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De-END: Decoder-driven Watermarking Network
Han Fang, Zhaoyang Jia, Yupeng Qiu, Jiyi Zhang, Weiming Zhang and Ee-Chien Chang

Abstract—With recent advances in machine learning, re-
searchers are now able to solve traditional problems with new
solutions. In the area of digital watermarking, deep-learning-
based watermarking technique is being extensively studied. Most
existing approaches adopt a similar encoder-driven scheme which
we name END (Encoder-NoiseLayer-Decoder) architecture. In
this paper, we revamp the architecture and creatively design a
decoder-driven watermarking network dubbed De-END which
greatly outperforms the existing END-based methods. The mo-
tivation for designing De-END originated from the potential
drawback we discovered in END architecture: The encoder may
embed redundant features that are not necessary for decoding,
limiting the performance of the whole network. We conducted
a detailed analysis and found that such limitations are caused
by unsatisfactory coupling between the encoder and decoder in
END. De-END addresses such drawbacks by adopting a Decoder-
Encoder-Noiselayer-Decoder architecture. In De-END, the host
image is firstly processed by the decoder to generate a latent
feature map instead of being directly fed into the encoder. This
latent feature map is concatenated to the original watermark
message and then processed by the encoder. This change in
design is crucial as it makes the feature of encoder and decoder
directly shared thus the encoder and decoder are better coupled.
We conducted extensive experiments and the results show that
this framework outperforms the existing state-of-the-art (SOTA)
END-based deep learning watermarking both in visual quality
and robustness. On the premise of the same decoder structure,
the visual quality (measured by PSNR) of De-END improves
by 1.6dB (45.16dB → 46.84dB), and extraction accuracy after
JPEG compression (QF=50) distortion outperforms more than
4% (94.9% → 99.1%).

Index terms—Deep-learning Watermarking, decoder-
driven.

I. INTRODUCTION

Deep neural network (DNN) has powerful feature extraction
capability. Such capability makes it a good replacement of
traditional algorithms in many applications, with better per-
formance or efficiency.

Watermarking technique is an important mechanism for
copyright protection and leak source tracing [1]–[3]. A water-
marking scheme has to guarantee two properties: robustness
and transparency. To satisfy these properties, image features
have to be first extracted and then embedded into corre-
sponding coefficients. Traditionally, the feature extraction is
achieved by handcrafted operations (e.g. discrete Fourier trans-
formation [1], discrete cosine transformation [4] and discrete
wavelet transformation [5]).

Recently, many deep-learning-based watermarking schemes
[6]–[13] proposed to replace the feature extractions process
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(a) END architecture.

(b) De-END architecture.

Fig. 1: The difference between END architecture and De-END architecture.

with DNN which effectively serves as a better embedding
and extracting mechanism when training with the proper loss
function and architecture.

END architecture. The existing DNN-based watermarking
network adopts an auto-encoder-like architecture as the main
backbone which contains an encoder, a noise layer and a
decoder, as shown in Fig 1a. In this paper, we name such
architecture as END. In END architecture, encoder, noise
layer and decoder are cascaded serially. The encoder tries to
embed the watermark into the host image and generate the
watermarked image. The noise layer distorts the watermarked
image. And the decoder aims to extract the watermark from
the distorted image.

Limitations of END. Although END can be jointly
trained, it is not the optimal architecture for watermarking
system. In fact, we discovered a potential drawback in this
architecture, that is: the encoder might embed some redundant
features into the host image and such redundant features
could limit the performance of the architecture.

We believe that such drawback comes from the imperfect
coupling of encoder and decoder. Because in END
architecture, the input of the encoder is the host image
and watermark signal, which is independent to the decoder.
But the input of the decoder is directly determined by the
encoder, which makes END follows the encoder-driven rule
that encoder embeds a feature and decoder extracts the
encoded feature adaptively, and the features of the decoder
cannot be well shared with the encoder. So training in this
way will lead to differences in feature expression.

De-END architecture. To address drawbacks of END,
in this paper, we propose De-END, as shown in Fig. 1b, a
decoder-driven watermarking network. Specifically, De-END
adopts a Decoder-Encoder-Noiselayer-Decoder architecture,
where the two decoder share the same parameters. In De-

ar
X

iv
:2

20
6.

13
03

2v
1 

 [
cs

.M
M

] 
 2

7 
Ju

n 
20

22



2

END, the host image is first fed into the decoder and outputs
a latent feature that represents the decoder’s analysis of the
host image. Then the latent feature is concatenated with the
watermarked signal, and the concatenated feature will be sent
to the encoder. The following noise layer and decoder are
same as END settings. Based on this structure, the output of
the decoder could determine the input of the encoder, and
the input of the decoder is also determined by the output
of the encoder, which ensures that the feature of encoder
and decoder can be effectively shared, and encoder could be
better coupled with decoder.

Contributions. The main contributions of the proposed
scheme are summarized as follows:

1) We discover the potential drawback of the existing
END architecture and analyze the key reason for this
drawback. We hope the proposed analysis will benefit
the follow-up watermarking scheme.

2) We propose De-END, a novel decoder-driven water-
marking network architecture which could effectively
couple the encoder and decoder. This architecture leads a
potential way in designing high-performance watermark
networks.

3) Various experiments indicate the superior performance
of the proposed De-END architecture compared with the
state-of-the-art DNN-based watermarking schemes both
on visual quality and robustness.

II. RELATED WORK

A. Traditional watermarking scheme

Traditional watermarking scheme [14], [15] follows the
encoder-driven rules. In order to meet the robustness require-
ment, the watermark is often embedded into the coefficients of
transformed domain. And the choice of transformed domain
depends on the qualitative analysis of the distortion. For exam-
ple, to ensure the robustness of JPEG compression, traditional
watermarking often embedded the watermark into the coeffi-
cients of discrete cosine transformation (DCT) domain [16],
since JPEG compression is carried out on DCT coefficients.
The most commonly used transformation includes discrete co-
sine transformation [16], [17], discrete wavelet transformation
(DWT) [18], [19] and discrete Fourier transformation (DFT)
[20], [21]. Based on the different characteristics of these trans-
formations, the target robustness of watermarking schemes
can be effectively achieved. But since traditional methods
only apply handcrafted features to perform the embedding and
extraction process, they cannot well balance the visual quality
and the robustness.

B. DNN-based watermarking scheme

Recently, the framework with DNN-based encoder and
DNN-based decoder was proposed [10]–[13], [22]–[24]. Zhu
et. al. [22] first proposed this framework and realize the
common image processing robustness such as JPEG compres-
sion, Gaussian noise and so on. Tancik et. al. [10] proposed
a print-shooting noise layer to simulate the print-shooting
process and further set it as the noise layer to train the

Fig. 2: Two examples of images and corresponding features that are generated
with HiDDen [22].

whole network. As a result, the print-shooting robustness
is guaranteed. Wengrowski et. al. [11] proposed to use a
CDTF network to simulate the screen-shooting process and
regarded the well-trained CDTF network as the noise layer
to guarantee the screen-shooting robustness. Liu et. al. [23]
proposed a two-stage method to improve the robustness, they
believed the decoder can be further fine-tuned to acquire
stronger robustness against non-differentiable distortions. So
they fix the pre-trained encoder and further trained the decoder
only to improve the robustness. Jia et. al. [24] proposed
a mini-batch-based JPEG noise layer to improve the JPEG
robustness, by alternatively training the network with “real
JPEG” and “simulated JPEG” noise, the JPEG robustness can
be greatly guaranteed. However, these methods all follow the
END architecture which although build a connection with the
encoder and the decoder, they cannot well couple the encoder
and the decoder.

III. ANALYSIS OF END ARCHITECTURE

Fig. 1a shows the typical framework with END architecture,
which contains an encoder, a noise layer and a decoder. The
whole network is optimized by the image loss and the message
loss. In END architecture, the input of the encoder is host
image and watermark message, and the output of encoder is
the watermarked image. For decoder, the input is the distorted
image and the output of decoder is the extracted message.
Since the output of the encoder will directly determine the
input of the decoder, the features of encoder can be directly
shared to the decoder. But the features of decoder can only
be shared indirectly through message loss to the encoder. So
in END, feature sharing will be conducted in an unbalanced
way. As a result, there will be a potential drawback, that is,
encoder might embed redundant features which are useless for
decoding into the host image. And the existence of redundant
features will influence the visual quality of the watermarked
image and the extraction accuracy of decoder.

For better illustration, we visually show two examples of
the encoded features and the decoder-needed features based
on the method HiDDen [22] which utilizes END architecture.
For the features that decoder needed, we generated it with the
following operations: we feed the host image into the pre-
trained decoder and calculate the MSE loss of the output and
watermark messages. After that, we backpropagate the loss
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Fig. 3: The framework of De-END. It consist of three main parts: the encoder, the noise layer and the decoder. The two decoders in the framework maintain
the same parameters. And the whole framework can be trained end-to-end.

and take the gradient map on the host image as the features
that decoder needed. The corresponding results are shown in
Fig. 2. R̃ and ∇̃ID indicate the normalized encoded features
and decoder-needed features respectively. It can be seen that
the encoded features do not maintain high consistency with
the decoder-needed features, there are redundant features being
embedded, which indicates that the encoder is not well coupled
with the decoder in END architecture.

In order to better couple the encoder and decoder, we
should revamp the architecture to make sure that the features
should be directly shared in both directions of the encoder
and decoder. In this way, not only can the decoder adapt to
the encoded features, but also the decoder-needed features
can guide the encoder. Therefore, in this paper, we propose
De-END, a decoder-driven watermarking network that can
effectively couple the encoder and decoder.

IV. PROPOSED ARCHITECTURE

The framework of the proposed De-END is shown in Fig.
3, which consist of four main parts: (1) The decoder D with
parameters θD; (2) the encoder E with parameters θE ; (3) the
noise layer N and (4) the discriminator Ad with parameters
θAd

. The working flow of whole framework can be described
as: The host image Io ∈ RC× H×W is first fed into D. D
will output a latent feature F ∈ RL which has the same size
of watermark message M ∈ {0, 1}L (L indicates the length
of W ). Then F and M will be concatenated and further sent
into E. The output of E is a residual signal R ∈ RC× H×W

which will be weighted by a strength factor α and further
superimposed on Io to generate the watermarked image Iem ∈
RC× H×W . After that, Iem is distorted by the noise layer N
to generate the distorted image Ino ∈ RC× H×W . Finally, D
will try to decode the watermark Mde ∈ {0, 1}L from Ino.
Among them, Ad is used for optimizing the visual quality of
the watermarked image and will not participate in the encoding
and decoding.

A. Decoder

There are two main purposes of the decoder in this frame-
work. The first one is guiding the encoder, which aims to

generate a latent image feature F with the input of Io. F
represents the expression of Io for D. After that, F will be
concatenated with M and further sent to E. In this way, the
input of E is closely connected to the output of D, so that the
features required by D can be effectively and directly shared
with E. The second purpose is being guided by the encoder,
which tries to extract the encoded feature from Ino and realize
the accurate decoding. Since Ino is determined by the features
of E, achieving accurate decoding is equivalent to making D
adapt to the features of E.

The structure of the decoder D is shown in Fig. 3. Specifi-
cally, one “Conv-BN-ReLU” block is first processed on Io to
generate 64 × H × W feature maps, then three “SE-block”
[25] are applied to downsample the processed feature into a
64 × H/8 ×W/8 feature maps. After that, two “Conv-BN-
ReLU” block, one “SE-block” and one “Linear” block are
adopted to generate F or Mde with length L.

One object of D is to minimize the difference between Mde

and the original watermark M by updating θD, which can be
formulated by:

LD =MSE (M,Mde) =MSE (M,D (θD, Ino)) (1)

B. Encoder

Different from the traditional END architecture, the encoder
in De-END only realizing the up-sampling process. It only
takes the input of concatenated feature which is partially
determined by D and then outputs a residual R which is
further superimposed on Io to generate the watermarked image
Iem. The structure of E is shown in Fig. 3. Specifically,
one “Linear” block is first adopted to resize the concatenated
feature into a feature with length H/8 × W/8. Then the
feature is reshaped and processed by a “Conv-BN-ReLU”
block. After that, three “Up-Conv-BN-ReLU” blocks are taken
to up-sample the feature into the size of 64×H×W . Finally,
one single “Conv” block is applied to generate the residual
R with size C × H ×W . It is worth noting that a strength
factor α is adopted in generating the final watermarked image
Iem. And α is used for balancing the visual quality and the
robustness.
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The object of E is to generate a better residual R to
minimize the difference between Iem and the host image Io
by updating θE , which can be formulated by:

LE =MSE (Io, Iem) =MSE (Io, E (θE , F,M)× α+ Io)
(2)

C. Noise Layer

The noise layer N is the key to realizing robustness. By
setting different differentiable image processing operations in
N , the watermarked image Iem will be distorted into different
versions. And the distorted image Ino will be further decoded
by the decoder. So the distortion adopted in training will
determine the final robustness. Commonly used distortion
include “JPEG Compression”, “Gaussian Noising”, “Median
Filtering” and so on.

D. Discriminator

One essential purpose of the framework is generating a
watermarked image with a given host image and a watermark.
Such process is similar to Conditional-GAN [26], which aims
to generate an image with a given condition. So in order to
generate the high-quality watermarked image, we adopt the
structure of discriminator. The structure of discriminator Ad
is same as [22] proposed. Specifically, it consists of four
“Conv-BN-ReLU” blocks and an “AveragePooling” block.
The discriminator performs as an adversary of the generating
process and tries to give a correct identification between Iem
and Io, which is realized by updating θAd:

LDis = log (1−Ad (θAd, Iem))

= log (1−Ad (θAd, E(F,M)× α+ Io))
(3)

On the other hand, θE should be also updated to mislead the
discriminator, which can be realized by minimizing:

LAd = log(Ad(Iem)) = log(Ad(E(θE , F,M)×α+Io)) (4)

E. Loss Function

The final loss of the whole network is consist of image loss,
adversarial loss and decoding loss, which can be formulated
by:

L = λ1LE + λ2LD + λ3LAd (5)

where λ1, λ2, λ3 are set as 1, 10, 0.0001 in the first 20 epoch
and 10, 1, 0.0001 in the rest epoch.

V. EXPERIMENTAL RESULTS

In this section, we will first introduce the implementation
details and the parameter selection of the proposed scheme.
Then extensive experiments will be conducted to verify the
robustness and visual quality of our method. Finally, more
analysis of the proposed architecture will be provided to justify
our design.

A. Implementation Details

The whole network is trained on COCO dataset [27], and
we randomly choose 10000 images as the training dataset. The
framework is implemented by PyTorch [28] and performed on
NVIDIA RTX 2080ti. The size of the image H and W are both
set as 128. The length L is set as 64. Strength factor α is fixed
as 1 in training. For neural network parameter optimization,
we utilize Adam [29] with default hyperparameters. In testing
experiments, we utilize the classical USC-SIPI image dataset
[30] as our testing data.

For visual quality measurement, we use PSNR as the as-
sessment metric. For robustness evaluation, we directly use the
extraction accuracy of the watermark message as the assess-
ment metric. We compare the proposed framework with three
deep-learning-based framework HiDDen [22], TSDL [23] and
MBRS [24]. The distortion we selected include “Cropout”,
“Dropout”, “Gaussian Noise”, “Salt&Pepper Noise”, “Gaus-
sian Blur”, “Median Blur” and “JPEG Compression”. For
each distortion, we train a specific network to better show
the effectiveness of the architecture and the robustness of the
framework. All the compared methods are all training with
specified noise layers. Since the different noise layer will result
in different encoder and decoder, the visual quality of the
watermarked image and the extraction accuracy varies. So in
this paper, we show the PSNR of the watermarked image and
the extraction accuracy for each noise layer respectively.

B. Coupling Measurement

As aforementioned, END architecture has a potential draw-
back that the encoder and decoder may not be well coupled.
And De-END can effectively handle this problem. So in this
section, we will give two examples to visually compare the
coupling of encoder and decoder with different schemes, as
shown in Fig. 4.

The first column is the original host images, the second
column represents the watermarked images, the third column
indicates the normalized encoded features and the fourth
column shows the normalized features that the decoder needed.
The noise layer we choose is JPEG compression. As we
can see in Fig. 4, for the traditional END architecture, the
embedded residual features are not highly consistent with the
features required by the decoder. The encoder embeds more
features than the decoder needed, which may reflect some im-
age textures. This means that the encoder and decoder obtained
by the END framework cannot be effectively coupled together,
resulting in certain feature expression differences. However,
for the proposed De-END architecture, the embedded features
keep high consistency with the features decoder needed, which
means that the encoder and decoder trained by this architecture
can be better coupled.

C. Visual Quality and Robustness

In this section, we will show and discuss the visual quality
and robustness of different methods for 7 types of distor-
tions: “Cropout”, “Dropout”, “Gaussian Noise”, “Salt&Pepper
Noise”, “Gaussian Blur”, “Median Blur” and “JPEG Compres-
sion”. We visually show each distortion and the corresponding
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Fig. 4: The images and corresponding features generated with different methods.

encoded features of the proposed architecture in Fig. 5. The
first row is the embedded images, the second row indicates
the distorted images. The third row and fourth row represents
the encoded features and the features that decoder needed
respectively. We can see that for all the distortions, the
encoder and decoder are coupling well which results in high
consistency of the feature map. Besides, the encoded residual
adaptively changed with the distortion, which indicates the
great learning ability of the proposed architecture.

1) Cropout Distortion: Cropout refers to the distortion that
crops a block of image with a certain ratio out and replaces
the cropped region with original images. In training stage, we
fixed the parameter of cropout ratio as 40%, and we test the
cropped ratio from 10% to 50%. The experimental results are
shown in Table I and Table II.

TABLE I: The PSNR values of each methods for cropout distortion.

Methods HiDDen [22] TSDL [23] MBRS [24] Proposed

PSNR(dB) 40.62 47.48 48.05 50.74

TABLE II: Extraction accuracy with different cropout ratios.

Ratio (%) 10 20 30 40 50

HiDDen [22] 95.63% 94.73% 88.75% 76.88% 61.67%

TSDL [23] 98.72% 98.54% 96.88% 93.75% 93.21%

MBRS [24] 99.71% 99.22% 97.18% 90.43% 83.50%

Proposed 100% 100% 99.51% 97.28% 91.21%

As seen in Table I, the proposed method will lead to the
watermarked images with the highest PSNR values, which are
at least 2dB larger than the compared schemes. Under such
PSNR level, the proposed scheme still maintains the strongest
robustness in different cropout ratios. For the crop ratio of
10% to 40%, the extraction accuracy of the proposed scheme

is all higher than 97%. And as the cropout ratio increasing,
the advantage of the proposed algorithm is more and more
obvious.

2) Dropout Distortion: Dropout distortion indicates the
operation that randomly replaces a certain ratio of image
pixels with the original image. But different from cropout,
such image pixels are randomly sampled in the whole image.
We fixed the ratio of 40%. And for testing, we change the
ratio from 20% to 60%. The experimental results are shown
in Table III and Table IV.

TABLE III: The PSNR values of each methods for dropout distortion.

Methods HiDDen [22] TSDL [23] MBRS [24] Proposed

PSNR(dB) 42.59 53.59 58.63 58.97

TABLE IV: Extraction accuracy with different dropout ratios.

Ratio (%) 60 50 40 30 20

HiDDen [22] 82.71% 86.74% 87.08% 89.58% 90.21%

TSDL [23] 90.42% 92.29% 93.54% 95.21% 97.54%

MBRS [24] 90.63% 92.58% 94.15% 94.73% 96.29%

Proposed 94.63% 99.51% 100% 100% 100%

We can see in Table III, the proposed framework maintains
the best visual quality. Besides, Table IV indicates the superior
performance of the proposed scheme compared with other
frameworks. For all the dropout ratios, the proposed frame-
work guarantees the best extraction accuracy, which is at least
2% higher than the other schemes.

3) Gaussian Noise: Gaussian noise is commonly appeared
in message transmission. For training stage, we randomly
distort the image with a variance from 0.001 to 0.04. And
the testing variance ranges from 0.01 to 0.05. The results are
shown in Table V and Table VI.
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Fig. 5: The distortions used for testing, and the corresponding encoded features for each distortion based on the proposed architecture.

TABLE V: The PSNR values of each methods for Gaussian noise distortion.

Methods HiDDen [22] TSDL [23] MBRS [24] Proposed

PSNR(dB) 36.25 39.46 39.70 40.13

TABLE VI: Extraction accuracy with different variance of Gaussian noise.

Variance 0.01 0.02 0.03 0.04 0.05

HiDDen [22] 89.58% 86.46% 83.96% 83.12% 79.17%

TSDL [23] 92.08% 91.25% 88.33% 87.08% 82.92%

MBRS [24] 99.91% 99.42% 98.10% 96.09% 94.15%

Proposed 100% 99.71% 98.34% 96.58% 95.90%

As seen in Table V, the proposed scheme maintains the
highest PSNR value which is more than 40dB. From Table
VI we can see that, in all the testing variance, the proposed
scheme maintains the best robustness against Gaussian noise
distortion. The accuracy is significantly higher than HiDDen
and TSDL, but for MBRS, the advantage appears in the large
variance.

4) Salt&Pepper Noise: Similar to Gaussian noise,
Salt&Pepper Noise is commonly appeared in transmission
too, which randomly sampled a certain ratio of image pixels
into a noise. The training ratio is randomly selected from
0.001 to 0.04. And the testing ratio ranges from 0.01 to 0.05.
The final results are shown in Table VII and Table VIII.

TABLE VII: The PSNR values of each methods for Salt&Pepper noise
distortion.

Methods HiDDen [22] TSDL [23] MBRS [24] Proposed

PSNR(dB) 46.04 51.16 51.79 52.43

TABLE VIII: Extraction accuracy with different variance of Salt&Pepper
noise.

Ratio (%) 0.01 0.02 0.03 0.04 0.05

HiDDen [22] 95.12% 93.79% 93.45% 92.92% 90.42%

TSDL [23] 97.29% 95.63% 93.54% 92.71% 91.46%

MBRS [24] 98.05% 98.74% 98.34% 97.56% 96.68%

Proposed 99.41% 99.51% 99.22% 99.12% 98.73%

We can see that the PSNR of the proposed scheme is higher
than other compared schemes. For robustness, the proposed
framework still ensures the best performance. The extraction
accuracy of the proposed scheme is bigger than 98% in all the
test distortions, which indicates the strong robustness against
Salt&Pepper noise.

5) Gaussian Blur: For Gaussian blur distortion, we fixed
the noise layer with variance of 2, and conduct the Gaussian
blurring operation with variance from 0 to 2 in testing to show
the robustness. The visual quality comparison and extraction
accuracy are shown in Table IX and Table X.

TABLE IX: The PSNR values of each methods for Gaussian blur distortion.

Methods HiDDen [22] TSDL [23] MBRS [24] Proposed

PSNR(dB) 46.21 45.97 47.91 48.41

As seen in Table IX and Table X, the proposed scheme pro-
duces the watermarked images with the highest PSNR value
compared with other schemes. And the extraction accuracy is
higher than the compared schemes too.

6) Median Blur: Median Blur is a commonly used image
processing operation. To train the robustness, we fixed the
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TABLE X: Extraction accuracy with different variance of Gaussian blur.

Variance 0.0001 0.5 1 2

HiDDen [22] 95.44% 95.21% 94.33% 84.37%

TSDL [23] 99.92% 99.79% 98.48% 93.21%

MBRS [24] 98.64% 98.25% 97.66% 87.80%

Proposed 100% 100% 99.51% 94.34%

blurring window of 7×7 as the training parameter. And we test
the robustness with blurring window of 3×3, 5×5 and 7×7.
The experimental results are shown in Table XI and Table XII.
As seen in Table XI and Table XII, we ensure the best visual

TABLE XI: The PSNR values of each methods for median blur distortion.

Methods HiDDen [22] TSDL [23] MBRS [24] Proposed

PSNR(dB) 37.07 38.64 40.98 41.18

TABLE XII: Extraction accuracy with different windows of median blur.

Windows 3× 3 5× 5 7× 7

HiDDen [22] 86.25% 83.70% 79.71%

TSDL [23] 99.38% 97.21% 95.12%

MBRS [24] 99.42% 98.93% 97.27%

Proposed 99.81% 99.61% 98.34%

quality compared with other schemes. Besides, we maintain
the highest extraction accuracy under the PSNR in Table XI.
For all the testing median blur windows, the proposed scheme
achieves more than 98% accuracy, which indicates superior
robustness against median blur distortion.

7) JPEG Compression: JPEG compression always appears
in image saving and format conversion. In training stage,
we choose the noise layer with QF=50 which is proposed
by MBRS [24] as the default parameter. And we test the
JPEG compression attack with QF from 40 to 90 to show
the robustness. The experimental results are shown in Table
XIII and Table XIV. As seen in Table XIII, the proposed

TABLE XIII: The PSNR values of each methods for JPEG compression
distortion.

Methods HiDDen [22] TSDL [23] MBRS [24] Proposed

PSNR(dB) 33.29 39.39 45.16 46.84

scheme ensures high quality watermarked images with PSNR
value that is more than 46dB. For robustness, the proposed
framework is significantly higher than the compared schemes,
as shown in Table XIV. Especially for QF=50, the proposed
scheme reaches more than 99% accuracy, which implies that
the algorithm can be effectively used in practice since in most
cases, the quality factors will not be less than 50 in practical
use.

D. Analysis of De-END Architecture

In this section, we will conduct more analysis of the
proposed De-END architecture to verify the design.

TABLE XIV: Extraction accuracy with different quality factors of JPEG
compression.

QF 40 50 60 70 80 90

HiDDen [22] 86.67% 91.24% 92.92% 93.33% 93.54% 94.38%

TSDL [23] 91.04% 91.46% 93.96% 94.21% 94.35% 94.74%

MBRS [24] 94.83% 94.93% 96.68% 97.66% 97.66% 98.84%

Proposed 98.15% 99.02% 100% 100% 100% 100%

Fig. 6: The robustness comparison with different architecture.

1) Architecture Improvements: The key contribution of this
paper is designing the De-END architecture, which achieves
better robustness and visual quality compared with other
schemes. The most important thing we should confirm is
whether the performance improvement comes from the archi-
tecture or the encoder/decoder backbone. In order to verify
the effectiveness of De-END architecture, we conduct the
following experiments. We choose the same decoder as well
as the noise layer proposed by HiDDen, TSDL and MBRS,
and set them as the decoder in De-END architecture. As
for encoder, we use the proposed encoder structure. Then
we train the network with JPEG compression distortion. The
experimental results are shown in Table XV and Fig. 6.

TABLE XV: The PSNR values of each decoder backbones for JPEG com-
pression distortion.

Methods HiDDen [22] TSDL [23] MBRS [24]

Original PSNR(dB) 33.29 39.39 45.16

De-END PSNR(dB) 45.62 45.68 45.57

As shown in Table XV, the proposed De-END architec-
ture has significantly improved the visual quality of methods
HiDDen [22] and TSDL [23]. For MBRS [24], it achieves
a little improvement. But for robustness, it can be seen
that applying De-END architecture will greatly improve the
extraction accuracy. As seen in Fig. 6, the blue line indicates
the extraction accuracy with the original END architecture, the
orange line represents the extraction accuracy with De-END
architecture. For all the methods, simply utilizing De-END
architecture without any backbone changing will bring per-
formance improvement. This indicates that the improvements
mainly come from the architecture instead of the backbone
design.
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2) Architecture Comparison: As aforementioned, in De-
END, two decoders share the same parameters. And we
believe sharing parameter is the key to realizing feature
coupling of encoder and decoder. In this section, we will test
whether it is necessary to share the same parameter. We change
the De-END architecture from “Decoder-Encoder-NoiseLayer-
Decoder” (denoted as De-END) to “DecoderA-Encoder-
NoiseLayer-DecoderB” (denoted as DeAENDB). DecoderA
has the same structure as DecoderB , but we do not force
them to share parameters. If DeAENDBcan achieve similar
performance as De-END, it means that sharing the same pa-
rameters will not be helpful in feature coupling, only applying
a “Decoder-Encoder” like structure in embedding stage is
enough to improve the performance. In addition to “DecoderA-
Encoder-NoiseLayer-DecoderB”, we also test the structure of
END where the encoder only adopts watermark as input,
denote as “EW ND”. If “EW ND” performs better, it means
setting decoder before encoder is useless, the main improve-
ments just rely on the input changing of the encoder. So to
verify our design, we train De-END, DeAENDB and EW ND
respectively. After training, the PSNR values of DeAENDB ,
EW ND and De-END are 46.40dB, 46.88dB and 46.84dB
respectively. The extraction accuracy is shown in Table XVI.

TABLE XVI: Extraction accuracy with different architecture against JPEG
compression.

QF 40 50 60 70 80 90

DeAENDB 83.98% 89.84% 94.92% 97.27% 97.95% 98.44%

EW ND 92.29% 95.61% 96.88% 99.02% 100% 100%

De-END 98.15% 99.02% 100% 100% 100% 100%

It can be seen that under the same level of PSNR, De-
END maintains the best extraction accuracy compared with
DeAENDB and EW ND, which means sharing the parameters
with two decoders is a good way to couple encoder and
decoder. Besides, setting the decoder before encoder is also
necessary for getting better performance. It is worth noting that
maybe training DeAENDB in some way may realize a similar
performance as De-END, but we believe sharing parameters
in these two decoders is a fast and effective way to realize
good performance.

3) Backbone of Decoder: As illustrated in Section V-D1,
different structures of decoder will result in similar perfor-
mance. Since the most commonly used union in HiDDen
[22], TSDL [23] and MBRS [24] is “Conv-BN-ReLU”, in this
section, we will explore the relationship between the number
of “Conv-BN-ReLU” union and the performance. We train the
structure of the decoder with 3 to 7 “Conv-BN-ReLU” union
and test the performance. The corresponding results are shown
in Table XVII and Table XVIII.
TABLE XVII: The PSNR values of each decoder backbones for JPEG
compression distortion.

Number 3 4 5 6 7

PSNR(dB) 45.35 45.94 45.58 45.05 45.62

It can be seen from Table XVII that the PSNR will not
significantly change as the number of “Conv-BN-ReLU” union

TABLE XVIII: Extraction accuracy with different decoder backbones against
JPEG compression.

QF 40 50 60 70 80 90

3 union 78.91% 83.11% 88.28% 93.46% 97.41% 99.81%

4 union 91.60% 93.95% 97.17% 98.63% 99.81% 100%

5 union 94.43% 97.46% 98.44% 99.71% 100% 100%

6 union 95.80% 96.97% 98.05% 99.41% 100% 100%

7 union 95.51% 97.17% 98.83% 99.71% 100% 100%

increases, and will maintain stability at a high level of 45dB.
But from Table XVIII we can conclude that the extraction
accuracy grows as the number of “Conv-BN-ReLU” union
increases from 3 to 5. But for 5 to 7 unions, the performance
becomes similar. It indicates that deepening the network will
not necessarily produce better performance. Applying 5 to
7 “Conv-BN-ReLU” union is enough to ensure great perfor-
mance.

4) Backbone of Encoder: In the proposed De-END archi-
tecture, the encoder adopts a very simple structure that con-
tains one three “Up-Conv-BN-ReLU” blocks. Such structure
has already shown its powerful performance, and deepening
the network may not result in better performance. So in this
section, we mainly investigate the influence of the up-sampling
ways. We choose three commonly used upsampling ways:
“Un-pooling”, “Transpose-conv” and “Nearest-interpolating”
to test the performance. Specifically, we only change the up-
sampling ways in “Up-Conv-BN-ReLU” union and further
train each network respectively. For “Un-pooling”, since it is
necessary to give the max-pooling location for each feature
map in order to realize “Un-pooling” operation, we randomly
sample the location and fixed it in training and testing.
The final PSNR with “Un-pooling”, “Transpose-conv” and
“Nearest-interpolating” backbone are 46.53dB, 46.48dB and
46.84dB respectively. The extraction accuracy are shown in
Table XIX.

TABLE XIX: Extraction accuracy with different up-sampling rules against
JPEG compression.

QF 40 50 60 70 80 90

Un-pooling 89.36% 94.04% 95.31% 97.85% 98.93% 99.81%

T-conv 97.27% 98.83% 99.41% 100% 100% 100%

N-interpolating 98.15% 99.02% 100% 100% 100% 100%

Different up-sampling rules will result in similar PSNR val-
ues of the watermarked images. As for robustness, “Transpose-
conv” and “Nearest-interpolating” maintain similar high-level
extraction accuracy, but for “Un-pooling”, the performance
will be worse than the other two rules. We conclude the reason
that when we conduct “Un-pooling” operation, we fixed the
max-pooling location for each feature map, and the randomly
sampled location may not be optimal, which will result in
bad performance. In general, applying “Transpose-conv” and
“Nearest-interpolating” all can ensure great performance.

VI. CONCLUSION

The existing DNN-based watermarking algorithms mainly
adopt an END backbone which contains an encoder, a noise
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layer and a decoder. In this paper, we designed a novel
decoder-driven DNN-based watermarking network dubbed De-
END. The motivation comes from the potential drawbacks of
the existing END framework we discovered, that is, encoder
may embed redundant features which is not necessary for
decoding into the image. And we deeply investigate the reason
as the encoder and decoder cannot be well coupled under
END framework. To the best of our knowledge, we are the
first to give the analysis of such drawback and we hope
it will benefit the follow-up work. As for mechanism, in
order to address such problem, we propose the architecture
of De-END, which cascades the decoder before the encoder.
Based on this framework, the features of encoder and decoder
can be better shared, so encoder and decoder can be better
coupled. Various experiments show that the visual quality
and watermark robustness of the proposed architecture is
significantly better than the existing state-of-the-art algorithms,
which greatly proves the superior performance of the De-END
architecture.
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