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Abstract— Recent research shows deep neural networks are
vulnerable to different types of attacks, such as adversarial
attacks, data poisoning attacks, and backdoor attacks. Among
them, backdoor attacks are the most cunning and can occur in
almost every stage of the deep learning pipeline. Backdoor attacks
have attracted lots of interest from both academia and industry.
However, most existing backdoor attack methods are visible
or fragile to some effortless pre-processing such as common
data transformations. To address these limitations, we propose
a robust and invisible backdoor attack called “Poison Ink”.
Concretely, we first leverage the image structures as target
poisoning areas and fill them with poison ink (information) to
generate the trigger pattern. As the image structure can keep
its semantic meaning during the data transformation, such a
trigger pattern is inherently robust to data transformations. Then
we leverage a deep injection network to embed such input-
aware trigger pattern into the cover image to achieve stealthiness.
Compared to existing popular backdoor attack methods, Poison
Ink outperforms both in stealthiness and robustness. Through
extensive experiments, we demonstrate that Poison Ink is not
only general to different datasets and network architectures
but also flexible for different attack scenarios. Besides, it also
has very strong resistance against many state-of-the-art defense
techniques.

Index Terms— Backdoor attack, stealthiness, robustness, gen-
erality, flexibility.

I. INTRODUCTION

IN THE past years, deep learning has achieved tremendous
success in a lot of application areas [1], [2], [3], [4], [5].

However, recent works show that they are vulnerable to
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different types of attacks, such as adversarial attacks [6], [7],
[8], [9], [10], data poisoning attacks [11], [12] and backdoor
attacks [13], [14], [15]. Adversarial attacks focus on mislead-
ing the model only in the test process, while data poisoning
attacks aim to degrade the model inference performance of its
primary task by contaminating the training process. Backdoor
attacks are more flexible and cunning than the two attacks
above. Specifically, backdoor attack can affect even all stages
of machine learning pipeline [16], such as model training [13],
fine-tuning [14] and even after deployment [17]. In addition,
backdoor attacks are designed to make the backdoored model
behave like a normal model unless the attackers feed some
specially designed triggers.

Since it was introduced, an increasing amount of research
has been paying attention to this field. For example,
Gu et al. [13] directly stamped a square sticker or flower patch
onto clean images to contaminate the training process, and
Chen et al. [15] replaced the injection strategy by blending a
trigger image with the clean example. However, there are two
main limitations to existing backdoor attack methods. First,
the trigger pattern used in many current works is visible (some
visual examples are shown in Figure 2), which can be easily
recognized by humans or some deep visualization methods
like Grad-CAM [18]. Second, a very recent research [19] finds
that most existing backdoor attacks will totally fail during the
inference stage if pre-processing the trigger images with some
simple data transformations, such as flipping and padding after
shrinking.

To address the above limitations, we aim to design a robust
and invisible backdoor attack method. Besides the essen-
tial requirement for backdoor attacks: 1) the trigger pattern
should be easy for the model to learn and cannot confuse
the model to affect the pristine performance, we add two
more requirements to achieve our goal: 2) the trigger pattern
should be consistent under conventional data transformations
to keep its robustness; 3) the trigger image needs be visually
indistinguishable from the corresponding trigger-free image.

In this paper, we propose to utilize the image structure
(edge) of an image as the carrier of poison information,
i.e., hiding the poison information into the edge structures
as shown in Figure 1. Compared to existing trigger patterns,
the proposed structure-based trigger pattern has several natural
advantages: 1) On one hand, the shallow layers of DNN [20]
often capture the low-level structure information, which means
the structure can be easily captured by DNN; on the other
hand, the final decision of DNN [21] often depends on the
object texture rather than the structure information, which
indirectly indicates that structure-based trigger pattern will not
undermine performance of the original task. So it satisfies the
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Fig. 1. The overall pipeline of Poison Ink, which mainly consists of trigger image generation, backdoor model training and backdoor model attacking.

first requirement. 2) It is distributed in the whole image and
can keep its semantic meaning unchanged under common data
transformations, which indirectly satisfies the second require-
ment. 3) Edge structures belong to high-frequency components
of an image, so hiding information into them is more difficult
to be discovered, which satisfies the third requirement.

Based on the above observations, a new backdoor attack
method “Poison Ink” is designed. The overall framework is
shown in Figure 1. Specifically, we outline the image structures
as poison areas and then embed color values (representation
of poison information) into such areas to generate the trigger
pattern. To achieve stealthiness, we use a deep injection
network to hide the input-aware trigger pattern into the cover
image to produce the final poisoned image. Such poisoned
images will be regarded as the trigger set and mixed with clean
images as the training set for the standard backdoor training.

To demonstrate the effectiveness of Poison Ink, we con-
duct extensive experiments on various datasets and network
architectures under different attacking scenarios. Compared
to existing backdoor attack methods, Poison Ink outperforms
in terms of stealthiness, robustness, generality, and flexibility.
In summary, our contributions are four-fold as follows:

• We are the first to proposes utilizing image structures as
the carrier of trigger patterns, showing they have natural
advantages over existing trigger pattern designs.

• We design a new backdoor attack framework, Poison
Ink, which uses colorized image structures as the trigger
pattern and hides the trigger pattern invisibly by using a
deep injection network.

• Extensive experiments demonstrate the stealthiness and
robustness of Poison Ink, which is generally applicable
to different datasets and network structures.

• Poison Ink works well in different attacking scenarios and
has strong resistance to many defense techniques.

II. RELATED WORK

A. Backdoor Attack

Backdoor attack is a classic topic in the system security
field, and Gu et al. [13] first introduced this issue into deep

models. Based on it, Chen et al. [15] proposed a blending
injection strategy to attack face recognition systems with less
poisoned data. Then, Liu et al. [14] utilized reverse engineer-
ing to generate data and built a strong relationship between
the optimized patch trigger with the selected neurons via fine-
tuning. Unlike these attack methods based on static and visible
trigger patterns, the trigger pattern of Poison Ink is dynamic
and invisible.

Besides the aforementioned suspicious attack methods,
there are a few attempts at more stealthy backdoor attacks.
Zhong et al. [22] proposed an invisible trigger called static
perturbation mask (SPM), for instance, a checkboard-like
pattern. Similarly, Barni et al. [23] replaced the repeated mask
with the sinusoidal signal (SIG). Very recently, Liu et al. [24]
presented “ Refool”, which is spurred by the natural phe-
nomenon – reflectance. However, all trigger patterns aforesaid
are unnatural due to their input-agnostic attribute. Conversely,
our proposed method focuses on an input-aware trigger pat-
tern, which is much harder to be detected. Unlike the attacks
above, Li et al. [25] proposed generating an invisible attack
via a steganography algorithm called least significant bit (LSB)
substitution. However, it totally fails on low-resolution datasets
like CIFAR-10, and Poison Ink significantly outperforms LSB
in the context of robustness to data transformation. We also
notice some interesting works [26], [27], [28] explored the
incorporation of image structures for evasion attacks and
defenses. Different from them, we are the first to leverage
image structures for backdoor attacks.

B. Defense Against Backdoor Attack

To resist backdoor attack, many defense methods have been
proposed, which can be roughly categorized into three groups:
data-based defense, model-based defense, and meta classifiers.

For data-based defense, Tran et al. [29] removed the poi-
soned examples by analyzing the spectrum of latent features.
However, its assumption of having full access to the infected
training data is not practical in use and thus not considered in
our experiment. Gao et al.’s observation included predicting
the backdoor image under strong perturbations, on which
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STRIP [30] was proposed. In addition, Doan et al. [31] pro-
posed Februus by using Grad-CAM [18] to locate the potential
trigger region and replacing it by image restoration. Recently,
Li et al. [19] showed that most existing attack methods are
vulnerable to data transformations, which we mainly focus on
in this paper.

For model-based defense, Fine-pruning [32] tries to prune
the neurons that are dormant for clean inputs, which
is assumed to have a relationship to the activation of
the backdoor. Chen et al. proposed to detect backdoor
attacks by Activation Clustering [33], which determines the
infected category by analyzing the activation clustering of
all classes. Inspired by the Electrical Brain Stimulation tech-
nique, Liu et al. proposed ABS [34] to scan malicious neu-
ron. Then, Wang et al. [35] proposed Neural Cleanse, which
first reverse-engineers the trigger pattern and then utilizes
the reversed trigger for backdoor removal. Based on Neural
Cleanse, TABOR [36] obtained a further improvement by
appending various regularization during reverse-engineering.
Rather than using reversed trigger, MESA [37] leveraged
many generated triggers to improve the backdoor removal
performance. Later, a more effective method named TND is
designed by Wang et al. [38], which is applicable even in
data-limited or data-free scenarios.

There are also some methods, such as ULPs [39], based
on the idea of a meta classifier. However, it consumes enor-
mous computation resources and has a strong but impractical
assumption that the trigger size is known. To evaluate the
robustness of Poison Ink, we will try these state-of-the-art
defense methods in the following experiments.

III. PRELIMINARIES

Before introducing Poison Ink, we first formally define
backdoor attacks and briefly analyze existing methods’ lim-
itations. Finally, we clarify the threat model and our attack
goals.

A. Problem Definition

In this paper, we only consider the backdoor attack on
the image classification task. For image classification, assum-
ing the input domain X is composed of massive images
{x1, x2, . . . , xN }, and the target output domain L consists of
corresponding labels {l1, l2, . . . , lN }. Then the goal of the
image classification model M is to approximate the implicit
transformation function by minimizing the distance D (eg.,
cross-entropy) between M(xi ) and li , i.e.,

D(M(xi ), li ) → 0. (1)

For backdoor attacks, we randomly choose a portion of
training data as the candidate set Xc and select some trigger
patterns from the pre-designed trigger pattern set P. Here,
we pick a single trigger pattern p from P as an example. With
a pre-defined backdoor injection strategy I, we can generate
the poisoned image x p, i.e.,

x p
i = I(xc

i , p), xc
i ∈ Xc. (2)

All poisoned images {x p
1 , x p

2 , . . . , x p
Np

}p∈P with the corre-
sponding target attack labels {l p

1 , . . . , l p
Np

} will be combined
with the left clean images {x1, x2, . . . , xNc } and their original
labels {l1, l2, . . . , lNc } as the final backdoor training dataset
X∗, where (

∑
p∈P Np) + Nc = N . The injection ratio α is

defined as α = (
∑

p∈P Np)/N . Finally, we can obtain an
infected model M∗ by training on the polluted dataset X∗.

B. Brief Analysis of Existing Limitations

Most existing backdoor attack methods have a limitation
in stealthiness or robustness. For the stealthiness limitation,
we attribute it to two points: the unnatural and input-agnostic
trigger patterns; the injection strategy I, like hard-pasting or
soft-blending, which is hard to adapt to various inputs to sat-
isfy the invisibility requirement. For the lack of robustness to
data transformation, it is also because the trigger pattern p has
no relationship with its cover input xc. During training time,
the infected model M∗ is forced to remember the relationship
between such input-agnostic pattern p and the target attack
label l p. Then, at the inference stage, if the poisoned image
x p is pre-processed by some data transformations, the hidden
trigger pattern p will also be transformed, and the relationship
will be corrupted. Therefore, the infected model M∗ cannot
recognize p any more.

C. Threat Model and Our Goals

Backdoor attacks can occur at any stage of a deep learning
pipeline. In this paper, we introduce the threat model in terms
of attacker’s capacities and attack scenarios as follows:

Attacker’s capacities: we assume that attackers are allowed
to poison some training data, whereas they have no informa-
tion on or change other training components (e.g., training
loss, training schedule, and model structure). In the inference
process, attackers can and only can query the trained model
with any image. They have neither information about the
model (even prediction) nor can they manipulate the inference
process, which is different from adversarial example. The
assumption above is the minimal requirement for attack-
ers [40]. Taking data transformations as an example, the
attacker is not accessible to the exact range and combinations
order of the data transformations used by the defender.

Attack scenarios: the discussed threat can happen in many
real-world scenarios, including but not limited to adopting
third-party training data, training platforms, and model APIs.
The attacker can directly inject his own poisoned data into the
training stage. During inference, the attacker does not need
to hijack any image and triggers the attack by querying the
target model, with the poisoned image generated by himself
in the same way. We shall point out that we mainly focus on
the threat in the digital domain, where many backdoor attacks
were explored, and attacks in the physical world will be our
future direction.

We aim to achieve an invisible, robust, general and flexible
backdoor attack (Poison Ink) and set main goals in detail:
1) maintain the model performance on clean data; 2) the
poisoned image shall be imperceptible to evade human inspec-
tion at the inference stage; 3) Keep high attack effectiveness
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even when some data transformations pre-process the poisoned
image.

IV. THE PROPOSED POISON INK

To achieve our goal, we propose a new backdoor attack
method called “Poison Ink”, and the overall pipeline is shown
in Figure 1. We are motivated by the recent work [41] that pro-
poses the physical consistency for model IP protection. When
generating the trigger set, we first generate the trigger pattern
by embedding the poison information into edge structures and
then embed the trigger pattern into the cover image with a
deep invisible injection strategy. An interference layer is added
to enhance the robustness further and dynamically generates
diverse interference to the injection network and the auxiliary
guidance extractor network.

A. Trigger Pattern Generation

As described before, the edge structure of one image is an
ideal carrier for the trigger pattern: 1) It can be easily captured
by the shallow layers of deep models and will not undermine
the performance of the original task. 2) The edge structure
can keep its semantic meaning and physical existence during
data transformation. 3) Different from existing pattern designs,
edge structure is also the inherent high-frequency component
of an image, so it is easy to be hidden in an invisible way.

In the trigger pattern generation module of Figure 1, we give
a simple example to illustrate how to generate a trigger pattern
by using the edge structure. In details, given an input image xi ,
we first outline its edge by using some edge extraction
algorithms E such as Sobel [42] or Canny [43] operator. Next,
we encode the poison information into the RGB color value
C p

i by mathematical encoding and colorize the black and white
edge image with CP

j as the target trigger pattern pi :

pi = E(xi ) ⊗ C p
i , (3)

where ⊗ means the color filling operator that makes all the
edge color values be C p

i . Compared to existing trigger patterns,
such edge structure based trigger pattern is input-aware and
dynamic, which breaks the assumptions of many existing
defense techniques that the trigger patterns are input-agnostic
and static patches. Besides, since the RGB color space is
enormous and many different edge extraction algorithms exist,
it also naturally supports multiple different trigger patterns by
changing the color values or edge types.

B. Deep Invisible Injection Strategy

After getting the edge structure based trigger pattern,
we design a deep injection strategy to hide the trigger pattern
into the cover image. As shown in the top part of Figure 1,
it basically consists of three parts during training: a deep
injection network, an auxiliary guidance extractor network to
help the injection network learn in a proper way, and an
interference layer to force the injection network to embed
trigger pattern more robustly. After the training process, both
the auxiliary guidance network and the interference layer will
be discarded. We will only use the deep injection network to
hide the trigger pattern into the clean cover images to generate
the poisoned images.

1) Injection Network IN: We concatenate the clean image
xc

i with its corresponding trigger pattern pi along the channel
dimension before feeding them into IN to obtain the final
poisoned image x p

i , i.e,

x p
i = IN([xc

i ; pi ]). (4)

In order to encourage IN to hide the trigger pattern invis-
ibly, we need to find some invisibility loss metrics to
guide its learning. However, it is often difficult to explicitly
define invisibility. As shown in existing information hiding
methods [44], [45], [46], [47], though L p Norm is not a perfect
invisibility metric, it can serves as a good invisibility learning
metric. So we utilize it as one invisibility loss:

Linv = E
xc

i ∈Xc
[∥ x p

i − xc
i ∥

k
]. (5)

By default, we use L1 loss by setting k = 1, which follows the
classic image-to-image translation framework Pix2Pix [48].
To further improve the invisibility, we leverage an extra
adversarial loss ℓadv to minimize the domain gap between
x p

i and xc
i , formally:

ℓadv = E
xc

i ∈Xc
log(D(xc

i )) + E
x p

i ∈Xp
log(1 − D(x p

i )). (6)

With the adversarial loss, the adversarial discriminator network
D will act as a competitor to find the difference between x p

i
and xc

i . Meanwhile, the injection network IN tries to generate
the x p

i in a more invisible way so that the discriminator cannot
distinguish it from the clean image xc

i .
2) Guidance Extractor GE: Only constrained by the invis-

ibility loss, the injection network IN will easily ignore pi and
learn a trivial solution that outputs the original clean input
directly. To ensure pi to be hidden in xc

i , we append an
auxiliary guidance extractor network GE after the injection
network to guide the injection process.

On the one hand, GE should be able to extract trigger pattern
pi out if feeding in the poisoned image x p

i , which can be
regraded as the reverse operation of injection. On the other
hand, GE should not extract any trigger pattern out from the
trigger-free images. With these two requirements, the training
of IN and GE is indeed conducted in an adversarial way, so it is
impossible for IN to degrade into a trivial solution. To achieve
these two goals, we add two corresponding loss functions: the
trigger extraction loss Lte for poisoned images and the clean
loss Lcl for trigger-free images i.e.,

LG E = Lte + λ · Lcl ,

Lte = E
x p

i ∈Xp
[∥GE(x p

i ) − pi∥2],

Lcl = E
xc

i ∈Xc
[∥GE(xc

i ) − C∥2], (7)

where C is a clean map (shown in Figure 1) to indicate no
trigger pattern and λ is one hyper-parameter to balance the two
loss terms. Here we simply use the L2 reconstruction loss for
both Lte and Lcl by default.
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3) Interference Layer: To increase the extracting difficulty
of the guidance extractor network and encourage the injection
network to hide the trigger pattern in a more robust way,
we further add an auxiliary interference layer between them.
During training, this layer will randomly augment the poisoned
image output from the injection network. By default, it con-
sists of a sequence of common data augmentation operators
{Tcrop → Tresi ze → T f li p → · · · → Trot }, and each poison
image will be randomly augmented by each operator with the
probability of 0.5.

To guarantee both the invisibility and robustness, the injec-
tion network IN and the guidance network GE are jointly
trained, and the total loss function Ltotal is:

Ltotal = LI N + γ · LG E . (8)

By default, we set γ = 1. During training, we will randomly
use different color values C p

i for different image xi and
encourage IN to be a general injection network that can embed
different types of trigger patterns on the fly. When attacking
one target model, we can choose one specific trigger pattern
or multiple different trigger patterns by using different C p

i to
enable single-label attack and multi-label attack, respectively.

V. EXPERIMENTS

In this section, we will first briefly introduce the implemen-
tation details we adopt, such as datasets, network structures,
metrics, and default settings. After that, we will demonstrate
the invisibility and robustness of the proposed Poison Ink,
respectively. Then more network structures, datasets, and
attack scenarios are considered to demonstrate the generality
and flexibility of our method. Next, we showcase the resistance
of Poison Ink to many state-of-the-art backdoor defense meth-
ods. Finally, some ablation studies are conducted to justify our
design. Our source code will be released.

A. Implementation Details

1) Datasets: We consider 4 datasets for three types of
classification tasks. For object recognition, we use CIFAR-10
[49] and ImageNet [50]; GTSRB [51] and VGG-Face [52]
are utilized for traffic sign recognition and face recognition,
respectively. For each dataset except CIFAR-10, we randomly
select a portion of classes and resize the inputs for diversity,
as shown in Table I. Because of the resource and space
consideration, we mainly use the ImageNet and CIFAR-10
for comparison and CIFAR-10 for ablation. GTSRB and
VGG-Face are used to demonstrate the generality of our
method. Note that, The test data has no overlap with the
training data, and the trigger pattern is input-aware and not
seen during the training phase.

2) Network Structures: For trigger image generation,
we simply adopt the UNet [53] and the PatchGAN [54] as
the default network structure of IN and the discriminator D
respectively, which are both widely used in many image-
to-image tasks [48], [55], [56]. For guidance extractor GE,
we design a simple auto-encoder-like network. The encoder
consists of three residual blocks with stride 2, symmetrically,
and the decoder consists of three residual upsampling blocks

TABLE I
THE STATICS OF DATASETS.

to ensure the output resolution to be same as the input
resolution. To further enhance its learning capacity, several
residual blocks are also inserted between the encoder and the
decoder. In Table II and Table III, we provide the details
of the injection network IN and the guidance extractor GE
respectively. Besides, we chop up each poisoned image into
16 × 16 patches for the discriminator D.

As for network structures of the victim classifier, we con-
sider four popular recognition networks: ResNet-18 [57],
ResNeXt [58], DenseNet [59] and VGG-19 [60]. In the fol-
lowing experiments, we adopt VGG-19 as the default network
and mainly showcase the results on CIFAR-10 and ImageNet.
The results of other network structures and datasets are used
to demonstrate the generality of our method.

3) Metrics: We use Clean Data Accuracy (CDA) to evaluate
the influence of backdoor attacks on the original tasks, and
use Attack Success Rate (ASR) to evaluate the effectiveness
of backdoor attacks. Specifically, CDA is the performance on
the clean test set, i.e., the ratio of trigger-free test images that
are correctly predicted to their ground-truth labels; and ASR
is the performance on the pre-defined poisoned test set, i.e.,
the ratio of poisoned images that are correctly classified as the
target attack labels.

For invisibility evaluation, we compare clean and poisoned
images with three famous metrics, PSNR, SSIM, and LPIPS,
where LPIPS adopts the features of the pre-trained AlexNet.
Besides the above metrics, we also conduct a user study for
human inspection testing.

4) Default Settings for Training: For trigger pattern gen-
eration, we use the Sobel operator [42] to extract the edge.
We conduct comparisons with the single-label attack by default
and inject the poison ink (R:80, G:160, B:80) into the edge
area with the well-trained injection network IN. Then, 10%
pollution rate is considered for all tasks, and the first class of
each dataset is chosen as the target attack label. We train the
injection network IN for 200 epochs by default. All the victim
models are trained using the SGD optimizer with a momentum
of 0.9 and an initial learning rate of 0.01, which is further set
as 0.001 and 0.0001 at epoch 150 and epoch 200, respectively.
For the other methods to compare with, we adopt the default
setting in their official implementations.

B. Invisibility of Poison Ink

We first compare the invisibility of our method with many
popular backdoor attack methods, and we follow their default
implementation for fair comparisons.

In Figure 2, we showcase more visual comparison with other
popular attack methods on ImageNet dataset and CIFAR-10
dataset. In detail, we can see that the poisoned image generated
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TABLE II
THE DETAILED NETWORK STRUCTURE OF THE INJECTION NETWORK IN

TABLE III
THE DETAILED NETWORK STRUCTURE OF THE GUIDANCE EXTRACTOR GE

Fig. 2. Visual comparison with existing popular attack methods. The first three rows are examples on ImageNet dataset and the last two rows are examples
on CIFAR-10 dataset. “Clean” denotes the original trigger-free image.

by BadNets [13], Blend [15], SIG [61] and Refool [24] can
be easily distinguished from the clean images, due to the
image-agnostic trigger pattern and simple embedding strategy.
As for SPM [22], the checkboard-like pattern is also easily
observed in the smooth region of the image. In contrast,

LSB [25] and Poison Ink achieve better invisibility, and the
embedded poison is imperceptible.

In Table IV and Table V, we provide the quantitative
comparison of invisibility on ImageNet dataset and CIFAR-10
dataset. Poison Ink outperforms the majority of attacks under
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TABLE IV
COMPARISON OF INVISIBILITY (STEALTHINESS) WITH EXISTING POPULAR BACKDOOR ATTACK METHODS ON IMAGENET DATASET

TABLE V
COMPARISON OF INVISIBILITY (STEALTHINESS) WITH EXISTING POPULAR BACKDOOR ATTACK METHODS ON CIFAR-10 DATASET

TABLE VI
COMPARISON OF THE ROBUSTNESS AGAINST DIFFERENT DATA TRANSFORMATIONS WITH POPULAR ATTACK METHODS ON IMAGENET DATASET. “DT”

DENOTES DATA TRANSFORMATION. “S&P” AND “C&R” MEANS PADDING AFTER SHRINKING AND RESIZING AFTER CROPPING, RESPECTIVELY.
THE RED FONT REPRESENTS THE “WORST-CASE” PERFORMANCE.

TABLE VII
COMPARISON OF THE ROBUSTNESS AGAINST DIFFERENT DATA TRANSFORMATIONS WITH POPULAR ATTACK METHODS ON CIFAR-10 DATASET. “DT”

DENOTES DATA TRANSFORMATION. “S&P” AND “C&R” MEANS PADDING AFTER SHRINKING AND RESIZING AFTER CROPPING, RESPECTIVELY.
THE RED FONT REPRESENTS THE “WORST-CASE” PERFORMANCE.

all the evaluation metrics except LSB [25], which are consis-
tent with the visual comparison. As for LSB, it also has good
invisibility but is very fragile to common data transformations
in the attacking stage (shown in Table VI and Table VII).
Moreover, in Table VII, we observe that LSB fails on CIFAR-
10 dataset, even without transformation-based pre-processing
on its poisoned images. It may be because the trigger pattern
of LSB on the CIFAR-10 dataset is regarded as random noise
and ignored by the target classifier.

We further conduct a user study for human inspection
testing. In detail, we randomly selected 50 clean images from
ImageNet dataset and CIFAR-10 dataset and generated the
corresponding 50 poisoned images for each backdoor attack
method. Then in each question, we randomly display one
image pair (one clean image and one corresponding poisoned
image) and ask the user to select which one is the clean
image. A total of 30 volunteers (12 females and 18 males,
user ages range from 18 to 30, and all users are familiar

with backdoor attacks) are involved in our user study. Thus,
there are 1500 answers for each attack method. We compare
the fooling rate of each method as shown in the last row of
Table IV and Table V. It can be observed that the fooling rate
of LSB and our method both are close to 50%, a probability
of random guessing, while the poisoned images generated by
other remaining methods can be easily judged as unclean.

C. Influence on Pristine Performance

Besides the stealthiness of poisoned images, another critical
aspect for evaluating the backdoor attack is its influence on
pristine performance. In other words, when training the back-
door model with the mixture of the trigger set and the clean set,
the model should keep its original performance on the clean
set. In the left part of Table VI and Table VII, we show the
Clean Data Accuracy (CDA) of backdoored models trained
with the trigger set generated by different methods. It can
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be seen that the backdoored models of Poison Ink have
overall higher CDA than other baselines, demonstrating the
stealthiness during the backdoor model training. Even in the
worst case, the CDA is still comparable with other methods.
Here, the CDA of the original model without backdoor attack
is 80.84% on ImageNet dataset and 91.41% on CIFAR-10
dataset, respectively.

D. Robustness of Poison Ink

To address the limitation to data transformation, a cor-
responding solution [19] was proposed that conducting a
data transformation on the training images with the trigger
before feeding into the training process, which can be seen as
adversarial training. In our threat model, the attacker cannot
control the training strategy. Nevertheless, in this section,
we train all backdoor attacks in such an enhanced training
strategy for a fair comparison.

In the right part of Table VI, we give the ASR of different
attack methods on ImageNet dataset without (None) or with
data transformation attack, respectively. With the data trans-
formation attack, the poisoned images will be pre-processed
by different data transformation techniques and then fed into
the victim model for testing. We also provide the results in
the average case and the worst case in order to evaluate these
attack methods comprehensively. It can be seen that, compared
with other popular attack methods, Poison Ink achieves a
higher ASR in both the average and worst cases, when facing
different transformations. In contrast, some baseline methods
like SPM and LSB will totally fail when some specific
transformations are applied. Compared to Refool, our method
outperforms narrowly in terms of robustness but outperforms
in stealthiness by a large margin, as shown in Table IV.

Although the enhanced training strategy improves the
robustness to some extent, overfitting will be introduced.
Taking SPM as an example, such a strategy improves the
robustness against rotation but fails on other data transfor-
mations. We explain that SPM tends to only focus on getting
robust against rotation. Conversely, Poison Ink mitigates such
overfitting and achieves an outstanding or comparable perfor-
mance in terms of the CDA and the ASR.

As shown in Table VII, we provide the quantitative com-
parison of robustness to data transformations on CIFAR-10
dataset. Overall, Poison Ink guarantees comparable robustness
on CIFAR-10 dataset with many existing attack methods such
as Blend and SIG, which nevertheless have worse invisibility
compared with our method (shown in Figure 2 and Table V).
In Figure 3 and Figure 4, we plot radar charts to illustrate that
our method achieves a much better balance between visual
quality and robustness.

E. Comparison With More Invisible Backdoor Attacks

Besides the classic backdoor attacks mentioned above,
we further consider some recent invisible backdoor attacks,
such as WaNet [62], FTrojan [63], and Advdoor [64]. In detail,
WaNet generates backdoor images via subtle image warp-
ing, and FTrojan injects mid- and high-frequency triggers

TABLE VIII
THE COMPARISON RESULTS WITH RECENT INVISIBLE

BACKDOOR ATTACK METHODS.

TABLE IX
COMPARISON OF THE ROBUSTNESS AGAINST DIFFERENT DATA

TRANSFORMATIONS WITH FTROJAN [63] ON CIFAR-10 DATASET. †
DENOTES WITHOUT THE ENHANCED TRAINING STRATEGY.

in each block with medium magnitude, both of which uti-
lize input-aware trigger patterns. Advdoor generates triggers
by the targeted universal adversarial perturbation (TUAP).
Specifically, some inputs in a category are used to obtain
input-specific adversarial perturbations firstly, which are fur-
ther integrated to generate the final TUAP for the target
category. Such TUAPs belong to the static trigger patterns,
which are further directly imposed onto the clean images to
generate final triggers.

All comparison experiments are conducted on CIFAR-10
dataset, and we train all backdoored models with the enhanced
training strategy [19] for a fair comparison. We calculate the
average CDA and ASR under different data transformations.
As shown in Table VIII and Figure 5, Advdoor is not stealthy
enough due to its static trigger patterns, while WaNet is fragile
to data transformations. Compared to Advdoor and WaNet,
FTrojan and our method perform well in both stealthiness and
robustness. If training backdoored model without the enhanced
strategy, poison ink achieves stronger robustness than FTrojan
(ASR: 83.67% vs. 59.51% in Table IX).

F. Generality and Flexibility of Poison Ink

To demonstrate the generality of our attack to differ-
ent datasets and network structures, we run the controlled
experiments with VGG-19 on different datasets and differ-
ent network structures on CIFAR-10 dataset. Poison Ink is
imperceptible among various datasets, with visual and quan-
titative results shown in Figure 6 and Table XI, respectively.
In Figure 6, we can see that the Guidance Extractor informs the
Injection Network to preserve the edge trigger well. Besides,
Table X shows that our attack still guarantees a high ASR on
different datasets and architectures while only decreasing the
pristine performance slightly.

For the flexibility of Poison Ink, we further consider three
more attack scenarios: training the target model from the pre-
trained model, with multiple target labels, and under different
ratios. All these experiments are conducted on CIFAR-10
dataset. In the former scenario, we set the initial learning rate
as 0.001, and we observe in the left of Figure 7 that the ASR
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Fig. 3. Comparison with popular attack methods on ImageNet dataset in terms of both stealthiness and robustness. PSNR is 2× original value. CDA and
ASR mean the performance under no data transformation, CDA∗ and ASR∗ denote the average performance under different data transformations, and CDA∧

and ASR∧ are calculated under the worst case.

Fig. 4. Comparison with popular attack methods on CIFAR-10 dataset in terms of both stealthiness and robustness. PSNR is 2× original value.CDA and
ASR mean the performance under no data transformation, CDA∗ and ASR∗ denote the average performance under different data transformations, and CDA∧

and ASR∧ are calculated under the worst case.

TABLE X
THE PERFORMANCE (OMA / CDA / ASR (%)) OF POISON INK ON DIFFERENT DATASETS AND DIFFERENT NETWORK STRUCTURES. WE ADOPT

VGG-19 AND CIFAR-10 AS DEFAULT NETWORK ARCHITECTURE AND DEFAULT DATASET, RESPECTIVELY. “OMA” DENOTES
ACCURACY OF THE ORIGINAL MODEL TRAINED ON TOTAL CLEAN DATASET

achieves nearly 100% after only 16 epochs. For the multiple-
label attack, we inject 10 different poison ink (color) to
generate the corresponding poisoned image for 10 target labels

of CIFAR-10 dataset. As displayed in the middle of Figure 7,
ASR for most target label attacks is comparable with single
label attack, and so is the CDA (single:93.17, multiple:91.91).
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Fig. 5. Visual examples of a poisoned image generated by invisible backdoor
attack methods.

TABLE XI
QUANTITATIVE RESULTS OF THE STEALTHINESS OF OUR

POISON INK ON DIFFERENT DATASETS

Besides, different ratios are also considered, and we can see
on the right of Figure 7 that Poison Ink attacks successfully
under different ratios, which will be further discussed in the
ablation study.

G. Resistance to Defense Techniques

To resist backdoor attacks, many different defense tech-
niques have been proposed recently. In this section, we will
test the resistance of Poison Ink against different defense tech-
niques, which are further categorized as data-based defense,
model-based defense, and defense with the meta classifier.

1) Data-Based Defense: Februus [31] utilizes Grad-
CAM [18] to visualize the attention map of the target image
and regards the area with the highest score as the trigger
region, then removes this region and restores it with image
inpainting techniques. We first provide the attention map in
Figure 8. During visualization, we feed the clean model and
our infected model with both clean images and the correspond-
ing poisoned images generated by Poison Ink. We find that the
infected model also focuses on the main content area of the
input, which is similar to the clean model. Then, we remove
such a region and directly restore it with the same region of
the corresponding clean image. After trigger pattern removal,
the ASR of Poison Ink still guarantees 98.84% and 98.01%
on CIFAR-10 and ImageNet, respectively.

STRIP [30] blends input images with a set of clean images
from different classes and compares the entropy of the pre-
diction before and after blending. As shown in Figure 10a,
the entropy distribution of Poison Ink looks very similar to
that of the clean model, which means that Poison Ink behaves
normally as the benign (clean) model.

2) Model-Based Defense: For model-based defense, we first
try the totally white-box defense Fine-pruning [32]. As shown
in Figure 10b, the ASR of Poison Ink remains 92.6% with a
50% pruning rate on the ImageNet, while the performance
on clean data decreases significantly. On CIFAR-10 dataset,
we observe that the ASR of Poison Ink still stays at 100%
even with a 90% pruning rate. Next, we run the official code
of ABS [34] on the only supported CIFAR-10 dataset, and
find ABS fails to detect our method. In Figure 9, we find

that Activation Clustering [33] can infer the infected class
(“airplane”) by a larger silhouette score, which is based on the
assumption that the infected class will induce more overfitting.
However, it cannot find the true poisoned images with a
large false alarm (TPR:0.0002, FPR:0.984). Moreover, poison
ink can pollute all labels, while Activation Clustering cannot
handle this case, as shown in the bottom of Figure 9.

Then, we consider Neural Cleanse [35], which is designed
for small and static triggers. It first reverses the trigger pattern
based on the optimization method, then runs an anomaly
detection among all reversed trigger patterns from each label.
It defines a model as the infected model by Anomaly Index
larger than the threshold t = 2. As shown in Figure 10c,
the Anomaly Index for our backdoored model is both below
the threshold on CIFAR-10 dataset and ImageNet dataset.
Besides, the infected label found by Neural Cleanse is empty
on CIFAR-10 dataset, and is wrong on ImageNet Dataset
(#97 not #0). Based on Neural Cleanse, TABOR [36] adds
more constraints for the reversed trigger pattern during the
optimization process, which reduces the false positive rate but
costs more computation time. The corresponding Anomaly
Index on CIFAR-10 dataset is 1.5938 (clean mode:1.0806),
and some visual results of reversed triggers are further shown
in Figure 10d. On ImageNet, TABOR costs 7 hours for a single
label, and there still exist false alarms of the Anomaly Index
(clean model:4.1593; Poison Ink:2.3125).

Rather than using the single reversed trigger, MESA [37]
models the trigger distribution and uses many generated trig-
gers to implement backdoor removal. Once our backdoored
model attacks all the labels, it can only find partially polluted
labels, and our method can still keep a high ASR after
backdoor removal, as shown in Figure 10. For TND, it provides
a faster detection in the data-scarce scenario, but it can also
be evaded by Poison Ink easily.

3) Meta Classifiers: We further try the recent meta classifier
based defense method ULPs [39] on CIFAR-10 dataset as an
example. ULPs classifies the suspect model as “clean” or “cor-
rupted” by feeding the universal patterns to the suspect model
and analyzing its output. The fewer the universal patterns
required, the weaker the backdoor attack is. In general, 5 Uni-
versal Litmus Patterns (ULPs) can detect backdoor attacks
successfully. The experiment shows that our backdoored model
is classified as the clean one even with 10 ULPs.

H. Adaptive Robustness Evaluation

Adaptive robustness evaluation has become the standard in
adversarial machine learning in recent years [65], [66]. Here
we evaluate the resistance of Poison Ink against some adaptive
defense techniques, taking into account the fact that trigger
patterns are not static and may be hidden in the image edges.

We first test the robustness of Poison Ink to adaptive
pre-processing operations such as Gaussian Noise and Gaus-
sian Blur, which may mitigate the Poison Ink by disrupting the
image edges. In addition, we adopt three data augmentations
used in [67] for sanitizing backdoor attacks. In detail, Mixup
means blending inputs with clean images, while Cutout and
CutMix denote that patches of inputs are randomly cut and
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Fig. 6. Visual examples of Poison Ink on different datasets. For each dataset, the three images denote clean image, poisoned image, their 10× difference,
and the original edge trigger extracted by GE, respectively.

Fig. 7. The flexibility of Poison Ink. Left: the train-val convergence curve for training from pre-trained VGG-19; Middle: the attack success rate (ASR) of
Poison Ink trained with multiple target labels, the orange dot line denotes the ASR of Poison Ink trained with single target label; Right: The performance
(CDA/ASR (%)) of infected model with different pollution ratios The blue dot line denotes the performance of original clean model. All three experiments
are conducted on the CIFAR-10 dataset.

Fig. 8. The Grad-CAM of clean input and poisoned input according to clean
model and infected model. As shown in the figure, Grad-CAM fails to detect
trigger regions of those generated by our attack, which is indistinguishable
with the benign case.

pasted with nothing or clean images, respectively. We display
quantitative results on ImageNet dataset and CIFAR-10 dataset
in Table XII. Results suggest that Poison Ink can still keep a
relatively high ASR after suffering from such pre-processings.

RCA-SOC [28] is proposed as a defense against evasion
attacks by refocusing on critical areas and strengthening object
contours. Specifically, pixel channel attention is adopted to
focus on the critical feature areas, and pixel plane attention is
designed to focus more on feature pixels, where the key pixels
of the image are emphasized and the adversarial perturbed
pixels are weakened. We utilize RCA-SOC to filter the inputs
from CIFAR-10 dataset and find the CDA degrades heavily

Fig. 9. The activation clustering results for each class on the CIFAR-10
dataset. Silhouette score is given on the top of each subfigure, and a high
silhouette score indicates that two clusters fit the data well. The top part is
for the single label attack while the bottom part is for the multiple label attack.

(from 92.92% to 11.47%) while the ASR (77.75%) is still
acceptable. We further showcase some visual examples in
Figure 11, and we find that the perturbed pixels by Poison Ink
are preserved to some extent after RCA-SOC, which makes
our attack still succeed.

To remove the poison information more accurately, we fur-
ther assume that the defender can utilize edge extraction algo-
rithms to locate the edge area and then replace this area with
another image. For edge extraction algorithms, we consider
the same algorithm (“Sobel”) used for the trigger pattern
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Fig. 10. Some visual and quantitative results showing the resistance of Poison Ink to some state-of-the-art defense techniques.

TABLE XII
ROBUSTNESS OF POISON INK TO OTHER ADAPTIVE PRE-PROCESSING OPERATIONS. THE VARIANCE OF GAUSSIAN NOISE IS SET AS 0.01, THE KERNEL

SIZE OF GAUSSIAN BLUR IS 3 × 3, AND THREE PRE-PROCESSING OPERATIONS USED IN [67] ARE ALSO ADOPTED.
THE PERFORMANCE DEGRADATION IS SHOWN IN THE BRACKET

Fig. 11. Visual examples of inputs processed by RCA-SOC (RS) [28].

Fig. 12. Visual examples of edge structures extracted by different edge
extraction algorithms.

generation, other algorithms (“Scharr”,“Prewitt”,“Roberts”)
with the same parameters, and the same algorithm with differ-
ent parameters (“Sobel-2”,“Sobel-3”). Some visual examples
are provided in Figure 12. For the replacement of the edge
area, we first consider the above-mentioned solution, namely,
directly using the corresponding original clean image (denote
as “ori”), which however is not accessible in practice. Never-
theless, the defender can leverage an inpainting algorithm to
restore the removed area [31]. Here, we use a pure image with
a constant RGB value (e.g.,125) as the restored area, which

TABLE XIII
THE PERFORMANCE (CDA / ASR) IN THE CASE OF REPLACING EDGE

AREAS WITH THE CORRESPONDING ORIGINAL (ORI) CLEAN IMAGE OR THE

PURE IMAGE WITH A CONSTANT RGB VALUE. WE UTILIZE DIFFERENT

EDGE EXTRACTION ALGORITHMS TO LOCATE THE EDGE AREA.

can be regarded as the worst case of inpainting. As shown in
Table XIII, Poison Ink can still achieve above 55% ASR in all
cases mentioned above. We explain that the poison information
is not fully removed in such adaptive defenses. Besides, in the
case with a relatively low ASR, the corresponding CDA also
degrades a lot, which is unacceptable for the defender.

We also consider adversarial training [68], which is
proposed to defend against adversarial attacks. In detail,
Geiping et al. [69] extend adversarial training to defend
against backdoor attacks by generating poisoned images
during training and injecting them into training batches.
We conduct the corresponding experiments on CIFAR-10
dataset, adopt s = 0.75 as the poison immunity, and con-
sider the from-scratch scenario. To generate poisoned images,
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TABLE XIV
COMPARISON WITH OTHER ATTACK METHODS UNDER DIFFERENT POLLUTION RATIO. WE TAKE RESULTS ON CIFAR-10 DATASET FOR EXAMPLE

Fig. 13. Output examples of injection network IN trained with different loss
constraints on CIFAR-10 dataset.

we utilize the most similar watermark-based method [12]
provided by the official code.1 However, the ASR of Poison
Ink even increases by 6.49% after adversarial training. The
possible reason is that adversarial training forces the model
to capture more robust features, making the edge structures
learned better. This finding warrants more study in future
work, as adversarial training is one of the only truly effective
methods we have to date to defend against adversarial attacks.

I. Ablation Study

1) Importance of Our Design: In this experiment, we take
CIFAR-10 dataset as an example to ablate our design. First,
we use an input-agnostic image rather than the edge structure
as the trigger pattern and leverage the same invisible injection
network to create the poisoned image. However, we find this
strategy will totally fail, and the ASR is only 13.42% even
without pre-processing. Recently, Li et al. [70] proposed an
invisible input-specific backdoor attack, whose framework is
similar to us but does not considering the structure infor-
mation. To double confirm it, we also conduct comparative
experiments on CIFAR-10 dataset and find it fails as expected.

Second, we try to discard the interference layer during
the injection network training. Under this setting, the ASR
degrades from 99.95% to 43.73% when faced with resizing,
demonstrating the importance of the interference layer.

2) Influence of Pollution Ratio: In our default setting, we set
the pollution ratio as 10%. In Table XIV, we further try more
pollution ratios on CIFAR-10 dataset and show the robustness
and the stealthiness of different methods, where we use the
average CDA and ASR to represent the robustness against data
transformations. There exists a trade-off between the CAD
and ASR under different ratios. Overall, compared with other
methods, our method performs well both in stealthiness and
robustness in most cases.

1https://github.com/JonasGeiping/data-poisoning

TABLE XV
QUANTITATIVE RESULTS OF THE STEALTHINESS WITH DIFFERENT LOSS

CONSTRAINTS ON THE CIFAR-10 DATASET

However, poison ink will fail under a meager pollution
ratio like 1%. In our threat model, we cannot control the
training strategy. We try more invisible backdoor attacks such
as WaNet [62] and FTrojan [63] under the 1% pollution ratio,
and find they also fail with a low ASR in our threat model
(WaNet: 10.83% and FTrojan: 10.92%). If we control the
training strategy like in WaNet [62], namely, adding poisoned
images in every training batch, Poison Ink can succeed with
above 90% ASR. Besides, if we first train the model only on
trigger images and then fine-tune it on clean images, we can
also achieve above 90% ASR. In conclusion, the model needs
more information to remember the trigger pattern when it is
stealthy enough.

3) Influence of Loss Constraints on Stealthiness: In our
default setting, we utilize both invisibility loss Linv and adver-
sarial loss Ladv to achieve desirable stealthiness. As shown in
Table XV, appending adversarial loss Ladv after invisibility
loss Linv can improve the image quality slightly, and only
using Ladv will cause poor image quality, where injection
network mainly focuses on the high-level information of
images. Some visual results are showcased in Figure 13. In
practice, adopting or discarding the adversarial loss is flexible,
which depends on the desired balance between stealthiness and
robustness.

VI. CONCLUSION

In this paper, we point out the limitations of existing back-
door attacks regarding stealthiness and robustness. To address
such limitations, we propose a new backdoor attack method
“Poison Ink”. It utilizes the image structure as the carrier of
poison information to generate trigger patterns and leverage
a deep injection network to hide the trigger patterns into
the cover images in an invisible way. Extensive experiments
demonstrate that Poison Ink is superior to existing methods
in stealthiness, robustness, generality and flexibility. Besides,
Poison Ink is resistant to many state-of-the-art defense tech-
niques. It is interesting to explore backdoor attacks in the
frequency domain, and we leave it as future work.
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