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Encoded Feature Enhancement in Watermarking
Network for Distortion in Real Scenes
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Abstract—Deep-learning based watermarking framework has
been extensively studied recently. The main structure of such
framework is an encoder, a noise layer and a decoder. By training
with different distortion sets in the noise layer, the whole network
can realize different robustness. However, such framework has
a huge drawback that the noise layer must be differentiable,
otherwise it cannot be trained end-to-end. But for practical
use, much distortions are non-differentiable, so such framework
cannot be applied. To address such limitations, this paper propose
a triple-phase watermarking framework for practical distortions.
The proposed framework consists of three phases including a
noise-free initial phase, a mask-guided frequency enhancement
phase and an adversarial-training phase. Phase 1 aims to initialize
an encoder to embed watermark with high visual quality and
a decoder to extract the watermark. In order to generate
high quality watermarked image, we design the just noticeable
difference (JND)-mask image loss in phase 1 to guide the encoder.
At phase 2, based on the investigation of the encoded features and
distortions, we propose a mask-guided frequency enhancement
algorithm to enhance the encoded feature which ensures the
survival of such features after distortion, so that there will be
enough features to be learned in phase 3. And phase 3 aims
to train a stronger decoder to extract the watermark from the
image after practical distortions. The combination of these 3
phases can well handle the non-differentiable problems and make
the whole network trainable. Various experiments indicate the
superior performance of the proposed scheme in the view of
traditional differentiable image processing distortion robustness
and practical non-differentiable distortion robustness.

Index terms—Deep-learning Watermarking, practical dis-
tortions triple-phase, mask-guided frequency enhancement.

I. INTRODUCTION

As an important branch of data hiding technology [1]–
[4], digital watermarking [5]–[9] has been widely studied.
For robust watermarking scheme, the most important property
is robustness, which refers to the extraction accuracy of the
watermark against different distortions. To acquire the strong
robustness, traditional watermarking schemes often embed the
watermark into robust coefficients in spatial domain [10], [11]
and frequency domain [1], [12].

In the recent years, inspired by the success of deep learning
in many tasks, a few deep neural network (DNN) based end-
to-end watermarking architectures [13]–[16] were proposed.
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The DNN based architecture consists of three main parts:
encoder, noise layer and decoder. The encoder tries to embed
the watermark into the host image, the noise layer aims to
add the distortion to the watermarked image, the decoder
extracts the watermark from the watermarked image and the
distorted image. Since the whole architecture is trained in
an end-to-end way, the key to be trainable is that the noise
layer must be differentiable. Only in this way the gradient can
be propagated back in the whole network. However, when
facing the non-differentiable distortions, such architectures
cannot be applied. And nowadays, more and more practical
distortions are presented in a non-differentiable way, such as
style transferring, screen-shooting and so on.

A few schemes designed for non-differetiable distortions
had been proposed recently. As for JPEG compression distor-
tion, Zhu et.al. [13] designed a noise layer to approximate the
JPEG compression. Tancik et.al. [14] proposed to use several
differentiable operations to simulated the print-shooting dis-
tortion and add them to the noise layer. Meanwhile, to resist
the screen-shooting distortions, Wengrowski et.al. [16] added a
camera-display transfer function (CDTF) network in the noise
layer. However, these three solutions have the same drawbacks
that the noise simulation can only ensure the similarity of
the forward process, but the gradient propagated back by
simulated process is not necessarily the same as the actual
distortions. So when applying such network into practice, the
performance will be worse than the simulated results.

Instead of simulating the noise layer, Liu et.al. [15] pro-
posed a two-stage separable watermarking architecture. In
stage II, the decoder is separably fine-tuned by distorted data in
order to obtained the target robustness. However, only enhanc-
ing the decoder is not enough when facing serious distortions,
because once the watermark signal is seriously damaged by
the distortion, the decoder cannot obtain enough watermark
features for decoding even with adversarial training.

Hence, in order to realize the robustness against non-
differentiable distortions, we propose a novel triple-phase
watermarking framework. The whole architecture consist of
three main phases. At phase-1, a noise-free end-to-end encoder
and decoder is trained, which aims to generate a cooperative
encoder and decoder to embed and extract the watermark.
And for better visual quality, we proposed a just noticeable
difference (JND)-mask-guided image loss to cope with tradi-
tional mse-loss, which effectively guides the encoder training.
But the encoded features is not strong enough against various
distortions. So we investigate the feature’s changing before
and after distortions and propose a mask-guided frequency
enhancement algorithm at phase-2 to produce more robust
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features based on phase-1, so that the watermark signal can
be preserved after distortions. At phase-3, a set of images are
embedded and enhanced by phase-1 and phase-2 and further
attacked by the target non-differentiable distortions to generate
the adversarial training dataset. Based on that, the decoder is
further fine-tuned to extract the watermark from the distorted
images.

In summary, the contributions of the proposed network are
as follows:

1). We investigate the biggest drawbacks of the exist-
ing deep-learning watermarking architecture and propose a
traditional-deep-learning combination-based triple-phase wa-
termarking framework, with which, the adaptation ability of
neural networks and the feature enhancement ability of tra-
ditional frequency enhancement can be effectively combined.
Therefore, the robustness against practical distortion which is
usually non-differentiable can be well guaranteed.

2). Based on the analysis of human visual system, we
propose a just noticeable difference (JND)-mask-guided image
loss. With the constrain of such loss, the algorithm can
generate higher quality watermarked images in the same epoch
iteration compared with the traditional MSE-Loss.

3). According to the investigation of the encoded features as
well as the distortions, we designed a mask-guided frequency
enhancement algorithm to enhance the encoder, based on
which, the encoded feature that carries watermark signal can
be better preserved after non-differentiable distortions. So that
the decoder will get enough feature to be trained in phase-3.

4). Various experimental results indicate the outstanding
performance against not only the traditional image process-
ing distortions but also various black-box non-differentiable
distortions compared with the state-of-the-art algorithms.

The remaining of this paper are organized as follows. In
Section II, we mainly discuss the related work of the proposed
scheme. Section III introduces the architecture of the proposed
watermarking scheme. The corresponding experimental results
are indicated in Section IV and Section V. Section VII
concludes the paper.

II. RELATED WORK

A. Traditional watermarking scheme

Traditional watermarking schemes are extensively studied
since 1994, Schyndel et.al. [17] first defined the word “water-
mark”, which marked the birth of digital watermarking tech-
nology. Then, many spatial domain based watermarking and
frequency domain based watermarking schemes are proposed
in the last few years. Spatial domain based watermarking
schemes mainly modify the pixel value or the pixel distribution
to embed the watermark. Among them, the histogram-based
embedding [18], [19] and the template based embedding [10],
[11], [20] are the most common algorithms.

For the frequency domain based schemes, the most com-
monly used domains are DCT domain [8], DFT domain [1],
[12] and DWT domain [21], [22]. Since the modification of
the frequency coefficients can better balance the visual quality
and the robustness, the frequency domain based schemes are
much more widely used than spatial domain based schemes.

However, traditional watermarking scheme only use the hand-
crafted features for embedding and extracting, though such
features are robust to certain distortions, they do not make
full use of the characteristics of the host image.

B. Deep learning based watermarking scheme

Recently, many deep learning based watermarking algo-
rithms [13]–[16] have been proposed. Specifically, Zhu et.al.
[13] proposed an auto-encoder like data hiding network. By
jointly training the encoder, decoder as well as the differ-
entiable noise layer, the resilience against image processing
distortions can be achieved. Ding et. al. [23] proposed an
up-sampler and down-sampler based architecture to separately
convert the image and watermark to hidden layer then further
embed the watermark. Chen et. al. [24] simulated the JPEG
compression distortion with a DCT transformation layer and a
3D noise-mask quantization operation, with which the JPEG
robustness can be improved. Mellimi et. al. [25] proposed a
DNN-based extraction network combined with a traditional
DWT-based embedding scheme. Since the embedding feature
is handcrafted designed, it does not make full use of the
strength of DNN in embedding part. Ahmadi et. al. [26]
proposed a block-based end-to-end watermark framework to
embed the watermark. But such framework can only adapt to
differentiable distortions.

Tancik et.al. [14] simulated the distortions of print-shooting
process with several differentiable operations such as color
reconstruction and Gaussian noising then further added it into
the noise layer. Recently, Wengrowski et.al. [16] produce an
image dataset of screen-to-camera image pair, then propose a
camera-display transfer function (CDTF) network to simulate
the camera shooting process. By replacing the noise layer
with the CDTF network, the proposed network can realize
the screen-to-camera resilience.

The aforementioned algorithm are based on one-stage end-
to-end architecture, which aims to use the differentiable op-
eration to replace the non-differentiable distortions. However,
the performance of the network trained by simulated noise
often degrades when facing real noise because of the imperfect
simulation. Therefore, Liu et.al. [15] proposed a two-stage
separable watermarking architecture. By adversarial training
the decoder in stage II, the robustness with some distortions
is greatly improved. However, since they do not enhance the
encoder but only fine-tune the decoder, the encoded feature
may be erased after several strong distortions, so even after
fine-tuning, the decoder cannot effectively extracted the wa-
termark.

III. PROPOSED FRAMEWORK

A. Motivations

The biggest drawback of DNN-based watermarking frame-
work is that the noise layer must be differentiable, otherwise
the network cannot be trained end-to-end.

The reason is that the loss needs to be propagated back
to the encoder through the noise layer. However, we found
that encoder and decoder can be trained separately. After
initializing the encoder by a noise-free training process, we
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Fig. 1: The framework of the whole system. It consist of three main phases. In Phase-1, the encoder and the decoder are trained end-to-end without noise
layer, the encoder tries to encoded the message through a u-net like architecture into the host image, where the decoder aims to recognize the embedded
feature and extracted the message. In Phase-2, the mask-guided frequency enhancement algorithm is used for enhancing the encoded feature that is generated
by the pre-trained encoder in Phase-1. At Phase-3, the practical distortions are applied to a series of enhanced images to generate the training dataset for
decoder training, with which, the decoder is trained and the loss propagates back only through the decoder, aiming to extract the feature from the distorted
image.

can embed the watermark with the encoded features. And for
decoder, as long as the encoded feature can be preserved after
the distortion, the decoder can learn the corresponding features
to realize the decoding process.

To achieve this goal, we design a triple-phase watermarking
framework. In phase-1, we first initialize one encoder and
decoder. Then in phase-2, we should enhance the encoded
features for strong robustness via the proposed mask-guided
frequency enhancement algorithm. After that, in phase-3, we
further train the decoder based on the real distorted water-
marked image dataset, which is generated with phase-1 and
phase-2 and the corresponding practical distortions. In this
way, even the distortion is non-differentiable, the decoder can
still extract the watermark successfully.

B. Framework
The framework of the proposed scheme is shown in Fig.

1, which consists of three phases and six main parts: (1) the
message of length L, which will be reshaped to the same size
of the hidden layer and further concatenated to the hidden
layer of the encoder; (2) the encoder E with parameters θE ,
which will be fed with the host image Io ∈ RC×H×W and
the reshaped message M ∈ {0, 1} to generate the embedded
image Iem ∈ RC×H×W ; (3) the decoder D with parameters
θD, which receives Iem, and recovers the encoded message
Mre ∈ {0, 1}. (4) the adversary Ad with parameters θAd

,
which tries to judge whether the Iem is an embedded image
or not; (5) the mask-guided frequency enhancement algorithm,
which is applied to enhance the embedded feature to generate
the enhanced image Ien; (6) the practical distortion part, which
tries to add the distortions on a series of Iens to produce noised
images Inos for further adversarial training.

In practical use, the host image is fed into the pre-trained
encoder and then enhanced by mask-guided frequency en-
hancement operation to generate the watermarked image. And

the decoding procedure is carried out by the decoder after
phase-3.

1) Watermark Reshaping: The message of length L is first
filled with ‘0’ (if necessary), then it is reshaped and up-
sampled to the size of the encoder hidden layer respectively.
As can be seen in Fig. 1, in the proposed framework, the
message should be up-sampled 4 times.

2) Encoder: The encoder we adopt in the proposed scheme
is U-Net [27] like architecture. Specifically, three “double-
conv” (2∗conv-bn-relu-maxpool) blocks first progressively
downsample Io to H/8 × W/8 feature maps, then a global
H/32×W/32 feature block is obtained by using an extra con-
volutional layer. Then the global feature block as well as the
reshaped watermark layer is concatenated to the H/8×W/8
feature maps. Finally, several “up-double-conv” (2∗up-conv-
bn-relu-maxpool) blocks upsample the H/8 × W/8 feature
maps back to the original size to get the encoded image Iem
where the watermark layer with size H/4×W/4, H/2×W/2
and H ×W are concatenated to the upsampled hidden layer
respectively.

To better constrain the image quality of the encoded image,
we propose an JND-mask-based image loss to give different
weights to different pixels. Because the eye’s sensitivity to
different texture and color are varies. The weight mask we
utilize is JND [28] which is proved to successfully represent
the characteristics of the human visual system.

The corresponding equations are shown as follows:

JND(x, y) = λ1× f1(bg(x, y),mg(x, y))+λ2× f2(bg(x, y))
(1)

where

f1(x, y) = 0.001xy + 0.115y − 0.1x+ λ (2)

f2(x) =

{
T0 ×

(
1−

√
x

127

)
+ 3 if x ≤ 127

γ × (x− 127) + 3 otherwise
(3)
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where f1 is the spatial masking component, f2 determines the
visibility threshold according to the background luminance.
bg(x, y) and mg(x, y) are average background luminance
and maximum weighted average of luminance differences
around the pixel at (x, y), respectively. And the bg and mg is
determined by:

bg = I ⊗B (4)

and
mg = maxi=1,2,3,4 |gk|

gk = I ⊗Gk

(5)

where ⊗ indicates the convolution operation, and

G1 =


0 0 0 0 0

1 3 8 3 1

0 0 0 0 0

−1 −3 −8 −3 −1

0 0 0 0 0

G2 =


0 0 1 0 0

0 8 3 8 0

1 3 0 −3 −1

0 0 −3 0 0

0 0 −1 0 0


(6)

B =


1 1 1 1 1

1 2 2 2 1

1 2 0 2 1

1 2 2 2 1

1 1 1 1 1

 (7)

And G3 = GT
2 , G4 = GT

1 . In this paper, T0, γ, λ, λ1 and λ2

is set as 17, 3/128, 1/2, 2 and 3 respectively, which is same
as the original settings in [28]. For more specific information
about the equations, please refer to [28]. The JND image of the
host color image is calculated channel by channel and further
scaled between 0 and 1.

Besides, in human visual system (HVS), the sensitivity of
human eyes to blue components is much lower than that
of green and red components [29], we should constrain the
modification to concentrate more on the blue components.
So in loss function, we give different channel with different
weights. In this paper, we use a 3-channel mask Ma with the
same size of Io to realize such constrain,

Ma[r, g, b] = [δr × JNDr, δg × JNDg, δb × JNDb] (8)

where δr, δg, δb indicate the weight of each components and
JNDr, JNDg, JNDb represent the 3 channel of the JND
image. In this paper, δr, δg, δb is set as 5, 10, 1. Then the
encoder network is trained in a fully supervised way to
make Io and Iem more similar, the object of the encoder
is to minimize the mask-guided Mean Squared Error (MSE)
distance between Io and Iem by updating θE :

LE = Ma ∗MSE(Io, Iem) = Ma ∗MSE(Io, E(θE , Io,M))
(9)

3) Decoder: The structure of the proposed decoder is
shown as Fig. 1. The decoder D aims to recover the encoded
message from Iem. We apply Res-Net [30] like network
which is proved to be useful in classification tasks for the
decoding process. Specifically, five “single-conv” (conv-bn-
relu-maxpool) blocks, five “residual” blocks and one “linear”
block is applied to compose the decoder, where the down-
sample operation is carried out in the “residual” blocks.

The objective of D is to minimize the difference between
Mre and the original watermark M by updating θD:

LD = MSE(M,Mre) = MSE(M,D(θD, Ino)) (10)

4) Adversary: For better image quality of the encoded
image, we utilize the adversarial network to judge whether
the encoded image is similar enough to the host image. The
encoded network is trying to generate the high quality Iem
to mistake the judgement of the adversarial network. So LAd

loss is used to improve the image quality of Iem by updating
θAd

:

LAd
= log(1−Ad(θAd

, Iem)) = log(1−Ad(θAd
, E(θE , Io,M)))

(11)
Besides, θAd

should also give a correct binary classification
results between Iem and Io. So such goal is realized by
updating θAd

with the following loss function:

LAd
= log(1−Ad(θAd

, Io))+ log(Ad(θAd
, E(Io,M))) (12)

In this paper, we use the PatchGAN [31] as Ad by default.
And after end-to-end training with E, D and Ad, the initialized
encoder and decoder is obtained.

5) Mask-guided Frequency Enhancement: After initializing
the encoder and the decoder, the watermark can be embedded
into the host image. We believe the residual image (RI) carries
the encoded feature and represents the watermark signal. RI
is defined by

RI = Iem − Io (13)

In order to successfully extract watermark signal, the encoded
feature should be well preserved after distortion. But the
initialized encoder may not able to create strong encoded
features for distortion. So in phase-2, we have to enhance the
encoded feature to make it more robust to various distortions.

Besides, since the encoder in phase-1 is trained with the
visual mask loss, the encoded feature is trained to be adaptive
to host image. So in order to realize better visual quality, the
enhancement cannot greatly change the characteristics of the
encoded features.

To achieve this goal, we proposed a mask-guided frequency
enhancement algorithm. Specifically, after obtaining the wa-
termarked image in phase-1, we first get the RI of it, and
centralize the RI , as shown in Eq. (14).

RIc =
RI − µRI

σRI
(14)

where µRI , σRI indicates the mean and standard deviation
of RI respectively. After that, we apply 2-D DFT (Discrete
Fourier transform) on blue channel of RIc, as shown in Eq.
(15).

F blue
RI (u, v) =

M−1∑
x=0

N−1∑
y=0

RIbluec (x, y)e−j2π(ux
M + vy

N ) (15)

where (x, y) and (u, v) indicates the coordinates of pixel and
Fourier coefficient respectively. M,N indicate the width and
height of RIc. FRI represent the Fourier coefficients matrix of
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RIbluec . After 2-D DFT, we perform a weighted enhancement
process on F blue

RI , as shown in Eq. (16).

Fwblue
RI = F blue

RI ×WF (16)

where WF indicates the weight matrix, which can be formu-
lated by Eq. (17).

g(x, y) = 1
2πσ2 e

− (x2+y2)
2σ2

WF = g−min (g)
max (g)−min (g) × β

(17)

β is the enhance factor that adjust the visual quality and
robustness performance. In this paper, σ is set as 20, and the
size of WF is same as RI . Then we applied the 2-D inverse
DFT on Fwblue

RI to get the enhance blue channel of RI , noted
as RIbluee , as shown in Eq. (18).

RIbluee (x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

Fwblue
RI (u, v)ej2π(

ux
M + vy

N )

(18)
Note that the enhancement process only applied to the blue

channel of RI . After Fourier coefficients enhancement, the
generated RIe may differs from RI , so in order to keep the
visual quality, we should also make a visual constrain which is
same as the constrain in phase-1 on RIe, as Eq. (19) illustrated.

RIfinal = RIe × (1− JND) (19)

So the final enhanced-watermarked image can be obtained by

Ien = Io +RIfinal (20)

The importance of phase-2 and the analysis for frequency
enhancement will be explained in detail at Section III-C.

C. The Analysis of Phase-2

The main procedure to improve the robustness in the
proposed framework is the enhancement process of phase-2.
In this section, we will first explain how the idea of phase-
2 comes and why phase-2 is important in detail. Then we
will show and discuss the most important features in the
enhancement process in phase-2.

1) Analysis of two-stage training: In [15], Liu et. al. have
proposed a two-stage training strategy that is directly applying
extra training (the training process at phase-3 in the proposed
scheme) after phase-1 which can relieve the limitation of
differentiable noise layer. But there are still some distortions
such as JPEG compression that cannot be well handled. The
reason is that after the distortion, the encoded features in
phase-1 are not guaranteed to be preserved. Once the distortion
is too strong to eliminate the encoded features, the decoder
in phase-3 cannot obtain enough features to learn, so the
performance will be bad. Therefore, the key to guarantee the
robustness is ensuring the survival of the encoded features in
phase-1 after distortion. To achieve that, we have to add a
phase between phase-1 and phase-3 to enhance the encoded
features and make it is robust enough for distortions. Now
the question is how the enhancement process can be achieved.
We divide the analysis of enhancement process into two steps:
1). What features are more likely to be survived from the
distortion? 2). How to enhance such features?

2) Analysis of encoded features: The first thing we need to
determine is what features are conducive to survival in non-
differentiable distortion. In the first phase, the encoded features
generated by the encoder changes greatly with the iterative
training process. But we find not all the encoded features
trained with different epoch can survive from the distortion.
Such conclusion is illustrated by the following experiments.
We perform the two-stage training process (phase-3 training
after the phase-1 initialization) with different epoch of pre-
trained encoder and distortion of JPEG compression(QF=50).

Before phase-3 training, we should align visual quality of
watermarked images to compare the performance in a more
fair way. Specifically, we normalized the encoded features to 0
mean and 15 variance with all epochs, and then added it to the
original image to conduct the encoding process. In this way,
the visual quality of the watermarked images (measured by
PSNR) is set at the same level. After that, we conduct phase-
3 training on these images with JPEG compression(QF=50),
and the results are shown in Table I.
TABLE I: The extraction accuracy against JPEG compression with different
pre-trained encoder after normalization.

Epoch 30 40 60 80 100

PSNR 28.95403 29.03016 28.94537 29.0864 29.15976

Acc 95.46% 94.48% 88.67% 83.61% 78.48%

We can see that after nomarlization, the PSNR values are
set to the same level of 29.1± 0.2dB. And from the accuracy
result we can see that even when the PSNR is in the same
level, the extraction accuracy trained with different encoders
still varies. The encoded features with smaller epoch are
more conducive to survive from distortion, which resulted
to the larger extraction accuracy. So next, we will explore
the differences of encoded features with different epochs, and
analyze why encoded features with small epochs are more
likely to survive from distortion.

Since we design the loss to encourage the network to modify
more on blue channel, which means blue channel will trained
to carry more information. So our subsequent feature analysis
will be carried out in B-channel image of RI. Specifically, we
take the B-channel images of RI under different epochs and
performed Fourier transform on them. The results are shown
in the Fig. 2.

As we can see in Fig. 2, with the training process going
on, the RI changes significantly. In spatial domain, it changes
to be adaptive to the image which will result to better visual
quality. But in Fourier domian, the distribution of coefficients
with large absolute value changes from the low-middle coeffi-
cient concentrated form to low-to-high coefficients uniformity
form.

According to [1], the middle and low frequency coefficients
are more robust than high frequency coefficients. That’s the
reason why training with pre-trained encoder of smaller epoch
can obtain better robustness. So in order to better enhance the
robustness, we should enhance the middle and low frequency
coefficients of the image frequency spectrum.

3) Proposed Enhancement: There are two main constraints
of encoded feature enhancement process in phase-2: 1). The
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Fig. 2: The blue channel of residual image as well as the corresponding
frequency spectrum generated by pre-encoder with different training epochs.

enhancement process should maintain the RI’s texture to
ensure the visual quality of the encoded image. 2). The
enhancement process should improve the robustness under the
premise of visual quality.

For 1), since we have implemented mask-guided image loss
in phase-1, so in phase-2, the enhancement should still be
mask-guided to keep the visual quality.

For 2), we need to enhance the middle and low frequency
coefficients of RI and weaken the high frequency coefficients
of RI , so that the robustness of RI can be better improved.

To meet the two above-mentioned demands, we propose
the operations as shown in Eq. (13)-Eq. (20) to realize the
enhancement procedure in phase-2. In this way, the mask-
guided frequency enhancement can effectively achieve the
requirements of visual quality and robustness.

After we get the watermarked image in phase-1, we first
calculate the RI of such image. Then we centralize the
RI , as shown in Eq. (14). There are two main reasons for
centralization: 1) It will not change the texture of RI , so
that the visual quality of watermarked image will not be
significantly degraded. 2) It enables the frequency coefficients
enhancement to be performed on a standardized distribution,
so that we can utilize an enhancement factor to adjust the
enhancement effect (robustness and visual quality). It’s worth
noted that we use Gaussian distribution matrix as the weight
matrix. The reason for using Gaussian distribution is that it
can achieve the effect of middle and low frequency coefficients
enhancement and high frequency coefficients attenuation. And
the enhance factor β controls the performance of enhancement.
The specific experiment will be shown in Section V-B.

After that, we transform the enhanced Fourier coefficient
matrix into spatial domain. Then we multiply the enhanced
RI by the JND-mask in phase-1, as Eq. (19) shown.

D. Triple Phase Training

1) Phase-1: End-to-end noise free training: At phase-1, the
end-to-end training without noise layer is adopted to generate
a collaborative encoder and decoder. The training objective is
to minimize:

L1 = λELE + λDLD + λAd
LAd

(21)

where λE , λD and λAd
are weights factors, and in this paper,

we set λE = 1, λD = 3 and λAd
= 0.001 by default.

The primary target of phase-1 is to initialize an encoder
which will be fixed at phase-2.

2) Phase-2: Mask-guided frequency enhancement for en-
coder: In phase 2, we first apply the encoder that is pre-trained
in phase-1 to embed the watermark into host image. Then, the
mask-guided frequency enhancement is adopted to enhance
the encoded features. After that, the enhanced RI is further
added into the host images to get the ultimate watermarked
image. So the enhanced encoder is combined with the pre-
trained encoder and the mask-guided frequency enhancement
operation.

3) Phase-3: Adversarial training-based enhancement for
decoder: In order to fine-tune the decoder to extract wa-
termark from the distorted images, we should generated the
distorted image dataset to train the decoder. Specifically, we
embed a set of images with the enhanced encoder obtained in
phase-2 and apply the practical distortion on them to generate
the training dataset. Based on the dataset of distorted images,
the decoder is trained to be adaptive to target distortions. In
phase-3, only θD is updated by minimizing LD.

IV. EXPERIMENTAL RESULTS

In this section, we will first briefly introduce the imple-
mentation details and the parameter selection. Then extensive
experiments will be conducted to justify the performance of
our method. Though the proposed architecture is designed for
practical distortions, it can be used for not only the differen-
tiable distortions but also the non-differentiable distortions. So
we conduct the experiments on both differentiable and non-
differentiable distortions to show effectiveness of the proposed
scheme. Finally, more analysis and will be provided to justify
our design.

A. Implementation Details

To train the network in phase-1, we randomly choose 10000
images from the COCO dataset [32] as our training dataset.
The whole framework is implemented by PyTorch [33] and
executed on NVIDIA RTX 2080ti. All images are reshaped
to size of 128 × 128 × 3. For gradient descent, Adam [34]
is applied with default hyperparameters as the optimization
method. Each model is trained for 200 epochs with a batch
size of 32. In phase-3, we randomly choose 1000 images from
COCO dataset and conduct the non-differentiable distortion on
each image. So we use 10000 images in the COCO dataset
[32] to train the nosie-free encoder and decoder in Phase-1.
Then after getting the pre-trained encoder and decoder, we
embed the watermark to 1000 different images from COCO
dataset [32] with the operation in Phase-2 and obtain the 1000
watermarked images. After that, we perform the distortion
on the 1000 watermarked images to generate the distorted
datasets. Finally, we use the distorted datasets as the training
datasets in Phase-3. All the test experiments are performed
with the classical USC-SIPI image dataset [35].

To measure the visual quality of the watermarked image,
we utilize PSNR as the default evaluation metrics. And for
extracting accuracy and robustness evaluation, we directly use
the extraction bit accuracy as the metric. We compare the
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Fig. 3: The visual quality and PSNR with different watermarking schemes.

performance of the proposed framework with state-of-the-art
deep-learning based algorithms [13], [15] and the traditional
watermarking method [12], [36] which claims to be robust for
most of the distortions.

For fair comparison, the length L of the random message
M is set as 64 without error correction codes, and the
enhancement factor β is set as 18. The PSNR of the each
method is set in the same level of 32.5 ± 0.5 dB. The pre-
trained encoder used for phase-2 is with the epoch of 30th.
The example of embedded images of different schemes are
shown in Fig. 3.

B. Robustness Test

To test the robustness of the proposed framework, we
conduct the experiments on not only the differentiable distor-
tions but also the non-differentiable distortions. The specific
distortions include 7 types of differentiable distortions: “Crop-
out”, “Dropout”, “Gaussian Noise”, “Salt&Pepper”, “Gaussian
Blur”, “Medium Blur” and “Resize” (as shown in Fig. 4)
and 4 types of non-differentiable distortions: “JPEG Com-
pression”, “Style Transfer”, “Screen-shooting”, and “Instant
Message Transmission” (as shown in Fig. 5). For differentiable
distortion and “JPEG Compression” tests (examples are shown
in supplementary materials), we compared the performance of
our scheme with Zhu et. al. [13], Liu et. al. [15], Kang et. al.
[12] and Ma et. al. [36], which are announced to be robust
against such distortions. But for the rest of non-differentiable
distortions, we only compare our scheme with Liu et. al. [15],
Kang et. al. [12] and Ma et. al. [36] since Zhu et. al. [13] can
only be adaptive to differentiable distortions.

1) Robustness against differentiable distortions:
a) Cropout Distortion: Cropout refers to the operation

that crop a certain ratio of the image out and replace the
cropped region with black image block. When fine-tuning the
decoder in phase-3, we generate the distorted dataset with
the cropout ratio uniformly selected from 25% to 35%. In
testing frame, we changes the cropped ratio from 10% to 40%
and conduct the robustness test. The experimental results are
shown in Table II.

TABLE II: The extraction accuracy with different cropout ratios.

Ratio 10% 20% 30% 40%

Zhu et. al. [13] 85.6% 85.4% 85.2% 85.2%

Liu et. al. [15] 89.2% 89.3% 89.2% 88.6%

Kang et. al. [12] 83.4% 82.1% 78.9% 75.5%

Ma et. al. [36] 92.6% 91.4% 92.0% 89.6%

Proposed 98.3% 97.9% 97.1% 95.3%

As can be seen in Table II, the proposed scheme maintains
the highest extraction accuracy in all the crop ratios compared
with the other four schemes. The extraction accuracy of the
proposed scheme are all higher than 95%, which indicates the
great robustness against cropout distortions.

b) Dropout Distortion: Dropout indicates the operation
of dropping and zeroing a certain ratio of image pixels. For
phase-3 training, we randomly select the ratio from 15% to
25% to generate the training dataset. And for testing, we
change the ratio of dropout from 5% to 25% to show the
robustness against dropout distortion. The results are shown
in Table III.

TABLE III: The extraction accuracy with different dropout ratios.

Ratio 5% 10% 15% 20% 25%

Zhu et. al. [13] 71.9% 63.5% 59.4% 60.6% 59.3%

Liu et. al. [15] 86.5% 87.6% 88.0% 87.9% 87.6%

Kang et. al. [12] 75.8% 70.3% 65.2% 64.6% 61.7%

Ma et. al. [36] 90.6% 88.4% 86.3% 83.9% 80.8%

Proposed 97.1% 97.1% 97.9% 97.4% 96.9%

We can see from Table III that the proposed scheme is robust
to dropout distortions since the extraction accuracy are higher
than 96%. Besides, compared with other four schemes, the
performance of the proposed scheme against dropout attack is
much better.

c) Gaussian Noise Distortion: For Gaussian noise dis-
tortion, the adversarial training data for phase-3 is generated
with the variance of 0.01. And the testing variance of the noise
ranges from 0.001 to 0.01. The results are indicated in Table
IV.

TABLE IV: The extraction accuracy with Gaussian noise.

σ 0.001 0.002 0.005 0.01

Zhu et. al. [13] 79.8% 75.2% 73.9% 68.7%

Liu et. al. [15] 89.6% 90.0% 89.2% 86.5%

Kang et. al. [12] 83.2% 83.0% 81.2% 76.6%

Ma et. al. [36] 92.7% 91.9% 92.4% 92.8%

Proposed 92.8% 93.3% 91.8% 90.5%

As seen in Table IV, the robustness against Gaussian noise
distortion is at least 2% higher than [12], [13], [15] in all
variance. But for [36], the performance against the Gaussian
noise with σ = 0.005 and σ = 0.01 is better than the proposed
methods. It’s mainly because [36] is embedding according
to the statistical features, so Gaussian noise may not heavily
influence such feature. Besides, since the network is trained
with the Gaussian noise of 0.01 variance, for the noise with
variance of 0.001, 0.002 and 0.005, the proposed scheme
shows the robustness too. This indicates that training with
strong noise distortion will make the network to be adaptive
to the weak noise distortion.

d) Salt & Pepper Noise Distortion: Similar as the Gaus-
sian noise, Salt & Pepper noise is commonly used too in
watermarking attack. To resist such distortion, we add the
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Fig. 4: The robustness tests on traditional image processing distortions. We show the visual quality of original image Io, the enhanced image Ien and the
distorted image Ino attacked by eight different types of traditional distortions: Cropout, Dropout, Gaussian Noise, Gaussian Blur, JPEG Compression, Medium
Blur, Resize and SaltPepper.

noise with density of 0.05 for adversarial training. And we
test the extraction performance with the density of 0.01, 0.02,
0.03, 0.04 and 0.05. The extraction results are shown in Table
V.

TABLE V: The extraction accuracy with salt & pepper distortion.

Density 0.01 0.02 0.03 0.04 0.05

Zhu et. al. [13] 85.0% 85.2% 81.2% 76.9% 71.0%

Liu et. al. [15] 88.8% 88.7% 89.1% 88.6% 88.3%

Kang et. al. [12] 81.4% 79.7% 77.0% 76.6% 74.1%

Ma et. al. [36] 92.7% 92.9% 91.8% 91.4% 89.5%

Proposed 97.7% 97.3% 97.7% 97.1% 97.0%

It is easy to see from Table V that the proposed scheme
get better performance than the compared schemes in salt &
pepper noise distortion. With different density of noise, the
proposed scheme all can maintain more than 97% accuracy,
which indicates the great salt & pepper noise resilience of the
proposed scheme.

e) Gaussian Blur Distortion: For Gaussian blur distor-
tion, we generate the training dataset with the variance 2. And
for testing stage, we conduct the Gaussian blurring operation
with variance from 0 to 2 to show the robustness. The accuracy
are shown in Table VI.

As seen in Table VI, the robustness against Gaussian blur
distortion is higher than other four methods in all variance
except for the variance of 2. With the variance of 2, the
accuracy of the proposed schemes is almost same as Liu et.
al. [15]. But for other variance, the proposed scheme performs
much better.

f) Medium Blur Distortion: We utilize the medium blur
operation with window 7×7 to generate the dataset for phase-
3. And in testing frame, we test the performance with window

TABLE VI: The extraction accuracy with Gaussian blur distortion.

σ 0 0.5 1 2

Zhu et. al. [13] 79.2% 84.8% 81.9% 72.1%

Liu et. al. [15] 89.8% 68.8% 84.8% 92.1%

Kang et. al. [12] 84.4% 84.3% 82.8% 82.3%

Ma et. al. [36] 92.1% 90.2% 83.8% 62.1%

Proposed 92.2% 90.4% 92.1% 92.0%

size 3× 3, 5× 5 and 7× 7. The testing accuracy are shown in
Table VII.

TABLE VII: The extraction accuracy with medium blur distortion.

Window 3× 3 5× 5 7× 7

Zhu et. al. [13] 82.7% 73.1% 72.5%

Liu et. al. [15] 52.1% 52.3% 50.4%

Kang et. al. [12] 82.4% 59.3% 49.4%

Ma et. al. [36] 87.3% 69.7% 52.7%

Proposed 95.3% 94.5% 94.0%

As can be observed in Table VII, the extraction performance
of proposed framework is much better than the compared
scheme. And it is worth noting that medium blur will totally
destroy the watermark signal embedded with [15], since the
accuracy is no higher than 53%. Besides, for [36], median blur
will greatly influence the extraction performance too. Since
the median blur will greatly affect the statistical features of
the image, so the extraction of [36] cannot perform well. As
for Zhu et. al. [13] and Kang et. al. [12] , the performance
of the proposed method is better in all the filtering windows.
Besides, all the extraction accuracy of the proposed scheme is

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 05,2022 at 09:14:40 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3149641, IEEE
Transactions on Multimedia

9

larger than 94%, which indicates the great performance against
medium blur distortion.

g) Resize Distortion: To resist the resize distortion, we
randomly resize the watermarked image to 0.5 to 2 times the
original size to generate the adversarial training dataset. And
we test the robustness with the resize ratio 0.5, 0.75, 1.25, 1.5
and 2. The corresponding results are shown in Table VIII.

TABLE VIII: The extraction accuracy with resize distortion.

Ratio 0.5 0.75 1.25 1.5 2

Zhu et. al. [13] 81.2% 84.8% 84.2% 83.9% 84.0%

Liu et. al. [15] 84.4% 88.5% 89.3% 89.7% 89.6%

Kang et. al. [12] 80.1% 83.4% 85.0% 84.3% 84.5%

Ma et. al. [36] 87.7% 88.3% 89.4% 89.8% 89.9%

Proposed 98.1% 98.7% 99.1% 98.8% 98.8%

From Table VIII we can see that the extraction accu-
racy with the proposed scheme is higher than the compared
schemes in all the resizing ratios. The accuracy of the proposed
method reaches at least 98% which indicates the outstanding
performance against the resize attack.

2) Robustness against non-differentiable distortions:
a) JPEG Compression Distortion: In phase-3, we ran-

domly select the value from 50 to 90 as the quality factor
of the JPEG compression to generate the dataset. And in test
experiment, we test the quality factor (QF) from 50-90. The
corresponding results are shown in Table IX.

TABLE IX: The extraction accuracy with JPEG compression distortion.

QF 50 60 70 80 90

Zhu et. al. [13] 68.5% 70.6% 70.8% 73.3% 76.6%

Liu et. al. [15] 78.1% 80.8% 82.7% 85.0% 87.7%

Kang et. al. [12] 83.3% 83.8% 84.0% 84.3% 84.2%

Ma et. al. [36] 90.0% 90.2% 90.4% 91.4% 92.2%

Proposed 91.5% 92.5% 93.7% 94.3% 95.0%

As shown in Table IX, the extraction accuracy of proposed
framework is higher than the compared schemes in all the
QFs of JPEG compression. We believe the improvement is
highly attribute to the mask-guided frequency enhancement
operation, which ensures the preservation of the encoded
feature in JPEG compression. Zhu et. al. [13] is announced
to be robust to JPEG compression However, we find when
facing the real JPEG compression, such framework performs
bad. Besides, we find the extraction difference of Kang et. al.
[12] changes little with different quality factor, it is mainly
because such method is based on DFT, which is resilient to
JPEG compression operation. Same conclusion can be found
in Ma et. al. [36], the JPEG compression get little influence
on the embedding features of [36], so the extraction are bigger
than 90%.

b) Robustness Against Style Transferring: In this paper,
we select four kinds of different black-box style transfer
operations (“crayon”, “oil painting”, “star light” and “color
pencil”) to train the specific decoder. The experiment results
are shown in Table X.

TABLE X: The extraction accuracy with different black-box style transfer
schemes.

Style
transfer Crayon Oil painting Star light Color pencil

Liu et. al. [15] 88.1% 92.0% 87.8% 85.6%

Kang et. al. [12] 59.9% 65.1% 73.4% 62.5%

Ma et. al. [36] 55.9% 48.0% 48.8% 89.4%

Proposed 91.4% 92.3% 94.6% 76.2%

From Table X we can observe that when facing the style
transfer of “crayon”, “oil painting”, “star light”, the extraction
accuracy can up to 90%, however, when transferring to “color
pencil” style, the accuracy becomes lower. The reason can be
concluded that the “color pencil” style transferring operation
only transforms the internal part of the image, and crops the
external part out, and such operation will heavily influence the
extraction process of the proposed scheme.

But for [15], the “color pencil” style transfer affect little on
the performance. It is mainly because of the message duplicat-
ing ways. Since in [15], each bit message is duplicated H×W
times and further concatenate with the hidden layer, which re-
sult to that the robustness against cropping distortion is better.
So the performance of “color pencil” style transferring is better
than the proposed method. But such duplicating scheme cannot
be adapted to large embedding capacity and strong distortions.
As for other style transfer distortions, the proposed scheme
maintains a higher extraction accuracy. Besides, we find the
style transferring heavily influence the performance of [12]
which resulted to a low extraction accuracy. And for Ma et.
al. [36], the operation of “Crayon”, “Oil painting” and “Star
light” style transferring cause great influence on extraction
accuracy, but “Color pencil” affect little. It’s mainly because
“Color pencil” may not greatly change the pixel distribution in
local area, so the extraction of [36] will not greatly influenced.

c) Robustness Against Screen-shooting Distortion: The
results of robustness against screen-shooting process is shown
in Table XI. In this paper, we randomly choose 1000 images to
embed the watermark and conduct the screen shooting process
on these images with the default screen “AOC-G2770PF” and
phone “Huawei P30 Pro”. The images used for generating the
training dataset in phase-3 is captured randomly at 20-30cm
and further perspective corrected and cropped to its original
size. Then we test the robustness with shooting distance at
20-60cm respectively.

TABLE XI: The extraction accuracy with different screen-shooting distance.

Distance 20cm 30cm 40cm 50cm 60cm

Liu et. al. [15] 53.7% 54.2% 52.3% 54.3% 51.0%

Kang et. al. [12] 76.7% 74.6% 68.9% 62.8% 61.9%

Ma et. al. [36] 88.5% 87.9% 77.5% 77.1% 83.9%

Proposed 92.2% 94.1% 78.4% 86.9% 83.7%

It is clear to see from Table XI that for the test distance of
20-30cm, the extraction accuracy is above 90%, where at 50-
60cm, the accuracy is lower than 90% and with the distance
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Fig. 5: The robustness tests on non-differentiable distortions. We show the visual quality of original image Io, the enhanced image Ien and the distorted
image Ino influenced by five different types of non-differentiable distortions: style transfer, instant message app transmission and screen-shooting.

Fig. 6: The encoded image of epoch 30 with different training loss: 1). without
JND, without RGB-mask 2).with JND, without RGB-mask 3). without JND,
with RGB-mask 4). with JND, with RGB-mask.

arise, the accuracy decreases. But it should be noted that
the when shooting at 40cm, the accuracy becomes extremely
low. The reason is that when shooting at 40cm, there are
obvious moiré patterns occur in the captured image, which
is not appeared in training dataset and greatly influence the
extraction process, so the performance will be bad. Besides, we
believe that if we enlarge the training dataset, the accuracy will
be higher. But for [15], the accuracy stays in a low range of
50%, which means the decoder cannot effectively learn enough
features to realize the extraction. That is to say, the robustness
against screen-shooting distortion for [15] is weaker than the
proposed scheme. Since [12] is designed for print-shooting
process, so the performance against screen-shooting distortion
is not good enough. As for [36], it performs better than [15]
and [12], but for the distance of 20-50cm, the proposed scheme
is still better than [36].

d) Robustness Against Instant Message (IM) APP trans-
mission: As for instant message APP transmission, the image
before and after transmission will undergo a series image
processing operations such as resizing and lossy compression.
And for different APP, the specific procedure will be different.
In this paper, we use “Wechat” as the default APP to generate
the training dataset and test the performance on “QQ”, “Face-
book”, “Twitter” and “Instagram”. The results are shown in
Table XII.

As can be seen in Table XII, the performance against

TABLE XII: The extraction accuracy with different instant messaging appli-
cation’s transmission.

IM APP QQ Wechat Twitter Facebook Instagram

Liu et. al. [15] 81.7% 80.3% 84.7% 84.8% 80.3%

Kang et. al. [12] 85.4% 85.2% 85.7% 85.7% 85.7%

Ma et. al. [36] 92.7% 57.6% 53.5% 48.8% 89.1%

Proposed 91.4% 91.6% 93.6% 93.5% 92.8%

Fig. 7: The comparison of mask-guided RI and non-mask-guided RI .

IM APP transmission of the proposed method is better than
[15] in the view of “QQ”, “Wechat”, “Twitter”, ‘Facebook”
and “‘Instagram”. Besides, although the training dataset is
generated with “Wechat”, the decoder is useful in the other
4 IM APPs. From the results we can conclude that the
decoder training with “Wechat” transmission can be successful
in other IM APPs. It can be seen that the distortion of
“Twitter”, “Facebook” and “Instagram” transmission seems
got the same influence in [12], which resulted to the same
extraction accuracy.

C. Robustness against unknown distortions

In order to illustrate the generalization of the proposed
scheme, that is, the robustness against unknown distortions,
we conduct the corresponding experiments. We use the pre-
trained decoder of one distortion to extract the watermark
from the images that are distorted by other distortions. For
example, we use the decoder trained with JPEG compression
attack to extract the Gaussian noised images. So that for JPEG-
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decoder, such noise is unknown. We use the mismatch way to
represent the unknown black-box distortions and illustrated the
robustness of the proposed scheme. The corresponding results
are shown in Table XIII.

TABLE XIII: The extraction accuracy with different pre-trained decoder.

Pre-trained
Decoder

Gaussian Noise
(σ = 0.005)

Salt&Pepper
Density=0.03

Medium Blur
window = 3

JPEG
QF = 70

Gaussian Noise 91.8% 91.5% 90.4% 89.3%

Salt&Pepper 78.3% 97.7% 94.4% 83.8%

Medium Blur 71.5% 72.0% 94.5% 83.9%

JPEG 90.5% 87.1% 94.1% 93.7%

As can be seen in Table XIII, the distortion we choose to
pre-trained the decoder are “Gaussian Nosie”, “Salt&Pepper
Noise”, “Medium Blur” and “JPEG Compression”. And the
distortion used for testing are “Gaussian Nosie” with σ=0.005,
“Salt&Pepper Noise” with Density = 0.03, “Medium Blur”
with window = 3 and “JPEG Compression” with QF = 70.
From Table XIII we can see that for all the distortions, ex-
tracting with the corresponding pre-trained decoder will ensure
the highest accuracy. For example, when facing “Salt&Pepper
Noise”, extract with pre-trained “Salt&Pepper-decoder” will
achieve 97% accuracy while with “Medium Blur-decoder”, it
can only achieve 72%. This indicates that if we want to get the
best extraction performance, training with the target distortion
is needed.

Nevertheless, we find that some pre-trained decoder have
certain generalization ability, such as “Gaussian Noise-
decoder”. The extraction accuracy with “Gaussian Noise-
decoder” maintains high level for all distortions we test. So
maybe using multiple combined noise to train decoder is
a good way to improve generalization ability for unknown
distortions.

V. ABLATION STUDY

A. The influence of JND-mask loss

In this section, we mainly show and discuss the importance
of JND-mask loss. We conduct phase-1 with four different
image loss: 1). without JND, without RGB-mask 2).with JND,
without RGB-mask 3). without JND, with RGB-mask 4). with
JND, with RGB-mask, where JND refers to the JND-guided-
mask calculated by Eq. (1), and RGB-mask represents the
weight for each channel (δr, δg, δb). The results of encoded
image with epoch 30 are shown in Fig. 6.

As can be seen from Fig. 6, training with JND-mask
loss will significantly improve the image quality at the same
iteration epoch. Comparing the encoded image trained with
loss 1) and 2) we can find that with JND guided loss, the
encoder learns to embed the watermark signal into the region
with complex texture instead of the smooth region, so that
there will be less visual distortion. As for RGB-mask loss,
we can see from the loss 1) and 3) that the encoder tends
to embed the watermark signal into the blue channel more
instead of embedding uniformly in three channels. Besides,
compared 4) with 1),2) and 3), we can observe that training
with both JND-guided and RGB-mask loss, the visual quality

of encoded image is the best, so we can draw the conclusion
that the designed JND-mask loss can effectively improve the
visual quality.

B. The influence of β

To better adjust the enhancement process, we set an en-
hancement factor β in phase-2. In this section, we will show
and dicuss the influence of β with PSNR value and extraction
accuracy after JPEG compression (QF=50). After phase-1
training, we embed the watermark with the pre-trained encoder
at 30th epoch and enhanced such images with different β. The
range of β is selected from 11 to 20. And then we utilize
the enhanced images to train phase-3 with JPEG compression
(QF=50). The corresponding PSNR values and extraction
accuracy are shown in Table XIV.

TABLE XIV: The visual quality and extraction accuracy with different
enhancement factor β.

β 11 13 15 17 19

PSNR(dB) 36.25 35.06 34.00 33.04 32.16

Accuracy 84.9% 88.2% 90.5% 92.6% 94.1%

It can be illustrated from Table XIV that the bigger β
will result to poorer visual quality, but will maintain stronger
robustness against distortions. β can serve as a parameter
to adjust the visual quality and robustness. We can choose
the appropriate β to complete the image embedding process
according to different requirements.

C. The influence of mask-guided frequency enhancement

In this section, we will show the importance of the enhance-
ment process from the aspect of robustness and visual quality.
Specifically, after embedding the watermark by the pre-trained
encoder in phase-1, we conduct three different operations to
complete the phase-2 process and generate the dataset for
phase-3 training. The three operations are: 1). no enhancement;
2) frequency enhancement without mask guided; 3) mask-
guided frequency enhancement. And the distortion we used
in phase-3 is JPEG compression (QF=70). The corresponding
results are shown in Fig. 7 and Table XV.

We can see from the watermarked image that the visual
quality generated with mask-guided RI is better than the other
two RIs. And from the RI image, it can be seen that after
mask guided, the modification is more concentrate on blue
channel and the high weighted region, which is same as the
constraint in phase-1. So that applying mask-guided frequency
enhancement is good for obtaining high visual quality.

For fair comparison, we have controlled the value of each
RI so that the PSNR of the watermarked image generated by
it is at the same level of 32.5±0.5dB. And the corresponding
extraction accuracy trained with each RI is shown in Table
XV.

Table XV indicates that the mask-guided enhancement
can effectively enhance the robustness of the algorithm. The
extraction accuracy corresponded to mask-guided RI is almost
5% higher than that without enhancement, and 3% higher than
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TABLE XV: The extraction accuracy with different RI .

RI no enhancement no mask-guided mask-guided

PSNR(dB) 32.70 32.84 32.59

Accuracy 88.9% 90.2% 93.7%

that with only frequency enhancement. We conclude the reason
as the mask effectively adjusts the weight of RI , so that under
the same visual quality constraints, the weight of the region
that carries more information is larger. So the decoder can
obtain more information after distortion to be trained, which
resulted to higher extraction accuracy.

VI. LIMITATIONS

Although the proposed framework can well adapt to both
differentiable and non-differentiable distortions, there are still
some limitations should be improved in future work.

1) Such work is weak to desynchronization attack such as
crop and rotate, since the watermark is reshaped and flattened
in the preprocessing, so 1-bit message is corresponded to a
specific block of the images. Once such block is cropped or
transformed, the extraction will greatly be influenced.

2) Training the proposed scheme is time-consuming. Since
in phase-3, the training dataset should be generated by real
distortions, so it takes much time in obtain the dataset. Our
future work may focus on how to optimize the performance
of the proposed framework from the aspects of above two
weaknesses.

VII. CONCLUSION

In this paper, we propose a triple-phase watermark frame-
work for practical distortions, which consists of an end-
to-end noise-free training phase, a mask-guided frequency
enhancement phase and an adversarial training-based decoder
enhancement phase. By utilizing the mask-guided frequency
enhancement operation, the encoded feature is greatly en-
hanced so that it can be preserved during the distortions and
can be further recovered by the decoder. Extensive experiments
demonstrate the effectiveness of the designed structure in the
view of robustness against differentiable and non-differentiable
distortions. Besides, we show and discuss our understanding
of the encoding features as training processed, which we hope
will benefit the further research.

REFERENCES

[1] X. Kang, R. Yang, and J. Huang, “Geometric invariant audio watermark-
ing based on an LCM feature,” IEEE Trans. Multimedia, vol. 13, no. 2,
pp. 181–190, 2011.

[2] X. Zhang, F. Peng, and M. Long, “Robust coverless image steganog-
raphy based on dct and lda topic classification,” IEEE Transactions on
Multimedia, vol. 20, no. 12, pp. 3223–3238, 2018.

[3] Z. Chen, L. Li, H. Peng, Y. Liu, and Y. Yang, “A novel digital
watermarking based on general non-negative matrix factorization,” IEEE
Transactions on Multimedia, vol. 20, no. 8, pp. 1973–1986, 2018.

[4] Y. Huang, B. Niu, H. Guan, and S. Zhang, “Enhancing image water-
marking with adaptive embedding parameter and psnr guarantee,” IEEE
Transactions on Multimedia, vol. 21, no. 10, pp. 2447–2460, 2019.

[5] M. Andalibi and D. M. Chandler, “Digital image watermarking via
adaptive logo texturization,” IEEE Trans. Image Process., vol. 24, no. 12,
pp. 5060–5073, 2015.

[6] C. Chang and J. Shen, “Features classification forest: A novel develop-
ment that is adaptable to robust blind watermarking techniques,” IEEE
Trans. Image Process., vol. 26, no. 8, pp. 3921–3935, 2017.

[7] B. Mathon, F. Cayre, P. Bas, and B. Macq, “Optimal transport for
secure spread-spectrum watermarking of still images,” IEEE Trans.
Image Process., vol. 23, no. 4, pp. 1694–1705, 2014.

[8] H. Fang, W. Zhang, H. Zhou, H. Cui, and N. Yu, “Screen-shooting
resilient watermarking,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 6,
pp. 1403–1418, 2019.

[9] A. Pramila, A. Keskinarkaus, V. Takala, and T. Seppänen, “Extracting
watermarks from printouts captured with wide angles using computa-
tional photography,” Multim. Tools Appl., vol. 76, no. 15, pp. 16 063–
16 084, 2017.

[10] D. Gugelmann, D. Sommer, V. Lenders, M. Happe, and L. Vanbever,
“Screen watermarking for data theft investigation and attribution,” in
10th International Conference on Cyber Conflict, CyCon 2018, Tallinn,
Estonia, May 29 - June 1, 2018. IEEE, 2018, pp. 391–408.

[11] A. Pramila, A. Keskinarkaus, and T. Seppänen, “Toward an interactive
poster using digital watermarking and a mobile phone camera,” Signal,
Image and Video Processing, vol. 6, no. 2, pp. 211–222, 2012.

[12] X. Kang, J. Huang, and W. Zeng, “Efficient general print-scanning
resilient data hiding based on uniform log-polar mapping,” IEEE Trans.
Inf. Forensics Secur., vol. 5, no. 1, pp. 1–12, 2010.

[13] J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei, “Hidden: Hiding data
with deep networks,” in Computer Vision - ECCV 2018 - 15th European
Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part
XV, ser. Lecture Notes in Computer Science, vol. 11219. Springer, 2018,
pp. 682–697.

[14] M. Tancik, B. Mildenhall, and R. Ng, “Stegastamp: Invisible hyperlinks
in physical photographs,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020. IEEE, 2020, pp. 2114–2123.

[15] Y. Liu, M. Guo, J. Zhang, Y. Zhu, and X. Xie, “A novel two-stage
separable deep learning framework for practical blind watermarking,” in
Proceedings of the 27th ACM International Conference on Multimedia,
MM 2019, Nice, France, October 21-25, 2019. ACM, 2019, pp. 1509–
1517.

[16] E. Wengrowski and K. Dana, “Light field messaging with deep photo-
graphic steganography,” in IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20,
2019. Computer Vision Foundation / IEEE, 2019, pp. 1515–1524.

[17] R. G. Van Schyndel, A. Z. Tirkel, and C. F. Osborne, “A digital
watermark,” in Proceedings 1994 International Conference on Image
Processing, Austin, Texas, USA, November 13-16, 1994. IEEE Com-
puter Society, 1994, pp. 86–90.

[18] T. Zong, Y. Xiang, I. Natgunanathan, S. Guo, W. Zhou, and G. Beliakov,
“Robust histogram shape-based method for image watermarking,” IEEE
Trans. Circuits Syst. Video Technol., vol. 25, no. 5, pp. 717–729, 2015.

[19] G. Hua, Y. Xiang, and L. Y. Zhang, “Informed histogram-based water-
marking,” IEEE Signal Process. Lett., vol. 27, pp. 236–240, 2020.

[20] T. Nakamura, A. Katayama, M. Yamamuro, and N. Sonehara, “Fast
watermark detection scheme for camera-equipped cellular phone,” in
Proceedings of the 3rd international conference on Mobile and ubiqui-
tous multimedia. ACM, 2004, pp. 101–108.

[21] H. Hu and T. Lee, “Frame-synchronized blind speech watermarking
via improved adaptive mean modulation and perceptual-based additive
modulation in DWT domain,” Digit. Signal Process., vol. 87, pp. 75–85,
2019.

[22] Y. Gao, J. Wang, and Y. Shi, “Dynamic multi-watermarking and detect-
ing in DWT domain,” J. Real Time Image Process., vol. 16, no. 3, pp.
565–576, 2019.

[23] W. Ding, Y. Ming, Z. Cao, and C.-T. Lin, “A generalized deep neural
network approach for digital watermarking analysis,” IEEE Transactions
on Emerging Topics in Computational Intelligence, 2021.

[24] B. Chen, Y. Wu, G. Coatrieux, X. Chen, and Y. Zheng, “Jsnet: A
simulation network of jpeg lossy compression and restoration for robust
image watermarking against jpeg attack,” Computer Vision and Image
Understanding, vol. 197, p. 103015, 2020.

[25] S. Mellimi, V. Rajput, I. A. Ansari, and C. W. Ahn, “A fast and efficient
image watermarking scheme based on deep neural network,” Pattern
Recognition Letters, vol. 151, pp. 222–228, 2021.

[26] M. Ahmadi, A. Norouzi, N. Karimi, S. Samavi, and A. Emami, “Red-
mark: Framework for residual diffusion watermarking based on deep
networks,” Expert Systems with Applications, vol. 146, p. 113157, 2020.

[27] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2015 - 18th International

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 05,2022 at 09:14:40 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3149641, IEEE
Transactions on Multimedia

13

Conference Munich, Germany, October 5 - 9, 2015, Proceedings, Part
III, ser. Lecture Notes in Computer Science, vol. 9351. Springer, 2015,
pp. 234–241.

[28] C.-H. Chou and Y.-C. Li, “A perceptually tuned subband image coder
based on the measure of just-noticeable-distortion profile,” IEEE Trans-
actions on circuits and systems for video technology, vol. 5, no. 6, pp.
467–476, 1995.

[29] C. Ware, Information visualization: perception for design. Elsevier,
2012.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 2016, pp. 770–778.

[31] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017. IEEE Computer Society, 2017, pp. 5967–5976.

[32] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in
context,” in Computer Vision - ECCV 2014 - 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, ser.
Lecture Notes in Computer Science, D. J. Fleet, T. Pajdla, B. Schiele,
and T. Tuytelaars, Eds., vol. 8693. Springer, 2014, pp. 740–755.

[33] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” 2011.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[35] The USC-SIPI Image Database. Accessed: Sep. 2019. [Online]. Avail-
able: http://sipi.usc.edu/database/.

[36] Z. Ma, W. Zhang, H. Fang, X. Dong, L. Geng, and N. Yu, “Local ge-
ometric distortions resilient watermarking scheme based on symmetry,”
IEEE Transactions on Circuits and Systems for Video Technology, 2021.

Han Fang received his B.S. degree in 2016 from
Nanjing University of Aeronautics and Astronautics
(NUAA) and a Ph.D degree in 2021 from University
of Science and Technology of China (USTC). Cur-
rently, he is a research fellow at National University
of Singapore. His research interests include image
watermarking, information hiding and adversarial
machine learning.

Zhaoyang Jia Zhaoyang Jia has been studying
as an undergraduate at University of Science and
Technology of China (USTC) since 2018. Currently,
he is also an intern at Microsoft Research Asia.
His research intersts include digital watermarking,
multimedia computing and deep learning.

Hang Zhou received his B.S. degree in 2015 from
Shanghai University (SHU) and a Ph.D. degree in
2020 from the University of Science and Technology
of China (USTC). Currently, he is a postdoctoral
researcher at Simon Fraser University. His research
interests include computer graphics, multimedia se-
curity and deep learning.

Zehua Ma received his B.S. degrees in information
security from the University of Science and Tech-
nology of China (USTC) in 2018. He is currently
pursuing the Ph.D. degree in information security in
USTC. His research interests include image water-
marking, information hiding, and image processing.

Weiming Zhang received his M.S. degree and
Ph.D. degree in 2002 and 2005 respectively from
the Zhengzhou Information Science and Technology
Institute, P.R. China. Currently, he is a professor with
the School of Information Science and Technology,
University of Science and Technology of China. His
research interests include information hiding and
multimedia security.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 05,2022 at 09:14:40 UTC from IEEE Xplore.  Restrictions apply. 


