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A B S T R A C T

Distortion function is designed for evaluating the cost of modifications in adaptive steganography. UNIWARD is
a successful and popular distortion scheme which achieves high performance both for spatial and JPEG images.
In this paper, we analyze the UNIWARD scheme with some empirical rules of distortion function designation.
Based on that we propose our scheme to improve UNIWARD distortion. In our scheme, we focus on the
symmetric characteristic of UNIWARD, and suggest that not only use original wavelet filters but also their
flippings to calculate sub-models of UNIWARD distortion to maintain its isotropic properties. Moreover, we
design several schemes to merge sub-models, which could maintain its invariance regard to flipping or rotation
and improve its security against steganalysis detection. Experimental results show our revised UNIWARD
achieves better performance for spatial and JPEG image in comparison with original UNIWARD.
1. Introduction

Modern adaptive image steganography is built on distortion func-
tion scheme and syndrome-trellis codes (STCs) [1]. Distortion function
is specifically designed to calculated cost values from content of image.
It assigns cost values to each pixel or DCT coefficient as a measurement
of the distortion caused by modifying it in embedding. STCs ensures
that the message been correctly embedded in cover image meanwhile
the sum of cost aroused by modifications been minimized. It is proved
in many experiments that embedding efficiency of STCs approximates
the theoretic ideal bound deduced from payload limited scheme(PLS)
theory [1]. Therefor STCs is almost an ideal implementation of PLS em-
bedding and consequently the research interest are mostly concentrate
in designing distortion function schemes.

Distortion function sets a goal of making the modification in embed-
ding occurs in secure areas thus reduce its statistical disturbance which
may captured by steganalysis methods [2–10]. It greatly dominates
the security of adaptive steganography. In early stage, the first two
distortion function schemes HUGO [11] and WOW [12] are proposed
for spatial image. They use filters, either differencing or wavelet,
to reflect the edge or texture of image content. This basic idea are
inherited by many following distortion schemes. Holub et al. made a
breakthrough in distortion function by a wavelet based construction,
which is known as UNIWARD distortion [13]. UNIWARD uses wavelet
transformation on spatial data of image, and calculates the modification
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impact to wavelet coefficients. Based on this idea, two versions of
UNIWARD, S-UNIWARD and J-UNIWARD, are derived respectively for
spatial image [14] and JPEG image. In recent years, many distortion
schemes have been proposed. Li et al. present two rules for designing
spatial distortion function in [15], which are ‘‘complexity the first’’ and
‘‘spread the second’’. Guided by these two rules, HILL distortion uses
a high pass filter and two low pass filters in distortion function, and
made a remarkable progress. Ni et al. proposed UERD [16] for JPEG
image. The idea of UERD is different from J-UNIWARD, it directly
utilizes the information in DCT domain and considers both inter and
intra block information. UERD is advanced by Su et al. and result in
Generalized Uniform Embedding Distortion(GUED) [17] scheme. GUED
joints wavelet impaction, Gabor filter residuals, and UERD together,
and it takes advantages when payload rate is higher. Above described
distortion functions belong to handicraft designed schemes. Yet another
way of designing distortion function has been invented by Fridrich and
Sedighi, namely model driven distortion function. In contrast to the
bottom-up approach of designing distortion function, methods of this
kind firstly take hypothesis of optimal detector into account to obtain
the proper modification probabilities, and then according to PLS theory,
they are converted to cost values. This framework produces some high
secure distortion function schemes such as MVG [18] and MiPOD [19].

Provided proposed distortion functions, some techniques are in-
corporated into them for some specific improvements. Wang et al.
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proposed to estimate the uncompressed image from compressed JPEG
cover image as a reference by wiener filter, and modulate the distortion
costs with side-information to resist detection from certain steganalysis
feature [20]. This method could largely increase its undetectability
when the targeted steganalysis feature is known to steganographer.
Besides works on designing distortion function schemes, Zhou et al.
proposed Controversial Pixel Prior(CPP) [21][22] to assemble different
distortions to improve security. This ensemble method can make use
of already existing distortion functions for a better ensemble one. CPP
is effective to combine distortion functions from different principle but
with similar performance. In Section 5, we also discuss the difference
in usage between CPP and our method.

Distortion function plays as a key role for steganography in resisting
feature based or deep model based steganalysis, and they also provide
premise for none-additive distortion schemes. In this paper, we investi-
gate the revision of S-UNIWARD and J-UNIWARD since they are similar
in principles, and for following reasons:

1. J-UNIWARD is so far one of the most successful distortion
function for JPEG steganography. It is not only a high secure
scheme for ordinary JPEG steganographic embedding but also
an excellent distortion function for robust JPEG steganogra-
phy [23][24][25][26][27] to resist JPEG recompression, which
can achieve high robustness and security while reducing the
payload expense for error correction bits. Therefore, improving
J-UNIWARD is important.

2. For spatial images, although some latest distortion schemes, such
as HILL [15] or MiPOD [19] et al., could gain better security
performance for most cases, S-UNIWARD still take its advantages
for some kinds of images, such as on spatial images of original
size and with acquisition noise [28]. These kinds of image data
are also very common in real application environments. Be-
sides, some recently proposed none-additive distortion schemes
adopt S-UNIWARD as its basis [29]. Hence, an improvement on
S-UNIWARD has practical significance.

3. Sub-models of UNIWARD expanded in this work are calculated
by the same procedure with wavelet in different directions.
Namely, they are homogeneous sub-models. However, to the
best of our knowledge, there are no work specifically focus on
merging distortion sub-models of homogeneity, so it needs more
studying.

4. As a state-of-the-art spatial distortion, UNIWARD can collaborate
with other distortions functions via CPP ensemble strategy and
yield more powerful distortion schemes. Moreover, UNIWARD
could provide diversified ingredients for ensemble models by
using abundant wavelet filters.

Above reasons reveals our motivation of research work on UNI-
ARD. Both S-UNIWARD and J-UNIWARD uses 3 bands of wavelet

oefficient to obtain 3 sub-models of distortion function, and then sum
p them as the result. In fact, the original UNIWARD scheme only
onsidered the completeness of bands of wavelet, but ignored some
ymmetric properties. For this reason, it seems somehow biased and
nnatural. We solve this problem by adding more sub-models to encom-
ass all directions and consequently makes it symmetric. Although this
imple strategy of revising UNIWARD could solve the aforementioned
roblem, we argue that there are more room for improvement by
nnovation new methods for merging these sub-models with different
ands and directions, rather than merely adding up them as is in
riginal UNIWARD. Therefor we design several merging method in this
aper. The contributions of this paper are list as follow:

1. We investigate the symmetric properties of cost scheme and
analyze the defect in construction of UNIWARD due to the asym-
metry of db wavelet, and an exhaustive experimental testing of
2

UNIWARD with regard to db wavelet are presented in this paper.
2. We propose revised UNIWARD distortion scheme by calculating
sub-models using wavelet filters and their symmetric versions
to reflect the local complexity via different combination of di-
rections. Compare to the original UNIWARD, proposed revised
UNIWARD is more secure and plausible.

3. With sub-models of UNIWARD, we further explore the new
method for merging them, and a hierarchical strategy is pro-
posed. We compare several implementation of merging method
and analyze them. We notice that some other distortion function
schemes follows similar principles as UNIWARD, and merging
method proposed in this paper can be applied to them without
obstacle.

To verify the necessity of using db wavelet, we also tried to re-
placing db wavelet with some other symmetric filters in constructing
UNIWARD, which are discussed in Section 5. Unfortunately, their per-
formances are poor and thus we turn back to db wavelet as is advocated
by Holub in [13]. Another alternative of db wavelet is Gabor filter
bank with different directions, scales, and phases. Gabor filters have
been successfully utilized by steganalysis feature GFR, and it also gives
comparable results for some distortion function schemes [5]. However,
they requires using much more filters than db filters in UNIWARD.
Besides, unlike db wavelet, Gabor filters are inseparable and hence
result in much more computational burden in convolution. These makes
UNIWARD distortion more popular, especially for JPEG images and on
resource limited platform such as mobile devices. So we focus on it in
this paper for its practicality and popularity. However, methods of this
work are not only applicable to it but also to other distortion functions.

The rest of this paper is organized as follow: Section 2 is prelimi-
naries of this paper, we define notations used in this paper and give a
brief review of original UNIWARD in this section. And characteristics
of distortion function, which elicits some ideas of this work, are also
described in it. Section 3 is the main part of this paper, in which
we propose our method and make a discussion about it. Experimental
results are presented in Section 4. In Section 5, we discuss several issues
of this work. Finally, we draw a conclusion in Section 6.

2. Preliminaries

2.1. Notations

A symbol in boldface of uppercase is a matrix or a vector. For
example, in this paper, spatial pixel data array of a image is wrote as 𝐗,
and the cost image is 𝐂. Also, the wavelet filters of high band and low
band are vectors 𝐇 and 𝐋. The letter of lowercase is the scalar which
could be an index in subscript, or an elements in a matrix or vector.
For example 𝑥𝑖,𝑗 is the value of the pixel in location (𝑖, 𝑗) in image 𝐗.
Besides, we shall define another kind of scalar notation which is letter
of uppercase for the size of matrices, vectors or sets. For example, a
matrix 𝐗 of size 𝑀 ×𝑁 can be written as 𝐗 ∈ ℜ𝑀×𝑁 .

Matrix functions |𝐗| and 1∖𝐗 respectively take the absolute value
nd the reciprocal value of each elements in matrix 𝐗. In addition, a
etter or a word in italics is a function which receives one or more
atrices as variable and output a resultant matrix. There are several

unctions that will be mentioned in next sections:
𝑓𝑙𝑖𝑝𝑙𝑟(⋅) and 𝑓𝑙𝑖𝑝𝑢𝑑(⋅) are flipping functions which flip matrix hor-

zontally and vertically. 𝑟𝑜𝑡90(⋅), 𝑟𝑜𝑡180(⋅) and 𝑟𝑜𝑡270(⋅) are rotation
unctions which rotate matrix 90, 180 and 270 degrees clockwise.
esides, in this paper, two important functions 𝑚𝑎𝑥(⋅) and 𝑚𝑖𝑛(⋅) are
sed in designing merging strategy. Respectively they receive multiple
atrices of the same size as input, and return a matrix containing max

r min values of elements in each position of input matrices.
For convenience, we define the flipping of a vector by putting

uperscript of symbol prime on it. So the flipping of wavelet filters 𝐇
nd 𝐋 are defined as 𝐇′ and 𝐋′:

′ ′
𝐇 = 𝑓𝑙𝑖𝑝𝑙𝑟(𝐇),𝐋 = 𝑓𝑙𝑖𝑝𝑙𝑟(𝐋) (1)
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In fact, 𝐇′ and 𝐋′ have the same length of 𝐇 and 𝐋, but the order
f their elements are reversed. In many papers, 2D wavelet filters of 3
and are denoted as 𝐋𝐇, 𝐇𝐋 and 𝐇𝐇. We inherit this notation and it
s also valid for 𝐇′ and 𝐋′ in this paper. For example, 𝐋′𝐇 indicates a
atrix which is formulated by multiplying transpose of 𝐋′ with 𝐇.

A calligraphy letter denote a set containing matrices or several
ubsets, and the elements in it can be specified by using brace {⋅}. For
xample, set  = {𝐋𝐇,𝐇𝐋,𝐇𝐇} contains 3 wavelet filters.

Convolution is a key step in UNIWARD. We define the fully convo-
ution of matrix 𝐗 and matrix 𝐘 as 𝐗⊗ 𝐘.

.2. Characteristic of distortion functions

Distortion functions aim to evaluate the cost of modification. Em-
irically, modifying pixels or coefficients in areas of complex texture
r sharp edge areas are more secure than that in smooth content area.
his rule is summarized by Li et al. as ‘‘complexity the first", and
lmost all the distortion functions abide by it. We notice that although
istortion function schemes are composed by a serial of procedures,
hey are all carried out locally in the image for each cost value. This
s understandable since the distortion function evaluates pixels’ or
oefficients’ fitness of modification according to image content around
t. And it suggest that the whole process of calculating a cost value only
epend on a local area in the image.

A general form of distortion function can be described as a function
f calculating the cost value of a pixel (or DCT coefficient) 𝑥𝑖,𝑗 from a
ubimage 𝐍𝑖,𝑗 containing its neighboring pixels:

𝑖𝑠𝑡 ∶ ℜ𝑀×𝑀 → ℜ (2)

here 𝑀 is the size of subimage. For example, S-UNIWARD use db8
avelet whose length is 16, so we can figure out that 𝑀 = 31 due

o two convolutional operations in calculating S-UNIWARD(see (3) in
ection 2.3).

Function dist reflects the connection between local information of a
ubimage 𝐍𝑖,𝑗 and cost value 𝜌𝑖,𝑗 for pixel(or coefficient) in coordinate
𝑖, 𝑗). From this point, we argue that it is desirable to ensure that
istortion being invariant to flipping and rotating 90, 180 and 270
egree operation on 𝐍𝑖,𝑗 , because these operations do not change the
ocal information of 𝐍𝑖,𝑗 , i.e. the relationship between central pixel 𝑥𝑖,𝑗
nd its neighboring pixels in 𝐍𝑖,𝑗 is the same after flipping or rotating
𝑖,𝑗 . This rule is intuitive but obviously sound, since we expect that

f an image has been flipped or rotated 90, 180 or 270 degree, the
ost value of each pixel be the same as their counterparts in original
mage. In this paper we call this rule ‘‘isotropic construction’’. Actually,
ome proposed distortion function schemes, such as HILL, MiPOD and
ERD, already conform to this rule, but UNIWARD does not. The
urpose of emphasizing it is twofold. Firstly, it implicitly requires that
ny directional procedure in distortion function construction must be
uarantee to be applied for all directions. For example, if an asymmetric
ilter is used in constructing distortion function, typically we have to
se its flippings and rotations as well to keep the result isotropic.
his step is the premise of ‘‘isotropic construction’’. Secondly, merging
ethod for cost values calculated from directions should keep the result

nvariant to rotation and flipping. Actually, guided by this rule, in this
aper we propose several hierarchical merging methods.

These rules are designed in terms of direction properties, and they
re for merging distortion schemes in directional operations. In this
aper, we designed hierarchical merging methods, and each of them
ncludes a phase of directional cost merging which meets this require-
3

ent. o
.3. Brief review of UNIWARD distortion scheme

In this section we give a brief review of UNIWARD proposed in [13],
nd we name it ‘‘original UNIWARD’’ in this paper to avoid any
onfusion. As aforementioned, original UNIWARD includes two ver-
ions, S-UNIWARD and J-UNIWARD for spatial image and JPEG image
espectively. They are respectively designed for spatial and JPEG image
ormats based on the same principle. Rather than rephrasing original
NIWARD which appeared in many papers, we reveal its implementa-

ion details more clear in our defined notation to make readers aware its
roblem and understand our work. At first, we begin with S-UNIWARD.
he whole process of S-UNIWARD can be recaped as:
∑

𝐅∈
(1 ⧵ (|𝐗⊗ 𝐅| + 𝜀))⊗ 𝑟𝑜𝑡180(|𝐅|) (3)

here 𝐗 is the spatial image,  = {𝐋𝐇,𝐇𝐋,𝐇𝐇} and 𝜀 is a small
ositive value for avoiding dividing by zero. Formula (3) is sum of 3
ub-models of cost. Each sub-model are obtained by two steps. The first
tep 1 ⧵ (|𝐗⊗ 𝐅| + 𝜀) is evaluating the complexity of image contents by
avelet filter 𝐅, and the second step is calculating impaction on them
y convolving it with 𝑟𝑜𝑡180(|𝐅|). J-UNIWARD differs from S-UNIWARD
nly in their ways of calculating impaction. In J-UNIWARD, for DCT
oefficient of frequency (𝑎, 𝑏) in DCT block (𝑖, 𝑗), it crops a submatrix
f size 23 × 23 centered in block (𝑖, 𝑗) from matrix 1 ⧵ (|𝐗⊗ 𝐅| + 𝜀),
hen take its hadamard product with a mask |𝐅⊗ 𝐃𝐂𝐓𝑎,𝑏|,𝐅 ∈  , and
um elements up as the cost value. Where 𝐃𝐂𝐓𝑎,𝑏 is 2D DCT base of
requency (𝑎, 𝑏).

From above description, we can clear see that both S-UNIWARD
nd J-UNIWARD do not take any measure to symmetrize the dis-
ortion function. Hence due to the asymmetric of wavelet filter 𝐋
nd 𝐇, original UNIWARD do not comply with the rule proposed in
ection 2.2.

. Revising UNIWARD distortion function scheme

In this section we present our schemes of revising UNIWARD scheme
hich includes two steps. The first step is calculating the sub-models
f cost, and the second is merging them.

.1. Isotropic submodels

As we discussed in Section 2.3, the original UNIWARD only adopt
tandard wavelet filters. Although in wavelet decomposition these 3 fil-
ers are sufficient to preserve information in wavelet bands and recon-
truct the image, nevertheless, considering the difference of wavelet’s
tilities in steganographic distortion function and wavelet decomposi-
ion, in fact they are insufficient for UNIWARD. For each wavelet filter
f a band, it may evaluates pixels’ (or coefficients’) ‘‘security’’ partially
n one direction, but neglects their defect in other directions. As we
nown, many powerful steganalysis schemes usually extract feature by
esiduals and coocurrence matrices in symmetric directions [5,8,30–
3], thus this distortion function scheme in biased direction somehow
ay leave some artifacts.

For this problem, we calculate more sub-models of UNIWARD not
nly by wavelet filters used in original UNIWARD:  = {𝐋𝐇,𝐇𝐋,𝐇𝐇},
ut also their flippings: {𝐋′𝐇,𝐋𝐇′,𝐋′𝐇′,𝐇′𝐋,𝐇𝐋′,𝐇′𝐋′,𝐇′𝐇,𝐇𝐇′,
′𝐇′}. We denote the set containing these 12 wavelet filters as  ′ in
hich the elements correspond to 12 sub-models of cost. These sub-
odels are calculated by the same procedure as in original UNIWARD.

ig. 1 shows the modification probabilities of original S-UNIWARD
nd revised S-UNIWARD with the same merging strategy in original
NIWARD. Revised S-UNIWARD in Fig. 1(c) is the simplest exten-

ion of original S-UNIWARD, from which we can see that original
-UNIWARD exhibits more directional inconsistency in certain direc-
ion, while revised S-UNIWARD is smoother in all directions than

riginal S-UNIWARD.
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Fig. 1. Modification probability of original S-UNIWARD and revised S-UNIWARD by using wavelets in all directions with 0.4 bpp payload rate. (a) is image 5199.pgm in BOSSv1.01
image set. (b) is Modification probability of original S-UNIWARD. (c) is Modification probability of revised S-UNIWARD by using filters in  ′ and the same merging methods as
in original S-UNIWARD. We suggest readers to zoom in this figure to compare details of (b) and (c).
For the convenience in next subsection, we define 3 partitions of the
set  ′ respectively according to bands and directions of filters. The first
one  = {1,2,3} is a partition according to bands:
1 = {𝐋𝐇,𝐋′𝐇,𝐋𝐇′,𝐋′𝐇′} (4)
2 = {𝐇𝐋,𝐇′𝐋,𝐇𝐋′,𝐇′𝐋′} (5)
3 = {𝐇𝐇,𝐇′𝐇,𝐇𝐇′,𝐇′𝐇′} (6)

Each element in  is a subset containing wavelet filter of a band and
its flipping. Take 1 as example, 𝐋𝐇 = 𝑓𝑙𝑖𝑝𝑢𝑑(𝐋′𝐇) = 𝑓𝑙𝑖𝑝𝑙𝑟(𝐋𝐇′) =
𝑓𝑙𝑖𝑝𝑢𝑑(𝑓𝑙𝑖𝑝𝑙𝑟(𝐋′𝐇′)), and this is similar for filters in 2 and 3.

The second partition  = {1,2,3,4} is in accordance with
directions:
1 = {𝐋𝐇,𝐇𝐋,𝐇𝐇} (7)
2 = {𝐋′𝐇,𝐇′𝐋,𝐇′𝐇} (8)
3 = {𝐋𝐇′,𝐇𝐋′,𝐇𝐇′} (9)
4 = {𝐋′𝐇′,𝐇′𝐋′,𝐇′𝐇′} (10)

Each element in  is a set containing wavelet filters flipped from
standard wavelet of 3 bands. In fact, 1 contains the standard wavelet
filters utilized by the original UNIWARD. Filters in 2, 3 and 4 are
generated by respectively applying 𝑟𝑜𝑡180(⋅), 𝑟𝑜𝑡90(⋅) and 𝑟𝑜𝑡270(⋅) on
filters in 1.

Next we introduce the third partition which is a variation of the
second one. By observing the quantity of elements in filters 𝐋𝐇, 𝐇𝐋
and 𝐇𝐇 (see Fig. 2), we can find that their major magnitudes mainly
distribute in left-down, right-up and left-up respectively. This implies
that in original UNIWARD, filters of 3 bands are ’’scattered’’ in 3
different directions. From this point, we reorganize the partition  and
yield a new partition ∗ = {∗

1 ,
∗
2 ,

∗
3 ,

∗
4} that each element in it is

a subset containing wavelets filters of 3 band in the same direction.
∗

1 = {𝐋𝐇,𝐇′𝐋′,𝐇′𝐇} (11)

∗
2 = {𝐋′𝐇,𝐇𝐋′,𝐇𝐇} (12)

∗
3 = {𝐋𝐇′,𝐇′𝐋,𝐇′𝐇′} (13)

∗
4 = {𝐋′𝐇′,𝐇𝐋,𝐇𝐇′} (14)

By these 3 partitions, we introduce a concept of ‘‘homogeneous sub-
models’’, which is a set of cost sub-models calculated by the certain kind
of filters isotropically constructed in different symmetric directions
with regard to flipping or rotation. For example, sub-models calculated
by filters in 1 are homogeneous distortion sub-models because they
are obtained by filter 𝐋𝐇 and its flipping and rotation, and also the

∗

4

sub-models from elements in  or  .
Fig. 2. Magnitude of db8 wavelet filters of band 𝐋𝐇, 𝐇𝐋 and 𝐇𝐇. Grids with lighter
color are elements of larger quantity.

3.2. Hierarchical merging schemes

The wavelet filters in the original UNIWARD only refer to properties
of bands, thus its merging methods is quite simple. However in our
work, filters have two different properties: band and direction, so we
tentatively designed more advisable merging methods to investigate
if it is possible to enhance the performance. Meanwhile, we stick to
simplify and interpretability in designing thus they are easy to be
understood and implemented.

Our proposed merging methods include two phases in which merg-
ing operation functions are denoted as 𝑚𝑒𝑟𝑔𝑒1 and 𝑚𝑒𝑟𝑔𝑒2. Given a
partition of set  ′:  = {1,2,…𝐾},

⋃

𝑖 𝑖 =  ′,𝑖
⋂

𝑗 = ∅, 𝑖 ≠ 𝑗,
submodels calculated by filters in 𝑖 are merged in the first phase
by 𝑚𝑒𝑟𝑔𝑒1, i.e. 𝑚𝑒𝑟𝑔𝑒1 is applied to each subset 𝑖, 𝑖 = 1,… , 𝐾, and
thus result in newly generated 𝐾 submodels 𝐂𝑖, 𝑖 = 1, 2...𝐾. In the
second phase, 𝐂𝑖, 𝑖 = 1, 2...𝐾 are merged by 𝑚𝑒𝑟𝑔𝑒2 to the final result:
𝐂 = 𝑚𝑒𝑟𝑔𝑒2(𝐂1,𝐂2...𝐂𝐾 ). Our merging method is shown in Fig. 3.

Based on previous definitions, a merging scheme can be specified by
a triplet ( , 𝑚𝑒𝑟𝑔𝑒1, 𝑚𝑒𝑟𝑔𝑒2). The motivation of designing hierarchical
merging is that we can use different merging methods for directions and
bands. The merging method in original UNIWARD is simply summing
up sub-models of different bands. This method can be applied to both
phases in hierarchical merging, and we denote it as ‘‘+ ’’. Besides,
two merging methods 𝑚𝑎𝑥 and 𝑚𝑖𝑛, which are already defined in
Section 2.1, are used for merging isotropically constructed sub-models
according to directions. The whole merging schemes are produced by
different combinations of these 3 merging functions in two phases.
Now we present all our merging schemes by ,  defined in previous
Section 3.1 as follow:
𝑆𝑐ℎ𝑒𝑚𝑒1 ∶ (,+,+) (15)
𝑆𝑐ℎ𝑒𝑚𝑒2 ∶ (, 𝑚𝑎𝑥,+) (16)
𝑆𝑐ℎ𝑒𝑚𝑒3 ∶ (, 𝑚𝑖𝑛,+) (17)
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Fig. 3. Hierarchical merging strategy.

𝑆𝑐ℎ𝑒𝑚𝑒4 ∶ (,+, 𝑚𝑎𝑥) (18)
𝑆𝑐ℎ𝑒𝑚𝑒5 ∶ (,+, 𝑚𝑖𝑛) (19)
𝑆𝑐ℎ𝑒𝑚𝑒6 ∶ (∗,+, 𝑚𝑎𝑥) (20)
𝑆𝑐ℎ𝑒𝑚𝑒7 ∶ (∗,+, 𝑚𝑖𝑛) (21)

Scheme 1–7 are applied to both revised S-UNIWARD and J-UNIWARD.
Scheme 1 is a straightforward extension of original UNIWARD by
isotropic construction. In addition, for spatial images we design an-
other scheme, scheme8: (′, 𝑚𝑎𝑥,+), where ′ = {1 ∪ 2,3}. It is
designed with the consideration that for spatial images, the vertical and
horizontal direction can be treated identically. This philosophy is also
embodied in many steganalysis feature [8]. Actually we also tested the
counterpart of scheme8: (′, 𝑚𝑖𝑛,+), but its performance is not good in
all the experiments, so we omit it in this paper.

Merging methods 𝑚𝑎𝑥 and 𝑚𝑖𝑛 are only applied for homogeneous
sub-models, because these sub-models only differs in directions, which
means they are comparable. Merging method 𝑚𝑎𝑥 can be explained
as a conservative method which determines the cost value of a pixel
or coefficient by sub-models in ‘‘the least secure’’ direction, thus the
security of it is evaluated by its ‘‘shortest barrel wood’’. While 𝑚𝑖𝑛 is an
aggressive method which only makes use of ‘‘the most secure’’ direction
and takes the risks of ignoring others. Comparing to them, method ‘‘+
’’ is a moderate one.

it is obvious that Scheme 1–7 complies to rules presented in Sec-
tion 2.2. And these schemes are so simple that they would not bring
too much extra computational afford in merging.

4. Experimental results

4.1. Setup

Our experiments includes three parts. The first two part are tested
on BOSSbase V1.01[34] to compare the performance of revised UNI-
WARD with that of original UNIWARD for spatial and JPEG image
respectively. BOSSbase V1.01[34] contains 10000 512 × 512 gray-scales
images. The security performances of these two parts is evaluated
by state-of-art steganalysis feature and ensemble FLD classifier [35].
Stego image set are generated by simulating steganographic embedding
on covers. 5000 pairs of cover/stego images randomly selected from
cover set and stego set are used as training samples, and 5000 pairs
are left for testing. In each experiment, we repeat this procedure 10
times using different rand seed to randomly splitting image set into
training/testing set. Therefore we can calculate the mean value and
deviate of 10 results. In order to test the significance of improvement.
we also implement t -test on experimental results respect to original
5

UNIWARD, and we set significance level for the test to 0.05. The
experimental results of this paper are presented in tables in which the
underlined results are best results for each payload rate and wavelet
type, and results in boldface are best ones for each payload rate over
all wavelet types. The results with statistic importance is denoted with
an asterisk ‘‘*’’.

The third part is tested on a larger dataset ALASKA2 [36] with
recently developed deep model Efficient Net. ALASKA2 includes 80000
images which is sufficient for training deep network. Specifically, we
use ALASKA2 of size 256 × 256.

Experiments are carried out on different payload rates is measured
in bpp(bit-per-pixel) for spatial image and bpnz(bit per non-zero AC
coefficient) for JPEG image. Performance is measured by classification
error rate 𝑃𝐸 = min𝑃𝐹𝐴

(𝑃𝐹𝐴 + 𝑃𝑀𝐷)∕2 where 𝑃𝐹𝐴 is false-alarm rate
and 𝑃𝑀𝐷 is miss-detection rate. 𝑃𝐸 indicates the indistinguishability
between cover images and stego images, so higher 𝑃𝐸 corresponds to
higher security of steganography methods.

In [13], Hulob et al. tested different wavelets, and suggest that
db8 wavelet filter is a desirable one for original UNIWARD. Length
of wavelet filters could be different, which determines the size of the
local area used in calculating cost value. Considering our methods
include 10 kinds of merging schemes, and in order to give a panorama
view of the relationship between wavelet filter length and merging
schemes, experiments on db wavelets of different length(db8-db5) with
respectively to 10 merging schemes are comprised in our experiment.
Besides db wavelet, we also tested more types of wavelet filter, such as
coif, sym and bior wavelet, but in most experiments their performances
are no better than db wavelet. These results is coincident with Hulob
et al. in [13], so we also suggest using the db wavelet in UNIWARD.

4.2. Experimental results on spatial image

In this subsection we present our experimental results of original
S-UNIWARD and our revised S-UNIWARD with scheme 1–9 described
in Section 3.2. Experiments in this part are carried out by 2 state-of-
art steganalysis feature sets: SRM [8] and MaxSRMd2[5]. MaxSRMd2
is selection-channel aware feature scheme which makes use of prior
knowledge of steganographic distortion function. It adopts the mod-
ification probability values as weights in computing co-occurrence
matrices so that they could preserve more information for pixels which
tend to be modified. we test our schemes and original UNIWARD
on BOSS V1.01, BOSSc and BOSSc_J85 image bases. BOSSc_J85 is
generated by firstly compressing images in BOSSc with Qf=85 and then
decompressing them to spatial. BOSSc_J85 differs from BOSS_J85[28]
because it do not resize images before compression so that acquisition
noise is preserved to simulate the JPEG images directly obtained from
cameras. Experiments on BOSSc and BOSSc_J85 include payload rate
0.1 bpp-0.3 bpp, and when payload rate is larger than 0.2 bpp, security
of steganography on these two image is very low. As is addressed
in [28], performance of WOW [12] is close to S-UNIWARD on BOSSc
and it is better on BOSS_J85, so we take WOW and its revised version
into comparison study on BOSSc_J85 and BOSSc. Original WOW also
uses 3 wavelet filters 𝐋𝐇,𝐇𝐋,𝐇𝐇. But in contrast to S-UNIWARD, it
only constructs a single model. Formally, our schemes can be applied
to WOW by splitting it into sub-models regard to wavelet. After some
tentative experiments, we find that most of these schemes do not brings
improvement to WOW as much as S-UNIWARD. So we only present the
original WOW and revised WOW of scheme 1.

From Tables 1 and 2 we can see that revised S-UNIWARD on
BOSS V1.01 could gain more promotion when detected by MaxSRMd2.
For SRM steganalyzer, the performance of scheme 1 and scheme 3–
7 are close to original S-UNIWARD, and from overall results, db5-db7
wavelet are better than db8 for S-UNIWARD. From the results on BOSS
V1.01, BOSSc and BOSSc_J85, schemes with 𝑚𝑖𝑛 are better than ones
with 𝑚𝑎𝑥, and their performances are slightly higher than original S-
UNIWARD, this implies more aggressive schemes could deliver some
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Table 1
Experimental results 𝑃𝐸 on BOSS V1.01 detected by SRM.

Wavelet Method Payload rate

0.1 0.2 0.3 0.4 0.5

db8

Original UNIWARD 40.01 ± 0.37 31.91 ± 0.44 25.87 ± 0.77 20.65 ± 0.23 16.38 ± 0.22
Scheme 1. (,+,+) 40.21 ± 0.26 31.95 ± 0.43 25.86 ± 0.49 20.78 ± 0.32 16.80 ± 0.41
Scheme 2. (, 𝑚𝑎𝑥,+) 39.64 ± 0.22 31.67 ± 0.30 25.09 ± 0.27 20.54 ± 0.27 16.13 ± 0.24
Scheme 3. (, 𝑚𝑖𝑛,+) 39.93 ± 0.25 31.98 ± 0.29 25.61 ± 0.20 20.75 ± 0.26 *𝟏𝟕.𝟏𝟏 ± 𝟎.𝟐𝟑
Scheme 4. (,+, 𝑚𝑎𝑥) 40.13 ± 0.41 31.67 ± 0.29 25.56 ± 0.23 20.62 ± 0.31 16.33 ± 0.28
Scheme 5. (,+, 𝑚𝑖𝑛) 40.20 ± 0.50 32.25 ± 0.24 25.78 ± 0.45 20.77 ± 0.46 16.72 ± 0.27
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 39.92 ± 0.41 31.96 ± 0.31 25.90 ± 0.32 20.90 ± 0.37 16.41 ± 0.23
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 40.10 ± 0.43 31.62 ± 0.21 25.58 ± 0.37 20.40 ± 0.27 16.61 ± 0.29
Scheme 8. (′ , 𝑚𝑎𝑥,+) 39.81 ± 0.34 31.55 ± 0.25 25.59 ± 0.37 20.40 ± 0.23 16.06 ± 0.32

db7

Original UNIWARD 40.23 ± 0.31 32.29 ± 0.37 26.20 ± 0.23 20.91 ± 0.22 16.88 ± 0.29
Scheme 1. (,+,+) 40.32 ± 0.36 32.33 ± 0.37 26.22 ± 0.49 𝟐𝟏.𝟏𝟎 ± 𝟎.𝟑𝟔 16.81 ± 0.26
Scheme 2. (, 𝑚𝑎𝑥,+) 39.90 ± 0.42 32.02 ± 0.35 25.65 ± 0.28 20.62 ± 0.34 16.40 ± 0.45
Scheme 3. (, 𝑚𝑖𝑛,+) 40.34 ± 0.28 32.45 ± 0.29 26.06 ± 0.32 20.99 ± 0.26 17.01 ± 0.24
Scheme 4. (,+, 𝑚𝑎𝑥) 40.34 ± 0.38 32.25 ± 0.24 25.97 ± 0.29 20.71 ± 0.23 16.66 ± 0.39
Scheme 5. (,+, 𝑚𝑖𝑛) 𝟒𝟎.𝟖𝟕 ± 𝟎.𝟑𝟐 32.47 ± 0.39 26.00 ± 0.22 20.81 ± 0.31 16.96 ± 0.30
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 40.21 ± 0.46 32.08 ± 0.37 26.12 ± 0.21 20.88 ± 0.25 16.55 ± 0.19
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 40.16 ± 0.32 32.08 ± 0.32 26.10 ± 0.32 20.81 ± 0.33 16.90 ± 0.46
Scheme 8. (′ , 𝑚𝑎𝑥,+) 39.77 ± 0.42 32.11 ± 0.32 25.66 ± 0.35 20.56 ± 0.37 16.35 ± 0.23

db6

Original UNIWARD 40.46 ± 0.26 32.23 ± 0.46 26.07 ± 0.28 20.91 ± 0.19 16.66 ± 0.12
Scheme 1. (,+,+) 40.52 ± 0.33 𝟑𝟐.𝟓𝟑 ± 𝟎.𝟒𝟏 26.14 ± 0.31 20.91 ± 0.34 16.69 ± 0.06
Scheme 2. (, 𝑚𝑎𝑥,+) 39.84 ± 0.37 31.79 ± 0.27 25.44 ± 0.24 20.52 ± 0.31 16.31 ± 0.17
Scheme 3. (, 𝑚𝑖𝑛,+) 40.73 ± 0.41 32.45 ± 0.27 26.23 ± 0.36 21.07 ± 0.25 16.89 ± 0.21
Scheme 4. (,+, 𝑚𝑎𝑥) 40.10 ± 0.29 31.82 ± 0.27 25.46 ± 0.31 20.65 ± 0.34 16.33 ± 0.31
Scheme 5. (,+, 𝑚𝑖𝑛) 40.69 ± 0.33 32.36 ± 0.40 26.12 ± 0.32 21.08 ± 0.30 16.79 ± 0.12
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 40.20 ± 0.22 32.26 ± 0.34 25.71 ± 0.36 20.61 ± 0.37 16.37 ± 0.23
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 40.48 ± 0.40 32.42 ± 0.50 26.00 ± 0.26 20.85 ± 0.34 16.75 ± 0.19
Scheme 8. (′ , 𝑚𝑎𝑥,+) 39.87 ± 0.31 31.96 ± 0.48 25.86 ± 0.56 20.14 ± 0.18 16.63 ± 0.13

db5

Original UNIWARD 40.49 ± 0.39 32.07 ± 0.24 25.71 ± 0.41 20.61 ± 0.34 16.56 ± 0.27
Scheme 1. (,+,+) 40.53 ± 0.48 32.34 ± 0.30 25.70 ± 0.21 20.84 ± 0.24 16.67 ± 0.40
Scheme 2. (, 𝑚𝑎𝑥,+) 39.84 ± 0.40 31.53 ± 0.35 25.19 ± 0.39 19.89 ± 0.33 15.61 ± 0.23
Scheme 3. (, 𝑚𝑖𝑛,+) 40.70 ± 0.30 32.29 ± 0.44 𝟐𝟔.𝟐𝟔 ± 𝟎.𝟑𝟒 21.03 ± 0.31 16.95 ± 0.27
Scheme 4. (,+, 𝑚𝑎𝑥) 39.92 ± 0.33 31.72 ± 0.35 25.25 ± 0.33 20.02 ± 0.36 16.04 ± 0.28
Scheme 5. (,+, 𝑚𝑖𝑛) 40.51 ± 0.41 32.41 ± 0.32 26.06 ± 0.30 𝟐𝟏.𝟏𝟎 ± 𝟎.𝟑𝟔 16.53 ± 0.24
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 39.99 ± 0.48 32.12 ± 0.14 25.57 ± 0.25 20.40 ± 0.25 16.17 ± 0.26
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 40.42 ± 0.50 32.26 ± 0.24 26.02 ± 0.31 20.60 ± 0.29 16.59 ± 0.32
Scheme 8. (′ , 𝑚𝑎𝑥,+) 39.52 ± 0.27 31.30 ± 0.44 25.13 ± 0.19 19.88 ± 0.35 15.57 ± 0.15
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benefits in resist SRM detection. As we know, merging function 𝑚𝑖𝑛
makes costs of some pixels lower, and most of these pixels located
in area with pixels of low costs. So this operation, to some extend,
diffuses some modification of lower costs to such adjacent pixels. On
the other hand, SRM treats pixels equally, and this is why 𝑚𝑖𝑛 is better
n countering SRM.

For experimental results of MaxSRMd2 feature in Tables 2 and
, schemes using 𝑚𝑎𝑥 can achieve better improvement, and in most
ettings of experiments on BOSS V1.01, schemes using 𝑚𝑖𝑛 are generally
o better than original S-UNIWARD. This is conversely different from
hat of SRM. cost values of ‘‘𝑚𝑎𝑥’’ usually means more smoothness
n one direction than others. However. embedding modifications add
ome irregularity to these pixels, which reduces the gap between sub-
odels of ‘‘𝑚𝑎𝑥’’ direction and ‘‘𝑚𝑖𝑛’’. While MaxSRMd2 is a targeted
ethod, this modification ‘‘misguide’’ MaxSRMd2 in assigning impor-

ance to pixels according to ‘‘deformed’’ cost values calculated in stego
mage. Experimental results on wavelet db8-db5 shows a consistent
endency that when payload is 0.1 bpp, scheme 2 is a good choice for
axSRMd2, and scheme 6 outperforms other schemes with a notable
argin. This result means our reorganized group of wavelet filters can

oncretely increasing its performance when detected by MaxSRMd2
eature (see Table 3).

From experimental results on spatial images, we can see that for
oth image database, db7-db5 is better than db8 in most cases, this
hows that length of wavelet filter is a factor that influences the per-
ormance for spatial image steganography no matter candidate image
een compressed or not. On the other hands, images in these two
atabases are resized with the same scale factor, so a question is that
s the optimal choice of this factor invariant to resize scale? So far it
6

s known that some research has been made on steganalysis of resized i
mages with different resize scale and interpolation methods [37], and
he distortion function for them worth more intensive research in future
ork.

.3. Experimental results on JPEG image

In this subsection we present our experimental result of our revised
-UNIWARD with scheme 1–7 described in Section 3.2. Experiments
n this part are carried out by GFR [3] and SCA-GFR [7]. GFR is

17000D phase-aware feature set and is one of the most effective
eature set for JPEG steganalysis. Similar to MaxSRMd2, SCA-GFR is
he selection-channel-aware version of GFR. JPEG quality factor Qf
s a crucial factor which greatly influence the detection results, so
e test methods in Qf=95 and Qf=75. From Tables 5–7 we can see

hat the for both Qf=95 and Qf=75, scheme 1,3,5,7 is better than
riginal J-UNIWARD for db6-db8. while scheme 2,4,6 are no better
n most case when payload rate is larger than 0.1 bpnz. From this
oint, merging method 𝑚𝑖𝑛 is suitable for JPEG homogeneous sub-
odels. But a interesting phenomenon shown by Table 8 that when

PEG images of Qf=75 are detected by SCA-GFR, for payload rate
ess than 0.3bpnz, merging method 𝑚𝑎𝑥 is obviously better than 𝑚𝑖𝑛.

hile for 0.3bpnz payload rate, their performances are similar, and
cheme1 becomes the best one. Surprisingly this situation reversed
or payload rates larger than 0.3bpnz. From these we can see that as
ayload rate increasing, optimal choice of merging scheme changing
egularly from conservative to moderate, and finally to aggressive.
s we know, correlation between contiguous JPEG blocks are more
ulnerable in JPEG images with lower quality factor. When payload

s small, embedding leaves relatively more artifact on inter-block than
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Table 2
Experimental results 𝑃𝐸 on BOSS V1.01 detected by MaxSRMd2.
Wavelet Method Payload rate

0.1 0.2 0.3 0.4 0.5

db8

Original UNIWARD 36.50 ± 0.35 29.04 ± 0.35 23.94 ± 0.30 19.42 ± 0.36 15.98 ± 0.33
Scheme 1. (,+,+) 37.16 ± 0.39 29.61 ± 0.41 23.92 ± 0.28 19.58 ± 0.34 16.28 ± 0.24
Scheme 2. (, 𝑚𝑎𝑥,+) *38.00 ± 0.27 *30.45 ± 0.28 24.59 ± 0.46 20.03 ± 0.26 16.07 ± 0.36
Scheme 3. (, 𝑚𝑖𝑛,+) 35.16 ± 0.43 27.56 ± 0.26 22.67 ± 0.29 18.16 ± 0.30 15.10 ± 0.20
Scheme 4. (,+, 𝑚𝑎𝑥) *37.49 ± 0.48 *30.04 ± 0.31 24.45 ± 0.36 19.92 ± 0.28 16.39 ± 0.30
Scheme 5. (,+, 𝑚𝑖𝑛) 35.65 ± 0.38 28.29 ± 0.26 22.80 ± 0.43 18.66 ± 0.22 15.48 ± 0.34
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) *38.33 ± 0.32 *30.63 ± 0.22 *24.90 ± 0.43 20.25 ± 0.31 16.45 ± 0.33
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 35.20 ± 0.34 27.88 ± 0.29 22.48 ± 0.33 18.08 ± 0.43 15.12 ± 0.15
Scheme 8. (′ , 𝑚𝑎𝑥,+) *37.61 ± 0.38 29.78 ± 0.26 24.22 ± 0.19 19.76 ± 0.35 16.09 ± 0.22

db7

Original UNIWARD 36.91 ± 0.40 29.52 ± 0.39 24.07 ± 0.21 19.80 ± 0.26 16.17 ± 0.36
Scheme 1. (,+,+) 37.34 ± 0.36 29.73 ± 0.36 24.36 ± 0.42 19.65 ± 0.23 16.09 ± 0.18
Scheme 2. (, 𝑚𝑎𝑥,+) *𝟑𝟖.𝟑𝟓 ± 𝟎.𝟑𝟕 *30.47 ± 0.42 24.68 ± 0.38 20.21 ± 0.42 16.45 ± 0.33
Scheme 3. (, 𝑚𝑖𝑛,+) 35.40 ± 0.30 28.34 ± 0.30 22.99 ± 0.41 19.02 ± 0.37 15.71 ± 0.24
Scheme 4. (,+, 𝑚𝑎𝑥) 37.97 ± 0.29 30.40 ± 0.45 *24.81 ± 0.28 20.11 ± 0.34 16.45 ± 0.34
Scheme 5. (,+, 𝑚𝑖𝑛) 36.08 ± 0.42 28.90 ± 0.24 23.46 ± 0.44 18.97 ± 0.34 15.83 ± 0.26
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) *38.19 ± 0.37 *30.63 ± 0.43 24.98 ± 0.50 20.28 ± 0.44 16.71 ± 0.32
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 35.75 ± 0.37 28.54 ± 0.38 22.70 ± 0.15 18.90 ± 0.43 15.22 ± 0.21
Scheme 8. (′ , 𝑚𝑎𝑥,+) 37.79 ± 0.40 30.40 ± 0.41 24.62 ± 0.37 19.99 ± 0.28 16.37 ± 0.29

db6

Original UNIWARD 36.63 ± 0.30 29.74 ± 0.32 24.38 ± 0.45 19.82 ± 0.42 16.03 ± 0.05
Scheme 1. (,+,+) 37.41 ± 0.33 30.07 ± 0.42 24.64 ± 0.35 20.17 ± 0.35 16.37 ± 0.17
Scheme 2. (, 𝑚𝑎𝑥,+) *38.20 ± 0.45 *30.68 ± 0.29 24.87 ± 0.34 20.39 ± 0.44 16.54 ± 0.23
Scheme 3. (, 𝑚𝑖𝑛,+) 35.75 ± 0.37 28.66 ± 0.51 23.49 ± 0.30 19.10 ± 0.28 15.93 ± 0.31
Scheme 4. (,+, 𝑚𝑎𝑥) *37.80 ± 0.42 30.75 ± 0.41 24.68 ± 0.37 20.11 ± 0.33 16.41 ± 0.20
Scheme 5. (,+, 𝑚𝑖𝑛) 36.49 ± 0.49 29.27 ± 0.29 23.88 ± 0.43 19.33 ± 0.37 15.61 ± 0.19
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) *38.07 ± 0.36 30.78 ± 0.34 25.04 ± 0.32 𝟐𝟎.𝟒𝟎 ± 𝟎.𝟐𝟗 16.64 ± 0.29
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 36.00 ± 0.63 28.76 ± 0.30 23.64 ± 0.32 19.19 ± 0.23 15.43 ± 0.36
Scheme 8. (′ , 𝑚𝑎𝑥,+) *37.86 ± 0.24 30.51 ± 0.32 24.81 ± 0.28 20.14 ± 0.18 16.38 ± 0.19

db5

Original UNIWARD 37.15 ± 0.40 29.88 ± 0.36 24.16 ± 0.32 19.63 ± 0.28 16.20 ± 0.31
Scheme 1. (,+,+) 37.46 ± 0.24 30.01 ± 0.30 24.42 ± 0.41 20.06 ± 0.13 16.43 ± 0.22
Scheme 2. (, 𝑚𝑎𝑥,+) *38.19 ± 0.26 𝟑𝟎.𝟗𝟎 ± 𝟎.𝟑𝟔 24.79 ± 0.24 20.08 ± 0.31 16.43 ± 0.32
Scheme 3. (, 𝑚𝑖𝑛,+) 35.65 ± 0.38 28.70 ± 0.27 23.36 ± 0.34 19.13 ± 0.44 15.80 ± 0.48
Scheme 4. (,+, 𝑚𝑎𝑥) 37.82 ± 0.39 30.40 ± 0.31 24.85 ± 0.32 20.11 ± 0.38 16.21 ± 0.42
Scheme 5. (,+, 𝑚𝑖𝑛) 36.46 ± 0.28 29.22 ± 0.46 23.68 ± 0.30 19.45 ± 0.31 16.04 ± 0.33
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 38.03 ± 0.36 30.64 ± 0.28 *𝟐𝟓.𝟐𝟑 ± 𝟎.𝟐𝟕 20.30 ± 0.25 𝟏𝟔.𝟕𝟑 ± 𝟎.𝟏𝟓
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 35.73 ± 0.32 28.79 ± 0.49 23.52 ± 0.29 19.13 ± 0.26 15.82 ± 0.27
Scheme 8. (′ , 𝑚𝑎𝑥,+) 37.90 ± 0.39 30.68 ± 0.37 24.95 ± 0.41 19.84 ± 0.42 16.27 ± 0.41
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intra-block, so in this situation a conservative scheme is more proper.
But it gradually changes as payload becomes large.

Our reorganized partition ∗ is also valid for steganographic em-
edding on JPEG images. Although it does not overwhelm  as is
n detection by MaxSRMd2, it works well in JPEG steganography
specially when detected by SCA-GFR.

.4. Experimental results of using LASSO linear classifier as detector

In previous two subsections we use ensemble classifier as detector,
here are other choices for detectors, such as LASSO based linear
lassifier proposed by Cogranne et al. [38]. We tested proposed and
riginal UNIWARD schemes by this classifier on BOSS V1.02. The
xperimental results of low-complexity linear classifier are similar to
nsemble classifier for SRM, MaxSRMd2 and GFR, but it is slightly
etter for and SCA-GFR, so we present the experimental results of SCA-
FR in Table 9. The schemes calculated by wavelet db8 and db7 on
.1–0.3 bpp(bpac) are used in this experiments, and parameters are set
y searching via cross validation (see Table 10).

Then tendency of experimental results using low-complexity lin-
ar classifier is similar to ensemble classifier. For QF75, proposed
chemes 2,4,6 outperform original J-UNIWARD with more superiority
han ensemble classifier in this experiment.

.5. Experiments on ALASKA2

ALASKA2 is the latest image base developed for data hiding commu-
ity. It has 80000 images, which makes it proper for deep model based
teganalysis. We select SRNet [39] and EfficientNet-B0 [40] to evaluate
7

istortion schemes on ALASKA2 of size 256 × 256. We randomly split h
over and stego sets to 3 sets respectively containing 56000, 16000,
nd 4000 cover/stego image pairs for training, testing and validation.
n this part we tested UNIWARD with db8 and db7 wavelet in 0.1–0.3
pp(bpac) payload.

Based on the comparison results of previous two part, we select
ome of our proposed schemes for experiments of SRNet. For JPEG
mage, we compare proposed schemes with original J-UNIWARD and
-MIPOD [41]. As we know, J-UNIWARD and J-MIPOD are state-of-the-
rt distortion schemes for JPEG image and are designed with different
rincipals, we also take into account their fusion via method [22] pro-
osed by Zhou et al. in comparison. Experimental results are presented
n Tables 11 and 12. Revised scheme 1 is better than original UNI-

ARD, perhaps deep-network can better capture the artifacts left by in-
omplete directions of wavelets. While J-MIPOD is close to J-UNIWARD
or gray scale images and its basis is very different to J-UNIWARD, the
usion of J-MIPOD with original and revised J-UNIWARD could gain
etter results.

For EfficientNet-B0, we tested schemes 1,3,5 for JPEG images, we
ompared them to original UNIWARD. The experimental results on
patial image is similar to SRNet, so we present results on JPEG images
n Table 13. Moreover, we find that if we remove D4 augmentation
n training efficient net for original J-UNIWARD, the detection results
ay promote about 1%–%2 for some cases(denoted as original J-
NIWARD*). Perhaps deep network sometimes can explicitly capture

he artifacts better without flipping transform.

.6. Remarks

In this paper we proposed several merging schemes, and a compre-

ensive comparison is presented. It seems that the for these schemes,
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Table 3
Experimental results 𝑃𝐸 on BOSSc_J85 and BOSSc V1.01 detected by SRM.

Wavelet Method BOSSc_J85 BOSSc

Payload rate Payload rate

0.1 0.2 0.3 0.1 0.2 0.3

db8

Original UNIWARD 27.92 ± 0.32 12.91 ± 0.21 6.42 ± 0.13 31.10 ± 0.31 16.54 ± 0.40 9.39 ± 0.23
Scheme 1. (,+,+) 28.14 ± 0.38 12.96 ± 0.29 6.66 ± 0.22 31.77 ± 0.34 16.66 ± 0.33 9.69 ± 0.16
Scheme 2. (, 𝑚𝑎𝑥,+) 28.13 ± 0.26 12.79 ± 0.31 6.79 ± 0.23 31.44 ± 0.42 16.45 ± 0.23 9.55 ± 0.24
Scheme 3. (, 𝑚𝑖𝑛,+) 28.32 ± 0.31 13.01 ± 0.20 6.60 ± 0.24 31.61 ± 0.40 16.63 ± 0.29 9.63 ± 0.28
Scheme 4. (,+, 𝑚𝑎𝑥) 28.35 ± 0.52 13.06 ± 0.42 6.51 ± 0.20 31.31 ± 0.39 16.52 ± 0.33 9.55 ± 0.29
Scheme 5. (,+, 𝑚𝑖𝑛) 28.36 ± 0.49 13.21 ± 0.37 6.69 ± 0.22 *31.89 ± 0.28 16.65 ± 0.28 9.57 ± 0.31
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 28.35 ± 0.48 13.17 ± 0.32 6.51 ± 0.19 31.70 ± 0.43 16.54 ± 0.31 9.71 ± 0.34
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 28.46 ± 0.32 13.11 ± 0.27 6.64 ± 0.40 31.71 ± 0.21 16.37 ± 0.25 9.55 ± 0.27
Scheme 8. (′ , 𝑚𝑎𝑥,+) 28.67 ± 0.49 12.84 ± 0.44 6.75 ± 0.27 31.67 ± 0.39 16.63 ± 0.33 𝟗.𝟕𝟐 ± 𝟎.𝟐𝟏

Original WOW 27.90 ± 0.35 13.28 ± 0.20 6.91 ± 0.24 29.99 ± 0.55 16.34 ± 0.55 9.58 ± 0.38
Revised WOW 28.21 ± 0.24 13.57 ± 0.30 7.13 ± 0.31 30.07 ± 0.37 16.12 ± 0.29 9.27 ± 0.36

db7

Original UNIWARD 28.35 ± 0.33 13.05 ± 0.39 6.63 ± 0.29 31.26 ± 0.32 16.38 ± 0.30 9.09 ± 0.27
Scheme 1. (,+,+) 28.65 ± 0.40 13.16 ± 0.26 6.64 ± 0.18 31.71 ± 0.38 16.73 ± 0.38 9.22 ± 0.19
Scheme 2. (, 𝑚𝑎𝑥,+) 28.56 ± 0.52 13.08 ± 0.19 6.69 ± 0.31 31.52 ± 0.49 16.45 ± 0.35 9.33 ± 0.30
Scheme 3. (, 𝑚𝑖𝑛,+) 28.78 ± 0.29 13.26 ± 0.26 6.69 ± 0.30 31.67 ± 0.30 16.69 ± 0.41 9.30 ± 0.31
Scheme 4. (,+, 𝑚𝑎𝑥) 28.40 ± 0.36 13.18 ± 0.36 6.75 ± 0.28 31.57 ± 0.34 16.58 ± 0.50 9.23 ± 0.34
Scheme 5. (,+, 𝑚𝑖𝑛) 28.77 ± 0.30 12.97 ± 0.32 6.71 ± 0.28 31.12 ± 0.44 16.64 ± 0.34 9.35 ± 0.31
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 28.61 ± 0.35 13.11 ± 0.54 6.66 ± 0.24 31.47 ± 0.48 16.37 ± 0.26 9.31 ± 0.21
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 28.98 ± 0.31 13.33 ± 0.41 6.51 ± 0.13 31.64 ± 0.29 16.68 ± 0.29 9.36 ± 0.24
Scheme 8. (′ , 𝑚𝑎𝑥,+) *𝟐𝟗.𝟎𝟒 ± 𝟎.𝟑𝟐 13.35 ± 0.29 6.62 ± 0.12 *𝟑𝟐.𝟑𝟓 ± 𝟎.𝟑𝟐 16.89 ± 0.24 9.28 ± 0.23

Original WOW 28.17 ± 0.44 13.76 ± 0.33 6.95 ± 0.22 30.55 ± 0.42 16.44 ± 0.45 9.41 ± 0.18
Revised WOW 28.33 ± 0.56 13.68 ± 0.39 7.27 ± 0.36 30.48 ± 0.38 16.38 ± 0.25 9.55 ± 0.24

db6

Original UNIWARD 28.48 ± 0.31 13.14 ± 0.37 6.74 ± 0.11 31.41 ± 0.32 16.63 ± 0.24 9.20 ± 0.30
Scheme 1. (,+,+) 28.58 ± 0.32 13.41 ± 0.36 6.88 ± 0.23 31.81 ± 0.45 16.63 ± 0.15 9.50 ± 0.35
Scheme 2. (, 𝑚𝑎𝑥,+) 28.16 ± 0.24 13.13 ± 0.18 6.86 ± 0.24 31.57 ± 0.37 16.66 ± 0.30 9.50 ± 0.38
Scheme 3. (, 𝑚𝑖𝑛,+) 28.67 ± 0.38 13.49 ± 0.34 7.03 ± 0.23 31.82 ± 0.44 16.85 ± 0.35 9.66 ± 0.14
Scheme 4. (,+, 𝑚𝑎𝑥) 28.39 ± 0.36 13.27 ± 0.33 6.66 ± 0.25 31.47 ± 0.41 16.51 ± 0.26 9.26 ± 0.31
Scheme 5. (,+, 𝑚𝑖𝑛) 28.62 ± 0.31 13.31 ± 0.50 6.90 ± 0.28 31.72 ± 0.56 16.66 ± 0.27 9.26 ± 0.28
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 28.34 ± 0.33 13.16 ± 0.23 6.89 ± 0.30 31.50 ± 0.46 16.40 ± 0.32 9.22 ± 0.28
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 28.93 ± 0.39 13.35 ± 0.21 6.84 ± 0.12 32.01 ± 0.33 16.84 ± 0.20 9.51 ± 0.25
Scheme 8. (′ , 𝑚𝑎𝑥,+) 28.72 ± 0.48 13.34 ± 0.23 6.94 ± 0.14 *32.32 ± 0.30 16.89 ± 0.35 9.39 ± 0.36

Original WOW 27.88 ± 0.42 13.36 ± 0.35 7.30 ± 0.28 30.16 ± 0.25 16.18 ± 0.31 9.34 ± 0.31
Revised WOW 28.05 ± 0.74 13.45 ± 0.32 7.36 ± 0.17 30.49 ± 0.42 16.28 ± 0.48 9.28 ± 0.25

db5

Original UNIWARD 28.19 ± 0.44 13.16 ± 0.25 6.73 ± 0.23 30.92 ± 0.34 16.48 ± 0.33 9.25 ± 0.28
Scheme 1. (,+,+) 28.51 ± 0.35 13.59 ± 0.18 6.92 ± 0.21 31.50 ± 0.23 16.63 ± 0.30 9.65 ± 0.31
Scheme 2. (, 𝑚𝑎𝑥,+) 28.48 ± 0.41 13.39 ± 0.21 6.88 ± 0.21 31.23 ± 0.41 16.48 ± 0.27 9.51 ± 0.31
Scheme 3. (, 𝑚𝑖𝑛,+) 28.61 ± 0.25 𝟏𝟑.𝟔𝟔 ± 𝟎.𝟐𝟒 7.00 ± 0.10 *31.82 ± 0.31 16.80 ± 0.25 9.63 ± 0.29
Scheme 4. (,+, 𝑚𝑎𝑥) 28.64 ± 0.28 13.40 ± 0.43 6.89 ± 0.20 31.26 ± 0.25 16.42 ± 0.32 9.49 ± 0.31
Scheme 5. (,+, 𝑚𝑖𝑛) 28.80 ± 0.41 13.47 ± 0.23 6.81 ± 0.21 *31.85 ± 0.29 16.78 ± 0.13 9.62 ± 0.38
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 28.49 ± 0.51 13.19 ± 0.39 6.84 ± 0.27 31.02 ± 0.30 16.51 ± 0.27 9.53 ± 0.29
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 28.54 ± 0.28 13.24 ± 0.32 7.00 ± 0.25 31.47 ± 0.48 16.50 ± 0.35 9.70 ± 0.25
Scheme 8. (′ , 𝑚𝑎𝑥,+) 28.59 ± 0.39 13.50 ± 0.30 𝟕.𝟎𝟖 ± 𝟎.𝟐𝟎 31.30 ± 0.38 16.59 ± 0.21 9.50 ± 0.31

Original WOW 27.41 ± 0.26 13.49 ± 0.31 7.21 ± 0.22 29.30 ± 0.41 15.74 ± 0.34 9.25 ± 0.23
Revised WOW 27.50 ± 0.31 13.51 ± 0.39 7.14 ± 0.22 28.91 ± 0.48 15.86 ± 0.31 9.11 ± 0.16
̂

the best one varies respect to different settings. However, some schemes
consistently exhibit comparable performance to best ones. In our ex-
periment, we tested schemes by feature based and deep-model based
steganalysis methods on different datasets. Overall according to ex-
perimental results, we suggest some choice presented in Table 14 for
steganography on different payload rate and image format.

5. Discussions

In this paper we only consider the isotropically constructed sub-
models in directions. Although there are possibly more alternative
definitions about it in terms of different attributes, such as scale or
phase for Gabor filters, they do not have a obvious intrinsic symmetric
property. Probably there are some proper merging methods for them,
but expensive computational cost is needed for this investigation. Al-
though we still believe the worth of studying them, due to the space of
this paper, we leave them to future works.

another question arises as is aforementioned in Section 1, that just
by substituting db wavelet filters with other symmetric ones, can we
obtain the same or even better results and avoid designing merging
methods? This question is particularly meaningful for J-UNIWARD.
8

To answer it, several symmetrization methods have been tried on db
wavelet and sym wavelet. The first trial is deliberately symmetrizing
db4-db8 wavelet filters by 3 symmetrization methods including adding,
subtracting and concatenating filters with their flippings. Unfortunately
their performances are very poor perhaps due to deformed spectral after
symmetrization. Hence we tried another way by convolving them with
their flippings:
𝐋 = 𝐋⊗ 𝐋′, 𝐇̂ = 𝐇⊗𝐇′ (22)

It can be proved that this operation result in symmetric filters, and in
this way the spectral of 𝐋̂ and 𝐇̂ somehow assemble to that of L and
H. However the performance of them has about 3% gap to original
UNIWARD in 0.1–0.3 payload rate.

In addition to db wavelet, sym wavelet is a kind of inherent sym-
metric wavelet which can be used in UNIWARD as a substitution of
db wavelet. We tested sym4-sym8, and the performances of them are
similar to symmetrization result of db wavelet via Eq. (22), but still no
better than db wavelet. Besides, if we apply Eq. (22) to sym wavelet, it
is noteworthy that its result would be the same as db wavelet. Perhaps
this could somehow strengthen the results of our observations.
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Table 4
Experimental results 𝑃𝐸 on BOSSc_J85 and BOSSc V1.01 detected by MaxSRMd2.

Wavelet Method BOSSc_J85 BOSSc

Payload rate Payload rate

0.1 0.2 0.3 0.1 0.2 0.3

db8

Original UNIWARD 27.49 ± 0.27 13.59 ± 0.27 7.50 ± 0.31 29.04 ± 0.35 16.46 ± 0.31 7.94 ± 0.22
Scheme 1. (,+,+) 27.70 ± 0.23 14.06 ± 0.20 7.63 ± 0.14 29.56 ± 0.31 16.88 ± 0.27 8.13 ± 0.20
Scheme 2. (, 𝑚𝑎𝑥,+) *28.56 ± 0.31 13.96 ± 0.16 7.54 ± 0.17 *30.22 ± 0.32 16.92 ± 0.35 8.22 ± 0.18
Scheme 3. (, 𝑚𝑖𝑛,+) 27.37 ± 0.40 13.70 ± 0.29 7.41 ± 0.21 29.18 ± 0.35 16.23 ± 0.32 8.02 ± 0.20
Scheme 4. (,+, 𝑚𝑎𝑥) 28.11 ± 0.43 *14.30 ± 0.29 7.59 ± 0.31 *𝟑𝟎.𝟐𝟓 ± 𝟎.𝟐𝟖 𝟏𝟔.𝟗𝟒 ± 𝟎.𝟑𝟕 8.17 ± 0.28
Scheme 5. (,+, 𝑚𝑖𝑛) 27.44 ± 0.35 13.70 ± 0.28 7.44 ± 0.27 29.00 ± 0.36 16.46 ± 0.21 8.05 ± 0.29
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 28.16 ± 0.43 14.06 ± 0.22 7.56 ± 0.24 29.75 ± 0.25 16.87 ± 0.40 8.27 ± 0.28
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 27.51 ± 0.34 13.82 ± 0.20 7.45 ± 0.31 29.09 ± 0.26 16.39 ± 0.25 8.08 ± 0.29
Scheme 8. (′ , 𝑚𝑎𝑥,+) 27.43 ± 0.52 13.47 ± 0.51 7.39 ± 0.22 29.46 ± 0.25 16.45 ± 0.20 7.83 ± 0.23

Original WOW 22.66 ± 0.34 11.90 ± 0.26 7.11 ± 0.41 22.74 ± 0.48 12.31 ± 0.23 7.34 ± 0.24
Revised WOW 23.50 ± 0.33 12.18 ± 0.25 7.19 ± 0.34 23.36 ± 0.37 12.51 ± 0.25 7.55 ± 0.34

db7

Original UNIWARD 27.44 ± 0.24 14.01 ± 0.41 7.37 ± 0.25 29.22 ± 0.32 15.41 ± 0.33 8.72 ± 0.27
Scheme 1. (,+,+) *28.27 ± 0.35 14.08 ± 0.22 7.62 ± 0.25 29.60 ± 0.30 15.56 ± 0.22 9.05 ± 0.33
Scheme 2. (, 𝑚𝑎𝑥,+) *28.62 ± 0.33 14.35 ± 0.37 7.59 ± 0.18 *29.98 ± 0.28 15.90 ± 0.22 8.86 ± 0.22
Scheme 3. (, 𝑚𝑖𝑛,+) 27.77 ± 0.51 13.95 ± 0.38 7.51 ± 0.33 29.18 ± 0.24 15.38 ± 0.27 8.57 ± 0.25
Scheme 4. (,+, 𝑚𝑎𝑥) *𝟐𝟖.𝟔𝟔 ± 𝟎.𝟑𝟕 14.07 ± 0.32 7.56 ± 0.28 29.82 ± 0.29 15.72 ± 0.33 8.96 ± 0.38
Scheme 5. (,+, 𝑚𝑖𝑛) 28.05 ± 0.36 14.00 ± 0.38 7.68 ± 0.45 29.45 ± 0.46 15.56 ± 0.38 8.83 ± 0.37
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) *28.17 ± 0.31 14.06 ± 0.22 7.62 ± 0.20 *30.02 ± 0.26 15.87 ± 0.38 8.99 ± 0.25
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 27.91 ± 0.34 13.96 ± 0.33 7.73 ± 0.28 29.16 ± 0.26 15.53 ± 0.23 8.54 ± 0.27
Scheme 8. (′ , 𝑚𝑎𝑥,+) 27.94 ± 0.38 13.89 ± 0.37 7.28 ± 0.22 29.39 ± 0.42 15.41 ± 0.23 8.51 ± 0.19

Original WOW 23.11 ± 0.24 12.33 ± 0.31 7.09 ± 0.30 22.76 ± 0.57 12.22 ± 0.35 7.33 ± 0.28
Revised WOW 23.53 ± 0.23 12.33 ± 0.33 7.16 ± 0.23 23.00 ± 0.31 12.66 ± 0.30 7.67 ± 0.29

db6

Original UNIWARD 27.83 ± 0.34 14.03 ± 0.22 7.48 ± 0.22 28.69 ± 0.24 15.48 ± 0.34 8.66 ± 0.29
Scheme 1. (,+,+) 28.43 ± 0.37 14.48 ± 0.27 7.74 ± 0.26 *29.45 ± 0.25 15.72 ± 0.20 9.10 ± 0.39
Scheme 2. (, 𝑚𝑎𝑥,+) 28.36 ± 0.31 14.24 ± 0.23 7.77 ± 0.31 *29.62 ± 0.43 15.98 ± 0.37 8.85 ± 0.16
Scheme 3. (, 𝑚𝑖𝑛,+) 27.58 ± 0.35 13.86 ± 0.29 7.63 ± 0.20 28.88 ± 0.41 15.49 ± 0.32 8.55 ± 0.24
Scheme 4. (,+, 𝑚𝑎𝑥) 28.47 ± 0.38 14.17 ± 0.35 7.70 ± 0.21 *29.68 ± 0.33 15.61 ± 0.22 9.06 ± 0.23
Scheme 5. (,+, 𝑚𝑖𝑛) 27.90 ± 0.27 14.20 ± 0.14 7.55 ± 0.21 29.26 ± 0.36 15.36 ± 0.30 8.48 ± 0.18
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 28.44 ± 0.35 𝟏𝟒.𝟓𝟒 ± 𝟎.𝟐𝟓 7.70 ± 0.19 *29.75 ± 0.31 16.02 ± 0.40 8.95 ± 0.18
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 27.92 ± 0.44 14.06 ± 0.35 7.61 ± 0.27 29.06 ± 0.43 15.74 ± 0.33 8.65 ± 0.22
Scheme 8. (′ , 𝑚𝑎𝑥,+) 28.02 ± 0.46 13.90 ± 0.27 7.72 ± 0.33 *29.55 ± 0.29 15.26 ± 0.35 8.44 ± 0.28

Original WOW 22.91 ± 0.31 12.15 ± 0.26 6.87 ± 0.17 22.65 ± 0.31 12.08 ± 0.21 7.49 ± 0.33
Revised WOW 23.15 ± 0.37 12.49 ± 0.28 7.19 ± 0.18 22.58 ± 0.44 12.13 ± 0.28 7.35 ± 0.30

db5

Original UNIWARD 27.81 ± 0.40 13.82 ± 0.19 7.63 ± 0.18 28.25 ± 0.34 15.16 ± 0.22 8.62 ± 0.32
Scheme 1. (,+,+) 27.93 ± 0.24 *14.52 ± 0.34 𝟕.𝟖𝟖 ± 𝟎.𝟑𝟗 *29.13 ± 0.28 15.71 ± 0.31 9.07 ± 0.29
Scheme 2. (, 𝑚𝑎𝑥,+) *28.61 ± 0.31 14.33 ± 0.29 7.79 ± 0.35 *29.33 ± 0.30 *15.90 ± 0.31 8.93 ± 0.32
Scheme 3. (, 𝑚𝑖𝑛,+) 27.36 ± 0.37 14.01 ± 0.35 7.63 ± 0.24 28.33 ± 0.52 15.25 ± 0.26 8.59 ± 0.35
Scheme 4. (,+, 𝑚𝑎𝑥) 28.31 ± 0.30 14.24 ± 0.31 7.81 ± 0.23 *29.21 ± 0.36 15.88 ± 0.34 8.95 ± 0.22
Scheme 5. (,+, 𝑚𝑖𝑛) 27.60 ± 0.46 14.10 ± 0.32 7.76 ± 0.24 28.45 ± 0.33 15.20 ± 0.35 8.55 ± 0.30
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 28.29 ± 0.52 14.44 ± 0.29 7.79 ± 0.36 *29.28 ± 0.32 15.68 ± 0.27 𝟗.𝟏𝟒 ± 𝟎.𝟑𝟏
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 27.80 ± 0.31 14.09 ± 0.35 7.73 ± 0.29 28.48 ± 0.57 15.03 ± 0.29 8.64 ± 0.29
Scheme 8. (′ , 𝑚𝑎𝑥,+) 27.52 ± 0.34 13.85 ± 0.30 7.62 ± 0.25 28.88 ± 0.26 14.96 ± 0.35 8.97 ± 0.27

Original WOW 22.43 ± 0.38 11.76 ± 0.21 7.00 ± 0.26 21.64 ± 0.29 11.64 ± 0.30 7.19 ± 0.14
Revised WOW 22.52 ± 0.22 12.23 ± 0.39 6.86 ± 0.25 21.85 ± 0.34 11.85 ± 0.23 7.34 ± 0.12
Although it is not proper to assert that symmetric filters are helpless
ince our trials are impossible to cast all of them. However it is heuris-
ically recognized that filter bank with orientation properties generally
re more capable to capture image content information and increase
he diversity of distortion function, which is important for promoting
he performance. This is why we strive to find better merging method
or them.

Merging is an important phase in this work. we noticed that CPP
ule proposed in [21] remarkably boost the performance by fusing
ifferent distortion function schemes for spatial image. So we tried to
dopt CPP rule as a option in merging sub-models of proposed scheme.
e tested CPP and its combinations with strategies described in Sec-

ion 3.2, but find the performance degrade. This is understandable
ecause CPP rule is designed for fusing costs from distortion function of
eterogeneous mechanism. For homogeneous costs, such ‘‘controversy’’
mplies the existence of the ‘‘weakness’’ in certain directions, which
akes encouragement of modifying it irrational. However, proposed
erging methods can coexist with CPP rule for different levels of

ombining. With some tentative experiments, we find that for some
chemes of revised S-UNIWARD, combination of db5 and db8 can give
9

promotion of approximately 0.6%–0.8% for each payload rate. This
can be ascribed to the fact that db5 and db8 makes the diversity by
different scales of reception field.

As described in Section 4.2, the purpose of experiment on BOSSc_J85
is simulating spatial image decompressed from JPEG image generated
by built-in compressor of camera, since different camera types may use
different quantization table, we also tested S-UNIWARD and its revised
schemes on BOSSc_J75 and BOSSc_J95, and received similar results that
they outperform WOW especially for detection of MaxSRMd2. Besides,
we also tested our schemes on BOSS_J85, in this image base WOW is
usually better, and some schemes of revised S-UNIWARD are close to
it in detection with MaxSRMd2.

Our schemes inevitably increase computational time for more sub-
models. This is severe for J-UNIWARD, so we tested their time cost.
In this test, we optimized some procedures of block reading operations
based on open source code of J-UNIWARD. For image of 512 × 512 and
2048 × 2048, revised J-UNIWARD cost 0.98 s and 15.4 s, while original
J-UNIWARD cost 0.35 s and 6.54 s, We also observed the memory
allocation cost more time for image of larger size.

In addition to UNIWARD, GUED also use Gabor filters with different
directions. This implies that our proposed merging schemes may be

applied to GUED. However, directional properties of Gabor filters used
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Table 5
Experimental results 𝑃𝐸 of J-UNIWARD detected by GFR, Qf = 95.

Wavelet Method Payload rate

0.1 0.2 0.3 0.4 0.5

db8

Original UNIWARD 47.69 ± 0.17 43.15 ± 0.25 37.13 ± 0.14 30.14 ± 0.37 22.52 ± 0.36
Scheme 1. (,+,+) 47.77 ± 0.15 43.40 ± 0.16 37.35 ± 0.47 30.22 ± 0.48 22.59 ± 0.23
Scheme 2. (, 𝑚𝑎𝑥,+) 47.65 ± 0.28 43.15 ± 0.18 36.60 ± 0.45 29.54 ± 0.46 21.52 ± 0.24
Scheme 3. (, 𝑚𝑖𝑛,+) 47.88 ± 0.17 𝟒𝟑.𝟓𝟑 ± 𝟎.𝟐𝟔 37.44 ± 0.13 30.50 ± 0.32 𝟐𝟑.𝟎𝟔 ± 𝟎.𝟑𝟑
Scheme 4. (,+, 𝑚𝑎𝑥) 47.85 ± 0.18 42.98 ± 0.21 36.76 ± 0.16 29.45 ± 0.38 22.01 ± 0.45
Scheme 5. (,+, 𝑚𝑖𝑛) 47.95 ± 0.22 43.50 ± 0.35 𝟑𝟕.𝟔𝟏 ± 𝟎.𝟐𝟗 30.49 ± 0.34 22.96 ± 0.33
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 47.95 ± 0.15 42.98 ± 0.25 36.56 ± 0.16 29.49 ± 0.29 21.75 ± 0.39
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 47.89 ± 0.23 43.30 ± 0.19 37.47 ± 0.20 𝟑𝟎.𝟔𝟗 ± 𝟎.𝟑𝟏 22.62 ± 0.33

db7

Original UNIWARD 47.74 ± 0.17 42.97 ± 0.25 36.71 ± 0.36 29.01 ± 0.22 21.59 ± 0.40
Scheme 1. (,+,+) 47.84 ± 0.19 42.98 ± 0.23 36.78 ± 0.40 29.24 ± 0.22 21.67 ± 0.27
Scheme 2. (, 𝑚𝑎𝑥,+) 47.68 ± 0.18 42.71 ± 0.22 36.08 ± 0.36 28.43 ± 0.17 20.66 ± 0.28
Scheme 3. (, 𝑚𝑖𝑛,+) 47.87 ± 0.16 43.22 ± 0.30 37.12 ± 0.16 *29.81 ± 0.24 22.27 ± 0.26
Scheme 4. (,+, 𝑚𝑎𝑥) 47.62 ± 0.22 42.80 ± 0.35 36.06 ± 0.32 28.66 ± 0.42 20.74 ± 0.43
Scheme 5. (,+, 𝑚𝑖𝑛) 47.88 ± 0.16 43.31 ± 0.18 37.02 ± 0.30 *29.88 ± 0.37 22.28 ± 0.23
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 47.80 ± 0.20 42.94 ± 0.29 36.28 ± 0.24 28.48 ± 0.38 20.89 ± 0.43
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 47.78 ± 0.17 43.19 ± 0.30 37.04 ± 0.39 29.48 ± 0.34 22.01 ± 0.29

db6

Original UNIWARD 47.87 ± 0.27 43.13 ± 0.37 36.85 ± 0.24 29.34 ± 0.29 21.87 ± 0.41
Scheme 1. (,+,+) 47.85 ± 0.16 43.20 ± 0.41 36.91 ± 0.32 29.35 ± 0.28 21.89 ± 0.24
Scheme 2. (, 𝑚𝑎𝑥,+) 47.73 ± 0.19 42.74 ± 0.24 36.13 ± 0.41 28.50 ± 0.27 20.63 ± 0.34
Scheme 3. (, 𝑚𝑖𝑛,+) 𝟒𝟕.𝟗𝟕 ± 𝟎.𝟏𝟖 43.44 ± 0.20 37.30 ± 0.28 *30.31 ± 0.44 *22.60 ± 0.17
Scheme 4. (,+, 𝑚𝑎𝑥) 47.63 ± 0.12 42.76 ± 0.25 36.26 ± 0.41 28.76 ± 0.25 21.02 ± 0.22
Scheme 5. (,+, 𝑚𝑖𝑛) 47.77 ± 0.16 43.49 ± 0.17 37.27 ± 0.38 29.95 ± 0.31 22.39 ± 0.28
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 47.77 ± 0.22 42.90 ± 0.34 36.29 ± 0.30 28.71 ± 0.24 21.01 ± 0.20
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 47.84 ± 0.16 43.36 ± 0.27 37.13 ± 0.37 29.85 ± 0.49 22.20 ± 0.17

db5

Original UNIWARD 47.70 ± 0.14 43.09 ± 0.25 36.67 ± 0.22 29.60 ± 0.43 21.92 ± 0.17
Scheme 1. (,+,+) 47.76 ± 0.15 43.19 ± 0.25 36.79 ± 0.36 29.60 ± 0.33 21.80 ± 0.27
Scheme 2. (, 𝑚𝑎𝑥,+) 47.66 ± 0.15 42.73 ± 0.26 36.24 ± 0.48 28.77 ± 0.46 20.91 ± 0.24
Scheme 3. (, 𝑚𝑖𝑛,+) 47.96 ± 0.25 43.29 ± 0.30 *37.24 ± 0.22 30.41 ± 0.32 *22.83 ± 0.30
Scheme 4. (,+, 𝑚𝑎𝑥) 47.77 ± 0.22 42.96 ± 0.26 36.41 ± 0.25 29.00 ± 0.23 21.09 ± 0.32
Scheme 5. (,+, 𝑚𝑖𝑛) 47.76 ± 0.24 43.37 ± 0.30 *37.28 ± 0.21 30.22 ± 0.42 22.34 ± 0.30
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 47.73 ± 0.17 43.01 ± 0.15 36.54 ± 0.28 28.89 ± 0.57 21.33 ± 0.18
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 47.88 ± 0.14 43.43 ± 0.41 *37.20 ± 0.22 30.03 ± 0.27 22.47 ± 0.36
Table 6
Experimental results 𝑃𝐸 of J-UNIWARD detected by SCA-GFR Qf = 95.
Wavelet Method Payload rate

0.1 0.2 0.3 0.4 0.5

db8

Original UNIWARD 46.07 ± 0.22 40.23 ± 0.41 33.17 ± 0.30 26.32 ± 0.27 20.02 ± 0.31
Scheme 1. (,+,+) 46.31 ± 0.27 40.30 ± 0.25 33.47 ± 0.30 26.52 ± 0.18 20.37 ± 0.27
Scheme 2. (, 𝑚𝑎𝑥,+) 46.17 ± 0.17 40.01 ± 0.37 33.09 ± 0.23 26.00 ± 0.18 19.27 ± 0.19
Scheme 3. (, 𝑚𝑖𝑛,+) 46.40 ± 0.22 40.38 ± 0.26 33.63 ± 0.28 *𝟐𝟕.𝟐𝟏 ± 𝟎.𝟐𝟔 *𝟐𝟎.𝟔𝟗 ± 𝟎.𝟐𝟒
Scheme 4. (,+, 𝑚𝑎𝑥) 46.05 ± 0.34 40.15 ± 0.36 33.17 ± 0.27 25.66 ± 0.31 19.48 ± 0.20
Scheme 5. (,+, 𝑚𝑖𝑛) 46.28 ± 0.41 40.50 ± 0.35 33.52 ± 0.23 26.79 ± 0.28 20.47 ± 0.40
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 46.24 ± 0.33 40.15 ± 0.26 32.99 ± 0.45 26.05 ± 0.25 19.45 ± 0.36
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 46.16 ± 0.25 40.40 ± 0.18 33.66 ± 0.29 26.62 ± 0.44 20.63 ± 0.26

db7

Original UNIWARD 46.05 ± 0.31 40.10 ± 0.37 33.06 ± 0.27 25.71 ± 0.27 19.15 ± 0.25
Scheme 1. (,+,+) 46.53 ± 0.31 40.41 ± 0.31 33.11 ± 0.39 25.77 ± 0.39 19.38 ± 0.27
Scheme 2. (, 𝑚𝑎𝑥,+) 46.43 ± 0.26 40.09 ± 0.32 32.64 ± 0.33 25.35 ± 0.24 18.35 ± 0.30
Scheme 3. (, 𝑚𝑖𝑛,+) 46.30 ± 0.26 40.26 ± 0.26 33.28 ± 0.26 *26.41 ± 0.30 *20.11 ± 0.29
Scheme 4. (,+, 𝑚𝑎𝑥) 46.56 ± 0.24 40.19 ± 0.31 32.86 ± 0.31 25.33 ± 0.24 18.44 ± 0.28
Scheme 5. (,+, 𝑚𝑖𝑛) 46.26 ± 0.25 40.25 ± 0.30 33.26 ± 0.22 *26.46 ± 0.21 *19.96 ± 0.36
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 46.41 ± 0.20 40.46 ± 0.24 32.58 ± 0.33 25.14 ± 0.36 18.55 ± 0.14
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 46.24 ± 0.28 40.20 ± 0.30 33.40 ± 0.30 *26.44 ± 0.27 *19.95 ± 0.19

db6

Original UNIWARD 46.39 ± 0.19 40.31 ± 0.28 33.22 ± 0.19 26.21 ± 0.21 19.70 ± 0.28
Scheme 1. (,+,+) 46.36 ± 0.26 40.36 ± 0.36 33.46 ± 0.38 26.27 ± 0.16 19.62 ± 0.20
Scheme 2. (, 𝑚𝑎𝑥,+) 46.32 ± 0.30 40.39 ± 0.28 32.70 ± 0.36 25.43 ± 0.29 18.76 ± 0.21
Scheme 3. (, 𝑚𝑖𝑛,+) 46.42 ± 0.29 40.50 ± 0.36 33.50 ± 0.32 26.67 ± 0.37 *20.44 ± 0.30
Scheme 4. (,+, 𝑚𝑎𝑥) 46.43 ± 0.22 40.43 ± 0.26 33.18 ± 0.42 25.40 ± 0.26 18.77 ± 0.35
Scheme 5. (,+, 𝑚𝑖𝑛) 46.45 ± 0.20 40.52 ± 0.34 33.69 ± 0.43 26.72 ± 0.37 20.13 ± 0.20
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 46.67 ± 0.28 40.49 ± 0.20 32.80 ± 0.20 25.63 ± 0.25 18.77 ± 0.32
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 46.52 ± 0.11 40.57 ± 0.31 33.52 ± 0.29 26.64 ± 0.43 20.40 ± 0.43

db5

Original UNIWARD 46.25 ± 0.19 40.45 ± 0.30 33.31 ± 0.23 26.64 ± 0.34 20.05 ± 0.25
Scheme 1. (,+,+) 46.61 ± 0.38 40.61 ± 0.32 33.67 ± 0.36 26.54 ± 0.45 19.94 ± 0.39
Scheme 2. (, 𝑚𝑎𝑥,+) 46.25 ± 0.34 40.70 ± 0.26 32.93 ± 0.17 25.72 ± 0.33 18.91 ± 0.19
Scheme 3. (, 𝑚𝑖𝑛,+) 46.57 ± 0.19 40.58 ± 0.32 33.76 ± 0.31 26.93 ± 0.26 20.51 ± 0.31
Scheme 4. (,+, 𝑚𝑎𝑥) 46.50 ± 0.30 40.32 ± 0.25 33.34 ± 0.46 25.71 ± 0.31 18.90 ± 0.28
Scheme 5. (,+, 𝑚𝑖𝑛) 𝟒𝟔.𝟕𝟎 ± 𝟎.𝟐𝟔 40.66 ± 0.23 *33.90 ± 0.17 26.87 ± 0.47 20.50 ± 0.24
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 46.40 ± 0.20 40.53 ± 0.42 33.24 ± 0.45 25.92 ± 0.43 18.98 ± 0.32
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 46.61 ± 0.28 𝟒𝟎.𝟕𝟖 ± 𝟎.𝟑𝟔 *𝟑𝟑.𝟗𝟖 ± 𝟎.𝟑𝟒 27.08 ± 0.27 20.63 ± 0.31
10
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Table 7
Experimental results 𝑃𝐸 of J-UNIWARD detected by GFR, Qf = 75.

Wavelet Method Payload rate

0.1 0.2 0.3 0.4 0.5

db8

Original UNIWARD 40.77 ± 0.28 28.26 ± 0.33 17.73 ± 0.37 10.07 ± 0.19 5.15 ± 0.16
Scheme 1. (,+,+) 40.99 ± 0.44 28.66 ± 0.38 17.98 ± 0.28 10.20 ± 0.38 5.50 ± 0.26
Scheme 2. (, 𝑚𝑎𝑥,+) 40.76 ± 0.29 28.24 ± 0.31 17.08 ± 0.36 9.39 ± 0.29 4.89 ± 0.12
Scheme 3. (, 𝑚𝑖𝑛,+) 41.14 ± 0.29 28.84 ± 0.22 𝟏𝟖.𝟐𝟐 ± 𝟎.𝟑𝟏 *𝟏𝟎.𝟔𝟔 ± 𝟎.𝟐𝟐 𝟓.𝟔𝟐 ± 𝟎.𝟏𝟕
Scheme 4. (,+, 𝑚𝑎𝑥) 40.76 ± 0.25 28.32 ± 0.42 17.13 ± 0.28 9.74 ± 0.19 5.05 ± 0.13
Scheme 5. (,+, 𝑚𝑖𝑛) 41.09 ± 0.29 𝟐𝟖.𝟗𝟕 ± 𝟎.𝟑𝟑 18.09 ± 0.21 10.52 ± 0.20 5.58 ± 0.22
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 40.86 ± 0.31 28.23 ± 0.33 17.31 ± 0.35 9.65 ± 0.22 5.06 ± 0.19
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 41.02 ± 0.43 28.79 ± 0.21 18.09 ± 0.43 10.58 ± 0.21 5.61 ± 0.20

db7

Original UNIWARD 40.51 ± 0.28 27.71 ± 0.42 16.91 ± 0.24 9.24 ± 0.22 4.90 ± 0.27
Scheme 1. (,+,+) 40.56 ± 0.26 27.94 ± 0.35 16.97 ± 0.31 9.43 ± 0.19 4.88 ± 0.24
Scheme 2. (, 𝑚𝑎𝑥,+) 40.47 ± 0.25 27.54 ± 0.35 16.40 ± 0.31 8.76 ± 0.17 4.43 ± 0.18
Scheme 3. (, 𝑚𝑖𝑛,+) 40.88 ± 0.42 28.20 ± 0.25 17.43 ± 0.25 9.79 ± 0.28 5.13 ± 0.17
Scheme 4. (,+, 𝑚𝑎𝑥) 40.46 ± 0.30 27.91 ± 0.28 16.70 ± 0.23 8.85 ± 0.15 4.53 ± 0.25
Scheme 5. (,+, 𝑚𝑖𝑛) 40.91 ± 0.45 28.44 ± 0.36 17.45 ± 0.21 9.71 ± 0.29 5.26 ± 0.19
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 40.64 ± 0.36 27.56 ± 0.31 16.47 ± 0.26 8.96 ± 0.27 4.48 ± 0.12
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 41.06 ± 0.45 28.04 ± 0.31 17.08 ± 0.42 9.77 ± 0.29 5.06 ± 0.26

db6

Original UNIWARD 40.86 ± 0.26 28.04 ± 0.25 17.09 ± 0.23 9.52 ± 0.20 4.90 ± 0.18
Scheme 1. (,+,+) 40.88 ± 0.24 28.44 ± 0.27 17.31 ± 0.33 9.68 ± 0.22 5.06 ± 0.20
Scheme 2. (, 𝑚𝑎𝑥,+) 40.61 ± 0.49 27.72 ± 0.38 16.73 ± 0.21 9.13 ± 0.22 4.66 ± 0.09
Scheme 3. (, 𝑚𝑖𝑛,+) 41.07 ± 0.27 28.54 ± 0.23 *17.97 ± 0.38 9.96 ± 0.30 5.34 ± 0.16
Scheme 4. (,+, 𝑚𝑎𝑥) 40.82 ± 0.38 27.94 ± 0.32 17.14 ± 0.41 9.25 ± 0.15 4.79 ± 0.23
Scheme 5. (,+, 𝑚𝑖𝑛) 41.00 ± 0.35 28.40 ± 0.21 17.58 ± 0.27 9.99 ± 0.24 5.31 ± 0.25
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 40.45 ± 0.36 27.87 ± 0.37 16.93 ± 0.31 9.11 ± 0.29 4.68 ± 0.14
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 𝟒𝟏.𝟏𝟗 ± 𝟎.𝟑𝟖 28.58 ± 0.29 17.60 ± 0.22 *10.01 ± 0.14 5.50 ± 0.28

db5

Original UNIWARD 40.51 ± 0.28 28.08 ± 0.39 17.02 ± 0.19 9.65 ± 0.29 5.03 ± 0.16
Scheme 1. (,+,+) 41.11 ± 0.39 28.62 ± 0.30 17.47 ± 0.37 9.74 ± 0.22 5.09 ± 0.18
Scheme 2. (, 𝑚𝑎𝑥,+) 40.64 ± 0.38 27.83 ± 0.25 16.74 ± 0.30 9.11 ± 0.29 4.69 ± 0.14
Scheme 3. (, 𝑚𝑖𝑛,+) 41.15 ± 0.34 28.64 ± 0.26 17.55 ± 0.32 10.18 ± 0.24 5.36 ± 0.18
Scheme 4. (,+, 𝑚𝑎𝑥) 40.96 ± 0.50 27.65 ± 0.28 16.85 ± 0.40 9.29 ± 0.19 4.70 ± 0.21
Scheme 5. (,+, 𝑚𝑖𝑛) 41.12 ± 0.30 28.76 ± 0.37 *17.88 ± 0.28 9.95 ± 0.33 5.38 ± 0.06
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 40.75 ± 0.38 27.93 ± 0.35 17.11 ± 0.29 9.06 ± 0.23 4.77 ± 0.23
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 41.10 ± 0.31 28.59 ± 0.29 17.60 ± 0.29 10.01 ± 0.23 5.47 ± 0.21
Table 8
Experimental results 𝑃𝐸 of J-UNIWARD detected by SCA-GFR, Qf = 75.

Wavelet Method Payload rate

0.1 0.2 0.3 0.4 0.5

db8

Original UNIWARD 35.93 ± 0.35 23.10 ± 0.21 14.03 ± 0.24 8.22 ± 0.33 4.50 ± 0.23
Scheme 1. (,+,+) 36.47 ± 0.32 23.41 ± 0.25 14.31 ± 0.21 8.33 ± 0.19 4.58 ± 0.28
Scheme 2. (, 𝑚𝑎𝑥,+) 36.70 ± 0.37 23.60 ± 0.30 14.15 ± 0.32 7.87 ± 0.15 4.29 ± 0.14
Scheme 3. (, 𝑚𝑖𝑛,+) 35.85 ± 0.35 23.28 ± 0.23 14.05 ± 0.14 𝟖.𝟒𝟏 ± 𝟎.𝟑𝟑 4.65 ± 0.13
Scheme 4. (,+, 𝑚𝑎𝑥) *36.83 ± 0.24 23.53 ± 0.48 14.12 ± 0.19 8.15 ± 0.25 4.35 ± 0.21
Scheme 5. (,+, 𝑚𝑖𝑛) 35.90 ± 0.41 23.26 ± 0.25 14.09 ± 0.16 8.16 ± 0.21 4.67 ± 0.16
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) *36.66 ± 0.26 *23.75 ± 0.33 14.17 ± 0.13 8.06 ± 0.19 4.58 ± 0.15
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 36.14 ± 0.34 23.35 ± 0.28 14.16 ± 0.31 8.34 ± 0.19 4.57 ± 0.19

db7

Original UNIWARD 35.76 ± 0.21 22.34 ± 0.43 13.44 ± 0.33 7.90 ± 0.26 4.09 ± 0.13
Scheme 1. (,+,+) 36.27 ± 0.31 23.21 ± 0.47 13.98 ± 0.32 8.13 ± 0.17 4.13 ± 0.13
Scheme 2. (, 𝑚𝑎𝑥,+) *36.64 ± 0.24 23.35 ± 0.41 13.47 ± 0.21 7.90 ± 0.16 4.14 ± 0.18
Scheme 3. (, 𝑚𝑖𝑛,+) 35.77 ± 0.22 22.82 ± 0.31 13.67 ± 0.32 8.27 ± 0.16 4.27 ± 0.14
Scheme 4. (,+, 𝑚𝑎𝑥) *36.49 ± 0.25 *23.51 ± 0.37 13.55 ± 0.18 8.00 ± 0.21 4.02 ± 0.23
Scheme 5. (,+, 𝑚𝑖𝑛) 36.06 ± 0.32 22.78 ± 0.33 13.53 ± 0.30 8.09 ± 0.20 4.32 ± 0.19
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) *36.71 ± 0.37 23.13 ± 0.33 13.70 ± 0.34 7.98 ± 0.21 4.01 ± 0.09
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 35.77 ± 0.23 22.85 ± 0.27 13.73 ± 0.20 8.21 ± 0.31 4.37 ± 0.19

db6

Original UNIWARD 35.91 ± 0.36 22.81 ± 0.23 13.82 ± 0.22 7.82 ± 0.15 4.20 ± 0.13
Scheme 1. (,+,+) 36.50 ± 0.34 *23.70 ± 0.34 14.26 ± 0.19 8.07 ± 0.15 4.28 ± 0.17
Scheme 2. (, 𝑚𝑎𝑥,+) *36.89 ± 0.21 23.54 ± 0.36 14.07 ± 0.38 7.84 ± 0.19 4.24 ± 0.13
Scheme 3. (, 𝑚𝑖𝑛,+) 35.67 ± 0.24 22.81 ± 0.31 13.95 ± 0.28 8.27 ± 0.25 4.35 ± 0.12
Scheme 4. (,+, 𝑚𝑎𝑥) *𝟑𝟕.𝟐𝟎 ± 𝟎.𝟑𝟕 23.27 ± 0.30 13.93 ± 0.22 7.83 ± 0.28 4.28 ± 0.24
Scheme 5. (,+, 𝑚𝑖𝑛) 36.29 ± 0.44 23.10 ± 0.32 13.97 ± 0.28 7.98 ± 0.21 4.45 ± 0.30
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) *36.91 ± 0.38 *23.80 ± 0.12 14.02 ± 0.33 7.93 ± 0.18 4.19 ± 0.14
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 36.19 ± 0.30 22.81 ± 0.17 13.76 ± 0.27 8.13 ± 0.14 4.55 ± 0.16

db5

Original UNIWARD 35.90 ± 0.26 23.17 ± 0.32 13.84 ± 0.31 7.89 ± 0.24 4.43 ± 0.15
Scheme 1. (,+,+) *36.92 ± 0.30 23.60 ± 0.27 𝟏𝟒.𝟒𝟖 ± 𝟎.𝟐𝟕 8.13 ± 0.17 4.51 ± 0.14
Scheme 2. (, 𝑚𝑎𝑥,+) *36.74 ± 0.44 23.60 ± 0.35 14.07 ± 0.18 7.90 ± 0.16 4.24 ± 0.12
Scheme 3. (, 𝑚𝑖𝑛,+) 36.30 ± 0.39 23.11 ± 0.32 14.12 ± 0.30 8.29 ± 0.16 4.50 ± 0.16
Scheme 4. (,+, 𝑚𝑎𝑥) *36.92 ± 0.26 23.72 ± 0.34 14.18 ± 0.28 8.00 ± 0.21 4.32 ± 0.18
Scheme 5. (,+, 𝑚𝑖𝑛) 36.43 ± 0.32 23.42 ± 0.53 14.08 ± 0.34 8.09 ± 0.20 4.53 ± 0.10
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) *36.83 ± 0.30 𝟐𝟑.𝟖𝟓 ± 𝟎.𝟑𝟒 14.09 ± 0.30 7.98 ± 0.21 4.29 ± 0.16
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 36.20 ± 0.43 23.48 ± 0.40 14.04 ± 0.37 8.21 ± 0.31 𝟒.𝟔𝟕 ± 𝟎.𝟐𝟎
11
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Table 9
Experimental results of SCA-GFR on JPEG using LASSO linear classifier.

Wavelet Method QF75 QF95

Payload rate Payload rate

0.1 0.2 0.3 0.1 0.2 0.3

db8

Original UNIWARD 35.75 ± 0.0036 22.49 ± 0.0029 13.58 ± 0.0050 46.62 ± 0.0032 39.86 ± 0.0019 33.00 ± 0.0024
Scheme 1. (,+,+) 36.39 ± 0.0017 22.76 ± 0.0014 13.51 ± 0.0032 46.58 ± 0.0027 40.17 ± 0.0020 33.06 ± 0.0017
Scheme 2. (, 𝑚𝑎𝑥,+) 36.71 ± 0.0026 23.17 ± 0.0033 13.47 ± 0.0050 46.31 ± 0.0022 39.86 ± 0.0031 32.84 ± 0.0033
Scheme 3. (, 𝑚𝑖𝑛,+) 35.46 ± 0.0026 22.57 ± 0.0019 13.62 ± 0.0019 46.55 ± 0.0015 39.93 ± 0.0022 33.57 ± 0.0033
Scheme 4. (,+, 𝑚𝑎𝑥) 36.50 ± 0.0019 22.98 ± 0.0029 13.46 ± 0.0026 46.42 ± 0.0022 39.95 ± 0.0020 32.90 ± 0.0015
Scheme 5. (,+, 𝑚𝑖𝑛) 35.56 ± 0.0017 22.71 ± 0.0020 13.72 ± 0.0013 46.58 ± 0.0019 39.87 ± 0.0016 33.29 ± 0.0017
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 36.70 ± 0.0032 22.68 ± 0.0039 13.58 ± 0.0016 46.40 ± 0.0026 40.19 ± 0.0038 32.72 ± 0.0031
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 35.67 ± 0.0012 22.53 ± 0.0029 13.63 ± 0.0021 46.65 ± 0.0021 40.02 ± 0.0021 33.46 ± 0.0017

db7

Original UNIWARD 35.50 ± 0.0030 22.06 ± 0.0031 12.84 ± 0.0021 46.31 ± 0.0023 39.62 ± 0.0025 32.59 ± 0.0026
Scheme 1. (,+,+) 36.48 ± 0.0024 22.52 ± 0.0014 13.16 ± 0.0025 46.45 ± 0.0024 40.07 ± 0.0025 32.83 ± 0.0022
Scheme 2. (, 𝑚𝑎𝑥,+) 37.02 ± 0.0037 22.70 ± 0.0028 13.07 ± 0.0019 46.62 ± 0.0027 39.85 ± 0.0021 32.32 ± 0.0024
Scheme 3. (, 𝑚𝑖𝑛,+) 35.52 ± 0.0020 22.27 ± 0.0023 13.01 ± 0.0029 46.71 ± 0.0019 40.04 ± 0.0032 33.11 ± 0.0023
Scheme 4. (,+, 𝑚𝑎𝑥) 36.65 ± 0.0039 22.76 ± 0.0032 13.08 ± 0.0027 46.44 ± 0.0020 39.80 ± 0.0016 32.43 ± 0.0017
Scheme 5. (,+, 𝑚𝑖𝑛) 35.74 ± 0.0026 22.20 ± 0.0024 13.15 ± 0.0023 46.61 ± 0.0017 40.07 ± 0.0017 33.05 ± 0.0026
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 36.87 ± 0.0038 22.69 ± 0.0016 13.01 ± 0.0025 46.37 ± 0.0024 39.90 ± 0.0014 32.58 ± 0.0020
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 36.00 ± 0.0021 22.38 ± 0.0027 13.25 ± 0.0023 46.40 ± 0.0023 39.92 ± 0.0019 33.19 ± 0.0026
Table 10
Experimental results of GFR on JPEG using LASSO linear classifier.

Wavelet Method QF75 QF95

Payload rate Payload rate

0.1 0.2 0.3 0.1 0.2 0.3

db8

Original UNIWARD 41.38 ± 0.0017 28.57 ± 0.0036 17.52 ± 0.0039 47.19 ± 0.0011 41.95 ± 0.0022 35.70 ± 0.0055
Scheme 1. (,+,+) 41.22 ± 0.0015 29.00 ± 0.0022 17.76 ± 0.0020 47.19 ± 0.0019 42.10 ± 0.0018 35.65 ± 0.0032
Scheme 2. (, 𝑚𝑎𝑥,+) 41.14 ± 0.0033 28.59 ± 0.0034 17.00 ± 0.0020 47.10 ± 0.0020 41.77 ± 0.0019 35.03 ± 0.0041
Scheme 3. (, 𝑚𝑖𝑛,+) 41.60 ± 0.0043 29.33 ± 0.0030 18.49 ± 0.0042 47.27 ± 0.0017 42.28 ± 0.0024 36.27 ± 0.0018
Scheme 4. (,+, 𝑚𝑎𝑥) 41.27 ± 0.0023 28.49 ± 0.0025 17.25 ± 0.0022 47.12 ± 0.0018 41.75 ± 0.0022 34.92 ± 0.0023
Scheme 5. (,+, 𝑚𝑖𝑛) 41.39 ± 0.0026 29.25 ± 0.0042 18.31 ± 0.0028 47.28 ± 0.0019 42.32 ± 0.0016 36.16 ± 0.0037
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 41.21 ± 0.0022 28.28 ± 0.0032 17.39 ± 0.0025 47.17 ± 0.0013 41.69 ± 0.0027 34.86 ± 0.0026
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 41.40 ± 0.0027 29.12 ± 0.0033 18.33 ± 0.0041 47.19 ± 0.0021 42.17 ± 0.0019 36.12 ± 0.0017

db7

Original UNIWARD 41.03 ± 0.0024 27.94 ± 0.0041 16.57 ± 0.0024 46.99 ± 0.0017 41.59 ± 0.0015 34.86 ± 0.0024
Scheme 1. (,+,+) 41.33 ± 0.0029 28.59 ± 0.0035 17.07 ± 0.0041 47.07 ± 0.0021 41.65 ± 0.0023 34.91 ± 0.0030
Scheme 2. (, 𝑚𝑎𝑥,+) 40.88 ± 0.0022 27.99 ± 0.0052 16.06 ± 0.0018 47.17 ± 0.0018 41.25 ± 0.0016 34.01 ± 0.0023
Scheme 3. (, 𝑚𝑖𝑛,+) 41.47 ± 0.0028 28.84 ± 0.0038 17.38 ± 0.0014 47.19 ± 0.0016 42.13 ± 0.0028 35.52 ± 0.0024
Scheme 4. (,+, 𝑚𝑎𝑥) 41.18 ± 0.0024 27.86 ± 0.0039 16.34 ± 0.0026 47.13 ± 0.0022 41.60 ± 0.0045 34.26 ± 0.0031
Scheme 5. (,+, 𝑚𝑖𝑛) 41.25 ± 0.0014 28.54 ± 0.0020 17.27 ± 0.0029 47.20 ± 0.0023 41.97 ± 0.0019 35.60 ± 0.0039
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 41.05 ± 0.0026 28.21 ± 0.0047 16.31 ± 0.0022 46.98 ± 0.0018 41.38 ± 0.0020 34.22 ± 0.0026
Scheme 7. (∗ ,+, 𝑚𝑖𝑛) 41.30 ± 0.0025 28.67 ± 0.0040 17.28 ± 0.0022 47.09 ± 0.0019 42.17 ± 0.0019 35.50 ± 0.0029
Table 11
Experimental results on ALASKA2 for JPEG by SRNet.

Wavelet Method qf75 qf95

Payload rate Payload rate

0.1 0.2 0.3 0.1 0.2 0.3

db8

Original UNIWARD 33.72 19.42 13.67 44.76 37.98 27.82
Scheme 1. (,+,+) 34.20 19.81 13.73 45.20 38.27 28.18
Scheme 3. (, 𝑚𝑖𝑛,+) 34.07 19.93 14.17 45.10 38.30 27.87
Scheme 5. (,+, 𝑚𝑖𝑛) 33.67 19.83 13.76 44.89 38.49 28.33
J-MIPOD 33.37 19.24 13.42 44.69 37.86 27.91
Original UNIWARD + J-MIPOD 33.98 19.82 13.78 44.98 38.35 28.02
Scheme 1 + J-MIPOD 34.42 19.91 13.82 45.45 38.48 28.14

db7

Original UNIWARD 33.64 19.48 13.72 44.63 37.84 27.87
Scheme 1. (,+,+) 33.91 19.82 13.90 44.87 37.97 28.21
Scheme 3. (, 𝑚𝑖𝑛,+) 33.79 19.78 13.86 44.90 38.03 27.99
Scheme 5. (,+, 𝑚𝑖𝑛) 33.88 19.62 13.95 44.89 38.08 28.01
J-MIPOD 33.47 19.24 13.42 44.69 37.86 27.91
Original UNIWARD + J-MIPOD 33.85 19.71 13.93 44.80 38.02 27.99
Scheme 1 + J-MIPOD 34.01 19.95 13.88 44.96 38.11 28.24
by GUED are different to UNIWARD because they have 32 directions in
𝑖×𝜋∕32, 𝑖 = 0, 1,… , 31. Probably the merging strategy ‘‘min’’ and ‘‘max’’
an be applied to symmetric direction such as merging 𝑖 × 𝜋∕32 with
∕2− 𝑖×𝜋∕32, 𝑖 = 0, 1,… , 31, or with 𝜋∕2+ 𝑖×𝜋∕32, 𝑖 = 0, 1,… , 31. How-
ver, how to further merging submodels from asymmetric directions
12

nd different scales, needs more investigations.
6. Conclusion

In this paper we revised UNIWARD distortion function and proposed
several merging schemes for submodels. Experimental results demon-
strate that our schemes can improve UNIWARD distortion, especially in
detection by select-channel feature and deep-model. For some merging

schemes’ promotion is limited partly because they are akin to original
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Table 12
Experimental results on ALASKA2 for spatial image by SRNET.

Wavelet Method Payload rate

0.1 0.2 0.3

db8

Original S-UNI 32.35 22.16 15.63
Scheme 1. (,+,+) 32.56 22.54 15.76
Scheme 5. (,+, 𝑚𝑖𝑛) 32.29 22.10 15.68
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 33.01 22.89 16.23

db7

Original S-UNI 32.50 22.32 15.01
Scheme 1. (,+,+) 32.61 22.45 15.34
Scheme 5. (,+, 𝑚𝑖𝑛) 32.48 22.59 15.08
Scheme 6. (∗ ,+, 𝑚𝑎𝑥) 33.05 22.83 15.68
Table 13
Experimental results on ALASKA2 for JPEG by EfficientNet-B0.
Wavelet Method qf75 qf95

Payload rate Payload rate

0.1 0.2 0.3 0.1 0.2 0.3

db8

Original UNIWARD 37.16 24.57 17.36 48.89 41.54 31.98
Original UNIWARD* 36.24 23.14 15.38 48.52 40.86 31.31
Scheme 1. (,+,+) 36.85 24.87 17.91 48.78 42.11 32.56
Scheme 3. (, 𝑚𝑖𝑛,+) 37.67 25.09 18.12 48.97 42.32 32.55
Scheme 5. (,+, 𝑚𝑖𝑛) 37.25 24.75 17.83 48.92 41.74 32.65

db7

Original UNIWARD 36.87 24.65 17.27 48.86 40.97 31.39
Original UNIWARD* 36.11 23.23 15.29 48.31 40.36 30.67
Scheme 1. (,+,+) 37.05 24.68 17.70 48.94 41.12 31.66
Scheme 3. (, 𝑚𝑖𝑛,+) 37.21 24.79 17.93 49.10 41.21 31.92
Scheme 5. (,+, 𝑚𝑖𝑛) 37.14 24.83 17.81 48.94 41.09 31.74
Table 14
Suggestions of merging schemes.

Image format Payload rate Scheme

spatial All (db8,Scheme6)
spatial* All Scheme4, Scheme8
JPEG QF95 ≥0.2 (db8,Scheme1)
JPEG QF95 <0.2 (db8,Scheme3)
JPEG QF75 All Scheme3

UNIWARD in feature for certain conditions. However it can be easily
implemented by modifying original UNIWARD without much efforts.
And it do not introduce any extra parameters thus evades any worry
about tuning parameters for different kinds of cover images. As we
know, in many steganographic techniques UNIWARD is used as a
indispensable part. Consequently these methods are also expected to
work well on revised UNIWARD. So far, less work focus on merging
methods particularly for homogeneous sub-models, we believe this
is important because using residuals with orientation in distortion
function is common and keep it unbiased for directions is reasonable for
avoiding possible defects. From experiments, we can see the merging
strategy is important for performance enhancement, and they show
their different behaviors for different image data and different steganal-
ysis detection methods, which is important for countering the oracle
attacking. This inspires us consider more effective merging methods.
There are several issues worth further studying: (1) In this paper, our
hierarchical merging method is build on partition of expanded wavelet
set  ′, but try to allow some overlapping among subsets is also a
feasible approach for more complex distortion schemes such as Gabor
filter bank based distortions. (2) Integrating merging methods into deep
model based distortion generation method to gain better performance.
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