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ABSTRACT
With the development of social networks, traditional covert
communication requires more consideration of lossy pro-
cesses of Social Network Platforms (SNPs), which is called
robust steganography. Since JPEG compression is a uni-
versal processing of SNPs, a method using repeated JPEG
compression to fit transport channel matching is recently
proposed and shows strong compression-resist performance.
However, the repeated JPEG compression will inevitably
introduce other artifacts into the stego image. Using only
traditional steganalysis methods does not work well towards
such robust steganography under low payload. In this pa-
per, we propose a simple and effective method to detect the
mentioned steganography by chasing both steganographic
perturbations as well as continuous compression artifacts.
We introduce compression-forensic features as a complement
to steganalysis features, and then use the ensemble classi-
fier for detection. Experiments demonstrate that this method
owns a similar and better performance with respect to both
traditional and neural-network-based steganalysis.

Index Terms— Steganalysis, Robust Steganography,
Repetitive Compression, Feature Combination

1. INTRODUCTION

Steganography is the art of covert communication, which
hides secret message into innocent-look objects, such as
texts, images, videos. Minimal distortion steganography
cooperating with Syndrome Trellis Codes (STC) [1] is the
mainstream steganography. However, the lossy operation of
Social Network Platforms (SNPs) will invalidate the message
extraction process [2], due to the strict constraint of syn-
drome function in minimal distortion steganography. JPEG
compression is a universal operation of SNPs, so there are
many robust steganography methods [2] with respect to JPEG
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compression being proposed. Zhang et al. proposed a JPEG
compression resistant adaptive steganography combined with
robust watermarking algorithm based on a framework of
“Compression-resistant Domain Constructing + RS + STCs
Codes” [3]. And their other work DMAS [4] further im-
proved the resistance to JPEG compression. Yu et al. pro-
posed GMAS [5] based on DMAS by replacing symmetric
distortion with asymmetric distortion, combining with ternary
STCs [1] and expanding the embedding domain to achieve
strong robustness. Besides, Zhao et al. proposed an image
preprocessing method [6] named Transport Channel Match
(TCM) to resist JPEG compression. Although it is time-
consuming to adjust cover images to meet the requirement of
SNPs before embedding, this method can achieve consider-
able robustness and undetectability.

Image steganalysis focuses on whether secret message ex-
ists in digit images. As for traditional steganalysis built on
manual features, which are constructed by assembling a rich
model of many diverse submodels formed by image noise
residual. For example, DCTR [7], GFR [8] and PHARM [9]
exhibit better performances at the cost of higher dimensional-
ity. As for deep steganalysis, such as Yedroudj-Net[10], SR-
Net [11] etc, show superiority to traditional manual feature
sets. Although these steganalysis networks have a good de-
tection effect in the face of general steganography, they are
easily being attacked by adversarial steganography [12]. Be-
sides, these steganalysis methods do not take into account the
property of robust steganography, and the detection perfor-
mance is limited, especially under low payload.

Robust steganography is very meaningful to bring the-
oretical experiments to the real world, so a steganalysis for
robust steganography is necessary. Due TCM [6] in robust
steganography is a typical class of methods using repetitive
compression that can be used in a large number of ways
like [13] and [14], it makes sense to do steganalysis for this
case. In this paper, we propose a novel steganalysis method
towards robust steganography that based Transport Channel
Match by chasing both steganographic perturbations as well
as continuous compression artifacts. Actually, the continu-
ous compression artifacts have been well explored in image
forensics. Inspired by the work on detecting single or dou-
ble compression, we introduce error based statistical features
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(EBSF) [15], which are simple and effective, extracted from
rounding and truncation error blocks to help improve the de-
tection of steganalysis. We combined the compression feature
and steganalysis feature with a scale. The experimental re-
sults show the combined feature performs better in detecting
TCM with respect to steganalysis feature alone as well as
neural-network-based steganalysis.

2. PRIOR WORK

2.1. Robust Steganography With Transport Channel
Matching

In [6], Zhao et al. proposed an effective robust adaptive
steganogaphic algorithm based on the Transport Channel
Matching (TCM), in which the image is re-compressed sev-
eral times with the same quantization table to match the
transport channel. The diagram of TCM is shown in Figure 1,
where the input are image x and parameters of transport chan-
nel, like image threshold size and quality factor of transport
channel. The output is the image that matched the channel.
The algorithm will first match the size of image to the thresh-
old size of channel. Then re-compress the image to target
quality factor as channel. D1 and D2 represent the numbers
of quantization errors of two consecutive re-compressions. If
D2 is 0, or the coefficient change caused by two consecutive
compressions is not much different, that is, D1/D2 > 0.98,
this iteration will be returned. Otherwise, the image will be
compressed again in the next iteration.

Based on the TCM algorithm, Zhao et al. proposed two
effective methods called JCRIS and JCRISBE. As for JCRIS,
secret messages are embedded to cover after TCM operation.
And then images are compressed by JPEG compression. If
message can not be extracted correctly, the stego images will
be used to execute TCM and the new iteration restarts. Fi-
nally, most stego images are resistant to the JPEG compres-
sion from the transport channel and the message can be ex-
tracted. However, JPEG compression for some images will
bring in a small number of persistent noises that cannot be
effectively eliminated. Accordingly, they propose JCRISBE
to deal with this problem. The secret message is encoded by
BCH code and embedded into cover after TCM. If messages
can not be extracted correctly after JPEG compression, they
enlarge the error correction capability of BCH code and try
again until the secret message can be completely extracted.

Although the robust steganography based on TCM has a
better robustness and security performance compared to other
robust steganography methods, it inevitably requires repeated
compression of the image in the preprocessing. This will in-
troduce other artifacts in the stego image that remain partially
present after repeated compression.

Fig. 1. The overview of TCM.
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Fig. 2. The number of unstable block under different times of
JPEG compression.

2.2. Forensic Method For Detecting Double JPEG Com-
pression With the Same Quantization Matrix

In this paper, we think the detection of double JPEG compres-
sion with the same quantization matrix can help to improve
the steganalysis of the robust steganography. There are some
successful approaches have been presented [16, 15]. Huang’s
method detects single or double compression with the same
quality factor according to the decreasing trend of the num-
ber of different JPEG coefficients in [16]. Yang et al. found
truncation and rounding error block show statistical discrep-
ancy between single and double compression in [15]. They
proposed the error based statistical features (EBSF) extracted
from rounding and truncation error blocks respectively. These
methods distinguish different artifacts introduced during dif-
ferent times in JPEG compression.

In detecting single and double compression work, dis-
tinguishing single compression from multiple times com-
pression can be easier compared to double compression. As
the compression time increase, detecting accuracy increases.
Therefore, the method based on compression feature can be
applied to detect the stego generated by TCM.

3. PROPOSED METHOD

When the repeatedly compressed picture continues to be com-
pressed, the compression feature changes little, and this can
be well detected by forensic methods, such as EBSF [15]. But
if the secret message is embedded, the compression feature
will be destroyed abruptly and hard to be used by the foren-
sic methods. Figure 2 shows the change numbers of unstable
blocks under different numbers of compression times before
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Fig. 3. The overview of the proposed robust steganalysis framework.

and after embedding with J-UNIWARD [17] under different
payloads. When the payload increases, more stable blocks
are destroyed and become unstable. Distinguishing the orig-
inal unstable block from the embedded unstable block under
high payload, EBSF features are less effective. However, it
is known that steganalysis features become better when the
payload is higher. On the contrary, when the payload is low,
stego images are increasingly closer to cover images, and the
extraction effect of steganalysis features becomes worse, but
EBSF features will play a better role.

Based on the above analysis, we propose a general fea-
ture fusion framework, which combines steganalysis feature
and compression feature. Figure 3 shows the framework of
our approach. First, we use the traditional steganalysis fea-
ture extractor and the compression feature extractor to extract
features from the cover and the stego respectively. Then, we
concatenate the two different features together with a scale.
After extraction and concatenation, the combination features
are put into the ensemble classifier [18] for training and test-
ing. Ensemble classifier extracts subspace from features for
classification through multiple iterations. And the final clas-
sification results are output by statistical classification voting.

In this paper, we choose DCTR [7]and GFR [8] to ex-
tract steganalysis feature, and error based statistical features
(EBSF) [15] as compression feature. DCTR and GFR mainly
take two steps to extract handcrafted features: calculating
residual maps and extracting statistical features. To highlight
subtle steganographic signals, it utilizes different filter banks
to calculate residuals. The EBSF features consist of three sub-
sets [15]. The first subset is extracted directly from the pixels
with four features, which contains the means and variances of
absolute error values over the rounding and truncation error
blocks. The second subset is calculated on DC coefficients
and AC coefficients in a similar way as the first subset and
with eight features. Besides, the ratio of unstable rounding
error blocks constitutes the third subset and form 13-D fea-
tures with the above two subsets. However, DCTR is 8000
dimensions and GFR is 17000 dimensions, and EBSF has
only 13 dimensions by comparison. Obviously, concatenat-
ing features directly will make EBSF features submerged by
steganalysis feature and worth nothing. In order to increase
the weight of EBSF, we must expand the dimensions of EBSF.

As shown in Figure 3, we replicate the EBSF features for n
times and concatenate together with steganalysis feature. The
scale factor is determined by experiments.

4. EXPERIMENTS

In our experiments, we use two datasets BOSSbase 1.01 [19]
and BOWS2 [20]. Cover JPEG images are obtained in Mat-
lab using the command imwrite. Stego is generated by
Zhao’s method [6]. Different steganalysis feature sets like
DCTR [7], GFR [8] is chosen to extract steganalysis fea-
ture and EBSF [15] is chosen to extract compression fea-
ture. Ensemble classifier [18] is used to do training and
testing. Different classifiers like Low-complexity Linear
Classifier(LCLC) [21] can achieve similar results. The de-
tection performance is evaluated by error rate PE = (PFA +
PMD)/2, which means average of the probabilities of the false
alarm and the missed detection over ten times.

4.1. Scale Selection

The scale factor n is a multiple of the EBSF features to be ex-
tended as shown in Figure 3. In the factor selection process,
BOWS2 [20] was used as the dataset. We set the payload 0.4
bpnzac (bits per non-zero AC coefficient) at QF=75, select J-
UNIWARD [17] as the distortion function to calculate costs,
STC [1] as encode method and DCTR as the steganalysis fea-
ture. We set n = 1, 10, 100, and 1000 according to a certain
scale. As shown in Figure 4, the different color lines repre-
sent PE with different scaling factors, note that the black line
represents the detection error rate without the EBSF combi-
nation. The experimental results show that n = 100 performs
best when combined with EBSF to avoid being overwhelmed
by the large dimensional steganalysis feature. And we will
select it in the following experiments.

4.2. Comparison With Other Methods

We compare the proposed method with other methods on
combination of BOSSbase 1.01 [19] and Bows2 [20]. For
the limitation of computing resource, the images are re-
sized to 256 × 256 with the matlab function imresize.
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Fig. 4. Expansion factor selection.

Table 1. The comparison of detection error PE for JCRIS
based on J-UNIWARD under QF 75.

Steganalysis 0.1 0.4
DCTR 42.62% 14.72%

DCTR+EBSF 29.33% 12.09%
GFR 38.24% 12.27%

GFR+EBSF 27.81% 9.61%
EBSF 41.34% 44.35%

J-UNIWARD [17] is used to calculate costs and STC [1]
encode are performed in these images with different payloads
from 0.1 to 0.4 bpnzac. Quality factors 75 and 85 are utilized.
Table 1 and Table 2 show the improvements of our method
for JCRIS and JCRISBE. As we can see JCRISBE shows su-
periority to JCRIS in terms of security and robustness in [6].
So we mainly show the detection results for JCRISBE. We
use +EBSF as a suffix to represent features combined with
EBSF.

The experiments show that the results of the combination
feature have the same trend as the steganalysis feature. The
detection error rate decreases as the payload increases. When
combined with EBSF, there is a significant decrease in the
detection error rate regardless of the steganalysis feature. Es-
pecially under low payload, the effect of combination feature
improves by between 7-13%, which is a substantial improve-
ment compared to the results of using steganalysis feature
alone. The higher the error detection rate using steganalysis
features alone, the greater the degree of boosting into com-
bination features. However, the extent of the boost tends to
decrease as the payload increases. This is because when the
payload is high, the modification caused by embedding af-
fects the unstable blocks. But there is still a boost of more
than 1% under high payload.

In addition, separate EBSF features were performed as
ablation studies. The results using EBSF alone under high
quality factors were lower than those under low quality fac-
tors. This is because the artifacts generated by compression
are easier to detect under high quality factors. In most cases,
the detection error rate of EBSF features was higher than the

Table 2. The comparison of detection error PE for JCRISBE
based on J-UNIWARD under QF 75 and 85.

75 85
0.1 0.4 0.1 0.4

DCTR 42.78% 17.55% 37.32% 19.21%
DCTR+EBSF 32.91% 15.47% 28.51% 17.11%

GFR 38.31% 15.75% 34.36% 13.52%
GFR+EBSF 31.41% 11.18% 27.11% 12.67%

EBSF 44.50% 46.03% 24.35% 22.99%

Table 3. The comparison of detection error PE for SRNet
and proposed method using J-UNIWARD.

Method QF payload GFR+EBSF SRNet

JCRIS
75 0.2 20.05% 19.96%

0.4 10.28% 10.08%

85 0.2 16.62% 18.23%
0.4 8.9% 9.59%

JCRISBE
75 0.2 25.63% 28.78%

0.4 11.18% 12.10%

85 0.2 23.51% 28.78%
0.4 12.67% 13.12%

others. The results prove that the facilitation effect is not only
brought by EBSF features. We can conclude that the com-
bined features can take advantage of the steganalysis feature
and compression feature. We also compared our results with
SRNet [11]. The experiments for SRNet were performed on
PyTorch. Dataset is split into 14000 for training, 1000 for
validation, and 5000 for testing. We follow the experimen-
tal settings in [11]. The results are shown in Table 3. As
we can see that GFR+EBSF can have a lower detection er-
ror rate compared to SRNet. And the improvement is greater
at low payloads than at high payloads. This means our pro-
posed manual feature-based methods can achieve comparable
or better with respect to deep learning based steganalysis.

5. CONCLUSION

In this paper, we propose a framework using feature com-
bination that detects robust steganography based on repeti-
tive JPEG compression. Through analysis, we find the corre-
lation between steganalysis feature and compression feature
and combine the two together. In experiments, we can not
only achieve better results than the manual steganalysis fea-
ture but also better results than deep learning-based steganal-
ysis.

In the future, there are still some issues that need to be
investigated. Not only traditional feature sets, such as DCTR
and GFR, but also deep learning-based steganalysis can be
combined with different compressed features. In addition,
how to perform better feature fusion is also a problem that
needs to be investigated in the future.
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