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Abstract The adversarial patch is a practical and effective method that modifies a small region on an

image, making DNNs fail to classify. Existing empirical defenses against adversarial patch attacks lack

theoretical analysis and are vulnerable to adaptive attacks. To overcome such shortcomings, certified defenses

that provide a guaranteed classification performance in the face of strong unknown adversarial attacks are

proposed. However, on the one hand, existing certified defenses either have low clean accuracy or need

specified architecture, which is not robust enough. On the other hand, they can only provide provable

accuracy but ignore the relationship to the number of perturbations. In this paper, we propose a certified

defense against patch attacks that provides both the provable radius and high classification accuracy. By

adding Gaussian noises only on the patch region with a mask, we prove that a stronger certificate with high

confidence can be achieved by randomized smoothing. Furthermore, we design a practical scheme based on

joint voting to find the patch with a high probability and certify it effectively. Our defense achieves 86.4%

clean accuracy and 71.8% certified accuracy on CIFAR-10 exceeding the maximum 60% certified accuracy of

existing methods. The clean accuracy of 67.8% and the certified accuracy of 53.6% on ImageNet are better

than the state-of-the-art method, whose certified accuracy is 26%.
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1 Introduction

Deep neural networks (DNNs) have been applied extensively in various professions because of their
superior performance. However, researchers [1–6] have shown that DNNs are vulnerable to adversarial
attacks that a small perturbation constrained by ℓ0, ℓ2, or ℓ∞ norm makes DNNs fail to predict correctly.
Among these attacks, patch-based methods that replace a small area of the image with the generated
patch are more practical in the physical world. There emerged many adversarial patch attacks [7–9], and
studies [10–14] put a malicious patch on the clothes through multiple transformations, making object
detectors such as YOLOv3 [15] and faster R-CNN [16] fail to classify or detect objects. Besides, some
state-of-the-art face recognition models cannot recognize correctly [17–19] when wearing an adversarial
hat or adversarial glasses.

To mitigate the risks of the adversarial patch, many defenses against such attacks have been proposed
according to heuristic observations. From the perspective of the image level, many researchers like [20,21]
used the gradient or saliency map to locate the harmful area and then reconstructed it to get an input
that will not affect the output. Some other studies [22, 23] start from the robustness of the model
itself by making adversarial patches with stronger attack performance to perform adversarial training to
enhance the robustness of the model. However, the lack of theoretical proof for these defenses makes the
DNNs vulnerable to adaptive attacks [24, 25]. To solve this problem, a series of provable defenses are
proposed. Some studies [26] use linear relaxation to obtain provable robustness but cannot scale to large
size datasets. More studies [27–30] designed specific network structures with the goal of reducing the
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impact of adversarial patches on clean features and gave difficult relaxation conditions for verification,
but this also leads to low accuracy.

Apart from the annoyance of low accuracy, there is another issue not considered in the current ap-
proach. Existing defenses model patch attacks as a special case of l0 adversarial attacks, which means
that an adversary needs to only consider how many pixels to modify rather than the amount of per-
turbation. However, there are many real-world scenarios where adversarial pixels cannot be modified to
their maximum value. Thus it is reasonable and necessary to give a certificate with a robust radius of
modifications that makes the bound tighter for patches in different scenarios.

In this paper, we propose mask-guided randomized smoothing (MRS), a general certified defense against
adversarial patch attacks, achieving high certified accuracy and clean accuracy. We leverage the random-
ized smoothing scheme to demonstrate that when a Gaussian mask is used to smooth the patch region,
a stronger certificate related to the amount of perturbation can be realized.

With the proposed MRS, the adversarial patch with a relatively larger noise level can still be classified
correctly. The contributions of the paper are summarized as three-fold. (i) We give theoretical proof
of the mask-guided certification against patch attacks and show that local randomized smoothing can
obtain the guarantee of a larger robust radius, which can defend against unrestricted patch attacks.
(ii) We propose a robust adversarial patch localization algorithm that can effectively localize adversarial
patches and improve the certified radius in the face of real adversarial samples. (iii) We evaluate our
method on both CIFAR-10 and ImageNet, achieving a larger top-1 certified accuracy compared with
state-of-the-art methods.

2 Related work

2.1 Adversarial patch attack

Due to the complexity of the physical world, methods that add small perturbations to the whole image are
no longer applicable for real-world adversarial attacks on the recognition systems. The patch generated
by replacing a small part of the image with a predesigned mask is the most frequently used attack in the
real world, e.g., a small sticker on a road sign or a T-shirt can make a classifier go wrong. The process
of generating an adversarial patch can be mathematically formulated as follows. We define the set of
all possible regions lp of the patch as L and define an operator A(x,xp, lp) as an adversarial patch xp

placed at a random region lp on the image x. The initial adversarial input x0
adv is given by replacing an

arbitrary region of the input x with a binary mask Mlp , i.e.,

x
0
adv = Mlp ⊙A+ (J −Mlp)⊙ x, (1)

where ⊙ denotes Hadamard product and J is an all-ones matrix. The final adversarial patch is generated
through multiple iterations by gradient-based or optimization-based algorithms, i.e.,

x
n
p = argmax

xp

L [f(A(x,xp, lp)), y] , lp ∈ L, (2)

where y is the ground truth label of x and x
n
p is the final adversarial patch after n iterations.

In this paper, we use localized patches discussed above as the threat model. Adversarial patch attack
is mainly divided into two types according to the visual effect, one is a drastic change easily recognizable
to the human eye, and the other is a small amount of modification difficult to detect.

Cluttered noise. Early adversarial patches are usually directly generated by gradient-based meth-
ods such as fast gradient sign method (FGSM) [2], project gradient descent (PGD) [6] without more
optimizations. Patches generated by LaVAN [8] and the method proposed by Brown et al. [7] do not
obscure the foreground and are robust to general affine transformations. To enable the patch to evade
detection, Subramanya et al. [31] added an additional constraint to suppress the class activation values
of patch locations. Gittings et al. [32] used deep image prior [33] to reconstruct adversarial examples
that resemble the appearance of natural images. Yang et al. [9] optimized the positions and textures of
a group of class-specific textures by reinforcement learning, successfully implementing a black-box patch
attack. Although these methods can successfully execute attacks, the adversarial perturbations are still
obvious compared to the context.
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Context-aware noise. Context-aware noise refers to the perturbation that is inconspicuous for
the human. Since sharp noise can be easily recognized by human eyes, increasing researchers focus on
generating adversarial patches that are invisible to both human eyes and neural detectors. Fendley et
al. [34] designed a semi-transparent patch added to the original image to balance obtrusiveness and
attack success rate. Brunner et al. [35] used the traditional copy-move method to initialize the patch
for an efficient black-box targeted attack. PS-GAN [36] generated visually natural adversarial patches
correlated with the image context based on the generative adversarial network (GAN) framework. Luo
et al. [37] proposed a GAN-based framework with multiple scales of generators and discriminators to
generate adversarial patches consistent with contexts.

2.2 Adversarial patch defense

Defense against patch attack can be roughly divided into two types: empirical defense and certified
defense. Empirical defense shows powerful defensive ability against adversarial examples, while the
certified defense can not only defend the adversarial attacks effectively but also provide the theoretical
lower bound of adversarial perturbation and the provable accuracy.

Empirical defense. The first defense against patch attacks is proposed by Hayes [20] who used
the saliency map of the image to localize the patch. Based on the observation that the gradient of
classification loss for the input is generally large and dense around the location of perturbed pixels and
then utilized inpainting to remove the patch. Naseer et al. [21] computed the normalized first-order
local image gradients and mapped them into the original image to suppress the adversarial patch. Wu et
al. [22] tried to find the strongest patch attack and then mixed them into the training data for adversarial
training to improve the robustness of the model against the adversarial patches. Though these defenses
above show strong robustness against patch attack, they are vulnerable to adaptive attacks without an
analytical guarantee.

Certified defense. Chiang et al. [26] designed the first provable defense against patch attacks via
interval bound propagation (IBP) [38]. The range of influence on the output of the last layer is acquired
by estimating the interval at which perturbed pixels affect the output of each layer to derive the provable
robustness. Inspired by randomized smoothing [39], Levine and Feizi [40] tried to obtain certified ro-
bustness against sparse adversarial attacks by randomly ablating input features. Further, they proposed
(de)randomized smoothing (DRS) [27] which selected a small block traversing the image to classify and
then chose the majority vote of the outputs as the prediction. The prediction is considered provable only
if the number of top-1 classes is larger by 2k than the number of top-2 classes where k is the number
of blocks that are affected by the patch. However, both the clean accuracy and the certified accuracy
on ImageNet are fairly low due to the use of the ablated version of the image. BAGCERT [30] trained
a model with a small receptive field that still utilized the majority vote of predictions of patch blocks
to classify and used similar validation conditions as DRS, obtaining higher accuracy. BAGCERT can
get the prediction of all patch blocks by a single forward propagation, so the inference speed is greatly
improved compared with DRS. Zhang et al. [28] used Clipped BagNet (CBN) that the logits of BagNet
were clipped to restrain the influence of the patch. MR [41] defense used a relatively coarse occlusion
prediction method and was difficult to scale to large resolution images because the larger the occlusion
and step size, the greater the accuracy loss and the longer the time. Xiang et al. [29] also used the
BagNet model with a small receptive field to control the number of malicious features, and then masked
the detected malicious features to derive provable robustness. Despite provable robustness, most of the
methods perform poorly on both clean and certified accuracy that does not work well on ImageNet.

2.3 Basics of randomized smoothing

Randomized smoothing based techniques have been proved effective in many studies, and now we describe
how randomized smoothing provides provable robustness for image classification. Given a base classifier f
mapping an input x ∈ Rd to classes Y, a smoothed classifier g can be constructed from the base classifier
f by adding an isotropic Gaussian noise to x. Specifically, for an input x, the smoothed classifier g
returns the class assigned the largest probability when x is perturbed with Gaussian noise N

(

0, σ2
I
)

and then passed through f , i.e.,

g(x) = argmax
c∈Y

P(f(x+ ǫ) = c), where ǫ ∼ N
(

0, σ2
I
)

. (3)
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The noise level σ controls the trade-off between robustness and accuracy. When the lower bound on
the probability of the predicted class and the upper bound on the probability of the remaining class are
known, the classifier g can be shown to be robust within the ℓ2 ball of the input by Neyman-Pearson
lemma [42]. The upper and lower bounds of the probabilities can be calculated with high confidence
using the Monte Carlo algorithm.

3 Method

In this section, we describe the proposed certified defense against adversarial patch attack based on
randomized smoothing [39]. We first calculate and prove the theoretical lower bound of the certificate
when the patch location is known, and then give a practical method approaching the lower bound with
high probability when the input is arbitrary images.

3.1 Robustness guarantee against patch attack

One advantage of the randomized smoothing technique is that it is model agnostic. Thus it can be
extended to many different large models, but it yields a small provable radius. To extend its radius to
meet the needs of defending against patch attacks, we use a mask to guide the smoothing. When pA and
pB are obtained, we prove the theoretical expression of the robust radius against patch attack under the
guidance of mask M , where pA is the lower bound on the probability of the class cA with the highest
output probability and pB is the upper bound on the probability of the class cB with the second-highest
probability.

Theorem 1. Given a base classifier f and its smoothed version g: Rd → Y defined in (3), an image x,
a masked noise distribution ǫ ∼ N

(

0, σ2
M
)

with a binary mask M ∈ Rd where M is all zero except
that the selected part is one, cA, cB ∈ Y and pA, pB ∈ [0, 1] that satisfy

P(f(x+ ε) = cA) > pA > pB > max
c 6=cA

P(f(x+ ε) = c). (4)

Then we have
g(x+ δ) = cA, ∀‖δ‖2 < R, (5)

where
R =

σ

2
(Φ−1(pA)− Φ−1(pB)). (6)

Proof. See Appendix A.

We show that the theoretical upper bound of the robust radius can be obtained by estimating pA and
pB, and will further elaborate on the changes brought by MRS in the following corollary. When adding
local noises following Gaussian distribution on the patch, the adversarial point moves back to the decision
region of correct image distribution with a high probability. Theorem 1 proves that the adversarial patch
cannot change the output of the smooth classifier when the modification of the patch is smaller than the
provable radius R. By sampling multiple times, we can use majority vote to obtain reliable predictions
and use hypothesis testing to estimate pA and pB. The detailed MRS certification algorithm is given
in Algorithm 1. Function LowerConfBound(counts[ĉ], n, 1− α) obtains lower confidence interval pA
with probability at least 1− α over the randomness for counts[ĉ] ∼ Binomial(n, pA).

Below we exemplify the change in radius and accuracy after adding local Gaussian noise to the patch
region and demonstrate its effectiveness.

Corollary 1. Considering a linear classifier with two classes f(x) = sign(wT
x+ b) and the smoothed

classifier g, also superimposing a masked noise on the input, we can derive pA = Φ( |w
T
x+b|

σ‖M⊙w‖2
) and the

provable radius R = |wT
x+b|

‖M⊙w‖2
.

Proof. Take pA = P(g(x) = 1) as an example,

pA = P(g(x) = 1) = P(f(x+ ǫ) = 1)

⇔ pA = P(sign(wT
x+w

Tǫ+ b) = 1)

⇔ pA = P(wT
x+w

Tǫ+ b > 0)
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Algorithm 1 Mask-guided randomized smoothing certification

Require: Base classifier f , standard deviation of Gaussian noise σ, image x, location mask M , sample times n and n0, α.

Ensure: ABSTAIN or predicted label ĉ, certified radius r.

1: for i = 1 to n0 do

2: Sample noise εi ∼ N
(

0, σ2
M

)

;

3: outputi ← f(x + εi);

4: Append outputi in countsn0
;

5: end for

6: ĉ← top indice in countsn0
;

7: for j = 1 to n do

8: Sample noise εj ∼ N
(

0, σ2
M

)

;

9: outputj ← f(x + εj);

10: Append outputj in countsn;

11: end for

12: pA ← LowerConfBound(countsn[ĉ], n, 1− α);

13: if pA > 1

2
then

14: return ĉ, radius σΦ−1(pA);

15: else

16: return ABSTAIN;

17: end if

= P
(

σ ‖M ⊙w‖2 Q > −w
T
x− b

)

= P

(

Q 6
w

T
x+ b

σ ‖M ⊙w‖ 2

)

= Φ

(

w
T
x+ b

σ ‖M ⊙w‖ 2

)

, Q ∼ N (0, 1) . (7)

Similarly, we can prove that

pA = Φ

(

−w
T
x− b

σ ‖M ⊙w‖ 2

)

, (8)

when pA = P(g(x) = −1), so we have

pA = Φ

(

∣

∣w
T
x+ b

∣

∣

σ ‖M ⊙w‖ 2

)

. (9)

In a two-class classifier, pA = 1− pB. According to Theorem 1, we have

R = σΦ−1(pA) =

∣

∣w
T
x+ b

∣

∣

‖M ⊙w‖2
. (10)

Based on Corollary 1, the mask M that limits the size of the perturbation region controls the trade-
off between the accuracy and the size of the provable radius, and this also holds for deeper and larger
networks by similar extrapolation. For a larger multi-class nonlinear classifier, the impact of σ on the
pA is small when the M keeps small. This is consistent with our intuitive observation that when all the
elements of the M are one, the certified radius degenerates to [39], with a corresponding decrease in the
lower bound on the probability of the predicted class.

3.2 Robust localization based on joint voting

To evaluate the effectiveness of MRS, we propose a robust localization algorithm to simulate the smoothing
of adversarial patches at unknown random locations. To obtain a larger radius, the location of the patch
should be positioned as precisely as possible. Based on Section 2, sharp noise with tight topology can
be easily detected by higher-order filters, while context-aware noise is hard to localize. To cope with all
possible situations, we propose a robust localization algorithm by joint voting to ensure that patches can
be safely located.

The general framework of the methodology is shown in Figure 1. The input image x is occluded by an
s× s square block from left to right and top to bottom with the stride of one pixel. For each position of
the block, we leverage an inpainting [43] algorithm to reconstruct it and pass the restored image through
f to get a prediction l ∈ {c0, c1, . . . , cn}. All predictions make up the prediction map. Then we count
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Figure 1 Overview of MRS. (a) We first use a sliding kernel to repair the image to get a prediction map composed of the outputs;

(b) light gray represents target attack class, dark gray represents non-attack class; (c) the joint voting in the four directions of the

candidate area is represented by a white cross-shaped template; (d) the region with the highest score in the joint voting determines

the final location; (e) the certificate is calculated by estimating the exact lower bound of the probability through hypothesis testing.

the number of each class,

nk =
∑

k∈{c0,c1,...,cn}

count[l = ck]. (11)

The class ct with the maximum value nt is identified as the attacked class. On the one hand, an image
that can be predicted correctly has a very low probability of being predicted incorrectly after masking and
recovery, and the error rate drops lower after the training data is augmented with local transformations.
On the other hand, if an adversarial patch attacks the model successfully, it still succeeds with a high
probability when the inpainted region does not contain the original patch. This ensures that nt is the
attacked class.

Commonly, the prediction of a restored adversarial image is different from that of the clean image
except for the case that the patch is partially or fully inpainted. According to the positional relation
between the candidate block and the adversarial patch, we divide them into the following three cases.
The first case is that the region with the label incorrectly labeled does not contain adversarial pixels.
These regions are relatively few and sparsely distributed across the image. The second case is that the
region with the label incorrectly labeled contains partial adversarial pixels. This is the most common
case that there is no guarantee that an attacker still has a successful attack with a random portion of
the patch. The third case is that the inpainted region covers the actual patch region. Thus the predicted
label remains the same as that of the inpainted clean image.

Based on the above analysis, we propose a robust algorithm for locating the patch. Denote ri as the
i-th square region of the image and denote bi as the input that the ri is inpainted. After obtaining
predictions of all bi, we use a candidate block ri centered cross-shaped filter T to count the number of
blocks incorrectly labeled in the template. More formally, denoting C = {ri | g(bi) 6= ct}, the score of
each candidate region ri is

scorei = |T ∩ C| . (12)

We mark the ri with the largest score as the adversarial patch region. When there are two or more can-
didate regions in the image with scores greater than a threshold τ and no connectivity, inpainting cannot
help the image to be correctly predicted, and we will directly discard this image without participating
in the certification. Template T accepts the votes from its four directions into a final vote to determine
the malicious region. If the template T shrinks its four directions to contain only the square region of
the central block, the localization phase can be easily defeated. To ensure that the localization area can
cover the patch, we mark the candidate areas that are within 3 pixels from the middle block as patch
areas as well. The white cross-shaped box in Figure 1 represents the template, which means the number
of blocks in C that overlap m rows or m columns horizontally and vertically with the s× s candidate in
the center. Through exhaustive search and filtering, the algorithm can effectively locate the adversarial
patch while excluding the interference caused by candidate blocks in clean areas of the image.

3.3 Security analysis of localization

When considering white-box adaptive attackers, the voting and discarding mechanisms guarantee that the
localization algorithm will not be defeated. The searching and voting mechanism will put the adversary
in a dilemma. Specifically, to circumvent the localization, the adversary needs to generate square patches
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that satisfy the following condition: every row and every column of the patch and their combination must
attack successfully at the same time. It is inherently very difficult to generate a single row or column of
adversarial pixels with attack performance. In the one-pixel attack [44], though a single adversarial pixel
could be found using the differential evolution algorithm, it is very hard to find a satisfactory solution if
the pixels are restricted to a very small area. This is a contradictory optimization problem that would
put the attacker in a dilemma of making only a part of the patch or the whole exist offensively. The only
failure case is that there are a large number of adjacent areas with the same incorrect label after being
inpainted, because the samples are distributed on the decision boundary, which is inherently not robust.

There is an implicit assumption in our localization algorithm that the prediction remains essentially the
same after a tiny region of the image being inpainted. When there are two or more candidate regions in
the image with scores greater than a certain threshold and no connectivity, the localization algorithm can
choose to return ABSTAIN. This is an optional operation. The discarding operation has little impact
on the certification because a well-trained classifier is robust to such deterministic and benign inpainting
changes and only a sparse number of positions in very few images are misclassified after being inpainted,
as proved in recent work [45]. In the experiments, the number of samples that make the localization
algorithm return ABSTAIN is small.

4 Experiments

4.1 Setup

Datasets. We conduct experiments on CIFAR-10 [46] and ImageNet [47]. The images in ImageNet are
resized to 224× 224, and the images in CIFAR-10 are with the size of 32 × 32. Following [39], for both
datasets, we use the full training set and randomly sample 500 images from the test set for testing. The
accuracy of the test set of CIFAR-10 and ImageNet is 97.6% and 75.2%, respectively.

Metrics. We define certified R-accuracy as the accuracy of correct predictions when the certified
radius r of a test image is larger than a threshold R, and the mask of localization completely covers
the adversarial patch. Different from the existing defense evaluation criteria, we can better measure
the defense performance under patches with various interference levels to approximate a more realistic
situation by modulating R, the noise radius, as another measurement.

Implement details. For CIFAR-10, we train the model with the augmentation of σ = 7. For
ImageNet, we use a pretrained model with σ = 8 to warm up for training with σ = 257, which is effective
in improving clean accuracy and convergence speed. The training process takes about 1 hour using
CIFAR-10 on a single NVIDIA RTX 2080 Ti GPU and takes about 3 days using ImageNet on 4 NVIDIA
RTX 2080 Ti GPUs.

To evaluate the proposed defense in a realistic adversarial environment, we use PGD [6] with ℓ∞ =
255/255 to generate the adversarial patch in 80 random locations for our base classifier and select the
one that causes the greatest classification loss.

4.2 Main results

Comparison with state-of-the-art methods. Figures 2(a) and (d) show the certified R-accuracy
curve on CIFAR-10 and ImageNet. The certified 25-accuracy on CIFAR-10 exceeds 70% while empirical
accuracy, which only considers the prediction is correct, can reach 80%. Despite the certified radius being
the theoretical upper bound, in practice, an adversarial patch can be successfully defended even if the ℓ2
distance is greater than this upper bound. The results on ImageNet are generally consistent with those
on CIFAR-10. The only difference is that due to the higher resolution of ImageNet, which provides more
semantic information, the localization is more accurate, and the decrease rate in provable accuracy is
smaller compared to that of CIFAR-10.

We compare clean accuracy and certified accuracy of MRS with several certified patch defenses [27–30].
Clean accuracy refers to the accuracy of the defense on clean images. CBN [28], MASK-DS [29], MASK-
BN [29], BAGCERT [30], and DRS [27] are tested on clean images while our method is tested on the
generated adversarial samples with the localization to obtain an approximate certified accuracy due to
the high computational cost. Table 1 shows that both certified accuracy and clean accuracy on CIFAR-10
and ImageNet greatly exceed the best current results, especially on ImageNet that the clean accuracy is
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Figure 2 R-accuracy curves of different noise level σ. (a), (b), and (c) are results on CIFAR-10, (d), (e), and (f) are results on

ImageNet. (a) and (d) are the practical defense results on the real adversarial example set and (b), (c), (e), and (f) are theoretical

results of patches at two different locations on the image.

Table 1 Clean accuracy versus certified accuracy of different methods on CIFAR-10 and ImageNet

CIFAR-10 ImageNet

Clean accuracy Certified accuracy Clean accuracy Certified accuracy

CBN [28] 4.2 9.3 49.5 7.1

DRS [27] 83.9 56.3 43.1 14.5

MASK-BN [29] 83.9 47.3 54.6 26.0

MASK-DS [29] 84.6 57.7 43.6 16.0

BAGCERT [30] 86.0 60.0 45.3 22.9

Ours 86.4 71.8 67.8 53.6

67.8% and the certified 1024-accuracy is nearly 27% better than the state-of-the-art results. Experiments
comparing with DRS at more sizes are provided in Appendix C.1.

Theoretically optimal results. To get a near theoretically optimal certified accuracy, the mask
should be set to the same size and same location as the adversarial patch. Since the impact on classification
accuracy may vary when patches are placed in different locations, we use two different settings to evaluate.
In the first setting, we set the position of the smoothing mask in the center of the image, which ensures the
coverage of the important region of the foreground object. In the second setting, we use Grad-cam [48] to
predict the most significant region for network classification and then select the region with the highest
activation value for the s× s size as the mask location. In both of settings, we used 105 samples to verify
so that we can obtain a certified radius of up to 4σ with 99.9% confidence.

Figures 2(b) and (c) show the R-accuracy curves under three different σ values with different settings
on CIFAR-10. The horizontal axis represents the ℓ2 norm of perturbations. Notice that for a 5× 5 patch,
when the radius reaches 25, the adversary is allowed to perform unrestricted attacks where the pixel value
can be modified from 0 to 255. We show that the provable accuracy is still around 88% when the robust
radius reaches 25, outperforming the state-of-the-art theoretical results. The curves in these two figures
do not change significantly, suggesting that the smoothing classifier is not sensitive to smoothing regions.
Regardless of where the patch is in the image, as long as it is smoothed, the classifier can be unaffected
through the certification process.

Figures 2(e) and (f) are results on ImageNet. For a 32 × 32 patch, the proposed classifier can defend
against unrestricted attacks when the radius reaches 1024. We show that the certified 1024-accuracy is
around 61.8%, achieving the best theoretical results to date. The reason that all the curves on the figure
are flat before reaching the upper bound of the radius is that the smoothed image will obtain a very
high correct confidence through the smoothed classifier g so that the certified radius is close to the upper
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Figure 3 Certified R-accuracy using masks with the size from 5× 5 to 30× 30 on CIFAR-10.
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Figure 4 The certification results for training using different size masks. The size of the mask used for certification: (a) 15× 15,

(b) 20× 20, and (c) 25× 25.

bound for most of the input images.

In conclusion, results on a large-scale dataset such as ImageNet are consistent with that of CIFAR-10.
As shown in Figure 2, the noise level does not seem to affect the R-accuracy much, which will be detailed
in the following.

4.3 Ablation study

Certified R-accuracy of mask with different sizes. Figure 3 shows the R-accuracy curves of different
mask sizes on CIFAR-10. When assuming the patch size is 30 × 30, i.e., 87.9% of the image area, the
0-accuracy has dropped to nearly 10% which amounts to a random guess for CIFAR-10 with a total of 10
classes. This is to be expected, as the perturbations with a large σ almost swamp the entire image, the
classification is equivalent to a prediction of random noise. When the area of the patch reaches 9.7% of
the image, 25-accuracy is still better than state-of-the-art methods against a 2.4% pixel patch. To ensure
that the adversary can make arbitrary changes in the patch region without changing the classification
results, values of Gaussian noise should be much larger than clean pixel values to the smoothing region.
When the smoothed region is small, the neural network learns this pattern well, but when the smoothed
region is large, the clean pixel values are too small compared to the noise values, and the clean pixels
become “noise” for the random noise, which the neural network cannot fit at all.

Influence of training methods. From a generalization perspective, using an augmentation strategy
that matches the testing time to train the model allows the test accuracy to be as close as possible to the
training accuracy. However, we need to add noise of different sizes during certification, and the larger the
mask size, the harder it is to converge the training, and the corresponding clean accuracy will decrease.
To adapt the model to different size masks, we used random square noise with the width from 5 to 10, 5 to
15, 5 to 20, 5 to 25 respectively as the augmentation during the training. Figure 4 shows the R-accuracy
results for several different training methods. As the area of the mask used for certification increases,
although the model with matching strategy will gain some advantages at small radii, the 25-accuracy still
decreases due to low clean accuracy. In general, it is the best choice for the certification to use a small
mask as the augmentation.
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Figure 5 Effect of σ value in different scales (σ = 7, 20, 50, 80).

Impact of σ. We know from the above discussion that when σ is certain, the smaller the smoothing
area, the closer the provable R-accuracy will be for clean accuracy. However, when the smoothing area
is fixed, the smaller the σ is not the better. To investigate this issue, we perform experiments on the
CIFAR-10 with a fixed mask size of 5 × 5 and compare the certifiable R-accuracy at different σ values.
The generalization performance of the network far exceeds expectations, and a network trained using
σ = 7 as the augmentation can perform without degradation at more than three times the noise level
greater than itself. Figure 5 shows that even though σ = 80 that 11 times larger than σ = 7, 25-accuracy
still does not drop to 10%. The certification phase does not need to strictly match the augmentation
strategy in training, which allows us to choose an augmentation strategy with fast convergence and
high clean accuracy within a wide range. Although this powerful generalization performance is greatly
reduced as the area of smoothed region is increased, we can still increase the σ value to accommodate
more modifications.

4.4 Discussion

Certified radius adjustment in different cases. The adversarial patch is usually modeled as an
l0 attack, which means one pixel can be modified up to 255. But in practice, pixel values of the patch
region are not all zeros in general. Moreover, recent research [37] has been devoted to making the patch
blend in with the surrounding environment which further reduces the noise value. In these cases, the
range of the total amount of noise can be estimated from the pixels around the location where the patch
is positioned. Thus the proposed method will further improve the certified accuracy compared to other
methods by adaptively adjusting for the “worst case”.

Limitation. The fact that our proposed defense method using strong external constraints including
localization and smoothing contributes to the significant performance improvement over the state-of-the-
art methods. Yet this operation brings about further computational cost than other methods, e.g., 14.6 s
per CIFAR-10 image for inference. In fact, the proposed patch localization algorithm can be combined
with any other provable adversarial defense method to boost their verification conditions to achieve even
better performance, and our smoothing-based approach is only a practical example for the experiment.

5 Conclusion

In this work, we have introduced a certified defense against adversarial patch attacks that takes the ℓ2
norm of modifications in account. We provide the theoretical analysis and the proof of the certification
based on randomized smoothing, and design a practical validation method on the real adversarial example
set that the adversarial patches can be robustly located and efficiently verified. Numerous experiments
demonstrate that our method exceeds the current methods. A more accurate and effective localization
method will get higher accuracy and speed, which will be the future work.
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7 Brown T B, Mané D, Roy A, et al. Adversarial patch. 2017. ArXiv:1712.09665

8 Karmon D, Zoran D, Goldberg Y. LaVAN: localized and visible adversarial noise. In: Proceedings of the 35th International

Conference on Machine Learning, 2018. 2507–2515

9 Yang C L, Kortylewski A, Xie C, et al. Patchattack: a black-box texture-based attack with reinforcement learning.

In: Proceedings of the 16th European Conference on Computer Vision, 2020. 681–698

10 Li Y, Bian X, Lyu S. Attacking object detectors via imperceptible patches on background. 2018. ArXiv:1809.05966

11 Lee M, Kolter J Z. On physical adversarial patches for object detection. 2019. ArXiv:1906.11897

12 Wu Z, Lim S N, Davis L, et al. Making an invisibility cloak: real world adversarial attacks on object detectors. In: Proceedings

of the 16th European Conference on Computer Vision, 2020. 1–17

13 Xu K, Zhang G, Liu S, et al. Adversarial T-shirt! Evading person detectors in a physical world. In: Proceedings of the 16th

European Conference on Computer Vision, 2020. 665–681

14 Saha A, Subramanya A, Patil K, et al. Role of spatial context in adversarial robustness for object detection. In: Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2020. 784–785

15 Redmon J, Farhadi A. YOLOv3: an incremental improvement. 2018. ArXiv:1804.02767

16 Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans

Pattern Anal Mach Intell, 2017, 39: 1137–1149

17 Pautov M, Melnikov G, Kaziakhmedov E, et al. On adversarial patches: real-world attack on ArcFace-100 face recognition

system. In: Proceedings of International Multi-Conference on Engineering, Computer and Information Sciences, 2019. 391–396

18 Komkov S A, Petiushko A. Advhat: real-world adversarial attack on arcface face id system. In: Proceedings of the 25th

International Conference on Pattern Recognition, 2021. 819–826

19 Yang X, Wei F, Zhang H, et al. Design and interpretation of universal adversarial patches in face detection. In: Proceedings

of the 16th European Conference on Computer Vision, 2020. 174–191

20 Hayes J. On visible adversarial perturbations & digital watermarking. In: Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition Workshops, 2018. 1597–1604

21 Naseer M, Khan S, Porikli F. Local gradients smoothing: defense against localized adversarial attacks. In: Proceedings of

IEEE Winter Conference on Applications of Computer Vision, 2019. 1300–1307

22 Wu T, Tong L, Vorobeychik Y. Defending against physically realizable attacks on image classification. In: Proceedings of the

8th International Conference on Learning Representations, 2020

23 Rao S, Stutz D, Schiele B. Adversarial training against location-optimized adversarial patches. In: Proceedings of European

Conference on Computer Vision Workshops, 2020. 429–448

24 Athalye A, Carlini N, Wagner D A. Obfuscated gradients give a false sense of security: circumventing defenses to adversarial

examples. In: Proceedings of the 35th International Conference on Machine Learning, 2018. 274–283

25 Carlini N, Athalye A, Papernot N, et al. On evaluating adversarial robustness. 2019. ArXiv:1902.06705

26 Chiang P Y, Ni R, Abdelkader A, et al. Certified defenses for adversarial patches. In: Proceedings of the 8th International

Conference on Learning Representations, 2020

27 Levine A, Feizi S. (De) randomized smoothing for certifiable defense against patch attacks. In: Proceedings of Advances in

Neural Information Processing Systems, 2020

28 Zhang Z, Yuan B, McCoyd M, et al. Clipped bagNet: defending against sticker attacks with clipped bag-of-features.

In: Proceedings of IEEE Security and Privacy Workshops, 2020. 55–61

29 Xiang C, Bhagoji A N, Sehwag V, et al. Patchguard: a provably robust defense against adversarial patches via small receptive

fields and masking. In: Proceedings of the 30th USENIX Security Symposium, 2021

30 Metzen J H, Yatsura M. Efficient certified defenses against patch attacks on image classifiers. In: Proceedings of the 9th

International Conference on Learning Representations, 2021

31 Subramanya A, Pillai V, Pirsiavash H. Fooling network interpretation in image classification. In: Proceedings of IEEE

International Conference on Computer Vision, 2019. 2020–2029

32 Gittings T, Schneider S, Collomosse J. Robust synthesis of adversarial visual examples using a deep image prior. In: Proceed-

ings of the 30th British Machine Vision Conference, 2019

33 Ulyanov D, Vedaldi A S, Lempitsky V. Deep image prior. In: Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, 2018. 9446–9454

34 Fendley N, Lennon M, Wang I, et al. Jacks of all trades, masters of none: addressing distributional shift and obtrusiveness

via transparent patch attacks. In: Proceedings of European Conference on Computer Vision Workshops, 2020. 105–119

35 Brunner T, Diehl F, Knoll A. Copy and paste: a simple but effective initialization method for black-box adversarial attacks.

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019

36 Liu A, Liu X, Fan J, et al. Perceptual-sensitive GAN for generating adversarial patches. In: Proceedings of the 33rd AAAI

Conference on Artificial Intelligence, 2019. 1028–1035

info.scichina.com
link.springer.com
link.springer.com
https://arxiv.org/abs/1712.09665
https://arxiv.org/abs/1809.05966
https://arxiv.org/abs/1906.11897
https://arxiv.org/abs/1804.02767
https://doi.org/10.1109/TPAMI.2016.2577031
https://arxiv.org/abs/1902.06705


Zhang K, et al. Sci China Inf Sci July 2022 Vol. 65 170306:12

37 Luo J, Bai T, Zhao J, et al. Generating adversarial yet inconspicuous patches with a single image. In: Proceedings of the

35th AAAI Conference on Artificial Intelligence, 2021. 15837–15838

38 Gowal S, Stanforth R. Scalable verified training for provably robust image classification. In: Proceedings of IEEE International

Conference on Computer Vision, 2019. 4841–4850

39 Cohen J, Rosenfeld E, Kolter Z. Certified adversarial robustness via randomized smoothing. In: Proceedings of the 36th

International Conference on Machine Learning, 2019. 1310–1320

40 Levine A, Feizi S. Robustness certificates for sparse adversarial attacks by randomized ablation. In: Proceedings of the 34th

AAAI Conference on Artificial Intelligence, 2020. 4585–4593

41 McCoyd M, Park W, Chen S, et al. Minority reports defense: defending against adversarial patches. In: Proceedings of

Applied Cryptography and Network Security Workshops, 2020. 564–582

42 Neyman J, Pearson E S. On the problem of the most efficient tests of statistical hypotheses. Phil Trans R Soc Lond A, 1933,

231: 289–337

43 Telea A. An image inpainting technique based on the fast marching method. J Graphics Tools, 2004, 9: 23–34

44 Su J, Vargas D V, Sakurai K. One pixel attack for fooling deep neural networks. IEEE Trans Evol Comput, 2019, 23: 828–841

45 Black S, Keshavarz S, Souvenir R. Evaluation of image inpainting for classification and retrieval. In: Proceedings of IEEE

Winter Conference on Applications of Computer Vision, 2020. 1060–1069

46 Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images. 2009

47 Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database. In: Proceedings of IEEE conference

on Computer Vision and Pattern Recognition, 2009. 248–255

48 Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization.

Int J Comput Vis, 2020, 128: 336–359

https://doi.org/10.1098/rsta.1933.0009
https://doi.org/10.1080/10867651.2004.10487596
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1007/s11263-019-01228-7

	Introduction
	Related work
	Adversarial patch attack
	Adversarial patch defense
	Basics of randomized smoothing

	Method
	Robustness guarantee against patch attack
	Robust localization based on joint voting
	Security analysis of localization

	Experiments
	Setup
	Main results
	Ablation study
	Discussion

	Conclusion

