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ABSTRACT

Recently almost all the mainstream deepfake detection methods use
Convolutional Neural Networks (CNN) as their backbone. How-
ever, due to the overreliance on local texture information which is
usually determined by forgery methods of training data, these CNN-
based methods cannot generalize well to unseen data. To get out
of the predicament of prior methods, in this paper, we propose a
novel transformer-based framework to model both global and lo-
cal information and analyze anomalies of face images. In partic-
ular, we design attention leading module, multi-forensics module
and variant residual connections for deepfake detection, and leverage
token-level contrast loss for more detailed supervision. Experiments
on almost all popular public deepfake datasets demonstrate that our
method achieves state-of-the-art performance in cross-dataset evalu-
ation and comparable performance in intra-dataset evaluation.

Index Terms— Deepfake Detection, Transferability, Face
Forensics, Vision Transformer.

1. INTRODUCTION

Deepfakes are synthetic media in which a person in an existing im-
age or video is replaced with someone else’s likeness. With the rapid
development of Variational Auto-Encoders (VAE) [1], and Gener-
ative Adversarial Networks (GAN) [2], deepfake generation tech-
niques have been updating iterations with an incredible speed. Un-
fortunately, they can be easily used for malicious purposes. By now,
it has become almost impossible for humans to distinguish whether
some media are credible or not. Deepfake significantly threatens the
reputation of celebrities, even may cause political crises.

For security concerns, a series of deepfake detection methods
have been proposed in recent years. Among them, most [3, 4, 5,
6, 7] are designed based on Convolutional Neural Networks (CNN),
showing significant power. They can achieve perfect performances
on FaceForensics++ [3] dataset when train and test on it. Neverthe-
less, their accuracy drops heavily when test on other datasets, such
as Celeb-DF [4]. That’s because CNN-based methods distinguish
fake media by learning local texture information, which is divergent
among datasets. In other words, pure texture information is not com-
monly applicable evidence for deepfake detection.

Although deepfake media are complex and diverse, they have
a common problem: there are always some defects that are normal
locally but abnormal from a global perspective. For instance, mis-
matched facial expressions and head postures, inconsistent color and
textures, unnatural blur of eyes and teeth, etc cannot be recognized if
only given a local part but can be recognized with the help of global
information. So the local areas of interest should be determined ac-
cording to the global semantics, and modeling long-distance depen-
dencies in the spatial domain are necessary. But it is not direct for
the convolutional attention mechanism, especially when the kernel
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is small. Global pooling may be a choice for assembling global in-
formation, but it will average the fragile forgery tracks, resulting in
a loss of distinguishability. Therefore, new detection models based
on other frameworks are sorely needed.

Recently, vision transformer (ViT) [8] achieved massive success
in classical classification tass. It applies transformer to a sequence
of image patches with an innate attention mechanism which effec-
tively broaden the receptive field, thus facilitate the capturing of
global information. Extended works such as object detection and
fine-grained classification [9, 10] further confirm its ability, giving
us lots of inspiration. We realize that transformer might be a good
way to solve the hard problem of modeling long-distance informa-
tion. Actually, there are already some works based on transformer,
such as [11, 12, 13]. But their naive strategies to using transformer
finally limits their detection performance, especially transferability.

In this paper, we propose a novel deepfake detection framework,
Anti-Deepfake Transformer (ADT). ADT consists of four cascaded
trans-blocks that include three stacked transformer layers to model
both global and local information. And we design Variant Residual
Connections (VRC) between adjacent trans-blocks to ensure captur-
ing enough texture information. Besides, we design an Attention
Leading Module (ALM) to help the network focus on the most valu-
able and distinguishable regions (That’s the area most likely to be
modified) while ignoring redundant information, such as the back-
ground. Moreover, we design a Multi-Forensics Module (MFM) to
combine the features from different levels. In the training process,
we leverage a contrast loss to further improve the performance in
token-level.

The key contributions of this paper are threefold as below:

1. We propose a novel deepfake detection framework, Anti-
Deepfake Transformer (ADT), which pays attention to both
global and local information and makes up for the shortcom-
ings of CNN-based methods.

2. We design Attention Leading Module (ALM), Variant Resid-
ual Connection (VRC) and Multi-Forensics Module (MFM)
to take full advantage of ADT and introduce contrast loss to
further improve its performance.

3. Extensive experiments demonstrate that ADT could main-
tain considerable performance in the intra-dataset evaluation
and achieve state-of-the-art in the cross-dataset evaluation in
deepfake detection.

2. METHOD

2.1. Anti-Deepfake Transformer Pipeline

We show our framework in Figure 1. First we split images into small
patches and project them into the embedding space. Then we add
learnable position embeddings and input them into trans-blocks con-
nected by variant residuals. And then, we apply ALM to select the
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most valuable tokens from all the tokens output by the final trans-
blocks. After that these selected tokens are input into a single trans-
former layer to get sub-classification. Finally, we merge the four
sub-results as the final prediction.

Sliding Patch Sequences. Denote input images to the network
as I. We first split I into a patch sequence Ip through preprocess-
ing. In consideration of keeping the original neighbor structure, we
choose to use overlapping patches sequences as input instead of non-
overlapping patches. To be specific, we denote the input image with
resolution H ×W , the size of image patch as P , and the stride of
sliding windows as S. Thus images will be split into N patches:

N = [(H − P )//S + 1]× [(W − P )//S + 1] (1)

Patch Embedding. We map the vectorized patches Ip into a latent
D-dimensional embedding space using a trainable linear projection,
and then a learnable position embedding is added to retain positional
information as follows:

Z0 = [Iclass; I
1
pE, I2pE, ..., INp E] + Epos (2)

where N is the number of image patches, E ∈ RP2×(C·D) is the
patch embedding projection, and Epos ∈ R(N+1)×D denotes the po-
sition embedding.

Trans-block. Our trans-block contains three transformer layers
which consist of multi-head self-attention and multi-layer perception
blocks. Formally, the output of each layer can be written as follows:

Z
′
l = MSA(LN(Zl−1)) + Zl−1

Zl = MLP(LN(Z
′
l)) + Z

′
l

(3)

where LN(·) denotes the layer normalization and Zl is the encoded
image representation of l-th layer, and l ∈ 1, 2, ..., L. Just like ViT,
we use the first token of transformer layer Z0

L as the representation of
features and forward it to a classifier head for classification. Suppose
that all the layers have C self-attention heads then the hidden layer
features and attention weights can be expressed as follows:

Zl = [Z0
l ;Z

1
l ,Z

2
l , . . . ,Z

N
l ]

Al = [[a00l ; a01l , .., a
0N
l ], .., [aC0

l ; aC1
l , .., aCN

l ]]
(4)

Attention Leading Module As we mentioned earlier, analyzing
the most discriminative information is a crucial step. But the previ-
ous work [14] pointed out that the raw attention weights do not nec-
essarily correspond to the relative importance of input tokens espe-
cially for higher layers of a transformer-based model. Therefore, we
cannot evaluate the importance of features directly from final atten-
tion weights. To ensure the correspondence between the input token
and the attention weight as much as possible by fusing the attention
weights of all the previous transformer layers. Specifically, we re-
cursively apply a matrix multiplication to the raw attention weights
after softmax in all the layers as:

Afinal =

L−1∏
l=0

Softmax(Al) (5)

Then we find the index of the largest attention weight from Afinal

and denoted as M1,M2, ...,MC , where C is the number of self-
attention heads. And softmax is introduced when calculating
Afinal. Finally, we take the token we selected and the classi-
fication token concatenate together as the input sequence of the
higher layer, expressed as the following form:

Zfinal = [Z0
L−1;Z

M1
L−1,Z

M2
L−1, . . . ,Z

MC
L−1] (6)

ALM ensures that the corresponding relationship between the atten-
tion weight and the input tokens is forwarded to the higher layers of
the model. And it also helps the model to focus on the most valuable
area for deepfake detection.

Variant Residual Connection. Texture information is always
an important clue for deepfake detection. But our method is a pure
transformer-based method. It’s not easy for such architecture to cap-
ture enough texture information. To address this issue, we adopt
variant residual connections among adjacent trans-blocks. It is note-
worthy that residual connection proposed by Resnet [15] leverage
the addition while we leverage subtraction for learned features. De-
note the four trans-blocks as Ti:

XTi+1 = F(XTi)−XTi (7)

where i represents index of trans-block, the XTi means input of i-th
trans-block, and F is formal description of trans-block.

Multi-Forensics Module. Considering the complexity and
diversity of deepfake media, we believe that the detection model
should not only focus on those high-layer features but also low-layer
features, and allow all the features from different levels participate
in the final decision. And we believe that for an exemplar deepfake
detection method, the corresponding features of the real face should
show the nature of tending to “True” at every level, and vice versa.
So we propose Multi-Forensics Module (MFM) to obtain more con-
vincing and exhaustive prediction. Denote Ti as i-th trans-block,
then ZTi represents the tokens output by the i-th block:

ZTi = [Z0
Ti
;Z1

Ti
,Z2

Ti
, . . . ,ZMC

Ti
] (8)

It’s noteworthy that ZTi is already processed by ALM here. Then
we input ZTi into an additional transformer layer, and take linear
classification on the output classification tokens. As shown in Fig-
ure 1, we can get sub-prediction of classification tokens from four
levels as Si, then:

Pred = Mean(S1,S2,S3,S4). (9)

Finally, the prediction Pred is the mean value of them all.

2.2. Training Losses

Training such a deep transformer network require strong and de-
tail supervision. We leverage the combination of classification
loss(cross-entropy loss) Lcls and token-level contrast loss Lcon as
training losses.

The features only supervised by softmax loss or cross-entropy
loss are not discriminative enough, since the differences between real
and fake faces might be imperceptible. So we introduce a token-level
contrast loss, Lcon as follows, which aims to minimize the similarity
of classification tokens corresponding to different labels and maxi-
mize the similarity of classification tokens of samples with the same
label, to further enhance the supervision.

Lcon =
1

N2

N∑
i

( N∑
j:yi=yj

(1− Zi · Zj

‖Zi‖ ‖Zj‖
)

+
N∑

j:yi 6=yj

max(
Zi · Zj

‖Zi‖ ‖Zj‖
− α, 0)

) (10)

where Zi and Zj are classification tokens of the last transformer
layer which are pre-processed with `2 normalization, Zi·Zj

‖Zi‖‖Zj‖ is

the cosine similarity of Zi and Zj and α is a constant margin to
balance the contribution of the second item.
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Fig. 1. Left is framework of ADT, right is structure of transformer layer and brief description of the Attention Leading Module.

Table 1. Intra-Dataset evaluation results (ACC(%) and AUC(%)) on
FaceForensics++ dataset with high-quality and low-quality settings.

Methods HQ LQ
ACC AUC ACC AUC

MesoNet [6] 83.10 - 70.47 -
Face X-Ray [23] - 87.35 - 61.60

Xception [7] 92.39 94.86 80.32 81.76
Two-Branch [24] - 98.70 - 86.59

SPSL [25] 91.50 95.30 81.57 82.82
F3-Net [26] 97.52 98.10 90.43 93.30

Multi-attentional [27] 97.60 99.29 88.69 90.40
M2TR [28] 98.23 99.84 92.35 94.22

Long-distance [12] 95.81 98.49 99.51 99.88
BOLF[29] - - - -

Ours 92.05 96.30 81.48 82.52

3. EXPERIMENT

3.1. Datasets

Same as related works of deepfake detection, we first conduct
our experiments on the most popular two benchmark deepfake
datasets:FaceForensics++ (FF++) [3] and Celeb-DF [4]. FF++ con-
sists of five kinds of common deepfake generation methods [16, 17,
18, 19, 20]. Celeb-DF is the most challenging dataset to almost all
the current methods. To further evaluate transferability, we use test
set of DeepFake Detection Challenge (DFDC) [21], FaceShifter [20]
and DeeperForensics [22] as evaluation dataset.

3.2. Implementation and Hyper-Parameters

In our experiments, we resize target images to 256 × 256 and then
augment the data (random cropping and random horizontal flipping
for training and center cropping for testing).Then We split target im-
age to patches of size 16 × 16 and the stride of sliding window is
set to 12. So the H,W,P, S in Equation 1 is 256, 256, 16, 12 re-
spectively. And the constant margin α in Equation 10 is set to 0.4,
which is selected through experimental verification. Since we uti-
lized transformer as our base layer, we load intermediate weights

from ViT-B 16 model pretrained on ImageNet21k and the batch size
is set to 16. SGD optimizer is employed with a momentum of 0.9.
The learning rate is initialized as 0.03. We adopt cosine annealing as
the scheduler of optimizer. All the experiments are performed with
two Nvidia GeForce RTX 2080Ti GPUs using the PyTorch toolbox
and APEX with FP16 training.

3.3. Comparison with Previous Methods

We compare our framework with state-of-the-art methods in deep-
fake detection. First, we train and test the performance of our model
on FF++, and further we test the cross-dataset performance of our
model on Celeb-DF and other popular datasets to evaluate its trans-
ferability. Like previous methods, we use ACC (Accuracy) and AUC
(Area Under Receiver Operating Characteristic Curve) as main eval-
uation metrics.

Intra-Dataset Evaluation We conduct in-dataset evaluation on
processed images in FF++, and we directly use the results reported
in their papers for fair comparison. As shown in Table 1, our method
can achieve competitive performance compared with previous meth-
ods. Since CNN has strong ability to capture sufficient texture in-
formation, most CNN-based methods achieve perfect performance.
Though we proposed several methods to enhance our methods, due
to its structure, our framework cannot learn such texture-level fea-
tures as CNN, so it’s difficult to accurately grasp the inherent texture
introduced by specific generation method, which limits the perfor-
mance of ADT on specific dataset.

Cross-Dataset Evaluation We train our model on FF++(all gen-
eration methods), then test it on Celeb-DF and DF(Deepfakes in
FF++). The image-level experimental results are shown in Table 2,
where we also list the performance of previous competitive detection
methods. It can be seen that the performance of our model is very
impressive, outperforms in the comparation of transferability with
all existing popular works.

Furthermore, we evaluate video-level performance on Celeb-DF,
DFDC, Faceshifter and DeeperForensics after training our model
on FF++ (all generation methods). We align the experiment and
settings with many competitive works in deepfake detection at the
video level, and test our models on videos in corresponding dataset.
The results are shown in Table 3. ADT almost outperforms on all
datasets except DeeperForensics. Thanks to capturing more com-
mon artifacts, ADT is not as seriously overfit to training set as pre-
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Table 2. Cross-Dataset Evaluation (AUC (%) ) on images in Celeb-
DF. Results for some other methods are from [4].

Method FF++ (DF) Celeb-DF

MesoNet [6] 84.70 54.80
Face X-Ray [23] - -

Xception-c23 [30] 99.7 65.3
Two-Branch [24] 93.20 73.40

SPSL [25] 96.94 76.88
F3-Net [26] 97.97 65.17

Multi-Attention [27] 99.80 67.44
M2TR [28] 99.50 65.70

Long-distance [12] 99.97 70.33
BOLF[29] - 78.26

Ours 98.71 84.97

Table 3. Cross-Dataset evaluation results (AUC(%)) on videos in
Celeb-DF, DFDC, FaceShifter and Deeper(DeeperForensics). Re-
sults for other methods are from [31].

Method Celeb-DF DFDC FaceShifter Deeper

Xception [3] 73.7 70.9 72.0 84.5
CNN-aug [5] 75.6 72.1 65.7 74.4

Patch-based [32] 69.6 65.6 57.8 81.8
Face X-Ray [23] 79.5 65.5 92.8 86.8
Multi-task [33] 75.7 68.1 66.0 77.7
DSP-FWA [34] 69.5 67.3 65.5 50.2

Two-Branch [24] 76.7 - - -
LipForensics [31] 82.4 73.5 97.1 97.6

Ours 89.0 76.2 98.0 96.7

vious methods, shows very impressive transferability, and achieves
excellent results on these complex datasets that never involved in
training stage.

3.4. Ablation Study

To illustrate the effectiveness of proposed modules, we conduct sev-
eral ablation studies. We take pure stacked transformers which con-
sists of four cascaded trans-blocks as our baseline and then add pro-
posed modules step by step. We train these models on FF++ and
test on images in Celeb-DF. Results in Table 4 shows that the pro-
posed contrast loss greatly improve the AUC score. Besides, ALM
and VRC also help the model gain more transferability. Although
MFM seems not to improve the AUC score effectively, it provides
a fascinating perspective for deepfake detection. In general, all the
data confirms that the introduced modules and methods are indeed
practical for our framework.

3.5. Qualitative Analysis

To explore the difference between our method and traditional CNN-
based methods, we respectively visualize the attention map of ADT
and Gradient-weighted Class Activation Mapping (Grad-CAM) of
the Xception in Figure 2. It can be seen that compared to Xception,
ADT can more accurately focus on the abnormal regions in deepfake
images, which are the forged areas poorly coordinated with the entire

Table 4. Ablation study on proposed modules. Cross-Dataset evalu-
ation results (ACC (%) and AUC (%)) on Celeb-DF.

Baseline Contrast Loss ALM VRC MFM ACC AUC

X 79.15 74.67
X X 80.48 81.23
X X X 81.56 83.17
X X X X 81.76 85.05
X X X X X 82.44 84.97

Fig. 2. The first row are deepfake images.Their attention maps of
ADT and Grad-CAM results of Xception are shown in the second
and third row.

face image. This can provide deepfake detection and face forensics
more meaningful information instead of only classification results.

4. CONCLUSION

In this paper, we propose a pure transformer-based framework for
deepfake detection. It aims to expose inconsistency between lo-
cal and global information. Extensive experiments demonstrate that
ADT achieves the state-of-the-art transferability among almost all
the public datasets, confirming that ADT can capture more common
artifacts than existed methods. And we hope ADT can inspire others
to explore the potential of transformer in deepfake detection field.
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