
CSWin Transformer: A General Vision Transformer Backbone with
Cross-Shaped Windows

Xiaoyi Dong1*, Jianmin Bao2, Dongdong Chen3†, Weiming Zhang1,
Nenghai Yu1, Lu Yuan3, Dong Chen2, Baining Guo2

1University of Science and Technology of China
2Microsoft Research Asia 3Microsoft Cloud + AI

{dlight@mail., zhangwm@, ynh@}.ustc.edu.cn cddlyf@gmail.com

{jianbao, luyuan, doch, bainguo }@microsoft.com

Abstract

We present CSWin Transformer, an efficient and effec-
tive Transformer-based backbone for general-purpose vision
tasks. A challenging issue in Transformer design is that
global self-attention is very expensive to compute whereas
local self-attention often limits the field of interactions of
each token. To address this issue, we develop the Cross-

Shaped Window self-attention mechanism for computing
self-attention in the horizontal and vertical stripes in parallel

that form a cross-shaped window, with each stripe obtained
by splitting the input feature into stripes of equal width. We
provide a mathematical analysis of the effect of the stripe
width and vary the stripe width for different layers of the
Transformer network which achieves strong modeling capa-
bility while limiting the computation cost. We also introduce
Locally-enhanced Positional Encoding (LePE), which han-
dles the local positional information better than existing
encoding schemes. LePE naturally supports arbitrary input
resolutions, and is thus especially effective and friendly for
downstream tasks. Incorporated with these designs and a hi-
erarchical structure, CSWin Transformer demonstrates com-
petitive performance on common vision tasks. Specifically,
it achieves 85.4% Top-1 accuracy on ImageNet-1K without
any extra training data or label, 53.9 box AP and 46.4 mask
AP on the COCO detection task, and 52.2 mIOU on the
ADE20K semantic segmentation task, surpassing previous
state-of-the-art Swin Transformer backbone by +1.2, +2.0,
+1.4, and +2.0 respectively under the similar FLOPs setting.
By further pretraining on the larger dataset ImageNet-21K,
we achieve 87.5% Top-1 accuracy on ImageNet-1K and high
segmentation performance on ADE20K with 55.7 mIoU. 1

*Work done during an internship at Microsoft Research Asia.
†Dongdong Chen is the corresponding author.
1Code and pretrain model is available at https://github.com/

microsoft/CSWin-Transformer

1. Introduction

Transformer-based architectures [12, 30, 42, 49] have re-

cently achieved competitive performances compared to their

CNN counterparts in various vision tasks. By leveraging

the multi-head self-attention mechanism, these vision Trans-

formers demonstrate a high capability in modeling the long-

range dependencies, which is especially helpful for handling

high-resolution inputs in downstream tasks, e.g., object de-

tection and segmentation. Despite the success, the Trans-

former architecture with full-attention mechanism [12] is

computationally inefficient.

To improve the efficiency, one typical way is to limit

the attention region of each token from full-attention to lo-

cal/windowed attention [30, 44]. To bridge the connection

between windows, researchers further proposed halo and

shift operations to exchange information through nearby win-

dows. However, the receptive field is enlarged quite slowly

and it requires stacking a great number of blocks to achieve

global self-attention. A sufficiently large receptive field is

crucial to the performance especially for the downstream

tasks(e.g., object detection and segmentation). Therefore it

is important to achieve large receptive filed efficiently while

keeping the computation cost low.

In this paper, we present the Cross-Shaped Window
(CSWin) self-attention, which is illustrated in Figure 1 and

compared with existing self-attention mechanisms. With

CSWin self-attention, we perform the self-attention calcu-

lation in the horizontal and vertical stripes in parallel, with

each stripe obtained by splitting the input feature into stripes

of equal width. This stripe width is an important parameter

of the cross-shaped window because it allows us to achieve

strong modelling capability while limiting the computation

cost. Specifically, we adjust the stripe width according to the

depth of the network: small widths for shallow layers and

larger widths for deep layers. A larger stripe width encour-

ages a stronger connection between long-range elements and

12124

Shifted Local

Sequential Axial

Next
Block

Next
Block

Split Head Full Attention

Criss-Cross

Concat

Dynaic Stripe Window + Parallel Grouing Heads = CSWin

Slide Local

Local + Global

Figure 1. Illustration of different self-attention mechanisms, our CSWin is fundamentally different from two aspects. First, we split

multi-heads ({h1, . . . , hK}) into two groups and perform self-attention in horizontal and vertical stripes simultaneously. Second, we adjust

the stripe width according to the depth network, which can achieve better trade-off between computation cost and capability

achieves better network capacity with a small increase in

computation cost. We will provide a mathematical analysis

of how the stripe width affects the modeling capability and

computation cost.

It is worthwhile to note that with CSWin self-attention

mechanism, the self-attention in horizontal and vertical

stripes are calculated in parallel. We split the multi-heads

into parallel groups and apply different self-attention op-

erations onto different groups. This parallel strategy intro-

duces no extra computation cost while enlarging the area

for computing self-attention within each Transformer block.

This strategy is fundamentally different from existing self-

attention mechanisms [18, 30, 45, 56] that apply the same

attention operation across multi-heads((Figure 1 b,c,d,e), and

perform different attention operations sequentially(Figure 1

c,e). We will show through ablation analysis that this differ-

ence makes CSWin self-attention much more effective for

general vision tasks.

Based on the CSWin self-attention mechanism, we fol-

low the hierarchical design and propose a new vision

Transformer architecture named “CSWin Transformer” for

general-purpose vision tasks. This architecture provides

significantly stronger modeling power while limiting compu-

tation cost. To further enhance this vision Transformer, we

introduce an effective positional encoding, Locally-enhanced
Positional Encoding (LePE), which is especially effective

and friendly for input varying downstream tasks such as ob-

ject detection and segmentation. Compared with previous

positional encoding methods [9, 35, 45], our LePE imposes

the positional information within each Transformer block

and directly operates on the attention results instead of the

attention calculation. The LePE makes CSWin Transformer

more effective and friendly for the downstream tasks.

As a general vision Transformer backbone, the CSWin

Transformer demonstrates strong performance on image clas-

sification, object detection and semantic segmentation tasks.

Under the similar FLOPs and model size, CSWin Trans-

former variants significantly outperforms previous state-

of-the-art (SOTA) vision Transformers. For example, our

base variant CSWin-B achieves 85.4% Top-1 accuracy on

ImageNet-1K without any extra training data or label, 53.9
box AP and 46.4 mask AP on the COCO detection task, 51.7
mIOU on the ADE20K semantic segmentation task, surpass-

ing previous state-of-the-art Swin Transformer counterpart

by +1.2, +2.0, 1.4 and +2.0 respectively. Under a smaller

FLOPs setting, our tiny variant CSWin-T even shows larger

performance gains, i.e.,, +1.4 point on ImageNet classifica-

tion, +3.0 box AP, +2.0 mask AP on COCO detection and

+4.6 on ADE20K segmentation. Furthermore, when pretrain-

ing CSWin Transformer on the larger dataset ImageNet-21K,

we achieve 87.5% Top-1 accuracy on ImageNet-1K and high

segmentation performance on ADE20K with 55.7 mIoU.

2. Related Work
Vision Transformers. Convolutional neural networks

(CNN) have dominated the computer vision field for many

years and achieved tremendous successes [5, 16, 19–21, 28,

34, 36, 38–40]. Recently, the pioneering work ViT [12]

demonstrates that pure Transformer-based architectures can

also achieve very competitive results, indicating the potential

of handling the vision tasks and natural language process-

ing (NLP) tasks under a unified framework. Built upon the

success of ViT, many efforts have been devoted to designing

better Transformer based architectures for various vision

tasks, including low-level image processing [4, 46], image

classification [8,8,10,13,14,17,24,42,43,47,49,53–55], ob-

ject detection [3, 59] and semantic segmentation [37, 48, 57].

Rather than concentrating on one special task, some recent

works [30, 47, 56] try to design a general vision Transformer

backbone for general-purpose vision tasks. They all follow

the hierarchical Transformer architecture but adopt differ-

ent self-attention mechanisms. The main benefit of the hi-

erarchical design is to utilize the multi-scale features and

reduce the computation complexity by progressively decreas-

ing the number of tokens. In this paper,we propose a new

hierarchical vision Transformer backbone by introducing

12125

Stage 1

Conv ↓

Stage 2

Conv ↓

Stage 3

Conv ↓

Stage 4

CSwin
Transformer Block Cross-Shaped

Window Self-Attention

LN

MLP

CSwin Transformer Block

C
onvolutional

Token Em
bedding

CSwin
Transformer Block

CSwin
Transformer Block

CSwin
Transformer Block

LN

Figure 2. Left: the overall architecture of our proposed CSWin Transformer, Right: the illustration of CSWin Transformer block.

cross-shaped window self-attention and locally-enhanced

positional encoding.

Efficient Self-attentions. In the NLP field, many efficient

attention mechanisms [1, 6, 7, 25, 27, 31, 33, 41] have been

designed to improve the Transformer efficiency for han-

dling long sequences. Since the image resolution is often

very high in vision tasks, designing efficient self-attention

mechanisms is also very crucial. However, many existing vi-

sion Transformers [12, 42, 49, 55] still adopt the original full

self-attention, whose computation complexity is quadratic

to the image size. To reduce the complexity, the recent

vision Transformers [30, 44] adopt the local self-attention

mechanism [32] and its shifted/haloed version to add the

interaction across different local windows. Besides, axial

self-attention [18] and criss-cross attention [23] propose cal-

culating attention within stripe windows along horizontal

or/and vertical axis. While the performance of axial atten-

tion is limited by its sequential mechanism and restricted

window size, criss-cross attention is inefficient in practice

due to its overlapped window design and ineffective due to

its restricted window size. They are the most related works

with our CSWin, which could be viewed as a much general

and efficient format of these previous works.

Positional Encoding. Since self-attention is permutation-

invariant and ignores the token positional information, po-

sitional encoding is widely used in Transformers to add

such positional information back. Typical positional en-

coding mechanisms include absolute positional encoding

(APE) [45], relative positional encoding (RPE) [30, 35] and

conditional positional encoding (CPE) [9]. APE and RPE

are often defined as the sinusoidal functions of a series of

frequencies or the learnable parameters, which are designed

for a specific input size and are not friendly to varying input

resolutions. CPE takes the feature as input and can generate

the positional encoding for arbitrary input resolutions. Then

the generated positional encoding will be added onto the

input feature. Our LePE shares a similar spirit as CPE, but

proposes to add the positional encoding as a parallel mod-

ule to the self-attention operation and operates on projected

values in each Transformer block. This design decouples

positional encoding from the self-attention calculation, and

can enforce stronger local inductive bias.

3. Method
3.1. Overall Architecture

The overall architecture of CSWin Transformer is illus-

trated in Figure 2. For an input image with size of H×W×3,

we follow [49] and leverage the overlapped convolutional

token embedding (7 × 7 convolution layer with stride 4))

to obtain H
4 × W

4 patch tokens, and the dimension of each

token is C. To produce a hierarchical representation, the

whole network consists of four stages. A convolution layer

(3 × 3, stride 2) is used between two adjacent stages to re-

duce the number of tokens and double the channel dimension.

Therefore, the constructed feature maps have H
2i+1 × W

2i+1

tokens for the ith stage, which is similar to traditional CNN

backbones like VGG/ResNet. Each stage consists of Ni

sequential CSWin Transformer Blocks and maintains the

number of tokens. CSWin Transformer Block has the over-

all similar topology as the vanilla multi-head self-attention

Transformer block with two differences: 1) It replaces the

self-attention mechanism with our proposed Cross-Shaped

Window Self-Attention; 2) In order to introduce the local

inductive bias, LePE is added as a parallel module to the

self-attention branch.

3.2. Cross-Shaped Window Self-Attention

Despite the strong long-range context modeling capa-

bility, the computation complexity of the original full self-

attention mechanism is quadratic to feature map size. There-

fore, it will suffer from huge computation cost for vision

tasks that take high resolution feature maps as input, such

as object detection and segmentation. To alleviate this issue,

existing works [30, 44] suggest to perform self-attention in a

local attention window and apply halo or shifted window to

enlarge the receptive filed. However, the token within each

Transformer block still has limited attention area and re-

quires stacking more blocks to achieve global receptive filed.

To enlarge the attention area and achieve global self-attention

more efficiently, we present the cross-shaped window self-

attention mechanism, which is achieved by performing self-

attention in horizontal and vertical stripes in parallel that

form a cross-shaped window.

Horizontal and Vertical Stripes. According to the multi-

head self-attention mechanism, the input feature X ∈
R(H×W)×C will be first linearly projected to K heads, and

12126

APE/CPE(X)
((RPE

Transformer block Transformer block

(

Transformer block
LePE(V)

Figure 3. Comparison among different positional encoding mechanisms: APE and CPE introduce the positional information before feeding

into the Transformer blocks, while RPE and our LePE operate in each Transformer block. Different from RPE that adds the positional

information into the attention calculation, our LePE operates directly upon V and acts as a parallel module. ∗ Here we only draw the

self-attention part to represent the Transformer block for simplicity.

then each head will perform local self-attention within either

the horizontal or vertical stripes.

For horizontal stripes self-attention, X is evenly parti-

tioned into non-overlapping horizontal stripes [X1, .., XM]
of equal width sw, and each of them contains sw ×W to-

kens. Here, sw is the stripe width and can be adjusted to

balance the learning capacity and computation complexity.

Formally, suppose the projected queries, keys and values of

the kth head all have dimension dk, then the output of the

horizontal stripes self-attention for kth head is defined as:

X = [X1, X2, . . . , XM],

Y i
k = Attention(XiWQ

k , XiWK
k , XiWV

k),

H-Attentionk(X) = [Y 1
k , Y

2
k , . . . , Y

M
k]

(1)

Where where Xi ∈ R(sw×W)×C and M = H/sw, i =

1, . . . ,M . WQ
k ∈ RC×dk , WK

k ∈ RC×dk , WV
k ∈ RC×dk

represent the projection matrices of queries, keys and values

for the kth head respectively, and dk is set as C/K. The

vertical stripes self-attention can be similarly derived, and

its output for kth head is denoted as V-Attentionk(X).
Assuming natural images do not have directional bias,

we equally split the K heads into two parallel groups (each
has K/2 heads, K is often an even value). The first group
of heads perform horizontal stripes self-attention while the
second group of heads perform vertical stripes self-attention.
Finally the output of these two parallel groups will be con-
catenated back together.

CSWin-Attention(X) = Concat(head1, ..., headK)W
O

headk =

{
H-Attentionk(X) k = 1, . . . ,K/2

V-Attentionk(X) k = K/2 + 1, . . . ,K

(2)

Where WO ∈ RC×C is the commonly used projection

matrix that projects the self-attention results into the tar-

get output dimension (set as C by default). As described

above, one key insight in our self-attention mechanism de-

sign is splitting the multi-heads into different groups and

applying different self-attention operations accordingly. In

other words, the attention area of each token within one
Transformer block is enlarged via multi-head grouping. By

contrast, existing self-attention mechanisms apply the same

self-attention operations across different multi-heads. In the

experiment parts, we will show that this design will bring

better performance.

Computation Complexity Analysis. The computation com-

plexity of CSWin self-attention is:

Ω(CSWin) = HWC ∗ (4C + sw ∗H + sw ∗W) (3)

For high-resolution inputs, considering H,W will be

larger than C in the early stages and smaller than C in the

later stages, we choose small sw for early stages and larger

sw for later stages. In other words, adjusting sw provides the
flexibility to enlarge the attention area of each token in later
stages in an efficient way. Besides, to make the intermediate

feature map size divisible by sw for 224 × 224 input, we

empirically set sw to 1, 2, 7, 7 for four stages by default.

Locally-Enhanced Positional Encoding. Since the self-

attention operation is permutation-invariant, it will ignore

the important positional information within the 2D image.

To add such information back, different positional encoding

mechanisms have been utilized in existing vision Transform-

ers. In Figure 3, we show some typical positional encoding

mechanisms and compare them with our proposed locally-

enhanced positional encoding. In details, APE [45] and

CPE [9] add the positional information into the input token

before feeding into the Transformer blocks, while RPE [35]

and our LePE incorporate the positional information within

each Transformer block. But different from RPE that adds

the positional information within the attention calculation

(i.e., Softmax(QKT)), we consider a more straightforward

manner and impose the positional information upon the lin-

early projected values. Meanwhile, we notice that RPE

introduces bias in a per head manner, while our LePE is a

per-channel bias, which may show more potential to serve

as positional embeddings.

Mathematically, we denote the input sequence as x =
(x1, . . . , xn) of n elements, and the output of the attention

z = (z1, . . . , zn) of the same length, where xi, zi ∈ RC .

Self-attention computation could be formulated as:

zi =
n∑

j=1

αijvj , αij = exp(qTi kj/
√
d) (4)

where qi, ki, vi are the queue, key and value get by a

linear transformation of the input xi and d is the feature

dimension. Then our Locally-Enhanced position encoding

performs as a learnable per-element bias and Eq.4 could be

formulated as:

zki =

n∑
j=1

(αk
ij + βk

ij)v
k
j (5)

where zki represents the kth element of vector zi. To make

the LePE suitable to varying input size, we set a distance

12127

Models #Dim #Blocks sw #heads #Param. FLOPs

CSWin-T 64 1,2,21,1 1,2,7,7 2,4,8,16 23M 4.3G

CSWin-S 64 2,4,32,2 1,2,7,7 2,4,8,16 35M 6.9G

CSWin-B 96 2,4,32,2 1,2,7,7 4,8,16,32 78M 15.0G

CSWin-L 144 2,4,32,2 1,2,7,7 6,12,24,48 173M 31.5G

Table 1. Detailed configurations of different variants of CSWin

Transformer. The FLOPs are calculated with 224× 224 input.

threshold to the LePE and set it to 0 if the Chebyshev dis-

tance of token i and j is greater than a threshold τ (τ = 3 in

the default setting).

3.3. CSWin Transformer Block

Equipped with the above self-attention mechanism and

positional embedding mechanism, CSWin Transformer

block is formally defined as:

X̂ l = CSWin-Attention
(
LN

(
X l−1

))
+X l−1,

X l = MLP
(

LN
(
X̂ l

))
+ X̂ l, (6)

where X l denotes the output of l-th Transformer block or

the precedent convolutional layer of each stage.

3.4. Architecture Variants

For a fair comparison with other vision Transformers

under similar settings, we build four different variants of

CSWin Transformer as shown in Table 1: CSWin-T (Tiny),

CSWin-S (Small), CSWin-B (Base), CSWin-L (Large). They

are designed by changing the base channel dimension C and

the block number of each stage. In all these variants, the

expansion ratio of each MLP is set as 4. The head number of

the four stages is set as 2, 4, 8, 16 in the first three variants

and 6, 12, 24, 48 in the last variant respectively.

4. Experiments
To show the effectiveness of CSWin Transformer as a gen-

eral vision backbone, we conduct experiments on ImageNet-

1K [11] classification, COCO [29] object detection, and

ADE20K [58] semantic segmentation. We also perform

comprehensive ablation studies to analyze each component

of CSWin Transformer. As most of the methods we com-

pared did not report downstream inference speed, we use an

extra section to report it for simplicity.

4.1. ImageNet-1K Classification

For fair comparison, we follow the training strategy

in DeiT [42] as other baseline Transformer architectures

[30, 49]. Specifically, all our models are trained for 300

epochs with the input size of 224×224. We use the AdamW

optimizer with weight decay of 0.05 for CSWin-T/S and

0.1 for CSWin-B. The default batch size and initial learning

rate are set to 1024 and 0.001, and the cosine learning rate

scheduler with 20 epochs linear warm-up is used. We apply

Method Image Size #Param. FLOPs Throughput Top-1

Eff-B4 [40] 3802 19M 4.2G 349/s 82.9
Eff-B5 [40] 4562 30M 9.9G 169/s 83.6
Eff-B6 [40] 5282 43M 19.0G 96/s 84.0

DeiT-S [42] 2242 22M 4.6G 940/s 79.8

DeiT-B [42] 2242 87M 17.5G 292/s 81.8

DeiT-B [42] 3842 86M 55.4G 85/s 83.1

PVT-S [47] 2242 25M 3.8G 820/s 79.8

PVT-M [47] 2242 44M 6.7G 526/s 81.2

PVT-L [47] 2242 61M 9.8G 367/s 81.7

T2Tt-14 [55] 2242 22M 6.1G – 81.7

T2Tt-19 [55] 2242 39M 9.8G – 82.2

T2Tt-24 [55] 2242 64M 15.0G – 82.6

CvT-13 [49] 2242 20M 4.5G – 81.6

CvT-21 [49] 2242 32M 7.1G – 82.5

CvT-21 [49] 3842 32M 24.9G – 83.3

Swin-T [30] 2242 29M 4.5G 755/s 81.3

Swin-S [30] 2242 50M 8.7G 437/s 83.0

Swin-B [30] 2242 88M 15.4G 278/s 83.3

Swin-B [30] 3842 88M 47.0G 85/s 84.2

CSWin-T 2242 23M 4.3G 701/s 82.7

CSWin-S 2242 35M 6.9G 437/s 83.6
CSWin-B 2242 78M 15.0G 250/s 84.2
CSWin-B 3842 78M 47.0G 80/s 85.4

Table 2. Comparison of different models on ImageNet-1K.

Method Param Size FLOPs Top-1 Method Param Size FLOPs Top-1

R-101x3 388M 3842 204.6G 84.4 R-152x4 937M 4802 840.5G 85.4

ViT-B/16 86M 3842 55.4G 84.0 ViT-L/16 307M 3842 190.7G 85.2

Swin-B 88M
2242 15.4G 85.2

Swin-L 197M
2242 34.5G 86.3

3842 47.1G 86.4 3842 103.9G 87.3

2242 15.0G 85.9 2242 31.5G 86.5
CSWin-B 78M 3842 47.0G 87.0 CSWin-L 173M 3842 96.8G 87.5

Table 3. ImageNet-1K fine-tuning results by pre-training on

ImageNet-21K datasets.

increasing stochastic depth [22] augmentation for CSWin-T,

CSWin-S, and CSWin-B with the maximum rate as 0.1, 0.3,

0.5 respectively. When reporting the results of 384 × 384
input, we fine-tune the models for 30 epochs with the weight

decay of 1e-8, learning rate of 1e-5, batch size of 512.

In Table 2, we compare our CSWin Transformer with

state-of-the-art CNN and Transformer architectures. With

the limitation of pages, we only compare with a few classical

methods here and make a comprehensive comparison in the

supplemental materials.

It shows that our CSWin Transformers outperform pre-

vious state-of-the-art vision Transformers by large margins.

For example, CSWin-T achieves 82.7% Top-1 accuracy with

only 4.3G FLOPs, surpassing CvT-13, Swin-T and DeiT-S

by 1.1%, 1.4% and 2.9% respectively. And for the small and

12128

Backbone
#Params FLOPs Mask R-CNN 1x schedule Mask R-CNN 3x + MS schedule

(M) (G) AP b AP b
50 AP b

75 APm APm
50 APm

75 AP b AP b
50 AP b

75 APm APm
50 APm

75

Res50 [16] 44 260 38.0 58.6 41.4 34.4 55.1 36.7 41.0 61.7 44.9 37.1 58.4 40.1
PVT-S [47] 44 245 40.4 62.9 43.8 37.8 60.1 40.3 43.0 65.3 46.9 39.9 62.5 42.8
ViL-S [56] 45 218 44.9 67.1 49.3 41.0 64.2 44.1 47.1 68.7 51.5 42.7 65.9 46.2
TwinsP-S [8] 44 245 42.9 65.8 47.1 40.0 62.7 42.9 46.8 69.3 51.8 42.6 66.3 46.0
Twins-S [8] 44 228 43.4 66.0 47.3 40.3 63.2 43.4 46.8 69.2 51.2 42.6 66.3 45.8
Swin-T [30] 48 264 42.2 64.6 46.2 39.1 61.6 42.0 46.0 68.2 50.2 41.6 65.1 44.8
CSWin-T 42 279 46.7 68.6 51.3 42.2 65.6 45.4 49.0 70.7 53.7 43.6 67.9 46.6
Res101 [16] 63 336 40.4 61.1 44.2 36.4 57.7 38.8 42.8 63.2 47.1 38.5 60.1 41.3
X101-32 [52] 63 340 41.9 62.5 45.9 37.5 59.4 40.2 44.0 64.4 48.0 39.2 61.4 41.9
PVT-M [47] 64 302 42.0 64.4 45.6 39.0 61.6 42.1 44.2 66.0 48.2 40.5 63.1 43.5
ViL-M [56] 60 261 43.4 —- —- 39.7 —- —- 44.6 66.3 48.5 40.7 63.8 43.7
TwinsP-B [8] 64 302 44.6 66.7 48.9 40.9 63.8 44.2 47.9 70.1 52.5 43.2 67.2 46.3
Twins-B [8] 76 340 45.2 67.6 49.3 41.5 64.5 44.8 48.0 69.5 52.7 43.0 66.8 46.6
Swin-S [30] 69 354 44.8 66.6 48.9 40.9 63.4 44.2 48.5 70.2 53.5 43.3 67.3 46.6
CSWin-S 54 342 47.9 70.1 52.6 43.2 67.1 46.2 50.0 71.3 54.7 44.5 68.4 47.7
X101-64 [52] 101 493 42.8 63.8 47.3 38.4 60.6 41.3 44.4 64.9 48.8 39.7 61.9 42.6
PVT-L [47] 81 364 42.9 65.0 46.6 39.5 61.9 42.5 44.5 66.0 48.3 40.7 63.4 43.7
ViL-B [56] 76 365 45.1 —- —- 41.0 —- —- 45.7 67.2 49.9 41.3 64.4 44.5
TwinsP-L [8] 81 364 45.4 —- —- 41.5 —- —- —- —- —- —- —- —-
Twins-L [8] 111 474 45.9 —- —- 41.6 —- —- —- —- —- —- —- —-
Swin-B [30] 107 496 46.9 —- —- 42.3 —- —- 48.5 69.8 53.2 43.4 66.8 46.9
CSWin-B 97 526 48.7 70.4 53.9 43.9 67.8 47.3 50.8 72.1 55.8 44.9 69.1 48.3

Table 4. Object detection and instance segmentation performance on the COCO val2017 with the Mask R-CNN framework. The FLOPs (G)

are measured at resolution 800× 1280, and the models are pre-trained on the ImageNet-1K. ResNet/ResNeXt results are copied from [47].

base model setting, our CSWin-S and CSWin-B also achieve

the best performance. When finetuned on the 384 × 384
input, a similar trend is observed, which well demonstrates

the powerful learning capacity of our CSWin Transformers.

Compared with state-of-the-art CNNs, we find our CSWin

Transformer is the only Transformer based architecture that

achieves comparable or even better results than Efficient-

Net [40] under the small and base settings, while using less

computation complexity . It is also worth noting that neu-

ral architecture search is used in EfficientNet but not in our

CSWin Transformer design.

We further pre-train CSWin Transformer on ImageNet-

21K dataset, which contains 14.2M images and 21K classes.

Models are trained for 90 epochs with the input size of

224×224. We use the AdamW optimizer with weight decay

of 0.1 for CSWin-B and 0.2 for CSWin-L, and the default

batch size and initial learning rate are set to 2048 and 0.001.

When fine-tuning on ImageNet-1K, we train the models for

30 epochs with the weight decay of 1e-8, learning rate of

1e-5, batch size of 512. The increasing stochastic depth [22]

augmentation for both CSWin-B and CSWin-L is set to 0.1.

Table.3 reports the results of pre-training on ImageNet-

21K. Compared to the results of CSWin-B pre-trained on

ImageNet-1K, the large-scale data of ImageNet-21K brings

a 1.6%∼1.7% gain. CSWin-B and CSWin-L achieve 87.0%

and 87.5% top-1 accuracy, surpassing previous methods.

4.2. COCO Object Detection

Next, we evaluate CSWin Transformer on the COCO

objection detection task with the Mask R-CNN [15] and

Cascade Mask R-CNN [2] framework respectively. Specifi-

Backbone
#Params FLOPs Cascade Mask R-CNN 3x +MS

(M) (G) AP b AP b
50 AP b

75 APm APm
50 APm

75

Res50 [16] 82 739 46.3 64.3 50.5 40.1 61.7 43.4

Swin-T [30] 86 745 50.5 69.3 54.9 43.7 66.6 47.1

CSWin-T 80 757 52.5 71.5 57.1 45.3 68.8 48.9

X101-32 [52] 101 819 48.1 66.5 52.4 41.6 63.9 45.2

Swin-S [30] 107 838 51.8 70.4 56.3 44.7 67.9 48.5

CSWin-S 92 820 53.7 72.2 58.4 46.4 69.6 50.6

X101-64 [52] 140 972 48.3 66.4 52.3 41.7 64.0 45.1

Swin-B [30] 145 982 51.9 70.9 56.5 45.0 68.4 48.7

CSWin-B 135 1004 53.9 72.6 58.5 46.4 70.0 50.4

Table 5. Object detection and instance segmentation performance

on the COCO val2017 with Cascade Mask R-CNN.

cally, we pretrain the backbones on the ImageNet-1K dataset

and follow the finetuning strategy used in Swin Transformer

[30] on the COCO training set.

We compare CSWin Transformer with various backbones:

previous CNN backbones ResNet [16], ResNeXt(X) [51],

and Transformer backbones PVT [47], Twins [8], and

Swin [30]. Table 4 reports the results of the Mask R-CNN

framework with “1×” (12 training epoch) and “3×+MS”

(36 training epoch with multi-scale training) schedule. It

shows that our CSWin Transformer variants clearly outper-

forms all the CNN and Transformer counterparts. In details,

our CSWin-T outperforms Swin-T by +4.5 box AP, +3.1
mask AP with the 1× schedule and +3.0 box AP, +2.0 mask

AP with the 3× schedule respectively. We also achieve

similar performance gain on small and base configuration.

Table 5 reports the results with the Cascade Mask R-

CNN framework. Though Cascade Mask R-CNN is overall

stronger than Mask R-CNN, we observe CSWin Transform-

ers still surpass the counterparts by promising margins under

12129

Backbone
Semantic FPN 80k Upernet 160k

#Param.FLOPsmIoU #Param.FLOPsSS/MS mIoU

Res50 [16] 28.5 183 36.7 —- —- —-/—-

PVT-S [47] 28.2 161 39.8 —- —- —-/—-

TwinsP-S [8] 28.4 162 44.3 54.6 919 46.2/47.5

Twins-S [8] 28.3 144 43.2 54.4 901 46.2/47.1

Swin-T [30] 31.9 182 41.5 59.9 945 44.5/45.8

CSWin-T 26.1 202 48.2 59.9 959 49.3/50.7

Res101 [16] 47.5 260 38.8 86.0 1029 —-/44.9

PVT-M [47] 48.0 219 41.6 —- —- —-/—-

TwinsP-B [8] 48.1 220 44.9 74.3 977 47.1/48.4

Twins-B [8] 60.4 261 45.3 88.5 1020 47.7/48.9

Swin-S [30] 53.2 274 45.2 81.3 1038 47.6/49.5

CSWin-S 38.5 271 49.2 64.6 1027 50.4/51.5

X101-64 [52] 86.4 — 40.2 —- —- —-/—-

PVT-L [47] 65.1 283 42.1 —- —- —-/—-

TwinsP-L [8] 65.3 283 46.4 91.5 1041 48.6/49.8

Twins-L [8] 103.7 404 46.7 133.0 1164 48.8/50.2

Swin-B [30] 91.2 422 46.0 121.0 1188 48.1/49.7

CSWin-B 81.2 464 49.9 109.2 1222 51.1/52.2

Swin-B† [30] —- —- —- 121.0 1841 50.0/51.7

Swin-L† [30] —- —- —- 234.0 3230 52.1/53.5

CSWin-B† —- —- —- 109.2 1941 51.8/52.6

CSWin-L† —- —- —- 207.7 2745 54.0/55.7

Table 6. Performance comparison of different backbones on the

ADE20K segmentation task. Two different frameworks semantic

FPN and Upernet are used. FLOPs are calculated with resolution

512 × 2048. ResNet/ResNeXt results and Swin FPN results are

copied from [47] and [8] respectively. † means the model is pre-

trained on ImageNet-21K and finetuned with 640×640 resolution.

different model configurations.

4.3. ADE20K Semantic Segmentation

We further investigate the capability of CSWin Trans-

former for Semantic Segmentation on the ADE20K [58]

dataset. Here we employ the semantic FPN [26] and Uper-

net [50] as the basic framework. For fair comparison, we

follow previous works [30, 47] and train Semantic FPN 80k

iterations with batch size as 16, and Upernet 160k iterations

with batch size as 16, more details are provided in the sup-

plementary material. In Table 6, we report the results of

different methods in terms of mIoU and Multi-scale tested

mIoU (MS mIoU). It can be seen that, our CSWin Trans-

formers significantly outperform previous state-of-the-arts

under different configurations. In details, CSWin-T, CSWin-

S, CSWin-B achieve +6.7, +4.0, +3.9 higher mIOU than the

Swin counterparts with the Semantic FPN framework, and

+4.8, +2.8, +3.0 higher mIOU with the Upernet framework.

Compared to the CNN counterparts, the performance gain

is very promising and demonstrates the potential of vision

Transformers again. When using the ImageNet-21K pre-

trained model, our CSWin-L further achieves 55.7 mIoU

and surpasses the previous best model by +2.2 mIoU, while

using less computation complexity.

Model
Cascade Mask R-CNN on COCO UperNet on ADE20K

#Param. FLOPs FPS APb/m #Param. FLOPs FPS mIoU

Swin-T 86M 745G 15.3 50.5/43.7 60M 945G 18.5 44.5

CSWin-T 80M 757G 14.2 52.5/45.3 60M 959G 17.3 49.3

Swin-S 107M 838G 12.0 51.8/44.7 81M 1038G 15.2 47.6

CSWin-S 92M 820G 11.7 53.7/46.4 65M 1027G 15.6 50.4

Swin-B 145M 982G 11.2 51.9/45.0 121M 1188G 9.92 48.1

CSWin-B 135M 1004G 9.6 53.9/46.4 109M 1222G 9.08 51.1

Table 7. FPS comparison with Swin on downstream tasks.

4.4. Inference Speed.

Here we report the inference speed of our CSWin and

Swin works. For downstream tasks, we report the FPS of

Cascade Mask R-CNN for object detection on COCO and

UperNet for semantic segmentation on ADE20K. In most

cases, the speed of our model is only slightly slower than

Swin (less than 10%), but our model outperforms Swin by

large margins. For example, on COCO, CSWin-S are +1.9%

box AP and +1.7% mask AP higher than Swin-S with sim-

ilar inference speed(11.7 FPS vs. 12 FPS). Note that our

CSWin-T performs better than Swin-B on box AP(+0.6%),

mask AP(+0.3%) with much faster inference speed(14.2

FPS vs. 11.2 FPS), indicating our CSWin achieves better

accuracy/FPS trade-offs.

4.5. Ablation Study

To better understand CSWin Transformers, we compare

each key component with the previous works under a com-

pletely fair setting that we use the same architecture and

hyper-parameter for the following experiments, and only

vary one component for each ablation. For time considera-

tion, we use Mask R-CNN with 1x schedule as the default

setting for detection and instance segmentation evaluation,

and Semantic FPN with 80k iterations and single-scale test

for segmentation evaluation.

Parallel Multi-Head Grouping. We first study the effec-

tiveness of our novel “Parallel Multi-Head Grouping” strat-

egy. Here we compare Axial-Attention [18] and Criss-Cross-

Attention [23] under the CSWin-T backbone. “Attention

region” is used as the computation cost metric for detailed

comparison. To simplify, we assume the attention is calcu-

lated on a square input that H = W .

In Table.8, we find that the “parallel multi-head grouping”

is efficient and effective, especially for downstream tasks.

When we replace the Parallel manner with Sequential, the

performance of CSWin degrades on all tasks. When compar-

ing with previous methods under the similar attention region

constrain, our sw = 1 CSWin performs slightly better than

Axial on ImageNet, while outperforming it by a large margin

on downstream tasks. Our sw = 2 CSWin performs slightly

better than Criss-Cross Attention, while the speed of CSWin

is 2× ∼ 5× faster than it on different tasks, this further

proves that our “parallel” design is much more efficient.

12130

Model
Attention ImageNet COCO ADE20K

Reigon #Param. FLOPs FPS Top1(%) #Param. FLOPs FPS APb APm #Param. FLOPs FPS mIoU(%)

Axial H 23M 4.2G 735 81.8 42M 258G 27.9 43.4 39.4 26M 186G 50.3 42.6

CSWin (fix sw=1) H 23M 4.1G 721 81.9 42M 258G 26.8 45.2 40.8 26M 179G 49.1 47.5

Criss-Cross H*2-1 23M 4.2G 187 82.2 42M 263G 5.5 45.2 40.9 26M 186G 17.6 47.4

CSWin (fix sw=2) H*2 23M 4.2G 718 82.2 42M 263G 25.1 45.6 41.4 26M 186G 47.2 47.6

CSWin (sw=1,2,7,7; Seq) sw×H 23M 4.3G 711 82.4 42M 279G 22.3 45.1 41.1 26M 202G 45.2 46.2

CSWin (sw=1,2,7,7) sw×H 23M 4.3G 701 82.7 42M 279G 21.1 46.7 42.2 26M 202G 44.8 48.2

Table 8. Stripes-Based attention mechanism comparison. ‘Seq’ means sequential multi-head attention like Axial-attention. ‘Attention

Region’ means the average number of tokens that each head calculates attention with.

81.8

82

82.2

82.4

82.6

82.8

83

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6

A
cc

ur
ac

y

FLOPS(G)

sw=1

sw=2

sw=[1,2,7,7]
sw=[14,14,14, 7] sw=[28,28,14, 7]

sw=7

Figure 4. Ablation on dynamic window size.

Dynamic Stripe Width . In Fig.4 we study the trade off

between stripe width and accuracy. We find that with the in-

crease of stripe width, the compution cost(FLOPS) increase,

and the Top-1 classification accuracy improves greatly at the

beginning and slows down when the width is large enough.

Our default setting [1,2,7,7] achieves a good trade-off be-

tween accuracy and FLOPs.

Attention Mechanism Comparison. Following the above

analysis on each component of CSWin self-attention, we

further compare with existing self-attention mechanisms. As

some of the methods need even layers in each stage, for

a fair comparison, we use the Swin-T [30] as backbone
and only change the self-attention mechanism. In de-

tail, we use 2, 2, 6, 2 blocks for the four stages with the 96

base channel, non-overlapped token embedding [12], and

RPE [30]. The results are reported in Table 9. Obviously,

our CSWin self-attention mechanism performs better than

existing self-attention mechanisms across all the tasks.

Positional Encoding Comparison. The proposed LePE is

specially designed to enhance the local positional informa-

tion on downstream tasks for various input resolutions. Here

we use CSWin-T as the backbone and only vary the posi-
tion encoding. In Table 10, we compare our LePE with other

recent positional encoding mechanisms(APE [12], CPE [9],

and RPE [35]) for image classification, object detection

and image segmentation. Besides, we also test the variants

without positional encoding (No PE) and CPE*, which is

obtained by applying CPE before every Transformer block.

According to the comparison results, we see that: 1) Posi-

tional encoding can bring performance gain by introducing

the local inductive bias; 2) Though RPE achieves similar

performance on the classification task with fixed input resolu-

tion, our LePE performs better (+1.2 box AP and +0.9 mask

AP on COCO, +0.9 mIoU on ADE20K) on downstream

ImageNet COCO ADE20K
Top1(%) APb APm mIoU(%)

Sliding window [32] 81.4 — — —-
Shifted window [30] 81.3 42.2 39.1 41.5
Spatially Sep [8] 81.5 42.7 39.5 42.9
Sequential Axial [18] 81.5 40.4 37.6 39.8
Criss-Cross [23] 81.7 42.9 39.7 43.0
Cross-shaped window 82.2 43.4 40.2 43.4

Table 9. Comparison of different self-attention mechanisms.

ImageNet COCO ADE20K
Top1(%) APb APm mIoU(%)

No PE 82.5 44.8 41.1 47.0
APE [12] 82.6 45.1 41.1 45.7
CPE [9] 82.2 45.8 41.6 46.1
CPE* [9] 82.4 45.4 41.3 46.6
RPE [35] 82.7 45.5 41.3 46.6
LePE 82.7 46.7 42.2 48.2

Table 10. Comparison of different positional encoding mechanisms.

tasks where the input resolution varies; 3) Compared to APE

and CPE, our LePE also achieves better performance.

5. Conclusion

In this paper, we have presented a new Vision Trans-

former architecture named CSWin Transformer. The core

design of CSWin Transformer is the CSWin Self-Attention,

which performs self-attention in the horizontal and vertical

stripes by splitting the multi-heads into parallel groups. This

multi-head grouping design can enlarge the attention area

of each token within one Transformer block efficiently. On

the other hand, the mathematical analysis also allows us to

increase the stripe width along the network depth to further

enlarge the attention area with subtle extra computation cost.

We further introduce locally-enhanced positional encoding

into CSWin Transformer for downstream tasks. We achieved

the state-of-the-art performance on various vision tasks un-

der constrained computation complexity. We are looking

forward to applying it for more vision tasks.

Acknowledgement. This work was supported in part

by the Natural Science Foundation of China under Grant

U20B2047, 62072421, 62002334, and 62121002, Explo-

ration Fund Project of University of Science and Technology

of China under Grant YD3480002001, and by Fundamental

Research Funds for the Central Universities under Grant

WK2100000011.

12131

References
[1] Iz Beltagy, Matthew E Peters, and Arman Cohan. Long-

former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020. 3

[2] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving

into high quality object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages

6154–6162, 2018. 6

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In European Con-
ference on Computer Vision, pages 213–229. Springer, 2020.

2

[4] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping

Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and

Wen Gao. Pre-trained image processing transformer. arXiv
preprint arXiv:2012.00364, 2020. 2

[5] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin,

Shuicheng Yan, and Jiashi Feng. Dual path networks. arXiv
preprint arXiv:1707.01629, 2017. 2

[6] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever.

Generating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019. 3

[7] Krzysztof Choromanski, Valerii Likhosherstov, David Do-

han, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter

Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser,

et al. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794, 2020. 3

[8] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing

Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen. Twins: Re-

visiting spatial attention design in vision transformers. arXiv
preprint arXiv:2104.13840, 2021. 2, 6, 7, 8

[9] Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, Xi-

aolin Wei, Huaxia Xia, and Chunhua Shen. Conditional

positional encodings for vision transformers. arXiv preprint
arXiv:2102.10882, 2021. 2, 3, 4, 8

[10] Xiangxiang Chu, Bo Zhang, Zhi Tian, Xiaolin Wei, and

Huaxia Xia. Do we really need explicit position encodings

for vision transformers? arXiv e-prints, pages arXiv–2102,

2021. 2

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li

Fei-Fei. Imagenet: A large-scale hierarchical image database.

In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 5

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 2, 3, 8

[13] Alaaeldin El-Nouby, Natalia Neverova, Ivan Laptev, and

Hervé Jégou. Training vision transformers for image retrieval.

arXiv preprint arXiv:2102.05644, 2021. 2

[14] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,

and Yunhe Wang. Transformer in transformer. arXiv preprint
arXiv:2103.00112, 2021. 2

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 6

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2, 6, 7

[17] Shuting He, Hao Luo, Pichao Wang, Fan Wang, Hao Li,

and Wei Jiang. Transreid: Transformer-based object re-

identification. arXiv preprint arXiv:2102.04378, 2021. 2

[18] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim

Salimans. Axial attention in multidimensional transformers.

arXiv preprint arXiv:1912.12180, 2019. 2, 3, 7, 8

[19] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 2

[20] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation

networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 2

[21] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional networks.

In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4700–4708, 2017. 2

[22] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-

ian Q Weinberger. Deep networks with stochastic depth. In

European conference on computer vision, pages 646–661.

Springer, 2016. 5, 6

[23] Zilong Huang, Xinggang Wang, Yunchao Wei, Lichao Huang,

Humphrey Shi, Wenyu Liu, and Thomas S. Huang. Ccnet:

Criss-cross attention for semantic segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, pages

1–1, 2020. 3, 7, 8

[24] Zihang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Xiaojie

Jin, Anran Wang, and Jiashi Feng. Token labeling: Training

a 85.5% top-1 accuracy vision transformer with 56m param-

eters on imagenet. arXiv preprint arXiv:2104.10858, 2021.

2

[25] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and

François Fleuret. Transformers are rnns: Fast autoregressive

transformers with linear attention. In International Confer-
ence on Machine Learning, pages 5156–5165. PMLR, 2020.

3

[26] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr

Dollár. Panoptic feature pyramid networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6399–6408, 2019. 7

[27] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.

Reformer: The efficient transformer. arXiv preprint
arXiv:2001.04451, 2020. 3

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-

agenet classification with deep convolutional neural networks.

Advances in neural information processing systems, 25:1097–

1105, 2012. 2

[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

12132

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014. 5

[30] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng

Zhang, Stephen Lin, and Baining Guo. Swin transformer:

Hierarchical vision transformer using shifted windows. arXiv
preprint arXiv:2103.14030, 2021. 1, 2, 3, 5, 6, 7, 8

[31] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and

Timothy P Lillicrap. Compressive transformers for long-range

sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

3

[32] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan

Bello, Anselm Levskaya, and Jonathon Shlens. Stand-

alone self-attention in vision models. arXiv preprint
arXiv:1906.05909, 2019. 3, 8

[33] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David

Grangier. Efficient content-based sparse attention with routing

transformers. Transactions of the Association for Computa-
tional Linguistics, 9:53–68, 2021. 3

[34] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages

4510–4520, 2018. 2

[35] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-

attention with relative position representations. arXiv preprint
arXiv:1803.02155, 2018. 2, 3, 4, 8

[36] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

[37] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia

Schmid. Segmenter: Transformer for semantic segmentation.

arXiv preprint arXiv:2105.05633, 2021. 2

[38] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-

resolution representation learning for human pose estimation.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5693–5703, 2019. 2

[39] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015. 2

[40] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114. PMLR,

2019. 2, 5, 6

[41] Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng

Juan. Sparse sinkhorn attention. In International Conference
on Machine Learning, pages 9438–9447. PMLR, 2020. 3

[42] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training

data-efficient image transformers & distillation through at-

tention. arXiv preprint arXiv:2012.12877, 2020. 1, 2, 3,

5

[43] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,

Gabriel Synnaeve, and Hervé Jégou. Going deeper with

image transformers. arXiv preprint arXiv:2103.17239, 2021.

2

[44] Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki

Parmar, Blake Hechtman, and Jonathon Shlens. Scaling local

self-attention for parameter efficient visual backbones. arXiv
preprint arXiv:2103.12731, 2021. 1, 3

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-

lia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017. 2, 3, 4

[46] Ziyu Wan, Jingbo Zhang, Dongdong Chen, and Jing Liao.

High-fidelity pluralistic image completion with transformers.

arXiv preprint arXiv:2103.14031, 2021. 2

[47] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao

Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-

mid vision transformer: A versatile backbone for dense predic-

tion without convolutions. arXiv preprint arXiv:2102.12122,

2021. 2, 5, 6, 7

[48] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen,

Baoshan Cheng, Hao Shen, and Huaxia Xia. End-to-end

video instance segmentation with transformers. arXiv preprint
arXiv:2011.14503, 2020. 2

[49] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang

Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing convolutions

to vision transformers. arXiv preprint arXiv:2103.15808,

2021. 1, 2, 3, 5

[50] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and

Jian Sun. Unified perceptual parsing for scene understanding.

In Proceedings of the European Conference on Computer
Vision (ECCV), pages 418–434, 2018. 7

[51] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,

2017. 6

[52] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks, 2017. 6, 7

[53] Weijian Xu, Yifan Xu, Tyler Chang, and Zhuowen Tu. Co-

scale conv-attentional image transformers. arXiv preprint
arXiv:2104.06399, 2021. 2

[54] Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Fengwei

Yu, and Wei Wu. Incorporating convolution designs into

visual transformers. arXiv preprint arXiv:2103.11816, 2021.

2

[55] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,

Zihang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng

Yan. Tokens-to-token vit: Training vision transformers from

scratch on imagenet. arXiv preprint arXiv:2101.11986, 2021.

2, 3, 5

[56] Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu

Yuan, Lei Zhang, and Jianfeng Gao. Multi-scale vision long-

former: A new vision transformer for high-resolution image

encoding. arXiv preprint arXiv:2103.15358, 2021. 2, 6

[57] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,

Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao Xi-

ang, Philip HS Torr, et al. Rethinking semantic segmentation

from a sequence-to-sequence perspective with transformers.

arXiv preprint arXiv:2012.15840, 2020. 2

12133

[58] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Bar-

riuso, and Antonio Torralba. Scene parsing through ade20k

dataset. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 633–641, 2017. 5, 7

[59] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang

Wang, and Jifeng Dai. Deformable detr: Deformable trans-

formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 2

12134

