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Abstract. Digital watermarking is an important branch of information hiding,
which effectively guarantees the robustness of embedded watermarks in distorted
channels. To embed the watermark into the host carrier, traditional watermarking
schemes often require the modification of the carrier. However, in some cases,
the modification of the carrier is not allowed such as paintings in museums. To
address such limitation, we utilize optical watermarking to embed the watermark
into the host carrier. Optical watermarking refers to a technique that encodes the
watermark into the visible light irradiating the object, where the watermark can
be further extracted by the camera photography process. To realize transparency
and robustness of the watermark, we propose a color-decomposition-based water-
marking pattern generation algorithm which satisfies human visual system (HVS)
characteristics, a camera shooting simulation algorithmwhich accurately produces
the dataset for training, and a decoding network which can realize loss-less decod-
ing of the embedded watermark. Various experiments demonstrate the superiority
of our method and reveal the broad applicability of the proposed technique.

Keywords: Noise simulation · Optical watermarking · Human visual system

1 Introduction

Information hiding [1] refers to the technique of hiding secret information in the publicly
availablemedia so that people cannot be aware of its existence. As an important branch of
information hiding, digital watermarking [2–4] can serve as a way to protect copyright or
realize information transmission. Themost important property ofwatermarking schemes
is robustness, which directly influences the protection ability and transmission accuracy.
To realize robustness, traditional schemes often embed the watermark into the stable
coefficients of the carrier [5–8].

Although it is possible to achieve sufficient robustness with little perturbation, in
some cases, even slight disturbance to the carrier is not allowed. For example, any
damage is prohibited for the paintings displayed in the museum. Since paintings cannot
be converted into electronic signals and cannot be modified, traditional watermarking
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techniques fail to be applied to the case. To address such limitation, we utilize the optical
watermarking techniques [9–16] which can effectively realize the content-independent
embedding.Opticalwatermarking refers to a technique that encodes thewatermark signal
into the visible light and projects the light onto the real object. With such a process, the
object is unnecessary to be modified. At the extraction side, we use a camera to capture
the irradiated object and decode the watermark by some image processing operations.
Therefore, the content-independence and robustness can be both achieved.

Fig. 1. Visual fusing. Both images containing the pattern are fused to a clean image by human
eyes.

Previous optical watermarking schemes often utilize the well-designed pattern to
represent the watermark signal. The pattern should contain two important properties:
transparency and robustness. Transparency refers to the visual quality after projecting
the pattern onto the object, and robustness represents the extraction accuracy of captured
images. However, there is an inherent contradiction between the two properties. So, how
to guarantee robustness and visual quality at the same time is an unsolved problem
worthy of further exploration.

To better balance transparency and robustness, we propose a novel noise simulation-
baseddeepopticalwatermarking scheme.For transparency,wecarefully study thehuman
visual system (HVS) characteristics and propose a color-decomposition-based [16–19]
watermarking pattern generation algorithm. Generally, it is based on the observation that
human eyes will fuse two images into one if the two images are refreshed in a high fre-
quency (no less than 60 Hz). Therefore, by alternatively projecting two complementary
watermarked frames, human eyes can only see the synthetic frame. As shown in Fig. 1,
some circular blocks are neatly arranged in the both images on the left. But human eyes
would see the third image (HVS fuses the both images and composes the third image).
Unlike HVS, the shutter speed of modern cameras is much higher and instead captures
the decomposed frame that contains the pattern, making robustness possible. Moreover,
we design a deep neural network at the extraction side to decode the watermark from
the captured image. Given the assumption that the object surface is a flat 2D image,
we generate the training dataset by simulating the projecting-shooting process, which
achieves an approximate mapping from the generated pattern and the carrier image to
the captured image.

In summary, our main contributions are three-fold:
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• We propose a novel deep optical watermarking system that not only ensures the high
visual quality but also realizes the strong robustness.

• To improve the extraction accuracy, we propose a generic noise-aware channel
simulation model for the projecting-shooting process to create effective training data.

• Various experiment results demonstrate the superiority of our method compared with
baseline methods and reveal broad application prospects of the proposed technique.

2 Related Work

2.1 Optical Watermarking

A series of works of optical watermarking have been presented [10–16] in the past few
years, which can be divided into two categories: spatial-based methods and temporal-
based methods.

For the first category, Uehira et al. [10] proposed to employ brightness-modulated
light to embed invisible watermarking into objects. In [11], orthogonal transforms such
Walsh-Hadamard Transform (WHT) and Discrete Cosine Transform (DCT) are utilized
to generate the watermarking pattern. Uehira et al. [12] proposed the color difference-
based modulation to represent the watermark and embed messages into the color differ-
ence signal Cb of Luminance, Chroma-blue and Chroma-red (YCbCr) signal to resist
JPEG compression. However, the generated watermark patterns with these methods are
often with poor visual quality and are obvious in human eyes.

As for the temporal-based methods, Unno et al. [13–16] proposed to introduce time
modulation for better invisibility. In these schemes, two complementary watermarked
images are generated and alternately displayed on a projector with a sufficient frequency.
Although transparency is better, the message must be extracted via the video. Therefore,
when facing the one-photo-capturing extraction, the watermarking scheme cannot be
applied.

Fig. 2. The framework of optical watermarking system. First, the message is encoded into two
patterns modulated positively and negatively. Second, the pattern scream is displayed temporally
by the projector on the real object at 60 Hz. Third, a user takes a photo that contains the optical
watermarking. Fourth, the captured image is transformed into a canonical image after perspective
transformation. Finally, the calibrated image is fed into the following extracting network and the
message hidden in the image is extracted.
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2.2 Visual Illumination Model

Human Vision System. Human eyes can perceive changes in external light intensity
such as flicker over time, but they cannot perceive flickering beyond a certain frequency,
which is called flicker fusion threshold. The lowest frequency that causes flicker fusion
is dubbed critical flicker frequency (CFF). CFF is generally considered to be about 60Hz
under most circumstances [20]. That is, when the flicker frequency is no less than 60 Hz,
human eyesmay not be able to observe the change. Besides, most projectors are designed
to refresh at more than 60 Hz frequency to avoid visible flicker like screen devices [21].
Moreover, modern cameras can often capture the flicker since its shutter is shorter than
the flicker cycle. With 60 Hz projectors, we can realize invisibility in eyes but recordable
in camera.

Intrinsic Image Decomposition. The constituent elements of a natural image’s appear-
ance mainly include the illumination, shape and material [22]. As the Retinex theory
shown in [23, 24], the image can be decomposed as the pixel-wise product of the illu-
mination and the albedo, plus the specular component accounting for highlights due to
viewpoint:

I(x, y) = S(x, y) � R(x, y) + C(x, y) (1)

where I(x, y) is the observed intensity at pixel (x, y), S(x, y) is the illumination intensity,
R(x, y) is the albedo andC(x, y) is the specular term. In the optical watermarking system,
the captured image, the carrier image and the watermark pattern satisfy the aforemen-
tioned relationship. So based on the above equation, we could achieve a mapping from
the carrier image and watermark to the captured image.

3 Method

In this section, we elaborate the proposed optical watermarking system. Figure 2 shows
the basic framework, which consists of three parts: the pattern generator, the projector
and the watermark extractor. The pattern generator is responsible for modulating the
message into two complementary patterns. And the projector can alternatively project
both patterns onto the carrier image. The final extractor can extract the watermark after
correcting the image into the canonical image.

3.1 Pattern Generator

As a very important process, pattern generation determines the transparency of thewater-
marking. Projecting-shooting channel distortions are non-differential and the pattern is
independent of the carrier, so we can’t employ a deep learning-based method to generate
an optimal pattern. Based on previous pattern generation algorithms [25, 26] and HVS,
we propose a color-decomposition based watermarking pattern generation algorithm.
For a message sequence of length L, we first reshape the sequence into a binary matrix
with height h and width w (zeroing the part of h×w). Based on the spatial arrangement
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of messages, we employ a block of size b × b to represent 1-bit message so that the
whole pattern size is (b∗h) × (b∗w). Formally, the 1-bit block can be generated by:

B(x, y) =
⎧
⎨

⎩

1 −
(

D(x,y)
b
3

)2

, ifD(x, y) ≤ b/3

0, otherwise
(2)

where D(x, y) indicates the distance between (x, y) and the center of the block:

D(x, y) =
√

(
x − b

2

)2 +
(
y − b

2

)2
(3)

and (x, y) indicates the pixel coordinates of the image block. Considering the HVS is
less sensitive to the red and blue components than the green component, we hide 1-bit
message m into these two components and create two complementary templates (+,−)

for m:

B±(r, g, b) =
{

[β ± α ∗ B, β, β], ifm = 0
[β, β, β ∓ α ∗ B], otherwise

(4)

where α controls the embedding intensity and α + β = 1 for normalization. The gen-
eration of the whole pattern is by arranging each small block in the spatial order of the
message matrix. After all the messages are embedded, we can generate two patterns,
denoted by P+ and P−.

Fig. 3. Pattern generation. The sequence of bits of length L is resized to a binary matrix with
height h and width w after zeroing the part of w × h− L. Then the two patterns are modulated by
the matrix positively and negatively.

3.2 Projector

The watermark embedding process is carried out by a projector, which alternatively
projects the generated two complementary patterns with 60 Hz onto the object. Consid-
ering that the 60 Hz flicker is not perceptible to human eyes but recordable for cameras,
both the transparency and the recorded ability can be satisfied. Practically, we often limit
the projected pattern to tightly fit the carrier image for better performance.
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3.3 Watermark Extractor

Perspective Correction. After captured, the captured image should be further per-
spectively corrected and fed into the decoding network. The correction process can
be described as: after capturing the projected image by the camera, we detect the water-
marking region and warp the region back to a rectangular image. We add a black border
around the projected region and use the method in [27] to automatically locate 4 vertices
of V1(x1, y1),V2(x2, y2),V3(x3, y3) and V4(x4, y4) as shown in Fig. 4. Then we set the
transformation:

{
x′ = a1x+b1y+c1

a0x+b0y+1 ,

y′ = a2x+b2y+c2
a0x+b0y+1 .

(5)

(
x′, y′) is the corresponding coordinate to these 4 vertices V

′
1

(
x

′
1, y

′
1

)
, V

′
2

(
x

′
2, y

′
2

)
,

V
′
3
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x

′
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′
3

)
and V

′
4

(
x

′
4, y

′
4

)
. Based on the equation, we can get 8 equations and solve

them to obtain the value of eight variables. After that, we can form a stable mapping
from the captured image to the calibrated image. Then the corrected image is cropped
and resized to the input image size of the decoder network.

Fig. 4. Correction process. We add a black border around the image so we can automatically
detect the marked four vertices. Then we can subsequently acquire the mapping from the captured
image to the calibrated image. Note that the additional dots are magnets which are responsible for
fixing the printed image to the board.

Simulated Dataset Generation. Since the final watermarking extraction is carried out
by the decoding network, we need generate enough training data. Considering it is very
complicated in time and effort to acquire real photo data, so instead, we propose an
algorithm to simulate the distortions in the projecting-shooting process, as shown in
Fig. 5. Assuming the projected object is a 2D plane with a wide variety of textures,
the distortions in the actual physical process of projecting-shooting can be divided into
three parts: The projecting color distortion, the synthesis distortion and the capturing
distortion.

Projecting Color Distortion: Given the assumption that the projected pattern is spa-
tially aligned with the carrier-image, we can approximate the projecting color distortions
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by the pattern fusion and Gamma adjustment. Due to the shutter exposure effect, the
captured image might consist of a part of the pattern P+ and a part of pattern P−, and the
ratio is determined by the exposure time t+ and t−. Besides, the color of the projected
P is quite different from its original status due to the hardware difference, so we utilize
the Gamma adjustment with γ1 to make an approximation. The whole simulation can
be formulated by:

P(x, y) = [
P+(x, y) ∗ t+ + P−(x, y) ∗ t−

]γ1 (6)

where we set t+ + t− = 1 for normalization.
Synthesis Distortion: Since the embedding process is carried out by the projecting

operation, the synthesis distortions mainly come from the lighting environment. Specifi-
cally, asmentioned above, thewatermarking image is influenced by the projecting pattern
P(x, y), the carrier image R(x, y, the ambient illumination IA and specular reflection IC :

I(x, y) = (P(x, y) + IA) � R(x, y) + IC (7)

where we assume IA and IC are constants over the entire image.
Capturing Distortion: Tancik et al. [28] proposed StegaStamp, which applied a set

of differentiable image perturbations to simulate the print-shooting distortions during
training. Similarly, we conclude the capturing process as four types of distortions: color
manipulation, Gaussian noise, defocus blurring and JPEG compression.

As for colormanipulation, there is an inherent difference between the captured image
with its original color because of the sensor sampling operation. To better simulate such
perturbations, we propose to utilize contrast adjustment, brightness shifting, hue shifting
andGammaadjustment on thewatermarking image.Weaffinehistogram rescalingmx+n
to achieve brightness shifting and contrast adjustment. For hue shifting, a random color
offset s is added to each channel of RGB. Non-linear mismatching exists during shooting
so we bring in Gamma adjustment with γ2 to make an approximation.

In the camera shooting process, camerasmay not fully focus on the target area, which
will result in the defocus blurring distortion. To simulate the defocus blurring distortion,
we perform a 5 × 5-sized Gaussian blurring operation on the image.

Due to the hardware components and the capturing environments, there are always
different noises in the camera shooting process. Therefore, we directly employ Gaussian
noise model with the standard deviation σ to represent the noise distortion that occurred
during capturing.

Fig. 5. Noise-aware channel simulation. First, original two patterns generate the distorted pat-
tern under the influence of the projecting color distortion. Second, the synthetic watermarking
image is synthesized by the distorted pattern and the carrier image. Finally, the captured image is
generated from the synthetic watermarked image after capturing distortion.
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JPEG compression distortion is introduced in the saving process since most cam-
eras use JPEG as their default storage format. We simulate this process with JPEG
compression of the quality factor Q.

Network Architecture. After generating the simulated dataset, we utilize them to train
the decoding network. We employ two convolutional blocks (Conv-BatchNorm-ReLU)
with a 3 × 3 kernel as the basic network unit and skip-connection [29] is used between
neighboring units.Whenwe use 32×32 pixels to represent 1 bit message, given the input
image I ,wefirst usefive residual blockswith stride 1 andoutput featuresF1 ∈ R

64×H×W .

Then we use several down-sampled convolutional blocks to generate F2 ∈ R
256× H

32×W
32 .

The last layer employs a convolutional layer of 1 × 1 and Tanh to generate the final

output watermark M ′ ∈ R
1× H

32×W
32 . During network training, we set l1 distance as the

message reconstruction loss, which can be formulated by:

L = ∣
∣
∣
∣M − M ′∣∣∣∣

1 (8)

where M ∈ {0, 1}1× H
32×W

32 is the original message matrix.

Fig. 6. Experimental system. The left side shows the whiteboard and the test carrier used for
the environment, and the projector is placed on the table on the right. The additional magnets
(colourful dots for fixing the carrier) are only needed for the sake of the experiment.

Table 1. Based on the real-world environment, we set up the scopes of these parameters. During
training, we uniformly sample these parameters and generate simulated dataset in each step.

t+ γ1 IA IC m

(0, 0.2) ∪ (0.8, 1) (1, 2.5) (0.05, 0.1) (0.15, 0.3) (0.9, 1.1)

n s γ2 σ Q

(−0.2, 0.2) (−0.1, 0.1) (0.4, 1) (0, 0.1) (50, 100)

Training Details. The decoder network is executed on NVIDIA GeForce RTX 2080Ti.
For gradient descent, Adam [30] is applied with a learning rate of 10−3. During training,
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Table 2. Configuration parameters of conducting real-world experiments.

Device Mobile phone iPhone8 Plus

Projector EPSON

Position Shooting
distance

60 cm

Projecting
distance

50 cm

Projecting
angle

up 10°

Watermark Embedding
intensity

α = 30/255

Capacity 8× 8 bits

Size 18.5 cm × 18.5 cm

we initialize the embedding intensity at α = 80/255 and gradually decrease it to 30/255.
The decoder network is trained for 500 epochs with batch size 16. For training data, we
randomly select 2595 images from ImageNet [31] and resize them to 256 × 256. For
configuration parameters of the simulated dataset generation process, we uniformly
sample them from scopes as shown in Table 1.

4 Real-World Experiments and Analysis

In this section, we first introduce the implementation details for our real-world experi-
ments. Then comparative experiments of our method and baseline methods [10–12] are
implemented. Finally, we implement additional experiments of the proposed method.

4.1 Implementation Details

The test dataset is USC-SIPI image dataset with 14 images [32]. All the test images
are printed in A4 paper with 300dpi. The default projector and mobile phone we used
are “EPSON EB-C301MN” with the refresh rate of 60 Hz and “iPhone8 Plus” with
the camera resolution of 4032 × 3024. We use the embedding intensity α = 30/255
for test. The details of the default experimental configuration are shown in Table 2,
and our experimental system is shown in Fig. 6. To measure the visual quality of the
watermarking image, we perform amean opinion score (MOS) test.We ask 25 persons to
assign a score from 1 (bad quality, the watermark clearly visible) to 5 (excellent quality,
the watermark invisible) at the default shooting position.We use the mean value of every
observer’s score to represent the final MOS of the scheme. The robustness is evaluated
by the average extraction accuracy of the captured images. We compare the messages
and calculate the bit accuracy rate (Fig. 7).
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Fig. 7. Visual qualities.We can see gray blocks in images with baseline methods.

Table 3. Mean opinion score (MOS) test compared with baseline methods.

Method DCT [9] DWT [10] DCT-Cb [11] Proposed

MOS 2.094 1.844 2.781 4.144

4.2 Visual Quality Comparison

The visual quality comparison results (MOS) are shown in Table 3. We can easily find
that the proposed method achieves better MOS than other baseline methods. As shown
in Fig. 3, the original images and captured images with different methods are displayed.
In human eyes, the proposed projected pattern is just a pure white pattern with a certain
intensity. But for the other schemes, obvious texture can be easily perceived. This is
because the proposed method leverages the insensitivity of HVS with flicker, which
greatly improves the visual quality of the watermarked image.

4.3 Robustness Tests

We conduct experiments on different conditions to compare the extraction performance
of ourmethodwith baselinemethods [10–12]. Explicitly speaking, the captured distances
range from 30 cm to 90 cm and the captured angles range from left 75° to right 75°.
As shown in Table 4, the proposed method maintains the best extraction bit accuracy in
most distance cases, except for 30 cm and 90 cm. We can see that at 40 cm–80 cm, the
proposed scheme can achieve the accuracy beyond 88%, and the closer shooting distance
will result in better performance, which can be analyzed that closer shooting distance
could get a clearer photograph, indicating higher bit accuracy. However, we can find that
the proposed method doesn’t perform best at 30 cm in all distance cases. We analyze the
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reason as: our method is based on color difference in different channels and shooting too
closely can cause the captured image too bright, causing the color difference signal to
disappear. And other methods are based on frequency modulation, so they are supposed
to achieve the best performance with the clearest picture at the closest distance. Table 5
shows the performances at different angles. It can be easily seen that our method could
achieve more than 90% of bit accuracy within angle [−15°,15°], and even at an angle
of left 75°, the accuracy could still reach 71.63%. The performance on the front is not
always best in all angle cases. That may be attributed to more intense specular reflection
in the frontal.

Table 4. Bit accuracy (%) comparison of extracted message with different shooting distances.

Distance/cm DCT [9] DWT [10] DCT-Cb [11] Proposed

30 cm 91.74 92.35 93.97 90.85

40 cm 88.39 88.62 91.07 96.88

50 cm 90.40 92.13 92.63 94.42

60 cm 84.49 78.52 74.00 90.07

70 cm 80.58 82.31 85.38 92.75

80 cm 84.49 78.18 82.92 88.84

90 cm 86.38 87.05 89.84 83.37

Table 5. Bit accuracy (%) comparison of extracted message with different shooting angles.

Angle DCT [9] DWT [10] DCT-Cb [11] Proposed

Left 75° 60.94 63.39 61.61 71.63

Left 60° 80.47 81.58 82.92 77.79

Left 45° 78.01 77.46 82.59 89.40

Left 30° 83.15 82.03 82.37 85.38

Left 15° 77.57 76.45 80.92 93.53

Frontal 84.49 78.52 74.00 90.07

Right 15° 82.70 79.24 84.93 92.97

Right 30° 82.03 80.13 85.49 95.54

Right 45° 78.35 79.07 80.92 87.72

Right 60° 78.91 78.13 77.34 89.17

Right 75° 55.52 57.25 55.47 86.38
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4.4 Additional Experiments

The Influence of the Noise-Aware Channel Simulation. Since the network is trained
with the simulated data, the simulation performance greatly influences the network
performance. In this section, we mainly explore the importance of different simulating
operations with the following cases. The bit accuracy (%) results are shown in Tables 6
and 7, column (1): Without projecting color distortion (randomly selecting one from
two patterns); column (2): Without synthesis distortion (regarding carrier images as
whiteboards); column (3): Without capturing distortion; column (4): Iden (including all
distortions). In all distortions, it’s not hard to find that synthetic distortion is the most
important among the three distortions. That’s because theRetinex theory-based synthesis
explains the basic process of the captured image generation.

Table 6. The influence of the noise-aware channel simulation with different distances.

Distance W/o projecting color
distortion

W/o synthesis distortion W/o capturing distortion Iden

30 cm 87.17 74.55 86.83 90.85

40 cm 95.76 83.48 95.42 96.88

50 cm 92.75 82.14 90.96 94.42

60 cm 86.61 75.56 85.16 90.07

70 cm 87.95 75.11 86.72 92.75

80 cm 82.81 73.77 83.26 88.84

90 cm 80.02 69.31 79.69 83.37

The Influence of Embedding Intensity. Embedding intensity α significantly influ-
ences the extraction accuracy in the real-world test. In this section, we mainly show
and discuss the influence of embedding intensity. To determine appropriate α, we con-
duct a test on different intensities from 10/255 to 50/255with the step of 10/255. For each
intensity, we conduct the MOS test and the robustness test with the default setting. The
corresponding results are shown in Table 8. It can be found that as the intensity increases,
the visual quality gradually decreases while the robustness gradually increases. The rea-
son is that although human eyes are not sensitive when flickering with 60 Hz, frequency
is not the only restriction. When the intensity achieves a certain value, such artifacts can
still be found even. Therefore, we should take a careful trade-off of visual quality and
robustness and select the appropriate intensity α = 30/255.

Adaptability to Different Devices. To reveals the versatility of the proposedmethodon
different devices, we use five mobile phones (“iPhone8 Plus”, “Mix2S”, “Mi4”, “Honor
V20”, “iPhone SE”) and two projectors (“EPSON EB-C301MN”, “NEC CR3117X”)
to test the extraction accuracy at the distance of 60 cm from the frontal. As shown in
Table 9, the extraction accuracy is beyond 82% in all device pairs, which indicates the
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Table 7. The influence of the noise-aware channel simulation with different angles.

Angle W/o projecting color
distortion

W/o synthesis distortion W/o capturing distortion Iden

L 75° 64.62 61.94 64.06 71.63

L 60° 73.32 64.51 72.21 77.79

L 45° 81.81 71.21 82.14 89.40

L 30° 79.80 67.30 79.80 85.38

L 15° 91.29 76.56 90.96 93.53

Frontal 86.61 75.56 85.16 90.07

R 15° 89.40 76.56 87.83 92.97

R 30° 94.31 77.12 92.08 95.54

R 45° 85.60 70.98 81.81 87.72

R 60° 86.05 72.32 84.49 89.17

R 75° 77.46 68.19 76.56 86.38

versatility of the proposed method. Besides, we found that the extraction accuracy with
“NEC CR3117X” is higher than that with “EPSON EB-C301MN”. We conclude that
the “NEC CR3117X” has a higher projection resolution which influences the capture
accuracy at the camera side.

Table 8. MOS-Accuracy. The performance across a range of intensity.

α(1/255) 10 20 30 40 50

MOS 4.631 4.378 4.144 3.063 2.563

Accuracy
(%)

70.65 77.57 90.07 94.08 94.75

Table 9. Bit accuracy (%) on different mobile phones and projectors.

Device iPhone8
Plus

Mi 4 Mix2S Honor
V20

iPhone
SE

EPSON 90.07 88.73 86.72 84.49 82.59

NEC 90.4 92.75 88.84 96.65 95.09

The Influence of Different 1-bit Block Sizes. In this section, we main explore the
Influence of different block sizes that represent 1-bit message. To better clarify The
Influence of different sizes, we utilize the size ranging from 8 × 8 to 64 × 64 pixels
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Table 10. Bit accuracy (%) comparison with different 1-bit block sizes.

Block size 64 × 64 32 × 32 16 × 16 8 × 8

Accuracy 94.64 90.07 87.77 73.96

to represent 1-bit message (32 × 32 default) and adaptively change the stride for the
network to re-train the network. Then we test these cases to generate the results shown
in Table 10. We can easily find that the extraction accuracy increases when the block
size is larger. We conclude that: when the block size is smaller, more possible distortions
are introduced after capturing, so the extraction accuracy is poorer.

5 Conclusion

In this paper, we introduce a novel optical watermarking scheme based on noise sim-
ulation and deep neural network. To achieve better transparency, we utilize color-
decomposition to embedwatermark.As for robustness,wepropose thenoise-aware chan-
nel simulation model to generate the training dataset and employ the decoder network to
extract the message. Extensive experiments demonstrate the superiority compared with
baseline methods and reveal the broad applicability of our method.
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