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Abstract—In recent years, deep learning-based steganalyzers
far outperformed handcrafted feature-based steganalyzers. How-
ever, a large amount of data is needed to train deep learning
networks. For steganalysis tasks, the steganographic traces are
subtle and the steganographic signals are difficult to be captured
when the number of cover/stego pairs in the training set is
insufficient. Data augmentation has been proved to be effective in
improving accuracy and generalization for deep learning models.
Yet not all data augmentation methods are universal for all
tasks. When performing data augmentation, we argue that data
distribution under the target tasks should be maintained. Since
the steganalysis task is more concerned with the high-frequency
signals of the images, if the high-frequency signals are unchanged,
the data distribution from the perspective of steganalysis will
remain largely unchanged. Based on this principle, we designed
a neural network called cover augmentation network, which
enriches the dataset by intelligently adding noise to the original
cover to generate the augmented cover. Further, we designed a
whole process of data augmentation based on the cover augmen-
tation network. Experimental results show that the proposed data
augmentation method can effectively improve the performance
of steganalysis networks, and the advantage is significant at low
payloads.

Index Terms—image, steganography, steganalysis, data aug-
mentation.

I. INTRODUCTION

Steganography is a technique used to create covert commu-
nication channels that hide secret information in multimedia,
such as text, image, 3D meshes, etc. In the past decades,
digital image steganography [1]]-[3]] has been well developed.
Nowadays, the most popular and effective steganographic
methods are based on the minimization distortion model. In
the framework of the minimization distortion model, steganog-
raphy is divided into two tasks: 1) defining modification
costs of modifying the elements of the cover using heuristic-
based approaches or neural network-based approaches; 2)
designing practical embedding methods that minimize the
total modification cost defined before. Since syndrome-trellis
codes (STCs) [4] have a performance close to the theoretical
bound in the second task, now the researches of steganography
mainly focus on the design cost functions, such as WOW [J5]],
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UNIWARD [6], HILL [7], MiPOD [8], UERD [9], ASDL-
GAN [10], UT-GAN [11], SPAR-RL [12], MCTSteg [13], etc.

Steganalysis is a defense and analysis technique for
steganography. Image steganalysis plays an important role in
many information security systems. The current researches
on image steganalysis mainly focus on secret message detec-
tion, so steganalysis is usually simplified to a binary clas-
sification problem. Nowadays, various handcrafted feature-
based methods have been proposed for steganalysis tasks.
Like other image classification tasks, traditional handcrafted
feature-based steganalysis [14]]-[19] consists of two tasks:
1) a high-dimensional feature extractor that can capture the
subtle modifications made by steganography; 2) a binary
classifier trained on the high-dimensional features. The most
successful feature extractors in the spatial domain are the
Spatial Rich Model (SRM) [20] and its variants [21]], [22]].
For the classification task, ensemble classifiers [23]—[25] are
widely used.

In recent years, inspired by the success of convolutional
neural networks (CNNSs) in various fields [26]—[28]], CNN-
based steganalyzers are also proposed, such as XuNet [29],
YeNet [30]], Yedroudj-Net [31]], SRNet [32], CovPool-Net [33]],
CALPA-Net [34], etc. Currently, many steganalysis networks
outperform the handcrafted feature-based steganalyzers a lot.
However, since steganographic modifications are subtle, a
large amount of data is needed to capture the steganographic
signals when training the steganalysis network. Especially at
low steganographic payloads, it is difficult for the steganalysis
networks to capture the steganographic signals so that the
steganalysis networks fail to converge when the cover/stego
pairs in the training set are scarce. In steganalysis, the so-
called irreducible error region [35] probably requires many
more images than those normally used today [36], [37]. In the
case of [38]], it even takes one million images for the training
phase. Therefore, when the quantity of images in the original
dataset is insufficient, it is necessary to expand the dataset.

Adding additional images is an intuitive way to expand a
dataset. However, Yedroudj et al. [39] show that expanding
the dataset can have a negative effect when expanding images
from: 1) other cameras, 2) strongly dissimilar sources and
unbalance proportions, 3) the same RAW images but with a
different development or 4) re-development of the learning set.
Thus, cautions have to be taken when increasing the database
size if one desire to improve the classification accuracy of
steganalysis.

We argue that the key to dataset expansion is to maintain the
data distribution from the perspective of the target task. The
steganalysis task is more concerned with the high-frequency
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signals of the image, so if the high-frequency signals of the
expanded image are consistent with that of the original image,
the invariance of the image distribution under the steganalysis
task is ensured to a large extent. Based on this principle, we
proposed a data augmentation method that intelligently adds
noise to the original cover while maintaining data distribution
under steganalysis tasks as much as possible. Experimental
results show that our data augmentation method works well on
several networks and outperforms the previous method [36]. At
low payloads, our method even drives the network to converge
more easily. Our contributions are as follows:

o We argue that two basic requirements should be met
when conducting data augmentation: 1) ensuring that the
distribution of the expanded dataset is consistent with that
of the original dataset from the perspective of the target
task, and 2) assuring that the expanded dataset differs
from the original dataset in content to enrich the dataset.

« We propose that the key to maintaining the data distri-
bution under the steganalysis task is to keep the high-
frequency signals constant. Based on this principle, we
design a cover augmentation network, which can in-
telligently add noise to the original cover to generate
augmented cover.

o Experimental results show that the proposed data aug-
mentation method can improve the performance of mul-
tiple CNN-based steganalyzers and outperform easy-low-
complexity augmentations [40]-[43]] and pixels-off [36].

The rest of this paper is organized as follows. In Section [II]

notations, the steganalysis networks used in this paper, and the
previous data augmentation methods are introduced. In Section
the proposed data augmentation framework for steganalysis
is demonstrated. Section [[V] gives the experimental setup and
experimental results. Finally, in Section [V] we summarize our
work and provide an outlook for future work.

II. PRELIMINARIES
A. Notations

Throughout the paper, matrices and vectors are written
in capital orthographic typeface and elements are written in
lowercase letters. The original cover (of size of n; X ng) is
denoted by X = (x;;)"*"2. Xpug = (xfj“g)mx”? denotes
the augmented cover. Y = (y;;)™**"* denotes the stego
corresponding to the original cover. Ya,, = (ygug)”lxnz
denotes the stego corresponding to the augmented cover. P =
(pij)™*"2 denotes the probability map and N = (n;;)" *"2
denotes the noise map. z;;, x?jug, Yijs ygug and n;; are inte-

Aug Aug
gerSs, Tij, Ty; g, Yigs Yij & c {O, ceey 255} and ni; € {—1, 0, 1}.
pi; is a real number and p;; € [0,0.5].

B. CNN networks for spatial steganalysis

Steganalysis can be seen as a binary classification problem,
and nowadays CNN-based steganalysis has been well devel-
oped. Herein, we review three typical steganalysis networks:
Yedroudj-NET (YedNet) [31], SRNet [32] and CovPool-Net
(CovNet) [33]], on which we evaluated the effectiveness of
our method.

1) YedNet: YedNet [31]] is a shallow neural network that
can converge relatively quickly, and it has good performance
in the spatial domain steganalysis task. The network consists
of three modules: a pre-processing module, a convolutional
module, and a fully connected module. The pre-processing
module includes one convolutional layer whose weights are
initialized with high-pass filter kernels derived from the SRM
linear filters [20f], and this module serves to amplify the
steganographic signals. The convolutional module is composed
of five convolutional blocks to extract features. As for the
classification module, it consists of three fully connected
layers and a softmax activation function to realize binary
classification.

2) SRNet: SRNet is a widely used steganalysis network
that minimizes the use of heuristics and external forcing
elements [32]]. There are three modules in the network: a
pre-processing module, a feature extraction module, and a
classification module. The pre-processing module in SRNet
includes two convolutional blocks, where the parameters are
not predetermined and learned during the training process.
The feature extraction module consists of ten convolutional
blocks and the classification module is composed of a fully
connected layer, which plays the role of binary classification.
The advantage of SRNet is that it does not need to artificially
set heuristic parameters for the pre-processing module, and it
has good performance in the spatial and JPEG domains, but its
large number of parameters makes training time-consuming.
At low payloads, the network has difficulty capturing the
steganographic signals at first and therefore converges slowly.
To speed up the training of SRNet at low payloads, we first
trained a pre-trained model on the original training set at high
payloads, and SRNet was trained based on this pre-trained
model for lower payloads.

3) CovNet: Global Covariance Pooling Network, referred
to as Covpool-Net (CovNet) [33]], is a deep network that
performs well in the spatial domain. And it takes much
less time to train than SRNet. Similar to the above two
networks, CovNet can be divided into three modules, a
pre-processing module, a feature extraction module, and a
classification module. Its pre-processing module is the same
as YedNet. The feature extraction module consists of four
groups of convolutional blocks. The first three convolutional
blocks are all followed by average pooling layers, and the
fourth convolutional block is followed by a global covariance
pooling layer. The classification module is composed of a
fully connected layer that serves as a binary classification.
This network first introduces global covariance pooling into
steganalysis to exploit the second-order statistic of high-level
features for further improving the performance.

C. Dataset enrichment for steganalysis

Adding additional datasets [30] is a common method to
be used to enrich the initial training set, e.g., merging the
BOSSBase [44] and the BOWS2 [45] in the steganalysis
task. As stated in section |l caution should be taken when
merging two datasets. Yedroudj et al. in [39] propose that
the steganalyst needs to have an access to knowledge about:
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1) raw cameras used for generating the target database or 2)
original RAW images and their development when augmenting
the learning database. But the two possible ways to enrich the
database are very restrictive.

Data augmentation has been proved to be an effective
method to improve accuracy for deep learning tasks, and it
has been applied in various fields, such as natural language
processing [46], computer vision [47] and speech recogni-
tion [48]. With the development of CNN-based steganalysis,
data augmentation techniques have also been applied to the
steganalysis field. Some data augmentation methods that are
effective for computer vision tasks are still effective for
steganalysis, such as image mirror flipping and image rotation.
However, not all methods can be directly migrated due to the
different focus of steganalysis and computer vision tasks. For
example, image scaling does not affect the semantic features
of images, so it is valid for computer vision tasks. But image
scaling does not work in the steganalysis task because it can
lead to a loss or increase in image detail, and the detailed
information is the concern of the steganalysis task.

In [39], the author generated a new cover from the original
cover for dataset expansion. The author proposed two methods.
The first method applies a sub-pixel image translation of 0.5
pixel followed by a cropping operation to obtain a new 256
x 256-pixel image. And the second is to upsample with a
Lanczos3 filter to obtain a 512 x 512-pixel image and then
downsample it with the same interpolation kernel to obtain a
256 x 256-pixel image. Both of the above processes change
the details of cover images, which is what the steganalysis
task is concerned with. Naturally, these processes will instead
reduce the accuracy of the steganalysis network.

Yedroudj et al. [36] proposed a data augmentation method
called pixels-off, which randomly selects a small number of
pixels in the original cover and sets their values to O to obtain
the augmented cover. The method adds a small amount of
noise to the original image, and it can improve the performance
of CNN-based steganalysis. However, since the positions of
noise are randomly selected and the noise is added in such
a way that all of the selected pixels are set to 0, so this
will inevitably change the original cover distribution from
the perspective of steganalysis. Further, Yedroudj et al. [36]
also proposed an improved version of pixels-off (denoted as
adaptive-pixels-off): some pixels are randomly turned off at
the 10% of pixels with the highest embedding probability.
Adaptive-pixels-off can further improve the performance of
the steganalysis network. However, it is empirically designed
and relies on a specific steganography algorithm to perform
data augmentation manually, and we think it still has room for
improvement.

III. THE PROPOSED METHOD
A. Motivation

Currently, steganalysis models based on deep learning have
advanced performance. When training deep learning models,
we need a large amount of data to improve the accuracy and
generalization ability of the model. Specific to steganalysis
tasks, since the steganographic signals are very subtle at low

payloads, the network needs a large amount of data to capture
the steganographic signals. Therefore, it is necessary to enrich
the dataset if the cover/stego pairs in the original dataset are
insufficient.

Adding additional datasets is an intuitive way to enrich the
dataset. As presented in Section [lI} the problem is that it is
difficult to ensure that the data distribution of the added dataset
is similar to that of the original dataset. This will have a
negative effect if datasets with very different data distributions
are added.

Data augmentation is a common way to enrich a dataset.
In CNN-based steganalysis, pixels-off [31] has good perfor-
mance. It achieves data augmentation by adding noise, which
is added in a manual heuristic way. We believe it still has
room for enhancement and propose ways to improve it.

Based on the requirements of data augmentation (which
will be introduced in Section and the characteristics
of steganalysis, we designed a data augmentation framework
specifically for steganalysis, in which the augmented dataset
is generated with a similar distribution to the original dataset
from the perspective of steganalysis. The proposed method
does not require access: 1) to images other than those of the
initial learning database and 2) to the original cameras (or the
original raw images) or any knowledge about the development.
Moreover, the proposed method can expand the size of the
original dataset by several times, which greatly enriches the
content of the dataset. In this way, the networks have a greater
possibility to capture the steganographic signals so that the
networks converge more easily and perform better.

B. Framework

Before introducing our framework, we propose two basic
requirements for data augmentation:

o The distribution of the augmented data is similar to that
of the original data. Since the steganalysis task is more
concerned with the high-frequency signals of images,
keeping the high-frequency components invariant to a
large extent keeps the image distribution invariant from
the perspective of steganalysis.

o Enriching the content of the dataset. Ensure that the
augmented image differs in content from the original
image to enrich the dataset.

Based on the above two requirements, we designed a cover
augmentation network as shown in Figure The network
can intelligently add noise to the original cover to generate
the augmented cover.

Flow of the cover augmentation network.

(1) The original cover X goes through the UNet to generate
the probability map of adding noise (P in Figure [I). The
structure of the UNet is shown in Figure 2] The UNet consists
of eight convolutional layers and eight deconvolutional layers.
The feature maps of the same size are shortcut connected, and
the output is obtained by ReLU(sigmoid(-) — 0.5) operation,
so the modification probability is clamped in the interval
[0,0.5].
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Fig. 1: The structure of the proposed cover augmentation network.
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Fig. 2: The structure of UNet used in the cover augmentation network.

(2) Sample the probability map P (using Gumbel-softmax
trick, which will be introduced later in the paper) to obtain the
actual noise map N as shown in Figure [T} The elements in N
have three kinds of values: +1, —1, and 0, indicating additive
noise, subtractive noise, and no modification, respectively.

(3) Multiply the noise map N by the amplitude « and then
add it to the original cover to get the augmented cover X ug.

Gumbel-softmax trick [49]-[51]. The output of the UNet
network is the probability map of adding noise, and sampling
is needed to get the actual noise map. If we sample directly,
we only get the sampled values, not the sampled expressions,
so that the gradient of this process cannot be back-propagated.
To get the expression of the sampling process, we use Gumbel-
softmax trick.

To sample without destroying the gradient propagation of
the computational graph, we introduce the Gumbel distribu-
tion, by which we can obtain the required randomness in the
sampling process. The specific expression of the noise n;; with
its probability p;; is as follows:

ey

where p;;-l and pi_j1 denote the probabilities of additive and
subtractive noise respectively and p?j denotes the probability
of not adding noise. We set pgg-l = pi_j1 = p;j/2 so p?j =
1 —pij. gi; is the gumbel noise and the specific expression of
gi; 1s as follows:

n;j = arg maxg(log(pf;) + ¢f;),a = —1,0,+1,

—log(— log(u?j)), ug ~ Uniform(0,1). 2)

However, the argmax function is non-differentiable, thus
we leverage the distilled softmax to approximate it. In this
way, Equation (T) is transformed into the following equation:

D

k=—1,0,+1

a
9i5 =

xp( log(p?i)ﬂfj )

k x )

nl-j =
log(p%.)+g%
Xp( z‘]r ij )

2

a=-—1,0,+1

where 7 is the temperature parameter. The smaller the T,
the closer the softmaz is to argmazx. But if 7 is too
small, this will lead to gradient explosion when conducting
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backpropagation. (The value of 7 will be discussed later in
the experimental part.)

Using the Gumbel-softmax trick, we obtained the explicit
expression for the noise n;; with its probability p;;.
In this way, we transferred the randomness required in the
sampling process to gj; so that the derivative of p;; can be
obtained when conducting backpropagation.

Loss function. According to the basic requirements of data
augmentation, we design two loss functions. Based on the first
requirement that the augmented data distribution should be
similar to the original data distribution from the perspective
of steganalysis, we define high-frequency loss named loss1 as
follows:

lossl = \F*X—F*XAug\ll, %)

where F is a set of 30 high-pass filters from SRM [52], X
is the original cover, X4, is the augmented cover, and “x”
is the convolution operation. [oss1 ensures the consistency of
the high-frequency signals of the original cover and augmented
cover, and thus largely ensures the consistency of the distri-
bution under the steganalysis task. The “DHFS” (abbreviation
of “Difference of High-Frequency Signals”) module in Figure
plays the role of calculating the loss function [oss1.

If we only use lossl to constrain the network, the learned
noise probability map will tend to 0. To meet the second
requirement, i.e., enriching the content of the dataset, we
design the content variance loss function named loss2 as
follows:

loss2 = Z |nijl—nol| &)

ni; EN I

where N is the generated noise map and ng is the hyperpa-
rameter. The value of ng indicates the expected amount of
noise points to be added. If ng is too large, too much noise
will affect the distribution of the original image; if ng is too
small, the difference between the augmented image and the
original image is too subtle to achieve the effect of enriching
the dataset. We determine the optimal ng on the validation set.

The total loss function of the cover augmentation network
is as follows:

loss = lossl + A - loss2, (6)

where ) is the hyperparameter. We experimentally select the
optimal A in the next section.

The full process of the proposed data augmentation.
Based on the cover augmentation network, we further designed
the full process algorithm of data augmentation (as shown in
Algorithm 1).

As shown in Algorithm 1, 2nd line, only the cover is
retained out of the training set since it is the one fed into
the cover augmentation network. The “Augmentation-Net” in
the fourth step is the cover augmentation network mentioned
above. After being well trained, the network can generate
augmented cover. Steps 6 to 11 while loops traverse the
entire cover list. For each cover X, feed the cover X
into Augmentation-Net to get the augmented cover X yg.

Algorithm 1 Data augmentation for steganalysis.

Input: train-set-list, 7, ng, «; > 7, ng and « are
hyperparameters of the Augmentation-Net.

Output: Augmentation-set-list

1: Augmentation-set-list = [ ];

cover-list = get-covers(train-set-list);

num = length(cover-list), iter = num,;

Model = Augmentation-Net(a, ng, 7); >

Augmentation-Net is the cover augmentation network.

Training the Model;

while iter>0 do

X = cover-list(iter);

Xaug = Model(X);

Y aug = embedding(Xa e ); > The embedding
algorithm is the same as that used in the original dataset.
10: Augmentation-set-list.append([X aug, Y Augl);

11: iter — —

Bl

R A

12: return Augmentation-set-list

Subsequently using the same embedding algorithm to generate
stego Y aug (Step 9). These generated pairs (cover/stego) are
subsequently appended to the Augmentation-set-list (Step 10)
and then be added to the training set.

Data augmentation renderings. Our data augmentation
renderings are illustrated in Figure The pattern of aug-
mented noise has the following characteristics:

o The added noise is mainly distributed in the regions of
complex texture (as shown in Figure [3(c)).

o The positions of the probability extremes of the added
noise are regular and neatly arranged (as shown in Figure

B®)-

IV. EXPERIMENTS
A. Setups

1) Dataset: The experiment is carried out on the BOSS-
Base [44], which is composed of 10,000 pieces of spatial
grayscale images of 512 x 512 pixels. In order to save
computing time, we use MATLAB’s “nearest” method to
reduce the size of images to 256 x 256. When training the
steganalysis network, 10,000 images are divided into three
non-overlapping parts: 4,000 for the training set, 1,000 for
the validation set, and 5,000 for the testing set. We determine
the optimal hyperparameters on the validation set, and then
evaluate the effect of the proposed data augmentation method
on the testing set. All the experiments were run on an NVIDIA
GEFORCE RTX 2080 Ti GPU card.

2) The method of steganography: The steganography
method is based on a minimization distortion model. The dis-
tortion function is referenced to the S-UNIWARD method [53]
and the HILL method [7]. The embedding is done using
the simulated embedding method. The steganographic trace
is subtle and the distribution of cover and stego is sim-
ilar at low payloads, so steganalysis at low payloads is
challenging. We explore the effect of our data augmenta-
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(b) P

(c) N (d) XAug

Fig. 3: Our cover augmentation renderings are illustrated on
a 256x256 pixels image 1.pgm from BOSSBase [44]. (a)
represents the original cover and (b) shows the probability map
of added noise (the darker the color, the higher the probability).
Gumbel sampling is performed on (b) to obtain (c). (c) shows
the added noise (white, gray, and black represent -1, 0, and 1
respectively). (d) shows the final generated augmented cover.
For demonstration purposes, we set the noise amplitude o =
255 (and clamped the pixel values to [0,255]) to highlight the
added noise.

tion method at low payloads, and the payloads are set as
{0.02,0.04,0.06,0.08,0.1,0.2} (bits per pixel, bpp).

3) Baseline: We call the method that performs only virtual
augmentation (including mirror flip and image rotation) on the
original dataset Base.

Pixels-off selects n pixels in cover at random and
sets their pixel values to O to achieve the data augmentation.
According to pixels-off and Figure [3(b) from our ex-
periment, it is better to select the noise at the location with
higher steganographic modification probability, therefore, we
select n points with the maximum modification probability
and set their pixel values to 0. According to pixels-off [36],
the best results are obtained at n = 400, so in subsequent
experiments we set n = 400. This control experiment is noted
as pixels-off_Single. Moreover, pixels-off combines different
augmentation datasets generated by different n together and
this will also play a good effect. Combine the augmentation
datasets obtained by taking n = 100, 256, and 400 together to
get a triple expanded dataset, recorded as pixels-off_Triple.

4) Experimental setup for training the proposed cover aug-
mentation network: The network structure and loss function
are described in Section In the following, we will introduce
the experimental setup during training the cover augmentation
network.

The dataset for training the cover augmentation network
consists of the original cover. We apply the Adam optimizer
to train the cover augmentation network. Due to GPU memory
limitation, the mini-batch size in the training is set to 16. All
layers are initialized using the Xavier method [54]. Based on
the above settings, the networks are then trained to minimize
the loss function mentioned in section During the training,
we adjust the learning rate as follows: The initial learning rate
is set to 0.0001. When the training iteration equals one of the
specified step values, the learning rate will be divided by 10.
Concretely, we set the total epoch to 300 and the learning
rate will be decreased at epochs 100 and 200, respectively.
After the cover augmentation network is well trained, our data
augmentation method can be achieved using Algorithm 1.

5) Evaluation metrics: The accuracy acc; and Area Under
the ROC Curve (AUC) [55]] of the steganalysis network on the
testing set are used as the evaluation metrics. The expression
of acc, is as follows:

Ncorrect
— (N
Ntest

where Niorrect 1S the number of samples correctly predicted
by the steganalysis network and Ny is the total number of
samples in the testing set.

AUC is defined as the area under the ROC curve
(receiver operating characteristic curve). It is also a widely
used metric to measure the performance of binary classifiers,
with higher values indicating better performance.

accy =

B. Hyperparameters

1) 7 in the Gumbel-softmax trick: As in Equation (E[), the
smaller the 7, the better the softmaxz function matches the
argmaz function and the more accurate the forward pass, but
the gradient may explode in the backward, which will affect
training.

In the process of training the cover augmentation network,
we first take a large 7 in order to facilitate the convergence of
the network, and gradually reduce 7 when the training iteration
equals one of the specified step values. Concretely, the initial
T is set to 1, and 7 will be divided by 10 at epochs 100 and
200 respectively. In this way, the impact of gradient explosion
is avoided and forward pass is more precise.

TABLE I: Relationship between accuracy on the validation set
(acc,) and noise amplitude «.

« 1 2 4 8 16
acc 0.7665 0.7760  0.7780  0.7740  0.7845
« 32 64 128 256
acc  0.7785 0.7795  0.7740  0.7700

TABLE II: Relationship between accuracy on the validation
set (acc,) and expected number of noise points ng.

no 100 256 400
0.7776  0.7770  0.7845

1024
0.7815

accy
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2) Noise amplitude o and number of noise points ny: We
determine the optimal parameters « and ng on the validation
set. Specifically, the hyperparameters corresponding to the
highest accuracy of the network on the validation set are
selected. According to the requirements of data augmentation:
(1) The distribution of augmented data should be similar to the
distribution of original data. To keep the distribution similar,
the smaller the noise amplitude o and the number of points of
noise ng, the better. (2) Enriching the content of the dataset.
In order to make the content of the augmented cover differ
from the content of the original cover, the larger the noise
amplitude o and the number of points of noise ng, the better.
So we should take a compromise under requirements (1)(2).

To explore the optimal noise amplitude a, we set « € {1, 2,
4,8, 16, 32, 64, 128, 256}, payload = 0.2 bpp, ng = 400. The
results of CovNet on the validation set are shown in Table
To explore the optimal ng, we set ng € {100, 256, 400, 1024},
payload = 0.2 bpp, o = 16. The results of CovNet on the
validation set are shown in Table [[I

From Table [} the accuracy on the validation set is the top
three high when « is set to 16, 64, and 32. Therefore, the
noise amplitude « is set to 16 to generate a single expanded
augmentation dataset, and the noise amplitude « is set to 16,
64, and 32 to generate a triple expanded augmentation dataset.
In addition, as shown in Table|ll} the accuracy of the validation
set is highest when the number of noise ng is 400, so the ng
is fixed to 400 in the subsequent experiments.

TABLE III: Relationship between accuracy on the validation
set (acc,) and A.

A 0.01 0.1 1.0 10 100
0.7801  0.7795 0.7845 0.7812  0.7815

accy

3) The X from Equation ({6): To explore the optimal noise
amplitude A, we set A € {0.01,0.1,1.0,10,100} , payload
= 0.2 bpp, @ = 16, ny = 400. The results of CovNet on
the validation set are shown in Table Il As shown in Table
when A = 1.0, the model performs best on the validation
set. Therefore, we choose A = 1.0 to train our augmentation
network in the subsequent experiments.

C. The impact on the cover statistics

As shown in Figure [ and Figure [5] among pixels-off,
adaptive-pixels-off and our method, pixels-off has the largest
impact on the steganographic modification probability of
cover, adaptive-pixels-off has the second largest impact, and
our method has the smallest impact. Furthermore, we calculate
the effect of the proposed augmentation method, pixels-off,
and adaptive-pixels-off on several metrics.

Table presents the comparison of pixels-off, adaptive-
pixels-off and our augmentation method on several metrics.
APD [56] is the abbreviation of average pixel discrepancy
and it is calculated as the L; norm of the difference between
the original cover and the augmented cover; PSNR means
peak signals to noise ratio; SSIM is a metric to measure
the similarity between two images and the larger the SSIM
the more similar the two images are; DHFS indicates the

T R .
(® Px,gap

(e) Px

) Px g M) Pxy .

Fig. 4: The steganography modification probability map is
illustrated on a 256x256 pixels image 1.pgm from BOSS-
Base , and we choose the pixels-off method as a com-
parison. (a) represents the original cover. (b) and (c) denote
the augmented cover generated by pixel-off and adaptive-pixel-
off, respectively. (d) shows the augmented cover generated by
the proposed method (a = 16, ng = 400). (e)-(h) shows the
steganographic modification probability maps corresponding
to (a)-(d), respectively (The probability maps are generated by
the S-UNIWARD algorithm with a payload of 0.4 bpp. The
more yellow area corresponds to the higher steganographic
modification probability, and the darker area corresponds to
the lower steganographic modification probability).

difference of the high-frequency signals between two images.
The high-frequency signals are obtained by feeding the images
into SRM high-pass filters. The defining equation of DHFS
is shown in Equation (). The above metrics are calculated
from 4,000 cover images of the original training sets and the
corresponding augmentation dataset generated by the pixels-
off, adaptive-pixels-off, and the proposed data augmentation
method. The proposed method is better than both pixels-off
and adaptive-pixels-off on all these four evaluation metrics,
so it further verifies that the proposed method keeps the
distribution of the original image better.

D. Evaluation of the proposed augmentation method

To verify the effectiveness of the proposed data augmen-
tation method, we selected three networks (CovNet, SRNet,
and YedNet) to evaluate. The networks are trained under
three situations: Base, adaptive-pixels-off (including pixels-
off_Single and pixels-off_Triple introduced in Section [V-A3))
and our augmented dataset. We set the noise amplitude o
to 16, 32, and 64 to generate three augmented datasets. The
augmented dataset corresponding to the noise amplitude of
16 is denoted as Ours_Single. The three augmented datasets
are combined to produce a larger augmented dataset, which is
called Ours_Triple. We further explore the effects of combin-
ing Ours_Triple and pixels-off_Triple (denoted as combine).
The accuracy (denoted as acc;) and AUC on the testing set
were used as the evaluation metric.

In Table V - Table X, the data on the left side and right side
of the symbol “ /" are the accuracy and AUC, respectively.
As shown in Figure [6] Figure [7} and Table [V] - Table [X] our
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TABLE IV: The comparison of the proposed augmentation method, pixel-off, and adaptive-pixels-off on several metrics (“std”
is the abbreviation for standard deviation).

Metrics APD(mean & std) PSNR(mean & std)  SSIM(mean + std) DHFR(mean =+ std)
pixel-off 0.5823 +0.1954 29.92 4+ 3.00 0.8994 £ 0.0422 1.7248 + 0.5786
adaptive-pixel-off 0.5525 4+ 0.2175 31.05 +4.21 0.9511 4+ 0.0239 1.4655 + 0.5757
Ours 0.0709 £ 0.0446 48.66 + 3.09 0.9927 £+ 0.0075 0.2087 +0.1336

TABLE V: Test results (acc;/AUC) on CovNet (detecting S-UNIWARD).

Setting 0.02 bpp 0.04 bpp 0.06 bpp 0.08 bpp 0.1 bpp 0.2 bpp

Base 0.5000/0.5007  0.5036/0.5070  0.5561/0.5936  0.6003/0.6679  0.6501/0.7332  0.7555/0.8623
pixels-off_Single  0.5011/0.5012  0.5000/0.5009  0.5183/0.5282  0.6412/0.7206  0.6698/0.7636  0.7814/0.8868
Ours_Single 0.4985/0.5009  0.5342/0.5504  0.6004/0.6662  0.6440/0.7275  0.6764/0.7694  0.7829/0.8858
pixels-off_Triple ~ 0.4984/0.5000  0.5016/0.5009  0.5010/0.5079  0.6420/0.7241  0.6737/0.7686  0.7890/0.8925
Ours_Triple 0.5220/0.5415  0.5746/0.6293  0.6175/0.6911  0.6511/0.7406  0.6869/0.7832  0.7924/0.8973
combine 0.5017/0.5012  0.5820/0.6344  0.6251/0.7048  0.6703/0.7655  0.6960/0.7958  0.8044/0.9069

TABLE VI: Test results (acc,/AUC) on SRNet (detecting S-UNIWARD).

Setting 0.02 bpp 0.04 bpp 0.06 bpp 0.08 bpp 0.1 bpp 0.2 bpp

Base 0.5113/0.5226  0.5407/0.5815  0.5683/0.6183  0.6039/0.6690  0.6316/0.7110  0.6825/0.7752
pixels-off_Single  0.5001/0.5002  0.5008/0.5011  0.5032/0.5012  0.5674/0.5972  0.6053/0.6524  0.7403/0.8413
Ours_Single 0.5288/0.5467  0.5661/0.6073  0.5864/0.6413  0.6208/0.6925  0.6581/0.7387  0.7521/0.8359
pixels-off_Triple ~ 0.4995/0.5003  0.5012/0.5002  0.5002/0.5000  0.5530/0.5344  0.5953/0.6017  0.7335/0.8263
Ours_Triple 0.5296/0.5436  0.5669/0.6017  0.5997/0.6519  0.6313/0.6976  0.6580/0.7459  0.7706/0.8723
combine 0.5002/0.5000  0.5006/0.5023  0.5035/0.5023  0.6239/0.5042  0.6656/0.7401  0.7628/0.8556

TABLE VII: Test results (acc,/AUC) on YedNet (detecting S-UNIWARD).

Setting 0.02 bpp 0.04 bpp 0.06 bpp 0.08 bpp 0.1 bpp 0.2 bpp

Base 0.5054/0.5074  0.5226/0.5380  0.5438/0.5780  0.5691/0.6164  0.5914/0.6501  0.6488/0.7328
pixels-off_Single  0.5087/0.5142  0.5000/0.5005  0.5089/0.5035  0.5486/0.5036  0.5975/0.6313  0.6872/0.7852
Ours_Single 0.5099/0.5139  0.5261/0.5447  0.5532/0.5854  0.5746/0.6245  0.6026/0.6644  0.6894/0.7852
pixels-off_Triple ~ 0.4997/0.5002  0.5003/0.5016  0.5004/0.5037  0.5067/0.5028  0.6048/0.5619  0.7259/0.7458
Ours_Triple 0.5103/0.5147  0.5347/0.5583  0.5594/0.6013  0.5904/0.6456  0.6120/0.6797  0.7168/0.8176
combine 0.5109/0.5174  0.4997/0.5042  0.5401/0.5189  0.5979/0.6350  0.6582/0.7134  0.7631/0.8544

TABLE VIII: Test results (acc;/AUC) on CovNet (detecting HILL).

Setting 0.02 bpp 0.04 bpp 0.06 bpp 0.08 bpp 0.1 bpp 0.2 bpp

Base 0.5012/0.5016  0.5191/0.5248  0.5760/0.6208  0.6035/0.6733  0.6376/0.7195  0.7280/0.8425
pixels-off_Single ~ 0.5030/0.5097  0.5558/0.5875  0.5967/0.6595  0.6249/0.7155  0.6561/0.7533  0.7365/0.8614
Ours_Single 0.5026/0.5090  0.5612/0.6128  0.6023/0.6766  0.6267/0.7169  0.6562/0.7627  0.7383/0.8585
pixels-off_Triple ~ 0.5031/0.5100  0.5100/0.5159  0.5974/0.6604  0.6307/0.7149  0.6568/0.7523  0.7518/0.8691
Ours_Triple 0.5437/0.5559  0.5827/0.6652  0.6199/0.7107  0.6461/0.7623  0.6706/0.7828  0.7567/0.8809
combine 0.5187/0.5242  0.5919/0.6772  0.6297/0.7283  0.6573/0.7697  0.6875/0.7982  0.7699/0.8903

TABLE IX: Test results (acc;/AUC) on SRNet (detecting HILL).

Setting 0.02 bpp 0.04 bpp 0.06 bpp 0.08 bpp 0.1 bpp 0.2 bpp

Base 0.5228/0.5684  0.5499/0.5901  0.5833/0.6366  0.6057/0.6729  0.6289/0.7504  0.7029/0.8465
pixels-off_Single  0.5112/0.5239  0.5511/0.5970  0.5844/0.6387  0.6105/0.6814  0.6391/0.7590  0.7158/0.8646
Ours_Single 0.5291/0.5779  0.5632/0.6255  0.5880/0.6505  0.6194/0.6923  0.6457/0.7828  0.7175/0.8699
pixels-off_Triple ~ 0.5085/0.5128  0.5532/0.6028  0.5819/0.6317  0.6142/0.6898  0.6385/0.7524  0.7186/0.8680
Ours_Triple 0.5344/0.5803  0.5706/0.6351  0.6095/0.6739  0.6213/0.7044  0.6496/0.7936  0.7291/0.8783
combine 0.5284/0.5761  0.5696/0.6285  0.6033/0.6595  0.6290/0.7135  0.6598/0.8007  0.7393/0.8942

TABLE X: Test results (acc/AUC) on YedNet (detecting HILL).

Setting 0.02 bpp 0.04 bpp 0.06 bpp 0.08 bpp 0.1 bpp 0.2 bpp

Base 0.5030/0.5067  0.5180/0.5341  0.5482/0.5605  0.5529/0.5744  0.5911/0.6534  0.6162/0.6848
pixels-off_Single  0.5053/0.5117  0.5291/0.5427  0.5640/0.5825  0.5698/0.5901  0.5937/0.6569  0.6574/0.7459
Ours_Single 0.5071/0.5152  0.5310/0.5499  0.5741/0.5953  0.5745/0.5960  0.6043/0.6688  0.6622/0.7520
pixels-off_Triple  0.5156/0.5239  0.5406/0.5707  0.5760/0.5958  0.5842/0.6315  0.6085/0.6788  0.6881/0.7807
Ours_Triple 0.5200/0.5376  0.5490/0.5827  0.5867/0.6336  0.5925/0.6409  0.6115/0.6833  0.6894/0.7836
combine 0.5194/0.5366  0.5497/0.5836  0.5945/0.6437  0.5987/0.6582  0.6183/0.6906  0.7248/0.8333
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(a) Pixels-off

(b) Adaptive-pixels-off

0.08
0.06
0.04

0.02

(c) Ours

Fig. 5: Visualization by elevation for the differences between
the steganographic modification probability. (a) shows the dif-
ference of steganographic modification probability between the
original cover (Figure [d(e)) and its pixels-off version (Figure
@), (b) shows the difference of steganographic modification
probability between the original cover (Figure and its
adaptive-pixel-off version (Figure @(g) and (c) shows the
difference of steganographic modification probability between
the original cover (Figure and the proposed augmented

cover (Figure @)).

data augmentation method Ours_Single is effective and out-
performs the pixels-off Single method in the vast majority of
cases. Ours_Triple further improves the network performance
and outperforms pixels-off_Triple. Moreover, merging our aug-
mented dataset Ours_Triple with pixels-off augmented dataset
pixels-off_Triple (as the the method combine shows) further
improves the performance of the network at relatively high
payloads. The detailed analysis when detecting S-UNIWARD
is as follows:

Performance on CovNet. CovNet fails to converge on
the original training set of 4,000 cover/stego pairs with pay-
loads below 0.04 bpp. At the payload of 0.02 bpp, CovNet
can converge on our augmented dataset Ours_Triple, and
at the payload of 0.04 bpp, CovNet can converge on our
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Fig. 6: Test results (accy) on CovNet, SRNet, and YedNet.
S-UNIWARD is selected as the steganography algorithm. (a),
(c), and (e) show the effect of our single-expansion dataset.
(b), (d), and (f) show the effect of our triple-expansion dataset.

augmented dataset Ours_Single and Ours_Triple. However, the
control data augmentation method pixels-off_Single and pixels-
off _Triple even has a negative effect with payloads below
0.08 bpp. At higher payloads, our augmentation method is
slightly better than the pixels-off method. And combine further
improves the performance of CovNet with payloads above 0.02
bpp. The detailed experimental results are shown in Figure

[6(a)] Figure [6(b) and Table [V]

Performance on SRNet. As can be seen from Figure
Figure [6(d)] and Table SRNet converges on the
original training set at all payloads, and our method can
further improve the performance of SRNet at all payloads.
However, the control methods pixels-off_Single and pixels-
off Triple produce negative effects with payloads below 0.2
bpp. At higher payloads, the proposed method still prevails.
On SRNet, the method combine does not work well and even
produces negative effects with payloads below 0.08 bpp. At
higher payloads the method combine is comparable to using
our data augmentation method Ours_Triple alone.

Performance on YedNet. Our augmentation method im-
proves the performance of YedNet at all payloads, but the
control methods pixels-off_Single and pixels-off_Triple have
a negative effect with payloads below 0.1 bpp. At higher
payloads, the pixels-off method is comparable to our method.
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Fig. 7: Test results (acc;) on CovNet, SRNet, and YedNet.
HILL is selected as the steganography algorithm. (a), (c), and
(e) show the effect of our single-expansion dataset. (b), (d),
and (f) show the effect of our triple-expansion dataset.

The method combine improves the performance of YedNet
significantly with payloads above 0.08 bpp. The detailed
experimental results are shown in Figure Figure and
Table

As for detecting HILL, in most cases, the experimental
results are similar to those of S-UNIWARD. The difference
is that at low payloads pixels-off_Single and pixels-off_Triple
detect HILL better than they detect S-UNIWARD, but still
not as good as our method Ours_Single and Ours_Triple. The
detailed experimental results are shown in Figure [7| and Table
- Table

As shown in Table - Table [X] the trends of AUC and
accuracy of the steganalyzers are consistent in the vast major-
ity of cases, which indicates that the improvement effect of our
method on AUC is roughly consistent with the improvement
in accuracy of the steganalyzers. Therefore, our approach is
still effective and prevails from the AUC perspective.

E. Comparison with other data augmentation techniques

In this subsection, we test the performance of some easy-
low-complexity augmentations on steganalysis tasks. These
low-complexity methods include CutMix [40]], BitMix [41],
CutOut [42], and Mixup [43]. We also test a pixels-off with
an embedding in high-frequency regions (randomly pick some

10

pixels in the 10% pixels of the highest frequency power), and
we denote this method as pixels-off-HF.

S-UNIWARD is adopted as the steganographic method in
this experiment. Referring to the experimental results in the
previous subsection, we know that at relatively high payloads
our method has less advantage, so for more convincing we
choose a relatively high payload (0.2 bpp). CovNet is selected
for its high efficiency for training. To explore the performance
of these augmentation methods with different sizes of training
sets, there are two dataset partitioning schemes as follows:
1) BOSSBase is divided into three non-overlapping parts of
sizes 4,000, 1,000, and 5,000, corresponding to the training
set, validation set, and testing set. 2) All 10,000 images from
BOSSBase are used as the training set, and the BOWS?2 is
divided into two non-overlapping parts of size 1,000 and 9,000,
corresponding to the validation set and the testing set.

In Table [XIand Table the labels in the top row have the
same meaning as in the previous subsection. The row where
Baseline is located indicates that only our methods or pixels-
off methods are used for data augmentation, without easy-low-
complexity augmentations. The column where Base is located
indicates that only the easy-low-complexity augmentations are
used, without pixels-off methods or our methods. The rest of
the data are the results of combining our methods or pixels-off
methods with those easy-low-complexity augmentations.

From Table [XI} Table and Table we summarize
as follows:

o Among these easy-low-complexity augmentations, Bit-
Mix, CutMix, and CutOut improve the performance of the
steganalysis network, while Mixup has a negative impact.
BitMix has the largest boost, with 1.41% and 0.72% for
training set sizes of 4,000 and 10,000, respectively. The
boosts of our method are 3.68% and 1.93% for training
set sizes of 4,000 and 10,000, respectively, which is ad-
vantageous to these easy-low-complexity augmentations.

o As shown in the Table pixels-off-HF and the
adaptive-pixels-off proposed in [36] have comparable
performance, but are not as good as our method.

o The combination of our method and easy-low-complexity
augmentations can further improve the performance of
the network, with the best performance being “BitMix +
combine”, which improve by 6.05% and 3.17% at training
set sizes of 4,000 and 10,000, respectively.

o The effect of data augmentations decreases as the size of
training set increases. The performance gain obtained by
data augmentation on a small training set is greater.

Computation complexity. When the size of the training
set is 4,000 images of 256 x 256, CovNet takes about 62
seconds to train one epoch, and the easy-low-complexity
augmentations consume less than 1 second, which is negligible
compared to the time consumed by training the network.
Tables and also give the total time consumption for
training the CovNet. As shown in Tables [XI| and those
easy-low-complexity algorithms incur almost no additional
time overhead. The time overheads of our approach and
pixels-off are comparable. The method combine, while further
improving network performance in most cases, also has a
significantly higher time overhead.
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TABLE XI: Test result (acc;) and time consumption of various augmentations when the training set size is 4,000. The data in
brackets indicate the change of acc; compared to the data in the Base column, Baseline row.

Setting Base pixels-off_Single Ours_Single pixels-off_Triple Ours_Triple combine
Baseline 0.7555 0.7814(12.59%)  0.7829(12.74%)  0.7890(13.35%)  0.7923(13.68%)  0.8044(14.89%)
CutMix 0.7583(10.28%)  0.7795(12.40%)  0.7800(12.45%)  0.7886(13.31%)  0.7942(13.87%)  0.8103(15.48%)
BitMix 0.7696(1T1.41%)  0.7877(13.22%)  0.7970(14.15%)  0.7955(14.00%)  0.8000(14.45%)  0.8160(16.05%)
CutOut 0.7612(10.57%)  0.7815(12.60%)  0.7890(13.35%)  0.7852(12.97%)  0.7930(13.75%)  0.8020(14.65%)
Mixup 0.6911(16.44%)  0.7220(13.35%)  0.7360(11.95%)  0.7650(10.95%)  0.7707(11.52%)  0.7933(13.78%)
Time (hours) 3-4 6-7 6-7 12-13 12-13 24-25

TABLE XII: Test result (acc;) and time consumption of various augmentations when the training set size is 10,000. The data
in brackets indicate the change of acc; compared to the data in the Base column, Baseline row.

Setting Base pixels-off_Single Ours_Single pixels-off_Triple Ours_Triple combine
Baseline 0.7059 0.7130(10.71%)  0.7171(11.12%)  0.7161(11.02%)  0.7252(11.93%)  0.7264(12.05%)
CutMix 0.7068(10.09%)  0.7203(11.44%)  0.7246(11.87%)  0.7191(11.32%)  0.7308(12.49%)  0.7309(12.50%)
BitMix 0.7131(10.72%)  0.7208(171.49%)  0.7258(11.99%)  0.7243(11.84%)  0.7344(12.85%)  0.7376(13.17%)
CutOut 0.7060(10.01%)  0.7120(10.61%)  0.7209(11.50%)  0.7192(11.33%)  0.7257(11.98%)  0.7250(11.91%)
Mixup 0.6981(40.78%)  0.6884({1.75%)  0.7004(40.55%)  0.6956(]1.03%)  0.7056(10.03%)  0.7009(10.50%))
Time (hours) 8-9 16-17 16-17 28-29 28-29 53-54

TABLE XIII: Test result (acc;) of pixels-off-HF. The data in brackets indicate the change of acc; compared to Base.

Setting Base pixels-off_Single  pixels-off-HF _Single Ours_Single pixels-off_Triple  pixels-off-HF _Triple Ours_Triple
size=4,000  0.7555  0.7814(12.59%) 0.7751(11.96%) 0.7829(12.74%)  0.7890(13.35%) 0.7907(13.52%) 0.7923(13.68 %)
size=10,000  0.7059  0.7138(10.79%) 0.7130(10.71%) 0.7171(11.12%)  0.7161(11.02%) 0.7215(171.56%) 0.7252(11.93%)

TABLE XIV: Test results (acc;) when the augmentation network is applied across datasets. The data in brackets indicate the

change of acc; compared to Base.

Steganalyzers Method Ours_Single Ours_Triple combine
CovNet Baseline 0.7829(12.74%)  0.7924(13.69%)  0.8044(14.89%)
(Base: 0.7555)  Cross-dataset (BOW2) — 0.7815(12.60%) ~ 0.7940(13.85%)  0.8035(14.80%)
e Cross-dataset (SZUBase) ~ 0.7810(12.55%)  0.7930(13.75%)  0.8007(14.52%)
YedNet Baseline 0.6894(14.06%)  0.7168(16.80%)  0.7631(111.43%)
(Base: 0.6488)  Cross-dataser (BOW2) — 0.6880(13.92%)  0.7150(16.62%) ~ 0.7600(111.12%)
e Cross-dataset (SZUBase) ~ 0.6905(14.17%)  0.7183(16.95%)  0.7560(110.72%)
SRNet Baseline 0.7521(16.96%)  0.7706(18.81%)  0.7628(18.03%)
(Base: 0.6825)  Cross-dataset (BOW2) — 0.7490(16.65%) ~ 0.7627(18.02%)  0.7776(19.51%)
ase: . Cross-dataset (SZUBase) ~ 0.7459(16.34%)  0.7747(19.22%)  0.7780(19.55%)

F. Cross-dataset application of the augmentation network

In this sub-section, we explore the performance of the
augmentation network in cross-dataset usage.

We retrain the augmentation networks on the BOWS2 [45]]
and SZUBase [10], and use them to perform augmentation
on BOSSBase. S-UNIWARD at 0.2 bpp is selected as the
steganography algorithm. CovNet, YedNet, and SRNet are
selected as the steganalyzers.

The data in Table show the accuracy of the stegan-
alyzers. Base, Ours_Single, Ours_Triple, and combine have
the same meaning as in Section Baseline, Cross-
dataset (BOW2), and Cross-dataset (SZUBase) in Table
denote the augmentation networks trained on the BOSSBase,
BOWS2, and SZUBase, respectively. For a fair comparison,
only 4,000 images from each dataset are selected as the
training set of the augmentation network.

As shown in Table the augmentation network trained
on BOW2 and SZUBase is still effective for application
on BOSSBase, and the performance is comparable to that

of the augmentation network trained on BOSSBase itself.
Therefore, we do not have to retrain the augmentation network
when we need to apply the augmentation network on new
datasets. In the actual implementation, we can directly use
the pretrained augmentation network (without retraining) to
generate augmented cover. This process is relatively low time-
consuming (Generating 10,000 augmented images with an
NVIDIA GEFORCE RTX 2080 Ti GPU card takes only 165
seconds).

G. Performance of the augmentation network for non-adaptive
steganography

In this paper, we argue that steganalysis is more concerned
with high-frequency information of images, which is based on
the hypothesis of adaptive steganography. The previous ex-
periments are all based on adaptive steganography (including
S-UNIWARD and HILL), and in this subsection we explored
the effect of our method on non-adaptive steganography. We
chose LSBM [58]] as the steganography algorithm and CovNet
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TABLE XV: Test results (acc;) of detecting non-adaptive steganography method LSBM. The data in brackets indicate the

change of acc; compared to Base.

Setting Base pixels-off_Single Ours_Single pixels-off_Triple Ours_Triple combine
0.0l bpp 0.7902  0.7938(10.36%)  0.7952(10.50%)  0.7991(10.89%)  0.8003(11.01%)  0.8070(11.68%)
0.1 bpp 09580  0.9603(10.23%)  0.9631(10.51%)  0.9630(10.50%)  0.9649(10.69%)  0.9643(10.63%)

as the steganalyzer. The dataset is set up the same as in the
Section [V-ATl

As shown in Table our augmentation method still has
a boosting effect under LSBM steganography and outper-
forms the pixels-off method. However, compared to adaptive
steganography, our approach has less boost for non-adaptive
steganography. In general, adaptive steganography is more
difficult to be detected, so our work mainly focuses on adaptive
steganography detection.

V. CONCLUSION

In this paper, we design a cover augmentation network
based on two basic requirements of data augmentation (not
changing data distribution from the perspective of steganalysis
and enriching content of the dataset) and characteristics of
steganalysis (focusing on high-frequency signals), and we
further propose a full-flow data augmentation algorithm based
on the cover augmentation network. Experimental results show
that the proposed method can effectively improve the network
performance and outperform the previous methods. More
importantly, our method enables the network to capture the
steganographic signals more easily and induces the network
to converge more easily at low payloads. However, there are
still some defects in our method and we would like to improve
them in future work. For example, the noise amplitude «
and the expected number of noise points ny are determined
on the validation set. In future work, we can explore ways
for the network to learn these two parameters; in this paper,
the method of keeping the distribution constant from the
perspective of steganalysis is to maintain consistent high-
frequency signals (generated by SRM high-pass filters). In
the follow-up, we can further explore how to design better
principles to keep the original data distribution constant under
the steganalysis task.
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