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ABSTRACT

In recent years, the classification accuracy of CNN (convolutional
neural network) steganalyzers has rapidly improved. However, as
general CNN classifiers will misclassify adversarial samples, CNN
steganalyzers can hardly detect adversarial steganography, which
combines adversarial samples and steganography. Adversarial train-
ing and preprocessing are two effective methods to defend against
adversarial samples. But literature shows adversarial training is inef-
fective for adversarial steganography. Steganographic modifications
will also be destroyed by preprocessing, which aims to wipe out ad-
versarial perturbations. In this paper, we propose a novel sampling
based defense method for steganalysis. Specifically, by sampling
image patches, CNN steganalyzers can bypass the sparse adversarial
perturbations and extract effective features. Additionally, by calcu-
lating statistical vectors and regrouping deep features, the impact on
the classification accuracy of common samples is effectively com-
pressed. The experiments show that the proposed method can sig-
nificantly improve the robustness against adversarial steganography
without adversarial training.

Index Terms— Steganalysis, adversarial steganography, sam-
pling, image patch.

1. INTRODUCTION

Steganography is a covert communication technique. Modern
steganography is based on the minimal cost model [1]. It formulates
the steganography problem as source coding with fidelity constraint.
As STC [2] and SPC [3] have realized coding performance that ap-
proximates the rate cost bound, steganographic research has focused
on designing cost functions [4, 5, 6].

Steganalysis aims to detect whether an image is embedded
with secret messages. Early steganalysis relied on complex and
high-dimensional handcrafted features [7, 8]. It mainly takes two
steps to extract handcrafted features: calculating residual maps
and extract statistical features. To highlight subtle steganographic
signals, it utilizes high-pass filter banks to calculate residuals. Co-
occurrence matrices or histograms are then taken to generate high-
dimensional features. Combined with traditional machine learning
tools [9, 10], handcrafted feature steganalyzers perform well in
detecting stego images. Recently, CNN (convolutional neuron
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network) significantly improves the classification accuracy of ste-
ganalysis. Since YeNet [11], the performance advantage of CNN
steganalyzers [12, 13] over handcrafted feature steganalyzers has
grown consistently.

CNN steganalyzers, like other CNN models for image classi-
fication tasks, are challenged by adversarial samples [14, 15, 16].
Adversarial samples are crafted by adding subtle and impercepti-
ble noise to the natural images. They cause target CNN models to
output incorrect results. Adversarial steganography [17, 18] can ac-
complish both the deception of target CNN steganalyzers and the de-
livery of secret messages. Currently, there mainly two approaches,
cover enhancement and cost adjustment. Zhang et al. [17] proposed
to iteratively enhance cover images until they are still classified as
cover after being embedded with secret messages. Tang et al. [18]
proposed to adjust the costs of part image elements, which forces
the directions of steganographic modifications the same as the gra-
dients towards cover class. The steganographic modifications on the
elements of adjusted costs are encoded with part of secret messages
and function as adversarial perturbations at the same time.

In general image classification tasks, preprocessing [19, 20] and
adversarial retraining [15, 21] are considered to be the most effec-
tive methods for defending against adversarial samples. However,
Bernard et al. [22] and Tang et al. [18] found that adversarial retrain-
ing was not effective in defending against adversarial steganography.
Preprocessing aims to wipe out adversarial perturbations via image
transformations [19] or denoising [20]. Unlike general classifica-
tion tasks that focus on semantic information of images, steganal-
ysis aims to detect steganographic modifications that are as subtle
as adversarial perturbations. They will also be wiped out during the
preprocessing. So preprocessing is generally considered unsuitable
for the steganalysis.

In this paper, we notice that adversarial perturbations are sparse
while steganographic modifications are scattered over the entire im-
age. Therefore, we propose to sample image patches uniformly from
regions of varying modification probabilities. It can bypass sparse
adversarial perturbations and forces CNN steganalyzers to scatter at-
tentions over varying regions from the whole image. In addition, the
inter-patch correlations are considered to improve the detection abil-
ity. Specifically, we calculate dimension-wise statistical vectors and
regroup the deep features extracted from sampled patches and as-
sign them to different base learners. The experiment shows that the
proposed method effectively improve the robustness of CNN stegan-
alyzers against adversarial steganography without adversarial train-
ing. At the same time, the drop of the detection accuracy on common
samples (cover and conventional stego images) is marginal.
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2. RELATED WORK

ADV-EMB [18] generates adversarial stego images by forcing the
embedding cost fit the gradient sign. It divides the elements of the
cover image into two disjoint groups, common group and adjustable
group. The embedding costs in common group are defined by the
base cost function, such as UNIWARD [4], HILL [5], UERD [6],
and etc. The embedding costs in adjustable group are adjusted based
on the gradient map of the stego image generated in the last iteration:

q+i,j =


ρ+i,j/α, if ηi,j < 0,

ρ+i,j , if ηi,j = 0,

ρ+i,j · α, if ηi,j > 0,
(1)

q−i,j =


ρ−i,j/α, if ηi,j > 0,

ρ−i,j , if ηi,j = 0,

ρ−i,j · α, if ηi,j < 0,
(2)

where the gradient value, base cost value and adjusted cost value at
the element with position index i, j are denoted as ηi,j , ρi,j and qi,j .

3. METHOD

3.1. The Sparsity of Adversarial Perturbations
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Fig. 1: The S-UNIWARD [4] stego image and its corresponding
gradient value map with SRNet [12] being the target.

Under the condition of deceiving the target CNN steganalyzer,
adversarial steganography tries to minimize introduced adversarial
perturbations. ADV-EMB [18] can deceive XuNet [23] under pay-
load 0.4 bpnzAC (bit per non-zero AC) by only adjusting modifica-
tion costs of averaging about 16% image elements. It is clear that
the adversarial perturbations of ADV-EMB is sparse.

In addition, in a stego image, the gradient values of the vast
majority of pixels are low, whereas a small number of pixels have
exceptionally high gradient values. The 3D graph of the gradient
map of a S-UNIWARD [4] stego image are shown in Fig. 1. It
indicates that the perturbations on such a small group of pixels can
effectively alter the predictions, while perturbing other pixels could
hardly deceive CNN steganalyzers.

Hence, one can conclude that the adversarial perturbations in
steganalysis are sparse.

3.2. Patch Steganalysis

Since the adversarial perturbations are sparse, sampling a group of
image patches can bypass most of them. Even some are sampled,
the quantity of adversarial perturbations can hardly be sufficient to
deceive CNN steganalyzers. Meanwhile, a defense method against

adversarial steganography should reduce the defects on classifying
common samples. So, including the deep features extracted from the
sampled patches, a group of statistical vectors are calculated. Then
all the features are regrouped and assigned to several base learners.
The final predictions on input images are based on the majority vot-
ing of these base learners. The complete process of patch steganaly-
sis is shown in Fig. 2.

3.2.1. Sampling patches

Through defining modification costs [4, 5, 6], pixels in textured re-
gions are more likely to be modified than those in smooth regions.
But the dense modifications in textured regions and sparse modifica-
tion in smooth regions are equally important for steganalysis. Hence,
we propose to sample image patches from regions with varying mod-
ification probabilities.

Specifically, the input image is first segmented with overlap to
produce a number of candidate patches of the same size. As shown
in the left side of Fig. 2, the candidate patches are of size b× b, and
the sampling stride is s.

By defining texture complexity, we can predict the modification
probabilities of pixels. Thus, each image patch Xk obtains a pre-
dicted modification probability matrix Pk. All the candidate patches
are sorted according to the sum of elements in the modification prob-
ability matrix:

[Xr1 , Xr2 , . . . , Xrn ], [r1, r2, · · · , rn]
= sort([X1, X2, . . . , Xn], [P1, P2, . . . , Pn]),

(3)

where Xrk represents the image patch with the rk-th high modifi-
cation probability sum. Then the image patches are evenly divided
into g groups:

Gi = [Xrseq(i)+1
, Xrseq(i)+2

, . . . ,Xrseq(i+1)
], (4)

seq(i) = (i− 1) · dn
g
e, (5)

Lastly, a representative patch is chosen randomly from each
group. Accordingly, the image patches of either high or low pre-
dicted modification probabilities are sampled.

3.2.2. Feature fusion

The penultimate layer outputs of the target steganalyzer is the deep
features in this paper. The deep features are extracted from the rep-
resentative patches first.

Previous steganalytic methods utilized the whole image to ex-
tract global features. It constructs direct or indirect correlations
among all regions. But, such correlations among representative
patches are lost in the sampling process. Hence, we calculate the
statistical vectors of all deep features:

fmin = [min(f1),min(f2), ...,min(fd)],

fmax = [max(f1),max(f2), ...,max(fd)],

fmean = [mean(f1),mean(f2), ...,mean(fd)],

fstd = [std(f1), std(f2), ..., std(fd)],

(6)

where fi represents i-th dimension of deep features of all image
patches, and min(·), max(·), mean(·) and std(·) mean calculating
the minimum, maximum, average and standard deviation respec-
tively, and fmin represents the minimal value vector, and vise versa.

Then, including the statistical vectors, all features are regrouped
and assigned to several base learners. This process is implemented
by ensemble classifier [9].
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Fig. 2: Patch steganalysis. The image patches are sampled randomly based on estimated modification probabilities. The image patch with
xi,j as the left-up starting point is denoted as Xi,j . Its adjacent patches in the same row and column are Xi,j+s and Xi+s,j . The extracted
deep features and the statistical vectors are sent to the ensemble classifier, through which the model outputs its predictions.

4. EXPERIMENTS

4.1. Setups

4.1.1. Datasets

The experiments in this paper are conducted on two widely stud-
ied datasets, BOSSBase 1.01 [24] and BOWS2 [25]. Each contains
10, 000 grayscale images of 512 × 512. To match the settings of
previous works, the original images are resized to 256 × 256 by
imresize() of MatLab.

4.1.2. Hyperparameters

The value of stride s, patch size b and patch number p are set 48, 80
and 15 respectively. To improve the representative ability of deep
features extracted from the patches, the target CNN steganalyzer is
trained on cropped cover and conventional stego images of b × b.
The optimization process of these parameters is detailed in Section
4.4.3.

4.1.3. Target models and attack methods

SRNet [12] as one of the state-of-the-art CNN steganalyzers is
adopted as the target model in this paper. The classic adversar-
ial steganographic method ADV-EMB [18] is selected to evaluate
robustness of steganalyzers.

In this paper, we assume that the steganographer has access to
the defense approach and conduct adaptive attacks. Specifically, the
steganographer calculates all the element gradients with reference to
the model trained on cropped images of b× b and generate adaptive
adversarial stego images targeting the patch steganalysis. Adversar-
ial training augments training set with adversarial stego images and
update the model weights. The adaptive attack targeting it crafts ad-
versarial stego images based on the updated model weights.

4.2. Robustness Improvements

The proposed method aims to improve the robustness of CNN ste-
ganalyzers against adversarial steganography. Even without adver-
sarial training, as shown in Table 1, patch defense can effectively im-
prove the detection accuracy of the CNN steganalyzer against ADV-
EMB under all tested payloads. The most significant improvement is

Table 1: The detection accuracy (%) on adversarial steganography.
Adversarial trained SRNet is denoted as “SRNet-adv” and patch ste-
ganalysis is denoted as “patch”.

Payload 0.1 0.2 0.3 0.4 0.5

SRNet 11.88 11.22 10.08 5.00 5.22
SRNet-adv 26.18 23.66 29.10 29.08 27.50

Patch 36.72 43.44 48.88 71.22 65.48

66.22% under payload 0.4 bpp (bit per pixel). The average improve-
ment across all the payloads is 44.47%. Furthermore, compared with
adversarial trained SRNet, the advantages of the proposed method is
significant. First, as shown in Table 1, under adaptive attacks, patch
steganalysis is notably more robust than adversarial trained SRNet.
Second, adversarial training is quite time-consuming. The stegana-
lyst must craft adversarial stego images and retrain models. While
patch steganalysis is free from such process.

4.3. Practical detection performances

Table 2: Practical classification performances (detection accuracy
with 5% false alarm)

Payload 0.1 0.2 0.3 0.4 0.5

SRM+EC 15.97 21.64 25.86 32.39 40.86
SRNet 17.16 31.52 39.42 44.16 47.45
Patch 18.50 34.76 55.02 61.38 67.40

In reality, stego images are the mixture of the conventional and
the adversarial. Moreover, steganalysis prioritizes compressing false
alarms over missed detection. Hence, in this section, we compare
the detection accuracies of steganalyzers on the mixture of 1 : 1
conventional and adversarial stego images at a fixed false alarm rate
of 5%.

Due to missed detection of adversarial stego images, as shown in
Table 2, the performance gap between SRNet and SRM+EC [7, 9] is
narrow. The improvement brought by the patch defense on the detec-

3081

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 05,2022 at 09:04:44 UTC from IEEE Xplore.  Restrictions apply. 



Table 3: The performance comparison between the patch defense
with and without statistical vectors.

Acc on 0.1 0.2 0.3 0.4 0.5

Mixture at
PFA = 5%

Without
stat vec 12.26 38.47 43.32 53.20 60.72

With
stat vec 18.50 34.76 55.02 61.38 67.40

Table 4: The performance comparison between the patch defense of
training image size 256× 256 and 80× 80.

Acc on Size 0.1 0.2 0.3 0.4 0.5

ADV-EMB 256 53.14 44.68 43.90 67.36 38.42

80 36.72 43.44 48.88 71.22 65.48

Mixture at
PFA = 5%

256 0.00 0.00 0.00 49.07 53.49

80 18.50 34.76 55.02 61.38 67.40

tion of adversarial stego images effectively benefits the performance
of CNN steganalyzers in the real-world scenario. Specifically, under
payload 0.5 bpp (bit per pixel), the detection accuracy improvement
is 19.95%.

4.4. Ablation Study

4.4.1. Statistical vectors

Statistical vectors are utilized to module the correlation between
patches and universal statistical difference between cover and stego
images. As shown in Table 3, the removal of statistical vectors de-
crease the detection accuracy of patch steganalysis on the mixture
of adversarial and conventional stego images at 5% false alarm rate
except under payload 0.2 bpp. Such experiment results indicate the
statistical vectors effectively improve the detection ability of patch
steganalysis.

4.4.2. Training image size

Table 5: The AUCs (area under the curve) of the patch steganalysis
of different value of stride.

Stride

8 16 24 32 48
AUC 0.9094 0.9038 0.9044 0.9091 0.9143

In this paper, we train the target model using 80 × 80 cropped
image pairs to improve the detection accuracy on cover and conven-
tional stego images. As shown in Table 4, the patch steganalysis
trained on 256 × 256 image pairs obtains clearly lower detection
accuracy on the mixture at 5% false alarm rate than that trained on
80×80 image pairs. While more robustness is obtained by the model
trained on 256×256 images under relatively low payloads. Spatially,
under payload 0.1 to 0.3 bpp, when the false alarm rate is 5%, the
model trained on 256×256 images is predicting all the input images
as cover. Only at the 10% false alarm rate, valid detection accuracies
can be obtained, which are 20.34%, 34.57% and 45.33%.

The selection of the training image size can be considered a
trade-off between robustness against adversarial steganography and
detection accuracy on common samples. The experiments show that
using 80 × 80 images to train patch steganalysis generates models
of higher comprehensive detection ability. Thus, we set the model
trained on b× b cropped images.

4.4.3. Sampling parameters

Table 6: The AUCs (area under the curve) of the patch steganalysis
of different value of representative patch number.

Patch number

2 5 10 15 20
AUC 0.8299 0.8822 0.9164 0.9201 0.9181

Table 7: The AUCs (area under the curve) of the patch steganalysis
of different value of patch size.

Patch size

48 64 80 96 128
AUC 0.8128 0.8399 0.8502 0.8453 0.8458

There are several parameters involved in patch sampling: stride,
i.e., the distance between the starting pixels of neighboring patches,
patch number and patch size. In this section, we compare the AUC
(area under the curve) when cover : stego : adv = 2 : 1 : 1 to opti-
mize the sampling parameters. Without loss the generality, only the
results under payload 0.4 bpp are exhibited. Since training stegana-
lyzers on datasets of different image sizes is quite time-consuming,
the patch size parameter is optimized as the steganalyzer is trained on
256×256 images. The optimization of each parameter is conducted
with the others fixed. The stride value is optimized with g = 10 and
b = 80. The representative number (the group number) is optimized
with s = 24 and b = 80. The patch size is optimized with g = 10
and s = 24. The statistics are shown in Table 5, Table 6 and Table 7.
It is clear the optimal value of stride s, patch number (group number)
g and patch size b are 48, 15 and 80 respectively.

5. CONCLUSION

Adversarial steganography severely challenges the security of CNN
steganalyzers and their applications in reality. Previously, prepro-
cessing is considered not feasible for steganalysis. In this paper,
we propose a novel preprocessing based method, patch steganalysis,
which utilizes random patch sampling and feature fusion to defend
against adversarial steganography and minimize the defects on the
detection of common samples. The experiment results show that
the proposed method significantly improves the robustness of CNN
steganalyzers and outperforms the previous works in real-world sce-
narios where there are adversarial stego images.
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van der Maaten, “Countering adversarial images using input
transformations,” in 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. 2018, OpenRe-
view.net.

[20] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang,
Xiaolin Hu, and Jun Zhu, “Defense against adversarial at-
tacks using high-level representation guided denoiser,” in 2018
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018.
2018, pp. 1778–1787, Computer Vision Foundation / IEEE
Computer Society.

[21] Swami Sankaranarayanan, Arpit Jain, Rama Chellappa, and
Ser-Nam Lim, “Regularizing deep networks using efficient
layerwise adversarial training,” in Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelli-
gence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, Sheila A. McIlraith and
Kilian Q. Weinberger, Eds. 2018, pp. 4008–4015, AAAI Press.

[22] Solène Bernard, Patrick Bas, John Klein, and Tomás Pevný,
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