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A B S T R A C T

Recently, CNN (convolutional neural network) steganalyzers have significantly outperformed handcrafted
features in detecting steganography. However, adversarial steganography has challenged the applications of
them in the real world. Adversarial steganography can easily deceive the target CNN steganalyzer while sending
secret messages. In this paper, a general framework is proposed. It that can improve the robustness of CNN
steganalyzers against adversarial steganography while keeping detecting cover and conventional stego images
accurately. Specifically, a rough filter that filters adversarial stego images out of the input data is set. It
exploits the differences between cover and adversarial stego images on probabilistic outputs of the target CNN
steganalyzer and a handcrafted steganalyzer. Extensive experiments show that the proposed framework can
significantly improve the robustness of CNN steganalyzers. In the real-world scenario where cover, conventional
stego and adversarial stego images are mixed, the robustness enhanced CNN steganalyzers can achieve the
optimal overall performance.
. Introduction

Image steganography [1–5] is the science and art of covert commu-
ication that embeds secret messages into cover images with minimal
istortions [2,6–9]. Currently, the most successful steganographic ap-
roaches are based on the minimal distortion model [10,11], which
ormulates the steganography problem as source coding with a fidelity
onstraint. Under the framework of the minimal distortion model,
here are two tasks: (1) defining the costs of modifying the elements
f a cover image and (2) designing a practical embedding method-
logy while minimizing the arbitrary cost defined previously. Since
yndrome-trellis codes (STCs) [10,11] perform near the maximum theo-
etical bound at the second task, steganography research mostly focuses
n the design of the cost function, such as WOW [12], UNIWARD [13],
ILL [14], MiPOD [15], UERD [16] and J-MiPOD [17] etc.

With the development of steganography, many steganalysis meth-
ds [18–24] have been proposed. Steganalysis is an image binary clas-
ification task that aims to classify cover and stego images. As general
mage classification tasks, steganalysis has evolved from handcrafted
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features combined with traditional machine learning models (called
handcrafted steganalyzers) to CNNs. The most successful handcrafted
features are the spatial rich model (SRM) [25] and the Gabor filter
rich (GFR) [19], in the spatial domain and the JPEG domain respec-
tively. The best performing traditional classifier model is the ensemble
classifier (EC) [26], a random forest-based machine learning model.
And since YeNet [27], CNN steganalyzers [27–37] have significantly
outperformed handcrafted ones. Currently, SRNet [31], CovNet [38],
and SiaStegNet [35] are considered to be the most successful CNN
steganalyzers.

Whereas CNNs have provided breakthroughs in various areas, they
have been found to be vulnerable to adversarial attacks [39–43].
Generally, the adversarial attack is a technique that deceives CNNs into
outputting incorrect results by adding elaborately designed small adver-
sarial perturbations to original images. Images generated by this tech-
nique are called adversarial examples. Similarly, adversarial steganog-
raphy [44–50] has been proposed. It can communicate secret messages
and deceive target CNN steganalyzers at the same time. Currently,
vailable online 29 June 2022
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the state-of-the-art way to defend against adversarial steganography is
retraining [40,47–49,51], i.e., augmenting the training set with adver-
sarial stego images. However, it is found that adversarial steganography
can still deceive retrained CNN steganalyzers. Thus, CNN steganalyzers
will get stuck in the ‘‘arms race’’ with adversarial steganography [48,
49]. Even worse, the detection accuracy on common samples (cover
and conventional stego images) of retrained CNN steganalyzers will
drop [47–49].

In this paper, a robustness enhancement framework for CNN ste-
ganalyzers against adversarial steganography is proposed. Different
from retraining, it avoids CNN steganalyzers stuck in the ‘‘arms race’’
with adversarial steganography. Though adversarial steganography can
easily fool CNN steganalyzers, it has a small impact on handcrafted
steganalyzers. Hence, the images labeled as cover by the target CNN
steganalyzer and as stego by a handcrafted steganalyzer may contain a
substantial number of adversarial stego images. Also, adversarial stego
images obtain substantially distinguished probabilistic outputs, which
is caused by minimizing adversarial perturbations. By exploiting such
characteristics, adversarial stego images are filtered from the input and
labeled them by a specific classifier. The proposed scheme is robust
against adversarial steganography while maintaining higher detection
accuracies on cover and conventional stego images than handcrafted
steganalyzers.

Our framework is evaluated based on the area under the curve
(AUC) in the real-world scenario with a mixture of adversarial images
and conventional stego images. The experimental results show that
the robustness enhanced CNN steganalyzers substantially outperforms
the previous works. The contributions of the proposed framework are
summarized as follows.

• Previously, the arms race like retraining was the only way to
defend against adversarial steganography. This paper proposed a
framework that avoids CNN steganalyzers stuck in the arms race
like retraining.

• By utilizing the robustness gap between CNN steganalyzers and
handcrafted steganalyzers, the proposed framework filters adver-
sarial stego images out of the input stream.

• The extensive experiments prove that the robustness enhanced
CNN steganalyzers obtain superior comprehensive detection abil-
ity in the real-world scenario.

The rest of this paper is organized as follows. In Section 2, two
etraining strategies are briefly reviewed. The proposed framework
s detailed in Section 3. Extensive evaluations and comparisons are
arried out in Section 4. The paper is concluded in Section 5.

. Previous works

Previously, the only effective way to defend against adversarial
teganography was retraining. Tang et al. [47] and Bernard et al. [48,
9] discussed two retraining methods respectively. In this section, these
wo methods are briefly introduced.

.1. Tang et al.’s method

In each round of Tang et al.’s [47] setting, the steganographer takes
he first step to attack the CNN steganalyzer, then the steganalyzer
ugments the training set with some adversarial stego images in the
urrent round and gets retrained.

In a three-round experiment, the success rates of ADV-EMB are
9.39%, 97.37% and 95.23%, respectively. It indicates retraining with
urrent-round adversarial stego images provides little robustness
gainst adversarial steganography, even if the generation method keeps
he same. Moreover, the retrained CNN steganalyzer suffers from accu-
acy drop of common samples (cover and conventional stego images).
he decreases are 2.57% and 4.31% in the second and third rounds.
2

2.2. Min–max retraining

Bernard et al. [48,49] described a more complex scenario than
Tang et al. [47] Instead of augmenting the training set with ran-
domly selected adversarial stego images, the steganalyzer only adds the
adversarial stego images that obtain the highest detectability. The de-
tectability is measured by the probabilistic outputs of the steganalyzers
in previous rounds.

In Bernard et al.’s experiment, the success rates of ADV-EMB are
mostly higher than 90% across the tested target CNN steganalyzers and
payloads. Also, the average detection accuracy of CNN steganalyzers
on conventional stego images and adversarial stego images of previous
rounds continuously drops as the ‘‘arms race’’ goes.

3. The proposed robustness enhancement framework

In this section, the proposed robustness enhancement framework is
detailed. Specifically, the motivation (Section 3.1) is first introduced.
The overall architecture (Section 3.2) is presented. Two key consti-
tutions of the proposed framework, the rough filter and the specific
classifier, are detailed in Sections 3.3 and 3.4. The theoretical analysis
about the probabilistic outputs of steganalyzers on adversarial stego
images is elaborated in Section 3.3.4 and Appendix.

3.1. Motivation

Though detecting adversarial steganography is quite a challenge,
traces they still leave in the outputs of CNN steganalyzers and hand-
crafted steganalyzers. It indicates a chance to enhance CNN stegana-
lyzers’ robustness.

Calculations in CNN are mostly derivable. The gradient maps are
accessible, allowing the attacker to modify clean images to deceive CNN
models. While key calculations in extracting handcrafted features are
underivable, such as generating co-occurrence matrices or histograms.
It prevents the attacker to craft adversarial stego images against them.
Therefore, the target CNN steganalyzer cannot correctly classify ad-
versarial stego images, but handcrafted models are almost immune to
adversarial steganography. Then the images that the handcrafted model
labels as stego and the CNN labels as cover may contain a significant
number of adversarial stego images.

Furthermore, adversarial steganography aims to trick the CNN ste-
ganalyzer into labeling adversarial stego images as cover with minimal
perturbations. Subject to an adversarial stego image being labeled as
cover, the minimal adversarial perturbations will be made when the
probabilistic output of predicting as cover class is just larger than
that of predicting as stego class. Meanwhile, for cover images, the
probabilistic outputs of predicting as cover class are mostly much larger
than that of predicting as stego class. Therefore, it is reasonable to
assume that cover, conventional stego and adversarial stego images
are all distinct in the two-dimensional feature space constructed by the
probabilistic output of predicting as cover class of CNN and handcrafted
models.

The classification problem with a mixture of cover, conventional
stego, and adversarial stego images may be decomposed into the clas-
sification of cover and conventional stego images and the classification
of cover and adversarial stego images. This allows us to let CNN
steganalyzers and handcrafted steganalyzers exploit their advantages
to solve the tricky task of steganalysis in the presence of adversarial
stego images.
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Fig. 1. The architecture the proposed robustness enhancement framework. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
3.2. The architecture of the proposed framework

Fig. 1 exhibits the architecture of the proposed framework. It con-
sists of a basic handcrafted steganalyzer (in the left column), a rough
filter (the middle column), and a specific classifier (in the right col-
umn), and a slot for any CNN steganalyzer to fit in (the ‘‘Target CNN’’
in the figure). The classification process of the proposed framework is
detailed as follows.

The steganalysis task is accomplished by the proposed framework
in three steps. In the first step, the probabilistic outputs of predicting
as cover class (�̂� = 0) of 𝜙 and 𝜑 are collected, i.e., 𝑝𝜙(0|𝑿) and
𝑝𝜑(0|𝑿), where 𝜙 is the target CNN steganalyzer and 𝜑 is a handcrafted
steganalyzer trained by conventional stego images. In the second step,
the rough filter is utilized to divide the input data into two groups,
i.e., the filtered images and the remaining images. 𝑝𝜙(0|𝑿) and 𝑝𝜑(0|𝑿)
construct a two-dimensional space, in which adversarial stego images
stand out from the others. Thus the rough filter (the red line in
the center of Fig. 1) can divide the input images into the filtered
images and the remaining images. In the third step, all the inputs
are labeled. The filtered images, which contain a large number of
adversarial stego images, are classified by a handcrafted model trained
with cover and adversarial stego images. This model is called the specific
classifier. The remaining images, which contain almost no adversarial
stego images, are classified by the CNN steganalyzer 𝜙. It is worth
noting that the specific classifier is required to be robust against the
adversarial steganography, since deceiving multiple CNN steganalyzers
is implemented by Zhang et al. [44]. The detailed discussion about the
risk of a non-robust specific classifier would be exhibited in Section 4.5.

3.3. The rough filter

The rough filter could be expressed as the boundary in the feature
space of 𝑝𝜙(0|𝑿) and 𝑝𝜑(0|𝑿), as shown in Fig. 2. This filter consists
of two parts: (1) a label filter that utilizes the label outputs of the
CNN steganalyzer and the handcrafted feature-based steganalyzer. (2)
A probabilistic filter that filters the adversarial stego images that could
not be identified by labels.
3

Fig. 2. The rough filter in the two-dimensional feature space (the boundary drawn in
red). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

3.3.1. The label filter
Briefly speaking, the label filter filters the images being predicted

as cover by the basic handcrafted steganalyzer while being predicted
as stego by the target CNN steganalyzer, i.e., {𝑿|�̂�𝜙(𝑿) = 0, �̂�𝜑(𝑿) = 1}.

More detailed than introduced in Section 3.1, 0.4 bpp (bit per pixel)
in BOSSBase 1.01 and BOWS2 is taken for instance. ADV-EMB deceives
the target SRNet with a 95.00% success rate while only achieving
33.42% missed detection on an S-UNIWARD trained SRM + EC. The
missed detection rate gap between two steganalyzers motivates the
design of the label filter. Combining the label outputs �̂�𝜙 and �̂�𝜑, plenty
of adversarial stego with images �̂�𝜙 = 0 and �̂�𝜑 = 1 could be filtered
out. The specific number of the images filtered out is discussed in
Section 4.4.

3.3.2. Generating probabilistic outputs of handcrafted steganalyzers
As presented above, the proposed framework requires the proba-

bilistic outputs of the CNN steganalyzer 𝜙 and the handcrafted stegan-
alyzer 𝜑. CNN steganalyzers generate probabilistic outputs via softmax
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𝑦

Fig. 3. The comparison of SRM + EC probabilistic outputs histograms, (a) before and (b) after the conversion of using softmax function with temperature.
function normalizing class scores (also called logits):

𝑝𝜙(𝑖|𝑿) = 𝑒𝑧𝜙(𝑖|𝑿)
∑

𝑗 𝑒
𝑧𝜙(𝑗|𝑿)

, 𝑖, 𝑗 ∈ {0, 1}, (1)

where 𝑧𝜙(𝑖|𝑿) represents the logits of class 𝑖. However, for the widely
used handcrafted steganalyzer, ensemble classifier, which consists of a
series of base learners and adopts majority voting to decide predicted
labels, it does not output class probabilities 𝑝𝜑(0|𝑿) and 𝑝𝜑(1|𝑿).

The most straightforward way to generate 𝑝𝜑(𝑖|𝑿) is to normalize
the votes into probabilities by using softmax function:

𝑝𝜑(𝑖|𝑿) = 𝑒𝑧𝜑(𝑖|𝑿)
∑

𝑗 𝑒
𝑧𝜑(𝑗|𝑿)

, 𝑖, 𝑗 ∈ {0, 1}, (2)

where 𝑧𝜙(𝑖|𝑿) represents the vote for class 𝑖. But, the probabilities
generated in this way cluster tightly near 0 and 1, as shown in Fig. 3-(a).
In other words, the adversarial stego images that are predicted as cover
will ‘‘hide’’ in the cover cluster. It creates difficulties in filtering them
from the input.

To solve this problem, the softmax function with temperature [52]
is adopted:

𝑝𝜑(𝑖|𝑿) = 𝑒𝑧𝜑(𝑖|𝑿)∕𝑇
∑

𝑗 𝑒
𝑧𝜑(𝑗|𝑿)∕𝑇

, 𝑖, 𝑗 ∈ {0, 1}, (3)

where 𝑇 is the temperature. Higher values of 𝑇 can better scatter the
images across [0, 1], as shown Fig. 3-(b). The temperature value is set
as 𝑇 = 16 in this paper.

3.3.3. The probabilistic filter
There are some adversarial stego images with both �̂�𝜙 = 0 and

̂𝜑 = 0. These adversarial stego images would generate low 𝑝𝜙(0|𝑿)
or 𝑝𝜑(0|𝑿).

The payload with 0.4 bpp in BOSSBase 1.01 and BOWS2 is taken for
instance. The target CNN model 𝜙 is SRNet, and the basic handcrafted
steganalyzer 𝜑 is SRM + EC. Both are trained with cover and S-
UNIWARD image pairs. The histograms of the probabilistic outputs
[𝑝𝜙(0|𝑿), 𝑝𝜑(0|𝑿]) of the target model on cover, ADV-EMB and ADS are
exhibited in Fig. 4.

A two-dimensional feature space [𝑝𝜙(0|𝑿), 𝑝𝜑(0|𝑿)] is constructed,
as shown in Fig. 2. To draw the boundary between adversarial stego
images and cover images, a Gaussian kernal SVM as 𝑝𝜙(0|𝑿) is utilized,
and [𝑝𝜙(0|𝑿), 𝑝𝜑(0|𝑿)] is taken as the input. The SVM will output the
labels that indicate whether to filter.

In summary, for the input, two rules are taken to filter the adver-
sarial stego images: (1) images with labels �̂�𝜙 = 0 and �̂�𝜑 = 1. (2) The
images labeled as adversarial stego by the Gaussian SVM filter from
the images with �̂�𝜙 = 0 and �̂�𝜑 = 0. The filtered images are sent to
be classified by the specific classifier, while the remaining images are
classified by the CNN steganalyzer 𝜙. The framework is shown in Fig. 1.
4

3.3.4. Explaining the trade-off between high probabilistic outputs and ad-
versarial perturbations

In this section, the theoretical analysis about why adversarial
steganography will obtain lower 𝑝𝜙(0|𝑿) is presented.

First, adversarial perturbations and the probabilistic outputs of the
target CNN model 𝑝𝜙(0|𝑿) are bridged.

For convenience, the gradient map towards the cover class of the
input image 𝑿 is denoted as

𝜼(𝜙,𝑿, 0) =
𝜕𝐿𝜙(𝑿, 0)

𝜕𝑿
. (4)

Specifically, for ADS [44], which embeds the secret messages on the
cover images that are iteratively enhanced by FGSM [53] perturbations,
the increase of the probabilistic output 𝛥𝑝𝜙(0|𝑿) could be estimated by
the adversarial perturbations as

𝛥𝑝𝜙(0|𝑿) =
𝑛
∑

𝑖=1
𝜖 ln 2∫

𝑺+𝜟𝑖

𝑺
2𝑝𝜙(0|𝒁𝑖)𝜼(𝜙,𝒁 𝑖, 0) d𝑺, (5)

where 𝜖 denotes the scalar of adversarial perturbations in each iteration
of ADS. The deduction process of the above equation is detailed in

Appendix. With larger 𝜖 and more iterations 𝑛, the accumulated
adversarial perturbations 𝜟 =

∑𝑛
𝑖=1 𝜖 ⋅ 𝜼(𝜙,𝒁 𝑖, 0) grow, and the increase

of probabilistic output also increases.
ADV-EMB [47] forces the steganographic modification directions to

be the same as the gradient directions. Since steganographic modifi-
cations are ±1, the steganographic modifications in adjustable groups
could be considered adversarial perturbations with a negative ampli-
tude:

𝛥𝑥,𝑦 = −
𝜂𝑥,𝑦(𝜙,𝑿, 0)
|

|

|

𝜂𝑥,𝑦(𝜙,𝑿, 0)||
|

, (6)

where 𝑥, 𝑦 represent the position of the element.
According to Gibbs constructions [54] in steganography, the

steganographic modifications will increase if the modification probabil-
ities of +1 and −1 are imbalanced. Hence, with larger adjustable groups,
the modification rate of ADV-EMB increases. Still, more image elements
in the adjustable group will produce a higher probabilistic output
𝑝𝜙(0|𝑿) as more adversarial perturbations are generated. A simple
experiment in BOSSBase 1.01 [55] and BOWS2 [56] is conducted to
show that a larger amount of adjustable group elements will generate
a higher 𝑝𝜙(0|𝑿) while introduce more modifications. The results are
shown in Table 1.

Hence, for both ADS and ADV-EMB, the following conclusion can be
drawn: the probabilistic outputs of the target CNN steganalyzer 𝑝𝜙(0|𝑿)
are positively correlated with the quantity of adversarial perturbations.

Introducing more adversarial perturbations will expose adversarial
stego images to the detection of handcrafted steganalyzers. Specifically,
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Fig. 4. The bi-histogram of 𝑝𝜙(0|𝑿) and 𝑝𝜑(0|𝑿) of cover and (a) ADV-EMB or (b) ADS. The target CNN steganalyzer is SRNet trained on cover and S-UNIWARD image pairs from
BOSSBase 1.01 and BOWS2.
Table 1
The mean modification number, 𝑝𝜙(0|𝑿) and the average detection error rate under
SRM+EC of ADV-EMB with different 𝛽 under relative payload 0.4 bpp.
𝛽 0.1 0.3 0.5 0.7 0.9
Average 𝐿0 distance 2478.37 2528.61 2628.86 2733.42 2832.49
Average 𝑝𝜙(0|𝑿) 0.1481 0.4873 0.7465 0.8550 0.8950

ADS introduces larger perturbations than ADV-EMB. The average 𝐿2
distortions per image caused by ADS and ADV-EMB and the detected
rate on ADS and ADV-EMB of the basic handcrafted steganalyzer 𝜑 are
compared. The target CNN steganalyzer is SRNet trained on cover and
S-UNIWARD image pairs. The results are shown in Table 2.

From Table 2, one can observe the distortions caused by ADS are
clearly larger than those caused by ADV-EMB. Hence, according to
Fig. 4 and Table 2, ADS is easily detected by the basic handcrafted
feature-based steganalyzer 𝜑. In Fig. 4, ADS is harder to distinguish
from cover images than ADV-EMB.

From the analysis above, adversarial steganography either intro-
duces more adversarial perturbations, which will lead to detection by
handcrafted steganalyzers, or subtly controls the perturbations, which
leads to identification by the probabilistic filter.

3.4. The specific classifier

The specific classifier is set to accurately classify the filtered images,
which are mainly the adversarial stego images and the cover images.
In this section, we introduce the structure of the specific classifier.

The best-performing structure of a steganalyzer is CNN. However, it
has been proven that CNN steganalyzers are vulnerable to adversarial
steganography. Based on the experiments from the paper of Tang
et al. [47], the retrained CNN steganalyzers are still vulnerable to
adversarial steganography targeting at the updated model. Further-
more, ADS has a version that targets multiple models [44]. Referring to
adversarial attacks in computer vision, which is similar to adversarial
steganography, Carlini et al. [57] have also shown that an extra CNN
detection model would provide little improvement in robustness.

There are underivable operations in the process of handcrafted
feature extraction [25], such as calculating co-occurrence matrices
or histograms, and residual map truncations. These operations make
generating adversarial stego images against handcrafted steganalyzers
much harder than the equivalent process for CNN steganalyzers. Fur-
thermore, attacking two steganalyzers with totally different structures
at the same time is even harder. SRM [25] and GFR [19] incorporated
with the ensemble classifiers [26] are the state-of-the-art handcrafted
models. For these reasons, SRM + EC and GFR + EC are utilized as the
5

specific classifiers in the spatial domain and JPEG domain, respectively.
Moreover, the specific classifier is trained with the same cover images
as 𝜙 and 𝜑 and the corresponding adversarial stego images targeting 𝜙,
as the steganalyzer would obtain a higher detection ability with paired
training. During the testing period, the specific classifier only processes
the filtered images.

Note that setting the specific classifier is different from the re-
training strategy. As mentioned before, retrained CNN steganalyzers
are still vulnerable to adversarial steganography. Besides, retraining
requires seeing every type of adversarial steganography, while the
specific classifier only requires seeing one type of it. Specifically, in
this paper, the specific classifier is only trained with ADV-EMB [47].
On the other hand, the proposed scheme is robust against updated
adversarial steganography. The specific classifier is set to reduce the
misclassification of cover images.

4. Numerical evaluations and comparisons

To evaluate the performance of the proposed robustness enhance-
ment framework, the following experiments are conducted.

1. As stressed in this paper, adversarial stego images are now mixed
with cover and conventional stego images in real-world data
streams. The AUCs (area under the curve) are taken to evaluate
the performance of the enhanced CNN steganalyzers and the
previous works. It will be reported in Section 4.2.

2. Before the proposed framework, retraining was the only effective
way to defend against adversarial steganography. The detection
accuracy on the adversarial steganography targeting the current
CNN steganalyzer is taken as the robustness measurement. The
robustness of the enhanced CNN steganalyzers and retrained
ones are compared in Section 4.3.

3. In the proposed framework, the rough filter and the specific
classifier are two key constitutions. The former filters adversar-
ial stego images out of the input. The latter guarantees lower
false alarm rates. In Sections 4.4 and 4.5, they are analyzed
respectively.

4. To better exhibit how the proposed framework works, the clas-
sification process of several example images are visualized in
Section 4.6.

4.1. Settings

1. Image Sets: In this paper, two widely-used image datasets BOSS-
Base 1.01 [55] and BOWS2 [56] are adopted. Each dataset
contains 10,000 grayscale images of size 512 × 512. To train
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Table 2
The comparison of the average 𝐿2 distortions, 𝑝𝜙(0|𝑿) and the detection rate under 𝜑 between ADV-EMB
and ADS.
Payload 𝐿2 𝑝𝜙(0|𝑿) Detected rate (%)

ADV-EMB [47] ADS [44] ADV-EMB [47] ADS [44] ADV-EMB [47] ADS [44]

0.1 22.12 66.82 0.6141 0.7150 56.98 60.86
0.2 33.31 87.41 0.6705 0.7548 61.61 67.63
0.3 42.95 85.75 0.7151 0.8163 62.19 73.68
0.4 50.90 85.17 0.7802 0.8163 67.55 78.61
0.5 58.70 95.31 0.8302 0.8680 77.82 83.46
i
f

o
a
t

CNN steganalyzers, the images are resized to 256 × 256 by
the MATLAB function imresize() with the default settings. For
the JPEG domain experiments, the images of size 256 × 256
are compressed into JPEG format with the quality factor of 75.
14 000 images are randomly selected as the training set. Another
random 1000 images from the validation set and the other 5000
images from the testing set.

2. Steganographic Methods: For adversarial steganographic
methods, two state-of-the-art methods, namely, ADV-EMB [47]
and ADS [44], are selected. For conventional steganographic
methods, S-UNIWARD [13] and J-UNIWARD [13] are adopted
in the spatial and the JPEG domain, respectively. They are
also the base cost functions utilized for ADV-EMB and ADS. All
conventional and adversarial stego images are generated using
the optimal embedding simulator.

3. Steganalyzers: Three state-of-the-art CNN steganalyzers,
namely, SRNet [31] and SiaStegNet [35], are selected. SRNet is
utilized in both the spatial and JPEG domains, while SiaStegNet
is only used in the spatial domain due to its design. CNN
steganalyzers are trained with default settings introduced in
their papers. The target CNN steganalyzers 𝜙 are trained with
cover and conventional stego image pairs.
For handcrafted steganalyzers, ensemble classifier [26] is trained
with two state-of-the-art feature sets SRM [25] and GFR [19] in
the spatial and JPEG domains, respectively. The retrained SRM
+ EC and GFR + EC are trained with the ratio of cover: stego:
adversarial stego = 2:1:1.
In the proposed scheme, the basic handcrafted steganalyzers
𝜑 are trained with cover and conventional stego image pairs.
Please note that we set the basic handcrafted steganalyzers
trained with conventional stego images with a fixed relative pay-
load 0.5 bpp (or bpnzAC) to compress the false alarm rate. The
specific classifiers of the proposed scheme are trained with cover
and the adversarial stego images targeting CNN steganalyzers 𝜙.
Since ensemble classifiers optimize their parameters through
cross-validation, 15 000 image pairs are utilized to train ensemble
classifiers.

4.2. Performance comparisons in the real-world scenario

In real-world steganalysis, the input images include cover, conven-
tional stego and adversarial stego images. To comprehensively compare
the robustness enhanced CNN steganalyzers with the previous works,
metrics that address all accuracies on cover, stego and adversarial stego
images should be adopted. Therefore, in this subsection, the AUC (area
under the curve) is adopted as the metric. AUC is a classic evalua-
tion metric of binary classification tasks. It reflects the comprehensive
performance of models under different classification thresholds. Since
steganalysis is a binary classification problem, the ratio of class 0
(cover) and class 1 (stego) is kept 1 ∶ 1. The ratio of conventional
and adversarial stego images is 1 ∶ 1. Thus, the testing data consist
of all cover, conventional stego and adversarial stego images with
proportions 2 ∶ 1 ∶ 1. Note that the adversarial stego images are all
targeting the tested CNN steganalyzers. The results are shown in Fig. 5.

It is evident that the robustness enhanced CNN steganalyzers out-
6

perform the original CNN steganalyzers and the handcrafted ones. r
Table 3
The quantity of each type of the images in the filtered images.

Payload (bpp) 0.1 0.2 0.3 0.4 0.5

Cover 1972 1315 1262 1044 1129
Stego 1695 832 668 352 384
Adversarial stego 3490 3211 3476 3835 4373

Total 7157 5358 5406 5231 5886

The largest gap is 0.0541 when the target model SRNet is trained
with S-UNIWARD under payload 0.4 bpp. Furthermore, to visually
exhibit the AUC comparison, in Fig. 6, we draw the receiver operating
characteristic (ROC) curves of SRNet, SRM + EC and the proposed
scheme. The target model is SRNet trained with S-UNIWARD under a
relative payload of 0.4 bpp.

4.3. Comparing robustness with retraining

Before the proposed framework, retraining is the only way to defend
against adversarial steganography. Bernard et al. [48,49] discussed a
min–max retraining strategy for CNN steganalyzers. In this section, the
robustness of the min–max retraining and the proposed framework are
compared. The robustness is evaluated by the detection accuracy of the
adversarial stego images that target it.

The min–max strategy involves 8 and 6 iterations in the JPEG
domain and the spatial domain, respectively. The model structure we
adopt is SRNet, and the conventional steganographic methods are S-
UNIWARD and J-UNIWARD. The tested relative payload is 0.4 bpp (or
bpnzAC).

According to the results in Fig. 7, little improvement is brought by
the min–max strategy. Even in the best case of retraining, i.e. in the
6th iteration and the spatial domain, the detection accuracy on ADV-
EMB is almost 30% lower than the proposed framework. Moreover, the
min–max retrained CNN steganalyzer is still vulnerable to unknown
adversarial steganographic methods. In the last iteration of the spatial
domain, the ADV-EMB retrained CNN steganalyzer can only detect
0.32% ADS [44] stego images targeting it. While the proposed frame-
work, which is also not trained with any ADS stego images, detects
71.32% of the ADS stego images targeting 𝜙. Hence, the robustness
brought by the proposed scheme is clearly superior.

4.4. The effect of the rough filter

The rough filter is set to filter out adversarial stego images from
the input. Thus, the constitutions of the filtered images are displayed
in this section. Note that the total number of images belonging to each
type (cover, conventional stego, adversarial stego) is 5000.

The rough filter consists two parts: (1) the label filter that filters
mages with �̂�𝜙 = 0 and �̂�𝜑 = 1 and (2) the probabilistic filter that
ilters the images with lower 𝑝𝜙(0|𝑿) and 𝑝𝜑(0|𝑿).

The experiments are conducted as SRNet is the target steganalyzer
f the adversarial steganographer, which utilizes ADV-EMB to generate
dversarial stego images in the spatial domain. The constituents of
he images filtered by the rough filters are shown in Table 3. Taking
elative payload 0.5 bpp for instance, the filtered images consist of
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Fig. 5. The comparisons on AUC (Area Under Curve) of SRNet, retrained SRM + EC (or GFR + EC) and the proposed scheme in the spatial domain (a,b,c) and the JPEG domain
(d).
Fig. 6. The ROC curves of SRM + EC (mix trained), SRNet and the proposed scheme.

1129 cover images, 4373 adversarial stego images and 384 conventional
stego images. This result proves the rough filter’s effectiveness, which
guarantees that most of the adversarial stego images would not be
classified by the target CNN steganalyzers.
7

Fig. 7. The detection accuracy of the steganalyzer in 𝑘th iteration on the ADV-EMB
targeting it. It represents the robustness of the steganalyzers.

4.5. The effect of the specific classifier

The specific classifier aims to classify the filtered images, which
consist of mostly adversarial stego images and some cover images.
First, the impact on the detection accuracy of cover/conventional
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Table 4
The detection accuracy of the schemes with and without the specific classifier. We
take ADV-EMB and the SRNet trained with cover and S-UNIWARD image pairs as the
example. The specific classifier is abbreviated as SC.

Payload (bpp) 0.1 0.2 0.3 0.4 0.5

Cover With SC 𝟓𝟐.𝟔𝟖% 𝟔𝟎.𝟏𝟎% 𝟕𝟒.𝟒𝟖% 𝟖𝟎.𝟑𝟎% 𝟗𝟎.𝟓𝟐%
Without SC 34.02% 47.52% 51.46% 66.86% 71.24%

Stego With SC 77.80% 89.12% 94.20% 96.78% 98.36%
Without SC 𝟗𝟐.𝟗𝟎% 𝟗𝟓.𝟔𝟖% 𝟗𝟕.𝟗𝟒% 𝟗𝟖.𝟒𝟖% 𝟗𝟗.𝟓𝟐%

Adversarial
stego

With SC 52.08% 53.46% 58.74% 67.89% 77.48%
Without SC 𝟖𝟏.𝟖𝟒% 𝟕𝟓.𝟐𝟖% 𝟕𝟒.𝟒𝟖% 𝟖𝟐.𝟒𝟐% 𝟗𝟏.𝟕𝟒%

Table 5
The successful rate of ADV-EMB [47] to deceive CNN steganalyzers utilized as the
specific classifier.

YeNet [27] retrained SRNet [31]

Success rate 75.36% 68.40%

stego/adversarial stego images is exhibited. A straightforward way to
deal with the filtered images is to label them as stego. As shown in
Table 3, the filtered images are mainly adversarial stego, especially
under relatively high payloads. However, under relatively low pay-
loads, the proportion of cover images significantly increases. It could
be anticipated that the detection accuracy on the cover images would
decrease if the filtered images are all labeled as stego. SRNet and
ADV-EMB in the spatial domain are taken as an example to compare
the detection accuracy as with and without the specific classifier. The
results are shown in Table 4.

From Table 4, one can observe that although the detection accuracy
on adversarial stego images increases, the detection accuracy on cover
images decreases. Since current adversarial steganographic methods
all require complete access to the target model, one can anticipate
that adversarial stego images would be relatively rare in real-world
data streams. So the detection accuracy of cover images is preferred.
Hence, the specific classifier is required in the proposed framework to
guarantee higher cover detection accuracy.

The proposed framework takes handcrafted model as the specific
classifier. It is because stacking multiple CNN steganalyzers can hardly
increase robustness. Thus, in this section, experiments are conducted to
show the vulnerability of using CNN model as the specific classifier.

First, the previous literature has proven so. Zhang et al. [44] pro-
posed to deceive multiple CNN steganalyzers by calculating the gradi-
ent map of the weighted loss regarding the input image. This version of
ADS has a 67.3% to a success rate of deceiving YeNet [27], XuNet [29]
and WuNet [58] at the same time under a relative payload of 0.4 bpp.

Second, deceiving multiple CNN steganalyzers is not discussed in
ADV-EMB [47]. An intuitive method can achieve such an aim by using
the average gradient map of multiple CNN steganalyzers to adjust the
embedding costs.

In the experiment of this section, SRNet trained with cover and
S-UNIWARD [13] is taken as the target CNN model 𝜙. Two CNN
steganalyzers are selected as the specific classifier: (1) YeNet with the
same training set and (2) retrained SRNet. By utilizing the adaptive
adversarial steganography we introduced in the last paragraph, the
success rate of attack is shown in Table 5. For the first instance,
where the specific classifier has a different structure from the target
model, ADV-EMB can deceive them both at the same time at a rate of
75.36%. For the second instance, if the specific classifier is retrained,
the adversarial steganographer can still fool both of them at a rate of
68.40%.

Hence, regardless of which adversarial steganography we select
(ADV-EMB or ADS), utilizing the CNN model as the specific classi-
fier provides little improvement in robustness. In comparison, using
handcrafted feature-based steganalyzers is more secure than using CNN
8

steganalyzers.
4.6. Visualizing classification process via some examples

To better exhibit how the proposed framework filters and classifies
adversarial stego images. In this section, the classification process of
several example cover/adversarial stego images is exhibited. Specif-
ically, 2 adversarial stego images and 2 cover images are selected.

he adversarial stego image (1013_a.pgm) and its corresponding cover
mage (1013_c.pgm) are both selected. Thus, in the rough filter part
the middle in Fig. 8), the modification maps are displayed alongside
he stego images to differentiate them. The target CNN steganalyzer is
iaStegNet [35]. The relative payload is 0.4 bpp (bit per pixel).

One can take 1013_a.pgm and 1013_c.pgm as examples. First, the
over class probabilistic outputs of the input, i.e., 𝑝𝜙(0|𝑿) and 𝑝𝜑(0|𝑿)
re collected. For the adversarial stego image 1013_a.pgm, the target
NN steganalyzer 𝜙 predicts it with 𝑝𝜙(0|𝑿) = 0.7430, and the basic
andcrafted steganalyzer 𝜑 predicts it with 𝑝𝜑(0|𝑿) = 0.0183. For
he cover image 1013_c.pgm, 𝜙 and 𝜑 predict it with 𝑝𝜙(0|𝑿) = 1.0
nd 𝑝𝜑(0|𝑿) = 0.9661. Second, the rough filter divides the input
tream. Intuitively, every input image obtains its own locations with
𝑝𝜙(0|𝑿), 𝑝𝜙(0|𝑿)). The ones located in the filtered area (circled with the
ed line in the middle of Fig. 8) will be divided into the filtered images,
nd ones outside are belong to the remaining images. 1013_a.pgm clearly
ocates in the filtered area. Thus, it will be sent to the specific classifier.

hile 1013_c.pgm stands outside the red circle. Thus, it will be labeled
y 𝜙 then. Third, the specific classifier and the target CNN steganalyzer
ill label the filtered images and the remaining images respectively.
013_a.pgm is labeled by the specific classifier as ‘‘STEGO’’ (�̂� = 1),
nd 1013_c.pgm is labeled by 𝜙 as ‘‘COVER’’ (�̂� = 0). They are either

correctly classified.
For the two adversarial stego images, i.e., 1013_a.pgm and

8576.pgm, they are both misclassified by 𝜙 (𝑝𝜙(0|𝑿) > 0.5). But, with
the proposed framework, they are filtered and get correctly classified by
the specific classifier. Meanwhile, it can be observed that the example
cover images (1013_c.pgm and 1000.pgm) are located outside the
filtered area and correctly labeled by 𝜙. These instances show how the
proposed framework filters adversarial stego images and maintains the
high detection accuracy of CNN steganalyzers on cover images.

5. Conclusions

Adversarial steganography threatens the security of CNN stegana-
lyzers. Before the proposed framework, only retraining was utilized to
defend against it. However, retrained steganalyzers are still vulnerable
to adversarial steganography targeting them. In this paper, a robustness
enhancement framework is proposed. It filters adversarial stego images
in the two-dimensional feature space constructed by the probabilistic
outputs of steganalyzers. Extensive experiments show it can enhance
CNN steganalyzers of different structures in different domains. Thus,
in the real-world scenario, where adversarial stego images are mixed
with conventional stego images, the robustness enhanced CNN stegan-
alyzers clearly outperform the previous works. Specifically, the largest
improvement is 0.0926 with SiaStegNet as the target model under
relative payload 0.1 bpp. Compared with retraining, the proposed
framework brings much more robustness improvements and can detect
unknown adversarial steganography. Even if trained with ADV-EMB
for 6 iterations, the success rate of ADS against the target model is
99.68%, while that of the enhanced model of the proposed framework
is only 38.68%. Moreover, this paper also reveals the characteristic of
adversarial steganography in the probabilistic outputs of steganalyzers.
The tested methods (ADV-EMB [47] and ADS [44]) are filtered due
to either being classified as stego by the handcrafted steganalyzer or
generating lower probabilistic outputs.

Since handcrafted steganalyzers are utilized in the proposed frame-
work, more flexible handcrafted steganalyzers for enhancing CNN ste-
ganalyzers robustness against adversarial steganography will be con-
sidered in the future. For instance, reducing the dimensionality of
handcrafted features. Additionally, the specific classifier is still trained
with some adversarial stego images. Designing specific classifiers never

see any adversarial steganography is also part of our future work.
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Fig. 8. The classification processes of several examples. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix. The relation between adversarial perturbations and the
probabilistic outputs

In the appendix, we deduct the Eq. (5) with details. The cross-
entropy loss for classification is

𝐿𝜙(𝑿, 𝑦) = −[𝑦 ⋅ log(1 − 𝑝𝜙(0|𝑿)) + (1 − 𝑦) log(𝑝𝜙(0|𝑿))], (A.1)

where 𝑝𝜙(0|𝑿) denotes the probabilistic output of the CNN model 𝜙
predicting the input 𝑿 as cover.

When the target class is cover (𝑦 = 0), the cross-entropy loss utilized
in CNN steganalyzers is

𝐿𝜙(𝑿, 0) = − log(𝑝𝜙(0|𝑿)), (A.2)

so the gradient map of the cross-entropy loss 𝐿𝜙(𝑿, 0) with reference
to the input image 𝑿 is

𝜼(𝜙,𝑿, 0) =
𝜕[− log(𝑝𝜙(0|𝑿))]

𝜕𝑿
. (A.3)

It is well-known that the adversarial perturbations in both ADS and
ADV-EMB can be expressed as 𝜖 ⋅ 𝜼(𝜙,𝑿, 0). Since 𝜖 < 0, increasing
adversarial perturbations will reduce the cross-entropy loss 𝐿𝜙(𝑿, 0) =
− log(𝑝𝜙(0|𝑿)). At the same time, it is obvious that the corresponding
probabilistic output 𝑝𝜙(0|𝑿) will increase.

Specifically, for ADS, we calculate the gradient map of the proba-
bilistic outputs with reference to the input 𝝑(𝜙,𝑿, 0) as follows to obtain
the explicit relation between the gradient map of the probabilistic
9

outputs and the gradient map of the classification loss,

𝝑(𝜙,𝑿, 0) =
𝜕𝑝𝜙(0|𝑿)

𝜕𝑿

=
𝜕𝑝𝜙(0|𝑿)

𝜕 − log(𝑝𝜙(0|𝑿))
⋅
𝜕 − log(𝑝𝜙(0|𝑿))

𝜕𝑿

= − ln 2 ⋅ 2𝑝𝜙(0|𝑿) ⋅ 𝜼(𝜙,𝑿, 0).

(A.4)

As mentioned in Section 3.3.4, ADS accumulates the perturbations
in each round until the enhanced cover images are predicted as cover
with secret messages embedded. The accumulated distortions could be
expressed as

𝜟 =
𝑛
∑

𝑖=1
𝜖 ⋅ 𝜼(𝜙,𝒁 𝑖, 0). (A.5)

According to Eq. (A.4), the increase in probabilistic output 𝛥𝑝𝜙(0|𝑿) in
ADS could be estimated by the adversarial perturbations as follows.

𝛥𝑝𝜙(0|𝑿) =
𝑛
∑

𝑖=1
−𝜖 ∫

𝑺+𝜟𝑖

𝑺
𝝑(𝜙,𝒁 𝑖, 0) d𝑺

=
𝑛
∑

𝑖=1
𝜖 ln 2∫

𝑺+𝜟𝑖

𝑺
2𝑝𝜙(0|𝒁𝑖)𝜼(𝜙,𝒁 𝑖, 0) d𝑺.

(A.6)

where 𝜖 denotes the scalar of the adversarial perturbations in each
iteration of ADS.
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