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Abstract

Data hiding is the art of concealing messages with
limited perceptual changes. Recently, deep learn-
ing has enriched it from various perspectives with
significant progress. In this work, we conduct a
brief yet comprehensive review of existing litera-
ture for deep learning based data hiding (deep hid-
ing) by first classifying it according to three essen-
tial properties (i.e., capacity, security and robust-
ness), and outline three commonly used architec-
tures. Based on this, we summarize specific strate-
gies for different applications of data hiding, in-
cluding basic hiding, steganography, watermarking
and light field messaging. Finally, further insight
into deep hiding is provided by incorporating the
perspective of adversarial attack.

1 Introduction
Seeing is not always believing, i.e., a natural-looking image
can contain secret information that is invisible to the gen-
eral public. Data hiding enables concealing a secret message
within a transport medium, such as a digital image, and its es-
sential property lies in imperceptibility for achieving the fun-
damental goal of being hidden. With easy access to the Inter-
net and gaining popularity of the social media platform, digi-
tal media, such as image or video, has become the most com-
monly used host for secure data transfer in applications rang-
ing from secret communication to copy-right protection. Data
hiding schemes can be characterized by three requirements:
i) capacity, regarding the embedded payload; ii) security, in
terms of being undetectable by steganalysis; iii) robustness,
against distortions in the transmission channel. There is a
trade-off among the above three requirements [Kadhim et al.,
2019; Zhang et al., 2020a], as depicted in Figure 1. For exam-
ple, a large-capacity hiding algorithm is often subject to low
security and weak robustness. We term the capacity-oriented
task as “basic data hiding”, which aims to hide more infor-
mation given no extra constraint (except imperceptibility) is
applied. Secure data hiding and robust data hiding, as the
term suggests, prioritize security and robustness, respectively.
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Figure 1: Trade-off among capacity, security and robustness for in-
formation hiding techniques.

However, their shared constraint still lies in being impercep-
tible for the human eyes.

Most traditional data hiding methods are carried out un-
der a distortion-coding framework, which aims to minimize a
particular distortion metric and allocate different distortions
to different elements in the information carrier to embed hid-
den messages [Pevnỳ et al., 2010; Holub and Fridrich, 2012;
Holub et al., 2014]. With the increasing popularity of deep
learning in recent years, numerous works apply deep neural
networks (DNNs) to the task of data hiding. Early researches
of applying deep learning into data hiding often adopt DNNs
to substitute only a partial stage in the hiding-and-extraction
pipeline [Husien and Badi, 2015; Kandi et al., 2017; Mun
et al., 2017]. The trend is to train networks end-to-end for
embedding as well as revealing information [Baluja, 2017;
Zhu et al., 2018; Weng et al., 2019; Zhang et al., 2020a;
Lu et al., 2021; Guan et al., 2022], as most of them are less
cumbersome and outperform former methods in capacity, se-
curity and/or robustness by a large margin. In this work, we
term deep learning based data hiding methods as deep hiding.
It is an emerging and vibrant research area and has achieved
significant progress, but there are relatively few systematic
introductions on this field. We believe that it is necessary and
valuable to conduct a brief yet comprehensive literature re-
view about deep hiding.

In the remainder of this survey, we first present the formu-
lation of deep hiding, followed by introducing the three basic
architectures for the hiding-and-extraction pipeline. With the
focus of adopting images as the carrier for information trans-
fer, we conduct a complete survey on its applications, includ-
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ing i) large-capacity basic hiding, ii) secure steganography,
iii) robust watermarking and iv) light field messaging, which
place emphasis on different properties of data hiding. We fur-
ther present a brief review on hiding a secret message within
other multimedia beyond images. Finally, we discuss the link
between deep hiding and another parallel line of research in
the adversarial attack.

2 Problem Formulation
The basic data hiding considers a scenario of communication
between two agents: Alice and Bob, where Alice is the sender
and Bob is the recipient. Alice is responsible for concealing
secret information (secret, S) within transport carrier (cover,
C) and the result is a container (C ′) which is encoded to con-
tain secret. Bob receives C ′ after a communication with Al-
ice, and then the revealed secret (S′) can be retrieved. These
operations are described in Equation 1, where H and R are
the hiding and reveal neural network in deep hiding, with θH
and θR as their respective parameters.

C ′ = H(S,C; θH); S′ = R(C ′; θR) (1)

A key requirement of successful data hiding is impercep-
tibility for hiding and precision for revealing, i.e., simultane-
ously minimizing the differences between C and C ′ and that
between S and S′:

θ∗H = argmin
θH

distc(C,C
′)

= argmin
θH

distc(C,H(S,C; θH)), (2)

θ∗R = argmin
θR

dists(S, S
′)

= argmin
θR

dists(S,R(C ′; θR)), (3)

where distc(·) and dists(·) are the metrics of distances be-
tween two distributions. L2 distance is the most widely used
one and cross-entropy loss is widely used as dists(·) when S
is in the form of binary bits. One commonly used loss for op-
timization is defined as L = ‖C ′−C‖+ β‖S′−S‖ [Baluja,
2017], where β is a weight factor for balancing impercep-
tibility and precision. A higher β often results in a higher
quality of the retrieved secret at the cost of lower quality
for the container. Alternatively, L1 distance, PSNR (Peak
Signal-to-Noise Ratio), SSIM (Structural Similarity Index
Measure) [Hore and Ziou, 2010] and LPIPS (Learned Per-
ceptual Image Patch Similarity) [Zhang et al., 2018] are also
adopted commonly associated with L2 distance to evaluate
perceptual quality [Zhang et al., 2020a].

In secure data hiding, there is a new participant who plays
as an adversary of Alice and Bob by distinguishing containers
from covers by a steganalyzerA. An effective algorithm with
high security is expected to confuse A such that it cannot
perform better than a random guess, i.e., the confidence score
of an image being C or C ′ is approximately equal to each
other:

|A(H(S,C; θH))−A(C)| < ε, (4)

where ε is a sufficiently small positive number.

In robust data hiding, the adversary perturbs containers
with distortions to destroy secret information within them. A
robust scheme should maintain secret information even after
container C ′ is attacked by a noise attacker (denoted as N ):

min
θH,θR

dists(S,R(N (C ′); θR)). (5)

3 Deep Hiding Architectures
Deep steganography [Baluja, 2017; Baluja, 2019] defines a
new task of hiding a full image in another. This task is differ-
ent from traditional steganography that requires perfect de-
coding of secret messages. Instead, the goal is to improve
the image quality for the retrieved secret image by minimiz-
ing dists(S, S′). Moreover, the hiding capacity of traditional
steganography is often very low, e.g., HUGO [Pevnỳ et al.,
2010] hides < 0.5 bpp (bits per pixel), while that for deep
steganography [Baluja, 2017] is 24bpp. Due to the trade-off
between capacity and secrecy, most deep steganography can
be relatively easily detected by some steganalysis algorithms.
Thus, to make a distinction, this kind of capacity-oriented
task is termed “basic data hiding” in this survey, instead of
“steganography”.

In terms of how C and S are processed as the input of
hiding network H, we summarize three basic architectures
which can be directly applied for the task of basic data hid-
ing. Meanwhile, these architectures can be extended to other
applications including steganography, watermarking and light
field messaging by adding some targeted strategies.

Cover-Dependent Deep Hiding with Preparation. The
first deep learning based framework for hiding data in large
capacity is proposed by Baluja [2017; 2019], which places a
full-size color image within another image of the same size.
Specifically, it has three networks: preparation, hiding and
reveal network in Figure 2(a). The preparation network (P)
is adopted to transform secret images S into features that are
commonly useful for compressing images, such as edges and
orthogonal components. The hiding network takes the con-
catenated cover image C and prepared secret image P(S) as
the input. With the reveal network, recipients can retrieve the
secret image S′ from the container image C ′. In Figure 2(a),
how a secret image is encoded is dependent on the cover im-
age. Thus, following the terminology in [Zhang et al., 2020a],
we call it cover-dependent deep hiding, or DDH in short, ar-
chitecture. Specifically, it also has an additional network P ,
thus this kind of architecture is termed DDH with P in this
survey.

Cover-Dependent Deep Hiding without Preparation.
Despite being conducive to embedding analysis, preparation
network P complicates the entire pipeline and requires much
more GPU memory [Wu et al., 2018]. Later works [Weng
et al., 2019; Mishra et al., 2019; Zhang et al., 2020a] show
that P is not necessary and can be combined with hiding net-
work into a single network [Baluja, 2019]. Excluding P net-
work results in a simpler DDH, i.e., DDH without P, in Fig-
ure 2(b). As it is the most commonly adopted architecture
for deep hiding, the methods mentioned later belong to DDH
without P without special explanation.

Universal Deep Hiding. Further, [Zhang et al., 2020a]
proposes a new architecture termed Universal Deep Hiding
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Figure 2: Schematic diagram for three basic architectures in the form of hiding images within images, where P, H and R represent preparation,
hiding and reveal network respectively.

(UDH). The key difference between UDH and DDH is that
UDH disentangles the encoding of secret from cover, i.e.,
how the secret image is encoded is independent of the cover
image. This disentangling facilitates the visualization of the
encoding operation of secret images and their results show
that secret images are encoded into repetitive high-frequency
components. The encoded secret image in UDH can be di-
rectly added to any random cover image to form a container,
which enhances the flexibility of information hiding. Based
on this UDH architecture, [Zhang et al., 2020a] shows the
success of hiding M (6 for instance) image in N (3 for in-
stance) images. The universal property of UDH also makes
it efficient for watermarking, because it only requires a sin-
gle summation, which is a noticeable advantage when a large
number of images need to be watermarked.

4 Applications of Deep Hiding
4.1 Large-Capacity Basic Hiding
Increasing the capacity of data hiding easily leads to con-
tour artifacts and color distortion [Guan et al., 2022], which
makes the goal of remaining imperceptible a non-trivial chal-
lenge. The high payload of a certain method is often demon-
strated by simultaneously hiding multiple images into one
image of the same size. Alternatively, independent pixel-
wise sources for supplementary information, such as depth
and motion, are also proper choices to take full advantage of
extra capacity [Baluja, 2019]. A simple and widely used im-
plementation to hide multiple images is to concatenate them
along the RGB channel, and treat the concatenated tensor as
an integrated secret S for the network input [Baluja, 2019;
Zhang et al., 2020a; Lu et al., 2021].

The primal motivation to hide multiple images in [Baluja,
2019] is to obfuscate the remnants of the hidden image in the
container. However, significant color distortion occurs when
hiding 2 images. Thanks to the cover-independent property
for secret embedding, UDH in [Zhang et al., 2020a] can
hide M secret images into N cover images, where embed-
ding space is not limited to the RGB channels in one image.

By training multiple pairs of H and R, UDH can also hide
multiple secret images within one image, but the specific se-
cret can only be revealed by the corresponding R, i.e., dif-
ferent recipients get different secret messages from the same
cover. [Lu et al., 2021] and [Jing et al., 2021] adopt invert-
ible neural network to archive high capacity, where H and R
share the same parameters. However, considering the simple
concatenation neglects the correlation between secret images,
follow-up DeepMIH [Guan et al., 2022] hides multiple secret
images in series, i.e., the concealing result of the previous im-
age can assist the current concealing to improve the overall
hiding performance for hiding multiple images.

4.2 Secure Steganography
Steganography deals with hiding information imperceptibly
and undetectably, while steganalysis plays as its adversary by
detecting the potentially hidden information from observed
data with little or no knowledge about the hiding algorithm.
Steganography and steganalysis defeat but also enhance each
other.

Generally speaking, to archive being undetectable for ste-
ganalysis, targeted designs are required. Some methods that
are not specifically designed for steganography also conduct
steganalysis evaluation in their works. Most of them can
not be detected by classic steganalysis tools (e.g., StegEx-
pose [Boehm, 2014], which combines several traditional ste-
ganalysis techniques), but fail when facing deep learning
based steganalyzer. To be specific, when facing one of the
state-of-the-art steganalyzer SRNet [Boroumand et al., 2018],
the detection accuracy for [Baluja, 2017], [Weng et al., 2019],
[Lu et al., 2021] and [Guan et al., 2022] is 99.58%, 77.43%,
75.69% and 75.54%, respectively [Guan et al., 2022]. The
accuracy closer to 50% (random guess) indicates a higher se-
curity level. It is worth noting that the SRNet steganalysis
accuracy for HiNet [Jing et al., 2021] is reported as 55.86%,
which indicates that C ′ of HiNet is nearly indistinguishable
from nature cover images. This is mainly attributed to their
proposed low-frequency wavelet loss which makes the low-
frequency sub-bands of C ′ and C similar to each other.



Adversarial Architecture
On account of the undetectability of secure steganography,
the above three architectures cannot be directly applied.
Hence, adversarial architecture is widely adopted to en-
hance security and visual quality [Hayes and Danezis, 2017].
The core of an adversarial architecture lies in an adversarial
model where containers and covers are fed in, and form a 3-
player game. The adversarial model can be either fine-tuned
from an off-the-shelf steganalysis network [Xu et al., 2016;
Ye et al., 2017], or assumed to be a regular convolutional neu-
ral network (CNN) [Zhang et al., 2019a; Weng et al., 2019]
or similar structure to reveal network [Zhu et al., 2018; Hayes
and Danezis, 2017]. The work of Hayes and Danezis [2017]
has shown that supervised training of the adversarial model
can produce a robust steganalyzer.

As mentioned above, an adversarial architecture can be
obtained simply by incorporating an additional steganalysis
classifier in the basic architecture, e.g., [Weng et al., 2019;
Zhang et al., 2019c; Yedroudj et al., 2020], which increases
the resistance to steganalysis by adding an adversarial dis-
criminator. However, this does not indicate that these meth-
ods can counter independently trained steganalyzers because
the adversarial training strategy limits the effectiveness of the
discriminator [Shang et al., 2020].

Note that the adversarial network is not exclusively ap-
plied for security. It also helps improve the container im-
age visual quality as well as robustness for watermarking
or light field messaging [Zhu et al., 2018; Liu et al., 2019;
Tancik et al., 2020; Jia et al., 2020; Plata and Syga, 2020].
Based on the adversarial architecture, the attention idea has
been investigated in [Zhang et al., 2019b; Yu, 2020] for bi-
asing the mode towards hiding secrets in textures and objects
that are less affected by transformations or areas that are in-
conspicuous to the human observer, resulting in higher ro-
bustness as well imperceptibility.

Synthesis Technology
Another interesting research direction of deep hiding for se-
cure steganography is synthesis technology. Different from
the embedding-based schemes mentioned above, there is no
modification operated in synthesis technology, because con-
tainers are generated directly based on secret messages [Hu et
al., 2018]. First, it derives a generator in deep convolutional
generative adversarial nets (GANs) to synthesize images with
random noise vectors. Second, an extractor network learns to
reveal the corresponding vector fed into the generator. Fi-
nally, with the fixed generator and extractor from previous
steps, Alice and Bob can have an undetectable secret com-
munication by mapping secret messages into vectors prior to
synthesis. The steganographic embedding operation becomes
an image sampling problem in [Zhang et al., 2019d] and con-
tainers are sampled by a well-trained generator. While Zhang
et al. [2020b] establish a mapping relationship between se-
cret message and semantic category for a generation. In con-
trast to [Hu et al., 2018; Zhang et al., 2019d] that divide
the training process into several steps and the extractor is
trained outside the adversarial training, [Wang et al., 2018;
Li et al., 2020] synchronize the training of extractor and
generator, leading to superior performance and training ef-

ficiency. SSteGAN proposed in [Wang et al., 2018] can also
be defined as adversarial architecture since there is a stegan-
alyzer in its system.

4.3 Robust Watermarking
Compared with capacity and security, digital watermarking
prioritizes robustness. Thus, it often contains a well-designed
module or adopts special techniques to enhance robustness.

Data Augmentation Approach
It is widely known that a well trained deep classifier can
have a non-trivial performance drop under the perturbation of
noise. One straightforward approach to improve robustness
against a specific type of noise is to perform data augmenta-
tion with such noise during the training. Inspired by this, one
intuitive and commonly used strategy to resist noise attack
for robust watermarking is to simulate such distortions in the
training process, i.e., distorting containers with the respec-
tive attacks before feeding them to the reveal network [Zhu
et al., 2018]. In practice, the attack might occur in differ-
ent forms, thus it is of high practical relevance to make the
hiding pipeline robust against various types of image distor-
tions. To this end, HiDDeN [Zhu et al., 2018] applies a single
type of noise in a mini-batch and swaps it in each iteration.
ReDMark [Ahmadi et al., 2020] adopts a similar approach
by choosing one type of attack with a given probability in
every iteration. This simple approach has been shown effec-
tive to achieve a reasonable robustness performance. Zhang
et al.[2020a] introduces one simple change to this approach
by dividing the mini-batch equally into multiple groups, each
group applying one type of image distortion. This dividing
strategy facilitates simultaneously applying all the investi-
gated image distortions in every iteration, resulting in faster
convergence as well as a significant performance boost. Com-
pared with the swapping strategy adopted in [Zhu et al., 2018;
Ahmadi et al., 2020], the dividing strategy does not cause any
additional computation overhead and thus can be seen as a
“free” technique to improve the performance.

Advances on Handling Non-Differentiable Compression
For reducing the bandwidth or traffic to facilitate the stor-
age and transmission, most images/videos are often pre-
processed with lossy compressions, such as JPEG or MPEG.
Especially, JPEG, the most popular lossy compression for im-
ages, is often considered the most common attack against
watermarking. However, it is a non-trivial task to improve
the robustness against JPEG compression, because it is a
non-differentiable operation, which hinders training H and
R jointly. HiDDeN [Zhu et al., 2018] has attempted to simu-
late the JPEG compression with JPEG-Mast and JPEG-Drop.
Inspired by the fact that JPEG mainly discards the high-
frequency component, JPEG-Mask keeps only low-frequency
DCT coefficients with fixed masking and JPEG-Drop adopts
a progressive dropout on the coefficients, i.e., having a higher
probability to drop high-frequency coefficients. Due to the
mismatch between the simulated JPEG and real JPEG, there
is a significant performance drop under real JPEG. ReD-
Mark [Ahmadi et al., 2020] attempts to address this challenge
by carefully designing a series of differentiable functions for



mimicking every step of real JPEG compression. Similar ap-
proach has been adopted in [Luo et al., 2020]. Such an ap-
proach has two limitations: i) it requires full knowledge of
the attack, which is the case for JPEG attack but might not
be true for other types of attacks; ii) it requires a careful en-
gineering design of various differentiable functions to mimic
the real attack, which might still fail for a real attack.

To address this challenge, [Liu et al., 2019] proposes a
two-stage separable deep learning framework. In the first
stage, the encoder H and decoder R are trained simultane-
ously without noise, resulting in a powerful redundant-coding
encoder. In the second stage, the pre-trained encoder obtained
from the first stage is fixed and the loss back-propagates only
through the decoder. This alleviates the non-differentiability
concern because the loss does not need to back-propagate
through the encoder. A limitation of this two-stage approach
is that the encoder is trained without JPEG compression, thus
it is a sub-optimal solution compared with jointly training the
H andR with JPEG compression.

Due to the non-differentiability of JPEG compression,
jointly training the encoder and decoder seems to be a non-
trivial task. A recent work [Zhang et al., 2021b] proposes one
elegant pseudo-differentiable approach that treats the JPEG
compression as a special noise. A unique property of their
approach is that the forward path and backward path are not
the same. Specifically, the backward propagation does not go
through the JPEG compression part. In essence, this approach
is similar to the above noise augmentation approach but mit-
igates the non-differentiability issue by a plus and minus op-
eration. This approach achieves the SOTA performance for
robustness against JPEG attack and has also been shown to
provide satisfactory performance for video compression.

Adversarial Training Inspired Approaches
To improve the robustness against unknown distortions, [Luo
et al., 2020] proposes to combine the known distortions with
adversarial perturbation which constitutes the worst perturba-
tion. Such a min-max approach is inspired by another line of
research on adversarial training for improving the deep clas-
sifier robustness against adversarial attack. The effect of ad-
versarial training on the robustness against common corrup-
tions has been investigated in [Luo et al., 2020], which shows
that it improves the robustness against noise-type perturba-
tion at the cost of performance drop for some known distor-
tions. For example, the known Crop and Gaussian Blur dis-
tortion have a non-trivial performance drop [Luo et al., 2020].
A similar approach has also been explored in [Wen and Ay-
dore, 2019], which selects the predefined distortion type and
strength adaptively through maximizing the loss for the de-
coder. Both [Luo et al., 2020] and [Wen and Aydore, 2019]
formulate the watermarking robustness as a min-max opti-
mization problem and their key difference is that [Luo et al.,
2020] generates an adversarial perturbation through a DNN,
while [Wen and Aydore, 2019] selects it from a fixed pool of
common distortions.

4.4 Light Field Messaging
As a practical application for data hiding, light field messag-
ing (LFM) [Wengrowski and Dana, 2019] describes the pro-

cess of embedding, transmitting and receiving hidden infor-
mation in an image displayed on a display screen and cap-
tured by a camera. The LFM process is also often termed
screen-camera communication [Cui et al., 2019] or photo-
graphic steganography but has no concern of being detected
by steganalysis. Instead, the challenge of this task lies in the
robustness against image transformations induced by the light
effect which can be seen as a mixed influence of electronic
display characteristics, camera exposure and camera-display
angle. In essence, it is very similar to robust watermark-
ing, but the goal is to transmit useful information instead of
proving the ownership. [Wengrowski and Dana, 2019] found
that directly applying the DDH architecture without taking
the light effect leads to total failure of extracting the hid-
den barcode information. To this end, they collect a huge
(1.9TB) dataset of camera-captured images from 25 camera-
display pairs and then trains a camera-display transfer func-
tion (CDTF) to mimic the distortion caused by light field
transfer. However, it requires lots of resources for training on
such a huge dataset, and its performance is not satisfactory,
especially for the unknown camera-display pairs.

To address the above disadvantages, StegaStamp [Tancik
et al., 2020], extending the application also to printed im-
ages, proposes to augment the container images with a mix-
ture of image transformations, such as perspective warp, mo-
tion/defocus blur, color manipulation, noise as well as JPEG
compression. Moreover, their approach requires a relatively
complex weighted loss that has L2 residual regularization,
perceptual loss, critic loss and cross-entropy loss for the mes-
sage. Such a complex loss requires a careful choice of the
hyper-parameters. Zhang et al. [2020a] provides a much sim-
pler solution based on the proposed UDH. Specifically, they
adopt only the perspective warp as the image transformation
and the same simple loss for basic data hiding in [Baluja,
2017] can be directly used. This simple approach yields com-
petitive performance and the reason has been attributed to the
fact that UDH is more robust against perturbation on the con-
tainer images, especially for the constant pixel value shift,
like color change. Moreover, UDH is more versatile in the
sense that it can also hide a secret image, while [Wengrowski
and Dana, 2019] and [Tancik et al., 2020] can only hide
limited binary information. Concealing information in vector
drawings such as SVG files has also been explored in Deep-
Morph [Rasmussen et al., 2020] with the artistic freedom to
convey information via their own designed drawings, but it’s
not as versatile as UDH that can hide all kinds of images,
including natural images. RIHOOP [Jia et al., 2020] incorpo-
rates a distortion network based on differentiable 3D render-
ing to better simulate realistic distortions introduced by cam-
era imaging. It would be an interesting direction to combine
the techniques in RIHOOP [Jia et al., 2020] and UDH [Zhang
et al., 2020a] for future research to achieve the purpose of be-
ing both robust and versatile.

5 Hiding Data within Other Multimedia
The master branch of research on data hiding adopts im-
ages as information carrier to hide either binary messages
[Hayes and Danezis, 2017; Zhu et al., 2018; Liu et al., 2019;



Tancik et al., 2020] or natural images [Baluja, 2017; Wen-
growski and Dana, 2019; Zhang et al., 2020a; Yu, 2020].
Nonetheless, there are also a variety of other multimedia that
can be adopted, such as video, audio and text. The basic ar-
chitectures and strategies for improving security and robust-
ness mentioned before are suitable for other forms of carriers.
However, some adaptive approaches might be necessary ac-
cording to the characteristics of these multimedia.

In essence, video can be seen as a sequence of images, thus
the framework of hiding an image in another can be easily ex-
tended to the new task of hiding videos in videos by encoding
each frame of the secret video within that of the cover video
in a sequential manner. However, this naive approach does
not exploit the temporal redundancy within the consecutive
frames, since the residual between two consecutive frames
is highly-sparse. To this end, Weng et al. [2019] propose a
straightforward solution that contains two branches: one for
the benchmark secret frame reference and the other for the
frame residuals. By dividing the video into frame groups each
containing 8 frames, [Mishra et al., 2019] exploits 3D-CNN
to hide 8 frames within 8 frames via exploiting the motion
relationship between consecutive frames.

Hiding audio in audio has been demonstrated in [Kreuk
et al., 2019]. It has been found that the framework for hid-
ing images in images is suitable for the audio domain but re-
quires including a short-time Fourier transform and inverse-
time transform as differentiable layers during the training.
Deep learning has also been applied in cross-modal hiding
applications, such as hiding images or video in audio, with
favourable performance. Taking advantage of the serializa-
tion feature of audio, Cui et al. [2020] present a method for
hiding image content within audio carriers by multi-stage hid-
ing and reveal networks. They progressively embed multi-
level residual errors of the secret image into cover audio in
a multi-stage hiding network. Subsequently, the decreasing
residual errors from the modified carrier are decoded with
corresponding stage sub-networks and added together to pro-
duce the final revealed result. Yang et al. [Yang et al., 2019a]
provide a different approach for this cross-modal task of hid-
ing video in audio, which is practically challenging because
of the high bitrate of video files. One of its potential draw-
backs is that the reveal stage also needs access to the original
clean audio.

Data hiding in text is also a broad research direction. Dif-
ferent from those generative methods [Yang et al., 2018;
Yang et al., 2019b], Abdelnabi et al. [2020] introduce the
Adversarial Watermarking Transformer (AWT) with a jointly
trained encoder-decoder and adversarial training. With an in-
put text and a binary message, the watermarking system can
generate an output text that is unobtrusively modified with the
given message. It is worth mentioning that text data hiding is
highly related to the field of natural language processing.

6 Link with Adversarial Attack
A Small Change Makes a Big Difference. In essence, the
container image is just a cover image with an imperceptible
change. The reveal network is very sensitive to such small
invisible changes. In other words, there is a misalignment be-

tween human vision and DNNs. Such misalignment has also
been observed in another line of research on the adversarial
attack, where an imperceptible perturbation can fool the deep
classifier with high confidence.

Recently, Zhang et al. [2021a] has performed a joint in-
vestigation of such misalignment phenomenon in both tasks,
providing a unified Fourier perspective on why such small
perturbation can dominate the images in the context of uni-
versal attack and hiding. The reason for the misalignment
has been attributed to the fact that DNNs are sensitive to high-
frequency content [Zhang et al., 2021a] with the observation
that frequency is a key factor that influences the performance
for both tasks. The joint investigation of deep learning based
watermarking and adversarial attack has also been previously
explored in [Quiring et al., 2018], with a unified notion of
black-box attacks against both tasks, the efficacy of which is
demonstrated by applying the concepts from adversarial at-
tack to watermarking and vice versa. For example, counter-
measures in watermarking can be utilized to defend against
some model-extraction adversarial attacks and the techniques
for improving the model adversarial robustness can also help
mitigate the attacks against the watermarking [Quiring et al.,
2018]. Moreover, the lesson in multimedia forensics has also
been found useful for facilitating the detection of adversarial
examples [Schöttle et al., 2018]. On the other hand, adver-
sarial machine learning against watermarking has also been
explored in [Quiring and Rieck, 2018], adopting a neural net-
work to detect and remove the watermark. It is worth men-
tioning that adversarial training techniques for improving ad-
versarial robustness have also been investigated in [Luo et
al., 2020] for improving the deep learning based watermark-
ing robustness against unknown distortion, as discussed in
Sec. 4.3.

Overall, there exists a unified Fourier perspective [Zhang et
al., 2021a] on the success of deep hiding and attack. Mean-
while, techniques from watermarking are often found effec-
tive in adversarial attack, vice versa [Quiring et al., 2018]. A
single universal secret adversarial perturbation has also been
demonstrated in [Zhang et al., 2021a] to perform an attack
while containing a secret message simultaneously. However,
the joint investigation of them is still in its infancy and we
believe it is an interesting direction to perform deep analysis
of them together for both theoretical and practical relevance.

7 Conclusion

Deep hiding has become an emerging field to attract signif-
icant attention. Our work conducts a brief yet comprehen-
sive survey on this topic by first classifying data hiding by
its essential properties and outlining three basic architectures.
Moreover, we discuss the challenges of deep hiding in vari-
ous applications, including large-capacity basic hiding, se-
cure steganography, robust watermarking and light field mes-
saging. For completeness, we also summarize hiding data
within other multimedia content. Finally, we discuss its im-
pact on the field of adversarial attack and vice versa. A joint
investigation of data hiding and adversarial attack will be an
interesting direction with potential new insights.
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