zhang et al. further
introduce a new passport-aware normalization layer for
model IP protection.

Despite the effectiveness of the above methods, they all
focus on the classification tasks, which is different from the
purpose of this paper, i.e., protecting higher commercial
valued image processing models. And for the challenging
surrogate model attack, they will totally fail. In this paper,

Fig. 3. The overall pipeline of the proposed deep invisible watermarking algorithm and two-stage training strategy. In the first training stage, a basic
watermark embedding sub-network H and extractor sub-network R are trained. Then another surrogate network SM is leveraged as the adversarial
competitor to further enhance the extracting ability of R.
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we consider the surrogate model attack and study the IP
protection for image processing networks. And different
from the above methods, we innovatively propose to lever-
age spatial invisible watermarking algorithms for deep
model IP protection.

2.3 Image-to-Image Translation

In the deep learning era, most image processing tasks such
as style transfer [41], [42], [43], deraining[44], [45], [46], and
X-ray image debone [47], can be modeled as an image-to-
image translation problem where both the input and output
are images. Thanks to the emergence of the generative
adversarial network (GAN) [48], this field has achieved sig-
nificant progress recently. Isola et al. propose a general
image-to-image translation framework Pix2Pix by combin-
ing adversarial training in [49], which is further improved
by many following works [50], [51], [52] in terms of quality,
diversity and functionality. However, all these methods
need a lot of pairwise training data, which is often difficult
to be collected. By introducing the cycle consistency, Zhu
et al. propose a general unpaired image-to-image translation
framework CycleGAN [53]. A similar idea is also adopted
in concurrent works DualGAN [54] and DiscoGAN [55]. In
this paper, we mainly focus on the deep models of paired
image-to-image translation, because the paired training
data is much more expensive to be obtained than unpaired
datasets. More importantly, there is no prior work that has
ever considered the watermarking issue for such models.

3 METHOD

In this section, we will first define the target problem for-
mally in Section 3.1, then provide the theoretical analysis
why the spatial invisible watermarking can be utilized for
model watermarking in Section 3.2. Based on the analysis,
traditional spatial invisible watermarking and a new deep
invisible watermarking framework will be elaborated in
Sections 3.3 and 3.4 respectively. Next, two different water-
mark verification methods will be considered in Sec-
tion 3.4.4. Finally, we will show how to extend the proposed
framework to enable multiple watermarks within one single
sub-network in Section 3.4.5 and make the target model self-
watermarked in Section 3.4.6.

3.1 Problem Definition

Given a target model M to protect, this paper mainly con-
siders the surrogate model attack, where the attacker does
not know the detailed network structure or weights of M
but is able to access its output. This is a very common and
sensible setting for real systems because most existing com-
mercial deep models are deployed as cloud API service or
encrypted executable program. In these scenarios, though
the attacker cannot use common white-box attack methods
like fine-tuning and pruning, a surrogate model can be
trained to imitate the target model’s behavior in a teacher-
student way. Specifically, the attacker collects a lot of input
images fa1; a2; . . . ; amg (domain A) and feeds them into M
to get corresponding output images fb1; b2; . . . ; bmg (domain
B), then a surrogate model SM is trained in a supervised
way by regardingM’s outputs as ground truth.

For effective forensics, the goal of resisting surrogate
model attack is to design an effective way that is able to
identify SM once it is trained with the data generated byM.
And in real scenarios, it is highly possible that we cannot
access the detailed information of model SM (e.g., network
structure and weights) like the target model neither. This
means that, even when we suspect one model is a pirated
model, the only indicator we can utilize is its output unless
we start the costly legal proceeding. Therefore, we need to
figure out one way to extract some kinds of forensics hints
from the output of SM. In this paper, we propose a new
deep model watermarking mechanism so that the pre-
defined watermark pattern can be extracted from SM’s
output.

3.2 Theoretical Pre-Analysis

In traditional watermarking algorithms, given an image I
and a target watermark d to be embed, they will first use a
watermark embedder H to generate an image I 0 which con-
tains d. Symmetrically, the target watermark d can be further
extracted out by the corresponding watermark extractor R.
As shown in Fig. 1, if each image bi 2 B is embedded with a
unified watermark d, forming another domain B0, then the
objective of the surrogate model SM is to minimize the dis-
tance L between SMðaiÞ and b0i

LðSMðaiÞ; b0iÞ ! 0; b0i ¼ bi þ s: (1)

Below we will first show SM can learn the watermark d into
its output, then show the inherent loss minimization prop-
erty of deep network will theoretically guarantee d to be
learned by a good surrogate model SM.

In detail, for each ai we have bi ¼ MðaiÞ, thus there must
exist a model SM that can learn good transformation
between domain A and domain B0 because of the existence
of below equivalence

LðMðaiÞ; biÞ ! 0 , LðSMðaiÞ; ðbi þ dÞÞ ! 0

when SM ¼ Mþ d:
(2)

In other words, one simplest solution of SM is to directly
add d to the output ofMwith a skip connection.

On the other hand, because the objective of SM is calcu-
lated based on b0i, the loss minimization property of deep
network theoretically guarantees a good surrogate model
SM should learn the unified watermark d into its output.
Otherwise, its objective loss function L cannot achieve a
lower value than the above simple solution.

Based on this observation, we propose a general deep
watermarking framework for image processing models
shown in Fig. 2. Given a target model M to protect, we add
a barrier H after it and embed a unified watermark d into its
output before showing them to the end-users. In this way,
the final output obtained by the attacker is actually the
watermarked version, so the surrogate model SM has to be
trained with the image pair ðai; b0iÞ from domain A;B0

instead of the original pair ðai; biÞ from domain A;B. After
SM’s training, we can leverage the corresponding water-
mark extractor R to extract the watermark out from the out-
put of SM.
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To ensure the watermarked output image b0i is visually
consistent with the original one bi, only spatial invisible
watermarking algorithms are considered in this paper.
Below we will introduce both traditional spatial invisible
watermarking algorithm and a novel deep invisible water-
marking algorithm.

3.3 Traditional Spatial Invisible Watermarking

Additive-based embedding is the most common method
used in the traditional spatial invisible watermarking
scheme. Specifically, the watermark information is first
spread into a sequence or block which satisfies a certain dis-
tribution, then embedded into the corresponding coeffi-
cients of the host image. This embedding procedure can be
formulated by

I 0 ¼ I þ aC0 if wi ¼ 0
I þ aC1 otherwise

�
; (3)

where I and I 0 indicate the original image and embedded
image respectively. a indicates the embedding intensity and
Ci denote the spread image block that represents bit
“wi”(wi 2 ½0; 1�). In the extraction side, the watermark is
determined by detecting the distribution of the correspond-
ing coefficients. The robustness of such an algorithm is
guaranteed by the spread spectrum operation. The redun-
dancy brought by the spread spectrum makes a strong error
correction ability of the watermark so that the distribution of
the blockwill not change a lot even after image processing.

However, such algorithms often have very limited
embedding capacity because many extra redundant bits are
needed to ensure robustness. In fact, inmany application sce-
narios, the IP owners may want to embed some special
images (e.g., logos) explicitly for convenient visual forensics.
This is nearly infeasible for these algorithms. More impor-
tantly, the following experiments show that these traditional
algorithms can only resist the attack from some special types
of surrogate models. To enable more high-capacity water-
marks and more robust resistance ability, we will propose a
new deep invisible watermarking algorithm below.

3.4 Deep Invisible Watermarking

3.4.1 Overview

As shown in Fig. 3, to embed an image watermark into host
images of the domain B and extract it out afterward, one
embedding sub-network H and one extractor sub-network
R are adopted respectively. Without sacrificing the original
image quality of domain B, we require watermarked images
in domain B0 to be visually consistent to the original images
in the domain B. As adversarial networks have demon-
strated their power in reducing the domain gap in many
image translation tasks, we append one discriminator net-
work D after H to further improve the image quality of
domain B0.

During training, we find if the extractor network R is
only trained with the images of domain B0, it is very easy to
overfit and output the target watermark no matter whether
the input images contain watermarks or not. To circumvent
this problem, we also feed the images of domain A and
domain B that do not contain watermarks into R and force
it to output a constant blank image. In this way, R will have

the real ability to extract watermarks out only when the
input image has the watermark in it.

Based on the pre-analysis, when the attacker uses a sur-
rogate model SM to imitate the target model M based on
the input domain A and watermarked domain B0, SM will
learn the embedded watermark d into its output. Despite
higher embedding capacity, we find that the extractor sub-
network R cannot extract the watermarks out from the out-
put of the surrogate model SM neither like traditional
watermarking algorithms if only trained with this initial
training stage. This is because R has only observed clean
watermarked images but not the watermarked images from
surrogate models which may contain some unpleasant
noises. To further enhance the extracting ability of R, we
choose one simple surrogate network to imitate the
attackers’ behavior and fine-tune R on the mixed dataset of
domain A;B;B0;B00 in an extra adversarial training stage.
The following experiments will show this can significantly
boost the extracting ability of R. More importantly, this abil-
ity generalizes well to other types of surrogate models.

3.4.2 Network Structures

By default, we adopt UNet [56] as the network structure of
H and SM, which has been widely used by many transla-
tion based tasks like Pix2Pix [49] and CycleGAN [53]. It per-
forms especially well for tasks where the output image
shares some common properties of input image by using
multi-scale skip connections. But for the extractor sub-net-
work R whose output is different from the input, we find
CEILNet [57] works much better. It also follows an auto-
encoder like network structure. In details, the encoder con-
sists of three convolutional layers, and the decoder consists
of one deconvolutional layer and two convolutional layers
symmetrically. In order to enhance the learning capacity,
nine residual blocks are inserted between the encoder and
decoder. For the discriminator D, we adopt the widely-used
PatchGAN [49]. Note that except for the extractor sub-net-
work R, we find other types of translation networks also
work well in our framework, which demonstrates the strong
generalization ability of our framework.

3.4.3 Loss Functions

The objective loss function of our method consists of two
parts: the embedding loss Lemd and the extracting loss
Lext, i.e.,

L ¼ Lemd þ � � Lext; (4)

where � is the hyper parameter to balance these two loss
terms. Below we will introduce the detailed formulation of
Lemd and Lext respectively.

Embedding Loss. To embed the watermark image into a
cover image while guaranteeing the original visual quality,
three different types of visual consistency loss are consid-
ered: the basic L2 loss ‘bs, perceptual loss ‘vgg and adversar-
ial loss ‘adv, i.e.,

Lemd ¼ �1 � ‘bs þ �2 � ‘vgg þ �3 � ‘adv: (5)

Here the basic L2 loss ‘bs is simply the pixel value difference
between the input host image bi and the watermarked
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output image b0i, Nc is the total pixel number, i.e.,

‘bs ¼
X

b0
i
2B0;bi2B

1

Nc
kb0i � bik2: (6)

And the perceptual loss ‘vgg [58] is defined as the difference
between the VGG feature of bi and b0i

‘vgg ¼
X

b0
i
2B0;bi2B

1

Nf
kVGGkðb0iÞ � VGGkðbiÞk2; (7)

where VGGkð�Þ denotes the features extracted at layer k
(“conv2_2” by default), and Nf denotes the total feature
neuron number. To further improve the visual quality and
minimize the domain gap between B0 and B, the adversarial
loss ‘adv will let the embedding sub-network H embed
watermarks better so that the discriminator D cannot differ-
entiate its output from real watermark-free images in B

‘adv ¼ E
bi2B

logðDðbiÞÞ þ E
b0
i
2B0

logð1�Dðb0iÞÞ: (8)

Extracting Loss. The responsibility of the extractor sub-net-
work R has two aspects: it should be able to extract the tar-
get watermark out for watermarked images from B0 and
instead output a constant blank image for watermark-free
images from A;B. So the first two terms of Lext are the
reconstruction loss ‘wm and the clean loss ‘clean for these two
types of images respectively, i.e.,

‘wm ¼
X
b0
i
2B0

1

Nc
kRðb0iÞ � dk2;

‘clean ¼
X
ai2A

1

Nc
kRðaiÞ � d0k2 þ

X
bi2B

1

Nc
kRðbiÞ � d0k2;

(9)

where d is the target watermark image and d0 is the constant
blank watermark image. Besides the reconstruction loss, we
also want the watermarks extracted from different water-
marked images to be consistent, thus another consistent loss
‘cst is added

‘cst ¼
X
x;y2B0

kRðxÞ �RðyÞk2: (10)

The final extracting loss Lext is defined as the weighted sum
of these three terms, i.e.,

Lext ¼ �4 � ‘wm þ �5 � ‘clean þ �6 � ‘cst: (11)

Adversarial Training Stage. From experiments, we find that if
R is only trained with the above initial training stage, it can-
not generalize well for the noisy watermarked output of
some surrogate models because only the clean watermarked
images are observed. To enhance its extracting ability, an
extra adversarial training stage is added, wherein we intro-
duce the degradation of surrogate model attack. Specifi-
cally, one proxy surrogate model SM is trained with the
simple L2 loss by default. Denote the outputs of this proxy
model as B00, we further fine-tune R on the mixed dataset
A;B;B0;B00 in this stage. Since the embedding sub-network
H is fixed in this stage, only the extracting loss Lext is

considered to refine the capability of R. Specifically, the
clean loss ‘clean is kept unchanged, while ‘wm; ‘cst are
updated as below respectively:

‘wm ¼
X
b0
i
2B0

1

Nc
kRðb0iÞ � dk2 þ

X
b00
i
2B00

1

Nc
kRðb00i Þ � dk2;

‘cst ¼
X

x;y2B0[B00
kRðxÞ �RðyÞk2:

(12)

3.4.4 Watermark Verification

For effective forensics, if we want to know whether a surro-
gate model SM is trained by stealing the IP of one target
model, we first feed SM’s output into the extractor sub-net-
work R, then verify whether R’s output matches the pre-
defined watermark. In this paper, we consider two different
verification methods: the classic normalized correlation
(NC) metric and an extra classifier C. For the former one, it
is simply defined as

NC ¼ < Rðb0iÞ; d >

kRðb0iÞk � kdk
; (13)

where < �; � > and k � k denote the inner product and L2
norm respectively. Compared to the NC metric, the latter
classifier is more straightforward and robust to noisy parts
of Rðb0iÞ potentially. Because it is just a binary classification
problem (yes/no), we find a simple network consisting of
three convolutional layers is enough. In our method, C is
joint trained with R during the adversarial training stage,
and label “1” and “0” represent watermarked and water-
mark-free images respectively. By default, the simple cross
entropy loss is used

Lcls ¼ �
" X

x2A[B
logð1� CðxÞÞ þ

X
x2B0

logðCðxÞÞ
#
: (14)

3.4.5 Extension to Multiple Watermarks

In our default setting, for one specific watermark, an
embedding sub-network and a corresponding extractor
sub-network will be trained. This makes sense for the sce-
narios where only one specific deep model needs to be pro-
tected. However, it is unfriendly to some other scenarios
where one deep model has multiple release versions and
different versions are represented by different watermarks,
because training multiple embedding and extractor sub-net-
works is both storage- and computation-consuming. Thanks
to the flexibility of the proposed framework, enabling multi-
ple different watermarks within one single embedding and
extractor sub-network is easy to be supported. The overall
training strategy is similar, and the biggest difference is that
different watermarks will be randomly selected for H to
embed and R to exact correspondingly. For the verification
classifier C, it will be changed from the binary classification
to multi-class classification.

3.4.6 Extension to Self-Watermarked Models

As mentioned before, in order to protect one specific target
model, the embedding sub-network acts as an extra barrier
and will be appended after the target model as a whole. The
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main benefit of this pipeline is task-agnostic, which means
that it is a very general solution and can work indepen-
dently without the need of knowing the information of the
target model. However, requiring an extra embedding sub-
network may sometimew be a limitation. So we propose an
extended solution to absorb the watermarking functionality
into the target model itself if we can control its training pro-
cess. In this sense, the target model is self-watermarked
without the extra embedding sub-network. In other words,
the target model itself will automatically embed a water-
mark into its output.

The training difference between the original target model
and the self-watermarked target model is shown in Fig. 4.
Assuming the original target model M is trained with the
task-special loss Ltask, we add an extractor sub-network R
after M and jointly train them by combining the extracting
loss Lext mentioned above with Ltask. To ensure the robust-
ness and capability of R, R still needs to be fine-tuned with
the extra adversarial training stage.

4 EXPERIMENTS

To demonstrate the effectiveness of the proposed system,
we use two example image processing tasks in this paper:
image deraining and Chest X-ray image debone. The goal of
these two tasks is to remove the rain streak and rib compo-
nents from the input images respectively. We will first intro-
duce the implementation details and evaluation metric in
Section 4.1, then evaluate the proposed deep invisible
watermarking algorithm quantitatively and qualitatively in
Section 4.2. Next, we will demonstrate the robustness of the
proposed deep watermarking framework to surrogate mod-
els with different network structures and loss functions in
Section 4.3. Furthermore, we compare our method with tra-
ditional and DNN-based watermarking algorithm in Sec-
tion 4.4 and show the robustness of our method to
watermark overwriting in Section 4.5. Finally, some ablation
analysis are provided in Section 4.6.

4.1 Implementation Details

Dataset Setup. For image deraining, we use 6,100 images from
the PASCAL VOC dataset [59] as target domain B, and use
the synthesis algorithm in [60] to generate rainy images as
domainA. These images are split into two parts: 6,000 are for
both the initial and adversarial training stage and 100 for test-
ing. Since the images used by the attacker may be different
from that used by the IP owner to trainH;R, we simulate it by
choosing 6,000 images from the COCO dataset [61] for the
surrogate model training. Similarly, for X-ray image debone,
we select 6,100 high-quality chest X-ray images from the open
dataset chestx-ray8 [62] and use the rib suppression algorithm
proposed by [47] to generate the training pair. They are
divided into three parts: 3,000 for both the initial and adver-
sarial training, 3,000 for the surrogatemodel training, and 100
for testing. All the images are resized to 256� 256 by default.

Training Details. By default, we train sub-network H;R
and discriminator D for 200 epochs with a batchsize of 8.
Adam optimizer is adopted with the initial learning rate of
0.0002. We decay the learning rate by 0.2 if the loss does not
decrease within 5 epochs. For surrogate model training,
batchsize of 16 and longer epochs of 300 are used to ensure
better performance. And the initial learning rate is set to be
0.0001, which stays unchanged in the first 150 epochs and is
linearly decayed to zero in the remaining 150 epochs. In the
adversarial training stage, sub-network R is trained with
the initial learning rate of 0.0001. For classifier C, it is also
trained in a similar way. By default, all hyperparameters �i

equal to 1 except �3 ¼ 0:01.
Evaluation Metric. To evaluate the visual quality, PSNR

and SSIM are used by default. When using the NC metric
for watermark verification, the watermark is regarded as
successfully extracted if its NC value is bigger than 0.95.
Based on it, the success rate (SRNC) is further defined as the
ratio of watermarked images whose hidden watermark is
successfully extracted in an image set. When using the clas-
sifier for verification, we use the threshold 0.5 for the binary
case and adopt the label with max-possibility for the multi-
class case. Similarly, the success rates based on the classifier
are denoted as SRC .

4.2 Deep Image Based Invisible Watermarking

In this experiment, we give both qualitative and quantitative
results about the proposed deep image based invisible water-
marking algorithm. To demonstrate its generalization ability
to various types of watermark images, both simple grayscale
logo images and complex color images are considered. For
the grayscale case, we even consider a QR code image. Sev-
eral example images used for the debone and deraining task
are shown in Fig. 5. It can be easily seen that the proposed
deep watermarking algorithm can not only embed the water-
mark images into the host images in an imperceptible way
but also successfully extract the embedded watermarks out.
Especially for the challenging “Peppers” and “Lena” water-
marks that have rich textures, the embedding sub-network
and extractor sub-network still collaborate very well and
guarantee the visual quality of the watermarked image and
extractedwatermark simultaneously.

To investigate whether the extracting sub-network
embeds watermark in a naive additive way, we further

Fig. 4. Illustration diagram to show the training difference between the
original target model and self-watermarked target model.
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show the residuals (even enhanced 10 �) between water-
marked image b0i and watermark-free image bi in Fig. 5.
Obviously, we cannot observe any watermark hint from the
residuals, which means the watermark is indeed embedded
in an advanced and smart way. Taking one more step for-
ward, we use the “Flower” watermark image as an example
and show the color histogram distribution difference
between the watermarked image and original watermark-
free image in Fig. 6. It shows that, even though the colorful
“Flower” watermark image is embedded, the gray histo-
gram distribution is almost identical to that of the original
watermark-free image.

Quantitative results with respect to the visual quality and
extracting ability are provided in Table 1. We can find that
the average PSNR and SSIM between watermarked and
watermark-free images are very high, which double con-
firms the original image quality is well kept. On the other
hand, though high extracting ability is contradictory to high
visual quality to some extent, our extractor sub-network R
is still able to achieve very high extracting ability with an
average NC value over 0.99 and 100 percent success rate
both based on the NC metric and the classifier C.

4.3 Robustness to Surrogate Model Attack

Besides the visual quality consistency, another more impor-
tant goal is to guarantee IP protection ability. Considering
the attacker may use different network structures trained
with different loss functions to imitate target model’s
behavior, we simulate this case by using a lot of surrogate
models to evaluate the robustness of the proposed deep
watermarking framework. In details, we consider four dif-
ferent types of network structures: vanilla convolutional

Fig. 5. Some visual examples to show the capability of the proposed deep invisible watermarking algorithm: (A) watermark-free image bi from domain
B, (B) watermarked image b0i from domain B0 (C) the residual between bi and b0i (enhanced 10�), (D) ground-truth watermark, (E) extracted water-
mark from b0i. The first column is the results of traditional spatial bit-based invisible watermarking algorithms (64-bit embedded), and the middle and
right parts are the results of our methods for the debone and deraining tasks respectively.

Fig. 6. The gray histogram comparison between watermark-free image
and watermarked image for the Derain-Flower case.

TABLE 1
Quantitative Results of the Proposed Deep Image

Based Invisible Watermarking Algorithm

Task PSNR SSIM NC SRNC = SRC

Debone-IEEE 47.29 0.99 0.9999 100% = 100%
Debone-Flower 46.36 0.99 0.9999 100% = 100%
Debone-QR 44.35 0.99 0.9999 100% = 100%
Derain-Flower 41.21 0.99 0.9999 100% = 100%
Derain-Peppers 40.91 0.98 0.9999 100% = 100%
Derain-Lena 42.50 0.98 0.9999 100% = 100%
Derain-IEEE 41.76 0.98 0.9999 100% = 100%
Derain-QR 40.24 0.98 0.9999 100% = 100%

PSNR and SSIM are calculated between the watermarked and original water-
mark-free images. x; y denote task name and watermark image name in the
notation “x-y”.
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networks only consisting of several convolutional layers
(“CNet”), an auto-encoder like networks with 9 and 16
residual blocks (“Res9”, “Res16”), and the aforementioned
UNet network (“UNet”). For the objective loss function,
popular loss functions like L1, L2, perceptual loss Lperc,
adversarial loss Ladv and their combination are considered.
But we discard the case that only utilizes perceptual loss
Lperc for surrogate model learning because it will generate
very terrible image quality (PSNR:19.73; SSIM:0.85) and
make the attack meaningless. As the surrogate model with
“UNet” and L2 loss function is utilized in the adversarial
training stage, this configuration can be viewed as a white-
box attack and all other configurations are black-box
attacks. Without losing generality, we use grayscale “IEEE”
and color “Flower” image as default target watermark for
debone and deraining respectively in this experiment.

Because of the limited computation resource, we do not
consider all the combinations of network structures and loss
functions. Instead, we choose to conduct the control experi-
ments to demonstrate the robustness to the network struc-
tures and loss functions respectively. In Table 2 (Column 2
� 5), it shows that, though only UNet based surrogate
model trained with L2 loss is leveraged in the adversarial
training stage, the proposed deep model watermarking
framework can resist both white-box and black-box attacks
when equipped with the newly proposed deep image-based
invisible watermarking technique.

To further demonstrate the robustness to different loss
functions, we use the UNet as the default network structure
and train surrogate models with different combinations of

loss functions. As shown in Table 2 (Column 6� 10), the pro-
posed deep watermarking framework has a very strong gen-
eralization ability and can resist different loss combinations
with very high success rates. In Fig. 7, we provide one exam-
ple watermark extracted fromdifferent surrogatemodels.

4.4 Comparison With Other Methods

We further compare our method with one representative
traditional watermarking algorithm [19] and one DNN-
based watermarking algorithm HiDDeN [31] by hiding 64-
bit as the watermark. For HiDDeN, two variants proposed
in their paper are considered: with/without noise layer
between the encoder and the decoder. Compared to the
“without noise layer” version, “with noise layer” version is
shown to be more robust.

As shown in Table 3, our method not only has better
embedding and extracting ability, but also has better robust-
ness to surrogate model attack. For the traditional water-
marking algorithm [19], it can only resist the attack of some
special surrogate models (only UNet in our experiment)
because its extracting algorithms cannot handle the
degraded watermarked images from different surrogate
models (shown in Fig. 8). More importantly, they cannot
embed high-capacity watermarks like logo images.
Although the visual quality is acceptable, the remnants of
the original watermark can be discovered from the residual
image (Fig. 5), which may be utilized by the attacker. In
terms of the embedding time and extracting time, our
method is about 0.0051s and 0.007s for a 256�256 image on

TABLE 2
The Success Rate (SRNC=SRC) of Our Method Resisting the Attack From Surrogate Models

Settings CNet Res9 Res16 UNet L1 L1 + Ladv L2 L2 + Ladv Lperc+Ladv

Debone 93% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 71% = 94%
Derain 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 99% = 100% 100% = 100%
Deboney 0% = 0% 0% = 0% 0% = 0% 0% = 0% 0% = 0% 0% = 0% 27% = 88% 44% = 96% 0% = 0%
Derainy 0% = 0% 0% = 0% 0% = 0% 0% = 0% 0% = 0% 0% = 0% 0% = 0% 0% = 0% 0% = 54%

Column 2 � 5 are trained with L2 loss but different network structures and Column 6 � 10 are trained with UNet network structure but different loss combina-
tions. We take Debone-IEEE task and Derain-Flower task as example, and y denotes the results without adversarial training.

Fig. 7. Example output image and corresponding extracted watermark from different surrogate models. (A) input watermark-free image ai; (B) water-
marked image b0i; (C)� (F) are cases for different network structures with L2 loss: CNet, Res9, Res16 and UNet in turn; (G)� (K) are cases for differ-
ent loss combinations with UNet: L2, L2+Ladv, L1, L1+Ladv and Lperc+Ladv in turn.
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GPU, while traditional spatial invisible watermarking algo-
rithm [19] needs 0.0038s and 0.0047s on CPU. We have also
tried some other traditional transform domain watermark-
ing algorithms like DCT-based[63], DFT-based[64] and
DWT-based[65], but all of them do not work and achieve 0
percent success rate. For the DNN-based watermarking
algorithm HiDDeN [31], no matter whether the noise layer
is involved or not, it is totally fragile to surrogate model
attacks.

4.5 Robustness to Watermark Overwriting

In real applications, the attackers may follow a similar
watermarking strategy and add another watermark upon
the model outputs before training the surrogate model,
which can potentially destroy the original watermark or
cause forensics ambiguity. This type of attack is often called
“watermark overwriting”. By using our default setting, we
find it cannot resist this attack very well. But following a
similar idea as the adversarial training, we find a simple
enhanced training strategy can help resist it. Specifically,

we first train a single embedding network (simulate the
potential overwriting network) to embed ninety diverse
watermark images as described in Section 3.4.5, and then
add a noise layer between the embedding sub-network and
the extractor sub-network in the initial training stage by
using the trained embedding network to re-watermark the
watermarked images. We require the extractor to be able to
extract the original watermark out from re-watermarked
images but blank watermarks from clean images or images
only watermarked by the overwriting network. In this way,
the extracting ability of the extractor sub-network can be
significantly enhanced.

To simulate the attack scenario, we utilize “IEEE” as the
original watermark and use other different watermarks (no
overlap with the ninety watermarks) to perform overwrit-
ing, which can be regarded as a black-box setting. As shown
in Fig. 9 and Table 4, overwriting with different watermark
images makes the extractor fail to some extent, but the
extractor sub-network will work well with the above
enhanced training strategy. In addition, Table 4 shows a
degradation of the performance of surrogate model trained
with re-watermarked images, which reveals watermark
overwriting is a two-sided sword for the attacker. Need to
note that, although our algorithm can still extract our origi-
nal watermark out, it still suffers from the ambiguity issue
(the extractor sub-network from the attacker can also extract

TABLE 3
The Comparison of Embedding & Extracting Ability (Column 2 � 4) and Robustness to Surrogate Model

Attack (Column 5 � 8) Among Our Method and Two Typical Methods in Debone Task

Method PSNR SSIM NC CNet Res9 Res16 UNet

HiDDeN [31] 36.25 0.94 0.7220 0% 0% 0% 0%
HiDDeN [31]z 37.23 0.97 0.9972 0% 0% 0% 0%
TSIW-64 [19] 40.81 0.95 0.9999 0% 0% 0% 100%
Our 47.29 0.99 0.9999 93% = 100% 100% = 100% 100% = 100% 100% = 100%

TSIW-64 denotes using traditional spatial invisible watermarking algorithms [19] to hide 64-bit, while HiDDeN is a typical DNN-based watermarking method.
We use HiDDeN to hide 64-bit as well and z denotes training HiDDeN without noise layer. The surrogate models are trained with L2 loss but different network
structures. For TSIW-64 and HiDDeN, only SRNC is reported.

Fig. 8. Visual results of traditional spatial invisible watermarking:
(a) watermark-free image bi, (b) watermarked image b0i, (c) and (d) are
the outputs of surrogate model (UNet and Res9 with L2, respectively),
(e) ground-truth watermark, (f) � (h) are the corresponding extracted
watermark from (b) � (d). It is defined as successful extracting when the
extracted pattern matches mostly with ground-truth pattern like pattern
in blue and orange box, otherwise as failure like pattern in red box.

Fig. 9. Some visual examples of the extractor against watermark overwriting. Three different watermark images (a1 � a3) are considered as
attacker’s watermark, and the corresponding second and third columns are the extracted watermark by our extractor without and with the enhanced
training strategy.

TABLE 4
Quantitative Results With Different Watermark

Images for Watermark Overwriting

Watermarks None “Copyright” “Flower” “BIT”

SRNC=SRC 100%=100% 0%=100% 0%=36% 0%=0%
SRNC=SRC z 100%=100% 100%=100% 100%=100% 99%=100%
PSNR=SSIM 25.40=0.88 25.32=0.88 25.34=0.88 25.05=0.88

The 2nd and 3rd rows are the extracting success rate of our extractor, and z
denotes the results with the enhanced training strategy. We also show the
visual quality of surrogate model trained with corresponding re-watermarked
images in the last row.
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their watermark out). And we still need the watermarking
protocol to resolve this ambiguity issue.

4.6 Ablation Study

Importance of Clean Loss and Consistent Loss. At the water-
mark extracting end, besides the watermark reconstruction
loss, we also incorporate the extra clean loss for watermark-
free images and watermark consistent loss among different
watermarked images. To demonstrate their importance,
two control experiments are conducted by removing them
from the extracting loss. As shown in Fig. 11, without clean
loss, the extractor will always extract meaningless water-
mark from watermark-free images of domain A;B with
high NC values, which will make the forensics invalid.

Similarly in Fig. 12, when training without the consistent
loss, we find the extractor sub-network R can only extract
very weak watermarks or even cannot extract any watermark
out from the outputs of the surrogate mode. This is because
thewatermark consistency hidden inwatermarked image b0i is
destroyed to some extent and makes it more difficult to learn
unified watermarks into the surrogate model. By contrast, our
method can always extract very clearwatermarks out.

Importance of Adversarial Training. As described above, to
enhance the extracting ability of R, another adversarial
training stage is used. To demonstrate its necessity, we also
conduct the control experiments without adversarial train-
ing, and attach the corresponding results in Table 2 (labelled
with “y”). It can be seen that, with the default L2 loss, its

extracting success rate is all about 0 percent for surrogate
models of different network structures. When using UNet
as the network structure but trained with different losses,
only the embedded watermarks of some special surrogate
models can be partially extracted, which demonstrates the
significant importance of the adversarial training. In our
understanding, the reason why adversarial training with
UNet can generalize well to other networks may come from
two different aspects: 1) Different surrogate models are
trained with the similar task-specific loss functions, so their
outputs are similar; 2) As shown in the recent work [66], dif-
ferent CNN-based image generator models share some
common artifacts during the generation process. So training
with the degradation brought by UNet makes the extracting
network robust to other networks.

Extracting Ability versus Surrogate Model Performance. In
this section, we further analyze the relationship between the
extracting ability and the surrogate model performance.
Intuitively, the extracting ability will be high when the sur-
rogate model’s performance is good, and vice versa. To sim-
ulate this case, we take CNet with L2 loss as the baseline
and adjust its learning ability by changing the feature chan-
nel number from 8 to 256. It can be observed from Fig. 10
that, as the feature channels increase, the performance of
surrogate model (PSNR from 20.77 to 23.55) and the extract-
ing ability of extractor R ( SRNC : from 3 to 99 percent and
SRC : from 18 to 100 percent) both increase. From the model
protection perspective, when the surrogate model does not
perform well, we can view it as successful IP protection. For

Fig. 11. Comparison results with (first row) and without (second row)
clean loss: (a) and (c) are the watermark-free images ai; bi from domain
A;B, (b) and (d) are the extracted watermarks from images ai; bi respec-
tively. Number on the topright corner denotes the NC value.

Fig. 10. The relationship between the extracting ability and the surrogate model performance. Left: the extracting success rates (SRNC; SRC) and per-
formance (PSNR) change for the surrogate model CNet equipped with different channel numbers (from 8 to 256). Right: One visual example (the first
row): the middle two column represent the surrogate model output for CNet_8 and CNet_256 respectively while the first and the last column repre-
sent the input image with “Bone” and the original target model output. The extracted watermarks are displayed in the second row.

Fig. 12. Comparison results with (first row) and without (second row)
consistent loss: (a) watermark-free image bi from domain B, (b) water-
marked image b0i, (c) output b00i of the surrogate model, (d) extracted
watermark out from b00i .
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the visual illustration, we give one example for CNet_8 and
CNet_256 on the right of Fig. 10. It can be seen that our
model fails to extract the watermark only when the surro-
gate model completely fails to conduct the debone task.

Influence of Hyper-Parameter and Watermark Size. For the
hyper-parameter setting, we conduct control experiments
with different �, which is used to balance the ability of
embedding and extracting. As shown in Table 5, although
the visual quality of watermarked images and the NC value
will be influenced by different �, the final results are all
pretty good, which means our algorithm is not sensitive to
�. We further try different sizes of watermark to test the
generalization ability. Since we require the size of water-
mark to be same as the cover image in our framework, we
pad the watermark with 255 if its size is smaller than 256.
As shown in Table 6, our method generalizes well to water-
marks of different sizes.

5 EXTENSIONS

In this section, we will provide the experiment results for
the multiple watermarks and self-watermarked extensions
in Sections 5.1 and 5.2 respectively, then discuss how to
leverage the proposed framework to protect private data
and traditional non-CNNmodels in Section 5.3.

5.1 Multiple Watermarks Within One Network

As mentioned in Section 3.4.5, the proposed framework is
flexible to embed multiple different watermarks with just a
single embedding and extractor sub-network. To showcase
it, we take the debone task for example and select 10 differ-
ent logo images from the Internet as watermarks for train-
ing. For comparison, we use the logo “IEEE” and “Flower”
as two representatives and compare them with the results
of the default per-watermark-per-network setting. In terms
of the original embedding and extracting ability, as shown
in Table 7, the visual quality of this multiple-watermark

setting measured by PSNR degrades from 47.76 to 41.87
compared to the default setting but is still larger than 40,
which is reasonably good. Some visual examples are further
displayed in Fig. 13. In terms of the robustness to the surro-
gate model attack, we show the comparison results of differ-
ent networks and loss functions in Table 8. It can be seen
that the extracting success rates of the multiple-watermark
setting are comparable to those of the default setting, thus
preserving a similar level of robustness.

5.2 Self-Watermarked Model

Since the embedding sub-network H itself is an image proc-
essing network and can have different network structures,
given a target image processing network M, it is possible to
absorb the watermark embedding functionality of H into M
as shown in Fig. 4. In this way,M is self-watermarked with-
out the need of an extra barrier H. To demonstrate this pos-
sibility, we use the derain task with the “Flower” logo
image as an example and jointly learn the deraining and
watermark embedding process within one single network.
In Table 9, we first compare the deraining performance
between the original target model and the self-watermarked
target model. It can be seen that the self-watermarked
model can achieve very close deraining results (PSNR:32.13
and SSIM: 0.93) to the original target model (PSNR:32.49
and SSIM: 0.93). Two visual examples are further show-
cased in Fig. 14. Besides the deraining functionality, the
self-watermarked model can also hide the watermarks well
with 0.9999 NC values. In Table 11, we further demonstrate
the robustness to the surrogate model attacks of different
network structures and loss functions. It shows that the self-
watermarked model is very robust with near 100 percent
extracting success rates.

TABLE 5
Quantitative Results of Our Method With Different

Size Watermark Images

� PSNR SSIM NC SRNC = SRC

0.1 49.82 0.9978 0.9998 100% = 100%
0.5 48.44 0.9969 0.9998 100% = 100%
1 47.29 0.9960 0.9999 100% = 100%
2 45.12 0.9934 0.9999 100% = 100%
10 43.21 0.9836 0.9999 100% = 100%

We take Debone-IEEE task for example.

TABLE 6
Quantitative Results of Our Method With Different

Size Watermark Images

SIZE PSNR SSIM NC SRNC = SRC

32 46.89 0.9962 0.9999 100% = 100%
64 47.49 0.9965 0.9999 100% = 100%
96 48.06 0.9967 0.9999 100% = 100%
128 47.68 0.9965 0.9999 100% = 100%
256 47.29 0.9960 0.9999 100% = 100%

We take Debone-IEEE task for example.

TABLE 7
Comparison of the Original Embedding and Extracting Ability

Between the Multiple-Watermark (�) and
Per-Watermark-Per-Network Setting

Task PSNR SSIM SRNC = SRC

Debone_IEEE 47.76 0.99 100% = 100%
Debone_IEEE � 41.87 0.99 100% = 100%
Debone_Flower 46.36 0.99 100% = 100%
Debone_Flower � 41.67 0.98 100% = 100%

Two representative watermarks “IEEE” and ”Flower” are used here.

Fig. 13. Visual comparisons between the multiple-watermark (even col-
umns) and the per-watermark-per-network (odd column) setting. The
top row are the watermarked images and the bottom row are the corre-
sponding extracted watermarks.
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5.3 Protect Valuable Data and Traditional
Algorithms

In this paper, though most experiments are conducted to
simulate CNN model protection, the proposed idea is very
general and can be easily applied to data protection and tra-
ditional non-CNN algorithm protection. In details, we can

follow the default task-agnostic watermarking setting and
embed watermarks into labeled target data or add a water-
marking sub-network barrier after traditional algorithms’
output. To simulate data protection, we adopt the DPED
(“DSLR Photo Enhancement Dataset”) dataset [67] as an
example. It is collected by using high-end cameras and care-
ful alignment to train a high-quality image enhancement
network. For traditional algorithm protection, we consider
the famous structure-aware texture smoothing method RTV
[68] and choose 6000 images from PASCAL VOC dataset
[59] and COCO dataset [61] as its inputs. As our default set-
ting, we split the dataset into different parts for embedding
sub-network training and surrogate model attack. The
detailed evaluation results are given In Table 10. On the one
hand, the learned embedding sub-network can keep the
original visual quality very well with high PSNR/SSIM val-
ues and the extracting sub-network has a 100 percent
extracting success rate. On the other hand, we take the Res9
with L1 + Ladv as an example surrogate model, and the pro-
posed framework is able to extract the watermark out when
the surrogate model is trained with the target dataset or imi-
tates the behavior of the traditional algorithm. Some visual
results are shown in Fig. 15.

6 CONCLUSION AND DISCUSSION

IP protection for deep models is an important but seriously
under-researched problem. Inspired by traditional spatial
invisible media watermarking and the powerful learning

TABLE 8
Comparison of the Success Rate (SRNC /SRC) Against Surrogate Model Attack Between the Multiple-Watermark(�)

and Per-Watermark-Per-Network Setting

SRNC=SRC CNet Res9 Res16 UNet L1 L2 L1 + Ladv L2 + Ladv Lperc+Ladv

Debone_IEEE 93% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 71% = 94%
Debone_IEEE � 89% = 97% 90% = 95% 94% = 97% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 97% = 100%
Debone_Flower 73% = 82% 83% = 88% 89% = 92% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 99% = 100% 100% = 100%
Debone_Flower � 94% = 99% 97% = 99% 97% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 99% = 100%

Column 2 � 5 are trained with L2 loss but different network structures and Column 6 � 10 are trained with UNet network structure but different loss
combinations.

TABLE 9
The Performance Comparison Between the Original Target
Model (“_original”) and Self-Watermarked Target Model

(“_Flower”)

Task PSNR SSIM SRNC = SRC

Derain_original 32.49 0.93 NA
Derain_Flower 32.13 0.93 100% = 100%

Obviously, the self-watermarked model can keep the original deraining func-
tionality well while embedding the watermarks in the outputs.

Fig. 14. One visual example of original target model and self-watermarked model: (a) image ai, (b) ground-truth image ðb0Þi, (c) output of original tar-
get model bi, (d) output of self-watermarked model b�i , (e) target watermark, (f) extracted watermark from image b�i .

TABLE 11
The Comparison Between Task-Agnostic Watermarking Model and Self-Watermarked Model About the Success Rate (SRNC /SRC)

of Resisting the Attack From Surrogate Models Trained With Different Loss Combinations

SRNC=SRC CNet Res9 Res16 UNet L1 L2 L1 + Ladv L2 + Ladv Lperc+Ladv

Task-agnostic 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 99% = 100% 100% = 100%

Self-watermarked 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100% 100% = 100%

TABLE 10
Quantitative Results of Applying the Proposed Framework to

Data (DPED [67]) and Traditional Algorithms (RTV [68])
Protection

Task PSNR SSIM SRNC = SRC SRNC = SRC z
DPED [67] 46.60 0.99 100% = 100% 99% = 100%
RTV [68] 44.21 0.99 100% = 100% 99% = 100%

The extracting success rate marked with z denotes the results of resisting an
example surrogate model attack (L1 + Ladv). The second to fourth columns rep-
resent the results of the learned embedding and extracting sub-network.
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capacity of deep neural networks, we innovatively propose
a novel deep spatial watermarking framework for deep
model watermarking. To make it robust to different surro-
gate model attacks and support image-based watermarks,
we dedicatedly design the loss functions and training strat-
egy. Experiments demonstrate that our framework can resist
the attack from surrogate models trained with different net-
work structures and loss functions. By jointly training the
target model and watermark embedding together, we can
even make the target model self-watermarked without the
need of an extra watermark embedding sub-network. More-
over, though our motivation is to protect deep models, it is
general to data protection and traditional algorithms protec-
tion. We hope our work can inspire more explorations of
deep model IP protection, such as more types of models
(detection, semantic segmentation) and protection strategies.

There are still some interesting questions to explore in
the future. For example, though the joint training of the
embedding and extracting sub-networks in an adversarial
way makes it difficult to find some explicit pattern in the
watermarked image, it is worthy to study what implicit
watermark is hidden. Besides, our method is not robust
enough to some pre-processing techniques for surrogate
model attack, such as random cropping and resizing,
because the consistency we rely on will be destroyed. So it
is necessary to design some new kind of consistency which
is intrinsically robust to such pre-processing.
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