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Figure 1. Our framework supports hairstyle and color editing individually or jointly, and conditions may be either image or text.

Abstract

Hair editing is an interesting and challenging problem
in computer vision and graphics. Many existing methods
require well-drawn sketches or masks as conditional inputs
for editing, however these interactions are neither straight-
forward nor efficient. In order to free users from the te-
dious interaction process, this paper proposes a new hair
editing interaction mode, which enables manipulating hair
attributes individually or jointly based on the texts or ref-
erence images provided by users. For this purpose, we
encode the image and text conditions in a shared embed-
ding space and propose a unified hair editing framework
by leveraging the powerful image text representation ca-
pability of the Contrastive Language-Image Pre-Training
(CLIP) model. With the carefully designed network struc-
tures and loss functions, our framework can perform high-
quality hair editing in a disentangled manner. Extensive
experiments demonstrate the superiority of our approach in
terms of manipulation accuracy, visual realism of editing
results, and irrelevant attribute preservation.

1. Introduction
Human hair, as the critical yet challenging component of

the face, has long attracted the interest of researchers. In re-
† Dongdong Chen is the corresponding author. Our code is available

at https://github.com/wty-ustc/HairCLIP

cent years, with the development of deep learning, many
conditional GAN-based hair editing methods [26, 40, 50]
can produce satisfactory editing results. Most of these
methods use well-drawn sketches [20, 40, 50] or masks [26,
40] as the input of image-to-image translation networks to
produce the manipulated results.

However, we think that these interaction types are not
intuitive or user-friendly enough. For example, in order to
edit the hairstyle of one image, users often need to spend
several minutes to draw a good sketch, which greatly limits
the large-scale, automated use of these methods. We there-
fore wonder “Can we provide another more intuitive and
convenient interaction way, just like human communication
behaviors?”. And the language (or“text”) naturally meets
our requirements.

Benefiting from the development of cross-modal vision
and language representations [28, 37, 38], text-guided im-
age manipulation has become possible. Recently, Style-
CLIP [31] has achieved amazing image manipulation re-
sults by leveraging the powerful image text representation
capabilities of CLIP [32]. CLIP has an image encoder and
a text encoder, by joint training on 400 million image text
pairs, they can measure the semantic similarity between an
input image and a text description. Based on this observa-
tion, StyleCLIP proposes to use them as the loss supervision
to make the manipulated results match the text condition.

Although StyleCLIP inherently supports text description
based hair editing, they are not exactly suitable for our task.
It suffers from the following drawbacks: 1) For each spe-
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cific hair editing description, it needs to train a separate
mapper, which is not flexible in real applications; 2) The
lack of tailored network structure and loss design makes
the method poorly disentangled for hairstyle, hair color, and
other unrelated attributes; 3) In practical applications, some
hairstyles or colors are difficult to describe in text. At this
time, users may prefer to use reference images, but Style-
CLIP does not support reference image based hair editing.

To overcome the aforementioned limitations, we propose
a hair editing framework that simultaneously supports dif-
ferent texts or reference images as the hairstyle/color con-
ditions within one model. Generally, we follow StyleCLIP
and utilize the StyleGAN [24] pre-trained on a large-scale
face dataset as our generator, and then the key is to learn
a mapper network to map the input conditions into corre-
sponding latent code changes. But different from Style-
CLIP, we explore the potential of CLIP to go beyond mea-
suring image text similarity, along with some new designs:
1) Shared Condition Embedding. To unify the text and im-
age conditions into the same domain, we leverage the text
encoder and image encoder of CLIP to extract their embed-
ding as the conditions for the mapper network respectively.
2) Disentangled Information Injection. We explicitly sepa-
rate hairstyle and hair color information and feed them into
different sub hair mappers corresponding to their seman-
tic levels. This helps our method achieve disentangled hair
editing; 3) Modulation Module. We design a conditional
modulation module to accomplish the direct control of in-
put conditions on latent codes, which improves the manip-
ulation ability of our method.

Since our goal is to achieve the hair editing based on
the text or reference image condition while ensuring other
irrelevant attributes unchanged, three types of losses are in-
troduced: 1) Text manipulation loss is used to guarantee
the similarity between the editing result and the given text
description; 2) Image manipulation loss is used to guide
hairstyle or hair color transfer from the reference image to
the target image; 3) Attribute preservation loss is used to
keep irrelevant attributes (e.g., identity and background) un-
changed before and after editing.

Quantitative and qualitative comparisons and user study
demonstrate the superiority of our method in terms of ma-
nipulation accuracy, manipulation fidelity, and irrelevant at-
tribute preservation. And some example editing results are
shown in Figure 1. We also conduct extensive ablation anal-
ysis and well justify the designs of our network structure
and loss function.

To summarize, our contributions are three-fold as below:

• We push the frontiers of interactive hair editing, i.e.,
unifying text and reference image conditions within
one framework. It supports a wide range of text and
image conditions in one single model without the need
of training many independent models, which has never

been achieved before.

• In order to perform various hairstyle and hair color ma-
nipulation in a disentangled manner, we propose some
new network structure designs and loss functions tai-
lored for our task.

• Extensive experiments and analysis are conducted to
show the better manipulation quality of our method
and the necessity of each new design.

2. Related Work
Generative Adversarial Networks. Since being proposed
by Goodfellow et al. [11], GANs have made great progress
in terms of loss functions [3, 4], network structure design
[12,35,39], and training strategies [13,42]. As a representa-
tive GAN in the field of image synthesis, StyleGAN [23,24]
can synthesize very high-fidelity human faces with realistic
facial details and hair. As the typical unconditional GANs,
StyleGAN itself is difficult to achieve controllable image
synthesis effects. But fortunately, its latent space demon-
strates promising disentanglement properties [8, 10, 18, 36],
and many works utilize StyleGAN to perform image ma-
nipulation tasks [2, 29, 31, 45, 48]. In this paper, we convert
the unconditional StyleGAN into our conditional hair edit-
ing network with the help of CLIP’s powerful image text
representation capability. Moreover, we unify the text and
reference image condition in one framework and achieve
disentangled editing effects.
Image-based Hair Manipulation. As an important part of
the human face, hair has attracted many works dedicated to
hair modeling [5,6,15] and synthesis [21,26,47,52]. Some
works [26, 52] use mask which explicitly decouples facial
attributes including hair as the conditional input for image-
to-image translation networks to accomplish hair manipula-
tion. There are also several works [40,50] that use sketches
as input to depict the structure and shape of the desired
hairstyle. However, such interactions are still relatively
costly for users. To enable easier interaction, MichiGAN
[40] supports hair transfer by extracting the orientation map
of one hairstyle reference image as well as the appearance
from another hair color reference image. However, Michi-
GAN is easy to fail for arbitrary shape changes during
hair transfer. Recently, LOHO [34] performs a two-stage
optimization in the W+ space and noise space of Style-
GANv2 [24] to complete the hair transfer for a given refer-
ence image. However, the area optimized by this method is
limited to the foreground, which requires blending the re-
constructed foreground with the original background and
often brings obvious artifacts. Besides, it is very time-
consuming, e.g., several minutes to optimize an image.
Text-based Hair Manipulation. Along with the booming
development of cross-modal visual and language represen-
tations [28, 37, 38, 51], especially the powerful CLIP [32],
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many recent efforts [7,19,31,44,49] start to study text based
manipulation. However, there is no existing method specif-
ically tailored for hair editing. Among these works, the
most relevant ones are StyleCLIP [31] and TediGAN [49].
But StyleCLIP needs to train a separate mapper network for
each specific hair editing description, which is not flexible
for real applications. For TediGAN, it proposes two ap-
proaches: TediGAN-A encodes text and image separately
into the latent space of StyleGAN and completes manipula-
tion with style-mixing, which is less decoupled and difficult
to complete hair editing; TediGAN-B conducts the manip-
ulation with optimization using CLIP to provide text-image
similarity, but the lack of knowledge learned from a large
dataset makes the process unstable and time-consuming.

Different from existing works, this paper presents the
first unified framework that enables the text and image con-
ditions simultaneously. This provides a more intuitive and
convenient interaction mode, and enables diverse text and
image conditions within one single model. Besides, bene-
fiting from the new designs tailored for this task, our method
also shows much better hair manipulation quality.

3. Proposed Method

3.1. Overview

Imagine we are in a barbershop and if someone wants to
design his hair, the common interaction would be to name
the desired hairstyle or provide the hairstylist with a corre-
sponding picture. Inspired by this, we think empowering
the AI algorithms to enable such an intuitive and efficient
interaction mode is really needed. Thanks to the great im-
age synthesis quality of StyleGAN [23, 24] and the excel-
lent image/text representation ability of CLIP [32], we are
finally able to design such a unified hair editing framework
to achieve this goal. Before diving into the framework de-
tails, we briefly introduce StyleGAN and CLIP respectively.
StyleGAN [23, 24] can synthesize high-resolution, high-
fidelity realistic images with a progressive upsample net-
work from noises. Its synthesis process involves multiple
latent spaces. Z ∈ R512 is the original noise space of Style-
GAN. A randomly sampled noise vector z ∈ Z is trans-
formed to the W ∈ R512 latent space after 8 fully connected
layers. Several studies [8,10,18,36] have demonstrated that
StyleGAN spontaneously learns to encode rich semantics
within its W space during training, and thus W exhibits
good semantic decoupling properties. In addition, some re-
cent StyleGAN inversion works [1, 33, 48] extend W space
to W+ space for better reconstruction. For a StyleGAN
with 18 layers, it is defined by the cascade of 18 different
512-dimensional vectors [w1, ..., w18], wi ∈ W .
CLIP [32] is a multi-modality model pretrained from 400
million image-text pairs collected from the Internet. It con-
sists of one image encoder and one text encoder that will

encode the image and text into the 512-dimensional embed-
ding vector, respectively. It adopts the typical contrastive
learning framework, which minimizes the cosine distance
between the encoded vectors of the correct image text pairs
and maximizes the cosine distance of the incorrect pairs.
Benefiting from large-scale pretraining, CLIP can well mea-
sure the semantic similarity between an image and a text,
via learning one shared image-text embedding space.

3.2. HairCLIP

Inspired by the pioneering work StyleCLIP [31], we uti-
lize the powerful synthesis ability of the pretrained Style-
GAN, and aim to learn an extra mapper network to achieve
the hair editing function. More specifically, given the real
image to edit, we first use the StyleGAN inversion method
“e4e” [43] to get its latent code w in the W+ space, then
use the mapper network to predict the latent code change
∆w based on w and editing conditions (including hairstyle
condition es and hair color condition ec). Finally, the mod-
ified latent code w′ = w + ∆w will be fed back into the
pretrained StyleGAN to get the target editing result. The
overall pipeline is illustrated in Figure 2, and each compo-
nent will be elaborated below.
Shared Condition Embedding. To unify the conditions
from the text and image domains under one framework, we
naturally choose to represent them by embedding them in
the joint latent space of CLIP. For the user-supplied text
hairstyle prompt and text hair color prompt, we use CLIP’s
text encoder to encode them into 512-dimensional condi-
tional embedding, which are denoted as ets and etc respec-
tively. Similarly, the hairstyle reference image and hair
color reference image are encoded by the image encoder
of CLIP and denoted as eIrs and eIrc respectively. Be-
cause CLIP is well trained on large-scale image-text pairs,
ets, e

t
c, e

Ir
s , eIrc all reside in the shared latent space, thus can

be fed into one mapper network and flexibly switched.
Disentangled Information Injection. As demonstrated in
many works [23, 49], different layers of StyleGAN corre-
spond to different semantic levels of information in the gen-
erated images, with the more preceding layers correspond-
ing to higher semantic levels of information. Following
the StyleCLIP [31], we adopt three sub hair mappers Mc,
Mm,Mf with the same network structure, which are re-
sponsible for predicting ∆w of hair editing corresponding
to different parts (coarse, medium and fine) of the latent
code w = (wc, wm, wf ). More specifically, wc, wm, wf

correspond to the high semantic level, the middle semantic
level, and the low semantic level respectively.

Noticing this semantic layering phenomenon in Style-
GAN, we propose disentangled information injection,
which aims to improve the decoupling ability of the net-
work for hairstyle and hair color editing. In detail, we use
the embedding of hairstyle information es ∈ {ets, eIrs } from
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Figure 2. The overview of our framework, here we show an example with hairstyle description text and hair color reference image as
conditional inputs. We achieve the corresponding hair editing according to the given reference images and texts, where images, texts are
encoded by CLIP’s image encoder, text encoder to 512-dimensional vectors as conditional inputs for the hair mapper. Only three sub hair
mappers are trainable, where Mc and Mm take the hairstyle conditional input es and Mf takes the hair color conditional input ec.

CLIP as the conditional input for Mc and Mm, and the em-
bedding of hair color information ec ∈ {etc, eIrc } from CLIP
as the conditional input for Mf . This is based on the em-
pirical observation that hairstyle often corresponds to mid-
dle and high level semantic information in StyleGAN while
hair color corresponds to low level semantic information.
Therefore, the hair mapper M can be formulated as:

M(w, es, ec) = (Mc(wc, es),Mm(wm, es),Mf (wf , ec)).
(1)

Modulation Module. As shown in Figure 2, each sub hair
mapper network follows a simple design and consists of
five blocks, and each block consists of one fully connected
(fc) layer, one newly designed modulation module, and one
non-linear activation layer (leakly relu). Rather than simply
concatenating the condition embedding with the input latent
code, the modulation module uses the condition embedding
e to modulate the intermediate output x of the preceding fc
layer. Mathematically, it follows the below formulation:

x′ = (1 + fγ(e))
x− µx

σx
+ fβ(e), (2)

where µx and σx denote the mean and standard deviation
of x respectively. And fγ and fβ are implemented with
simple fully connected networks (two fc layers with one
intermediate layernorm and leaky relu layer). This design
is motivated by recent conditional image translation works
[16, 30, 41]. During testing, if no conditional input is pro-
vided for hairstyle or hair color, then all modulation mod-
ules in the corresponding sub hair mapper will be imple-
mented as identity functions, which is denoted as es = 0 or
ec = 0. In this way, we flexibly support users to edit only
hairstyle, only hair color, or both hairstyle and hair color.

3.3. Loss Functions

Our goal is to manipulate the hair in a decoupled manner
based on the conditional input, while requiring other irrel-
evant attributes (e.g., background, identity) well preserved.
Therefore, we specifically design three types of loss func-
tions to train the mapper networks: text manipulation loss,
image manipulation loss, and attribute preservation loss.
Text Manipulation Loss. In order to perform the corre-
sponding hair manipulation based on the text prompt of the
hairstyle or color, we design the text manipulation loss Lt

with the help of CLIP as follows:

Lt = Lclip
st + Lclip

ct . (3)

For the hairstyle text manipulation loss, we measure the co-
sine distance between the manipulated image and the given
text in the CLIP’s latent space:

Lclip
st = 1− cos(Ei(G(w +M(w, ets, ec))), e

t
s), (4)

where cos(·) means cosine similarity, Ei represents the im-
age encoder of CLIP, G represents the pretrained StyleGAN
generator, ets = Et(st) denotes the embedding of a given
hairstyle description text st which is encoded by the text
encoder Et of CLIP, and ec ∈ {etc, eIrc , 0}. Similarly, color
text manipulation loss is defined as follows:

Lclip
ct = 1− cos(Ei(G(w +M(w, es, e

t
c))), e

t
c), (5)

where etc denotes the embedding of a given color description
text which is encoded by the text encoder of CLIP, and es ∈
{ets, eIrs , 0}.
Image Manipulation Loss. Given a reference image, we
want the manipulated image to possess the same hairstyle
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as that of the reference image. However characterizing the
similarity between two hairstyles is a challenging task. Ex-
ploiting the powerful potential of CLIP again, we encode
them separately using CLIP’s image encoder to measure
their similarity in CLIP’s latent space:

Lsi = 1− cos(Ei(xM ∗ Ph(xM )), Ei(x ∗ Ph(x))), (6)

where the manipulated image xM = G(w+M(w, eIrs , ec)),
eIrs = Ei(x ∗ Ph(x)), ec ∈ {etc, eIrc , 0}, P denotes the pre-
trained facial parsing network [27], Ph(xM ) represents the
mask of the hair region of xM , and x means the given ref-
erence image. Thanks to this supervision we propose, our
method can yield plausible editing results for cases where
the reference image and the input image are seriously mis-
aligned, which is currently unavailable for other hairstyle
transfer methods. Also, for reference image based hair color
manipulation, we calculate the average color difference in
the hair area between reference image and manipulated im-
age as the loss:

Lci = ||avg(xM ∗ Ph(xM ))− avg(x ∗ Ph(x))||1, (7)

where xM = G(w+M(w, es, e
Ir
c )), eIrc = Ei(x ∗Ph(x)),

and es ∈ {ets, eIrs , 0}. In summary, the image manipulation
loss Li is defined as:

Li = λsiLsi + λciLci, (8)

where λsi, λci are set to 5, 0.02 respectively by default.
Attribute Preservation Loss. To ensure identity consis-
tency before and after hair editing, the identity loss is ap-
plied as follows:

Lid = 1− cos(R(G(w +M(w, es, ec))), R(G(w))), (9)

where es ∈ {ets, eIrs , 0}, ec ∈ {etc, eIrc , 0}, R is a pre-
trained ArcFace [9] network for face recognition and G(w)
denotes the reconstructed real image. In addition, we de-
signed Ls mc in the same way as Lci in order to maintain
the hair color when only manipulating the hairstyle:

Ls mc = ||avg(xM ∗ Ph(xM ))− avg(xw ∗ Ph(xw))||1,
(10)

where xM = G(w+M(w, es, ec)), es ∈ {ets, eIrs }, ec = 0,
and xw = G(w). Empirically, we find the hairstyle can be
well preserved when only changing the color, so we do not
add corresponding preservation loss.

Moreover, we introduced background loss with the help
of facial parsing network [27] :

Lbg = ||(xM − xw) ∗ (Pnh(xM ) ∩ Pnh(xw))||2, (11)

where xM = G(w + M(w, es, ec)), Pnh(xM ) represents
the mask of the non-hair region of xM . In this way, we
largely ensure that the non-relevant attribute regions remain

unchanged. For the same purpose, the L2 norm of the ma-
nipulation step in the latent space is utilized:

Lnorm = ||M(w, es, ec)||2. (12)

The overall attribute preservation loss Lap is defined as:

Lap = λidLid + λs mcLs mc + λbgLbg + λnormLnorm,
(13)

where λid, λs mc, λbg , λnorm are set to 0.3, 0.02, 1, 0.8
respectively by default.

Finally, the overall loss function is defined as:

L = λtLt + λiLi + λapLap, (14)

where λt, λi, λap are set to 2, 1, 1 respectively by default.

4. Experiments
Implementation Details. We train and evaluate our hair
mapper on the CelebA-HQ dataset [22]. Since we use e4e
[43] as our inversion encoder, we follow its division of the
training set and test set. The StyleGAN2 [24] pre-trained
on the FFHQ dataset [23] is used as our generator. For the
text input, we collected 44 hairstyle text descriptions and
12 hair color text descriptions; The CelebA-HQ dataset is
used to provide reference images of hairstyles or hair colors,
and we also generated several edited images using our text-
guided hair editing method to augment the diversity of the
reference image set. During training, the hair mapper is ran-
domly tasked to edit only the hairstyle or only the hair color
or both hairstyle and hair color depending on the provided
conditional input. The conditioned input is randomly set as
text or reference image. Regarding the training strategy, the
base learning rate is 0.0005 with batch size of 1. The num-
ber of training iterations is 500, 000, and the Adam [25]
optimizer is used, with β1 and β2 set to 0.9 and 0.999, re-
spectively. For all compared methods, we use the official
training codes or pre-trained models.

To quantitatively evaluate irrelevant attributes preserva-
tion, four metrics are used: IDS denotes identity similarity
before and after editing calculated by Curricularface [17].
PSNR and SSIM are calculated in the region of intersection
of non-hair regions before and after editing. ACD repre-
sents the average color difference of the hair region.

4.1. Quantitative and Qualitative Comparison

Comparison to Text-Driven Image Manipulation Meth-
ods. We compare our approach with current state-of-the-art
text-driven image manipulation methods TediGAN [49] and
StyleCLIP [31] on ten text descriptions. The optimization
iteration number of TediGAN is set to 200 according to their
official recommendations. The visual comparison is shown
in Figure 3. TediGAN fails in all hairstyle editing related
tasks, only the hair color editing is barely successful but the
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Figure 3. Visual comparison with StyleCLIP [31] and TediGAN [49]. The corresponding simplified text descriptions (editing hairstyle,
hair color, or both of them) are listed on the leftmost side of each row, and all input images are the inversions of the real images. Our
approach demonstrates better visual photorealism and irrelevant attributes preservation ability while completing the specified hair editing.

results are still unsatisfactory. This phenomenon is consis-
tent with the findings given in the StyleCLIP: the optimiza-
tion method using CLIP similarity loss is very unstable due
to the lack of knowledge learned from a large dataset.

StyleCLIP trains a separate mapper for each descrip-
tion and thus demonstrates stronger manipulation ability on
the task of editing only the hairstyle, but excessive manip-
ulation ability instead affects the image realism (see afro
hairstyle). Thanks to our shared condition embedding, our
method finds a balance between the degree of manipulation
and realism by fully learning over many hair editing de-
scription inputs. On the task of editing both hairstyle and
hair color, our method exhibits better manipulation abil-
ity. This is due to proposed disentangled information in-
jection and modulation module, whereas StyleCLIP leaves
this information in one description making it poorly decou-
pled and difficult to perform hairstyle and hair color editing
tasks at the same time. In addition, benefiting from attribute
preservation loss, our method exhibits better retention of ir-
relevant attributes (see mohawk hairstyle, purple hair).

In Table 1, we give the average quantitative comparison
results in terms of irrelevant attributes preservation on these

Methods IDS PSNR SSIM
Ours 0.83 27.8 0.92
StyleCLIP [31] 0.79 23.2 0.87
TediGAN [49] 0.17 24.1 0.79

Table 1. Quantitative comparison regarding the preservation of
irrelevant attributes. Our approach exhibits the best irrelevant at-
tributes preservation ability.

ten text descriptions. And the quantitative results lead to
the same conclusions as the visual comparison. We do not
compare the FID [14] used in TediGAN here since it can
not reflect the manipulation capability. More quantitative
results and analysis in terms of the FID metric are given in
the supplementary material.
Comparison to Hair Transfer Methods. Given a hairstyle
reference image and a hair color reference image, the
purpose of hair transfer is to transfer their correspond-
ing hairstyle and hair color attributes to the input image.
We compare our method with the current state-of-the-art
LOHO [34] and MichiGAN [40] in Figure 4. Both of these
methods perform hairstyle transfer by direct replication in
the spatial domain to generate more accurate details of the
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Input HRI CRI Ours LOHO MichiGAN

Figure 4. Comparison of our approach with LOHO [34] and
MichiGAN [40] on hair transfer. HRI means hairstyle reference
image and CRI means hair color reference image.

hair structure, although suffer from obvious artifacts in the
boundary areas in some cases (see the results in the first
row). However, as shown in the last two rows, they are sen-
sitive to the pose of hairstyle reference images and cannot
complete plausible hairstyle transfer when the hairstyle and
pose are not well aligned between the hairstyle reference
image and the input image. Unlike these two approaches,
we transform the measure space of similarity into the latent
space of CLIP during training and use the embedding of the
hair region of the reference image from CLIP as the con-
ditional input. As a result, our method provides a solution
for the unaligned hairstyle transfer and shows its superiority
compared to other existing methods.
User Study. To further evaluate the manipulation ability
and the visual realism of the edited results of different meth-
ods in two types of hair editing tasks, we recruited 20 par-
ticipants for our user study. For the text-driven image ma-
nipulation methods, we provided 20 groups of results from
three methods at a time, which were randomly selected from
two of each of ten hair editing descriptions. For the hair
transfer methods, participants were also provided with 20
groups of results, half of which were aligned hairstyle trans-
fer cases and the other half were non-aligned. Participants
were asked to rank three methods for each task with respect
to manipulation accuracy and visual realism, where 1 rep-
resents the best and 3 represents the worst. The average
ranking values are listed in Table 2, where our method out-
performs the competitive approaches in both metrics.

4.2. Ablation Analysis

To verify the effectiveness of our proposed network
structure and loss functions, we alternately ablate one of
these key components to retrain variants of our method, by
keeping all but the selected component unchanged.
Importance of Attribute Preservation Loss. To verify
the role of each component in the attribute preservation
loss, we randomly selected 4, 400 images for qualitative and
quantitative ablation studies across the task of editing only

Text-Driven Methods Hair Transfer Methods
Metrics Ours StyleCLIP TediGAN Ours LOHO MichiGAN
Acc. 1.39 1.66 2.95 1.79 2.26 1.95
Real. 1.42 1.63 2.95 1.09 2.48 2.43

Table 2. User study on text-driven image manipulation methods
and hair transfer methods. Acc. denotes the manipulation ac-
curacy for given conditional inputs and Real. denotes the visual
realism of the manipulated image. The numbers in the table are
average rankings, the lower the better.

Methods IDS PSNR SSIM ACD
Ours 0.85 27.0 0.91 0.02
w/o Lbg 0.82 19.9 0.82 0.02
w/o Lid 0.25 22.8 0.80 0.03
w/o Ls mc 0.82 26.6 0.90 0.09
w/o Lnorm 0.75 24.9 0.87 0.03

Table 3. Quantitative ablation on attribute preservation loss.

Input Ours
w/o
Lbg

w/o
Lid

w/o
Ls mc

w/o
Lnorm

Figure 5. The effect of attribute preservation loss. The text de-
scription is “slicked back hairstyle”.

hairstyles. Consistent conclusions can be drawn from Table
3 and Figure 5: Lbg , Lid, and Lnorm all contribute to the
maintenance of irrelevant attributes, and Ls mc helps keep
hair color unchanged when only editing the hairstyle.
Superiority of Network Structure Design. We compare
our model with three variants. (a) replace the modulation
module with vanilla layernorm layer, and concatenate con-
ditional inputs with the latent code and then feed them into
the network. (b) replace the conditional inputs of the coarse
and medium sub hair mappers with hair color embedding,
and the fine sub hair mapper with hairstyle embedding. (c)
replace the conditional input of the medium sub hair map-
per with the hair color embedding and leave the rest un-
changed. As shown in Figure 6, only our model completes
both hairstyle and hair color manipulation. The unsatisfac-
tory result of (a) proves that our modulation module can
better fuse the condition information into latent space and
improve manipulation capability. (b) and (c) confirm the
correctness of our disentangled semantic-matching-based
information injection.
Hair Interpolation. Given two edited latent codes
WA,WB ∈ W+, we can achieve fine-grained hair edit-
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Input Image Ours (a) (b) (c)

Figure 6. Visual comparison between our method and variants.
The text condition is “perm hairstyle and red hair”. (a) concatenate
conditional inputs with the latent code. (b) replace the conditional
inputs of coarse and medium sub hair mappers with hair color em-
bedding, and fine sub hair mapper with hairstyle embedding. (c)
replace the conditional input of medium sub hair mapper with the
hair color embedding and leave the rest unchanged.

Yellow Pink

Ringlets Shingle Bob

Figure 7. Hair interpolation results. By gradually increasing the
blending parameter λ from 0 to 1, we can manage hair editing at a
fine-grained level, such as changing from yellow hair to pink hair,
from ringlets hairstyle to shingle bob hairstyle.

ing by interpolation. In detail, we combine the two latent
codes by linear weighting to generate the intermediate la-
tent code WI = λWB + (1 − λ)WA. Finally, the image
corresponding to the intermediate latent code is generated.
By gradually increasing the blending parameter λ from 0
to 1, we can manage hair editing at a fine-grained level, as
shown in Figure 7.
Generalization Ability. In Figure 8, we demonstrate the
generalization ability of our method to unseen text descrip-
tions. Thanks to our strategy of shared condition embed-
ding, our method possesses some extrapolation ability after
training with only a limited number of hair editing descrip-
tions, which yields reasonable editing results for texts that
never appear in the training descriptions.
Cross-Modal Conditional Inputs. Our method supports
conditional inputs from the image and text domains individ-
ually or jointly, which is not feasible with current existing
hair editing methods, and the results are shown in Figure 1.
More results will be given in the supplementary materials.

5. Limitations and Negative Impact
Since our editing is done in the latent space of pre-

trained StyleGAN, we can not complete the editing for

Input Image Curly Short Mushroom Violet Silver

Figure 8. Generalization ability to unseen descriptions. Despite
never being trained on these descriptions of “curly short hairstyle”,
“mushroom hairstyle”, “violet hair”, and “silver hair”, our method
can still yield plausible manipulation results.

some rare hairstyle descriptions or reference images that are
not within the domain of StyleGAN. But it can be poten-
tially solved by adding corresponding images to StyleGAN
pre-training. For hairstyle transfer, we use the embedding
of the reference image in the CLIP latent space as the con-
dition for our hair mapper, which sometimes loses the fine-
grained structure and thus cannot achieve a perfect transfer
for structural details. The hair-edited images may be used
to spread malicious information, which can be evaded by
using GAN-generated image detectors [46].

6. Conclusions
In this paper, we propose a new hair editing interac-

tion mode that unifies conditional inputs from text and im-
age domains in a unified framework. In our framework,
users can individually or jointly provide textual descriptions
and reference images to complete the hair editing. This
multi-modal interaction greatly increases the flexibility of
hair editing and reduces the interaction cost for users. By
maximizing the great potential of CLIP, tailored network
structure designs and loss functions, our framework sup-
ports high-quality hair editing in a decoupled manner. Ex-
tensive qualitative and quantitative comparisons and user
study demonstrate the superiority of our method compared
to competing methods in terms of manipulation capability,
irrelevant attributes preservation, and image realism.
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