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Basics of Hermitian holomorphic vector bundles

Let (X , ω) be a complex manifold of dimension n, and (E , h)
be a Hermitiann holomorphic vector bundle of rank r over X .
Let D = D ′ + ∂̄ be the Chern connection of (E , h), and
ΘE ,h = [D ′, ∂̄] = D ′∂̄ + ∂̄D ′. Denote by (e1, · · · , er ) an
orthonormal frame of E over a coordinate patch Ω ⊂ X with
complex coordinates (z1, · · · , zn), and

iΘE ,h = i
∑

1≤j ,k≤n,1≤λ,µ≤r

cjkλµdzj ∧dz̄k⊗e∗λ⊗eµ, c̄jkλµ = ckjµλ.

To iΘE ,h corresponds a natural Hermitian form θE ,h on
TX ⊗ E defined by

θE ,h(u, u) =
∑
j ,k,λ,µ

cjkλµ(x)ujλūkµ, u ∈ TxX ⊗ Ex .

θ(ξ ⊗ s, ξ ⊗ s), ξ ⊗ s ∈ TxX ⊗ Ex .
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Bochner-Kodaira-Nakano identity:
∆′ = D ′D ′∗ + D ′∗D ′ and ∆′′ = ∂̄∂̄∗ + ∂̄∗∂̄ acting on E -valued
forms satisfy the identity

∆′′ = ∆′ + [iΘE ,h,Λω].

Let x0 ∈ X and (z1, · · · , zn) be local coordinates centered at
x0, such that (∂/∂z1, · · · , ∂/∂zn) is an orthonormal basis of
TX at x0. One can write

ω = i
∑

dzj ∧ dz̄j + O(‖z‖),

and
iΘE ,h(x0) = i

∑
j ,k,λ,µ

cjkλµdzj ∧ dz̄k ⊗ e∗λ ⊗ eµ,

where (e1, · · · , er ) is an orthonormal basis of Ex0 . Let
u =

∑
uK ,λdz ∧ dz̄K ⊗ eλ ∈ Λn,qT ∗X ⊗ E , where

dz = dz1 ∧ · · · ∧ dzn. Then

〈[iΘE ,h,Λω]u, u〉 =
∑
|S|=q−1

∑
j ,k,λ,µ

cjkλµujS ,λūkS ,µ.
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In particular, if q = 1, we get

〈[iΘE ,h,Λω]u, u〉 =
∑
j ,k,λ,µ

cjkλµuj ,λūk,µ.

So (E , h) is Nakano positive (resp. semo-positive) if and only
if the Hermitian operator [iΘE ,h,Λω] is positive definite (resp.
semi-positive definite) on Λn,1T ∗X ⊗ E .
If (E , h) is Nakano semo-positive and (E , h1) is Nakano
positive, then

〈[iΘE ,h + iΘE ,h1 ,Λω]u, u〉 ≥ 〈[iΘE ,h1 ,Λω]u, u〉

and

〈[iΘE ,h + iΘE ,h1 ,Λω]−1u, u〉 ≤ 〈[iΘE ,h1 ,Λω]−1u, u〉.
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Theorem (L2-estimate Theorem, see Demailly)

Let (X , ω) be a complete Kähler manifold, with a Kähler
metric which is not necessarily complete. Let (E , h) be a
Hermitian vector bundle of rank r over X , and assume that
the curvature operator B := [iΘE ,h,Λω] is semi-positive
definite everywhere on Λn,qT ∗X ⊗ E , for some q ≥ 1. Then for
any form g ∈ L2(X ,Λn,qT ∗X ⊗ E ) satisfying ∂̄g = 0 and∫
X
〈B−1g , g〉dVω < +∞, there exists

f ∈ L2(X ,Λn,q−1T ∗X ⊗ E ) such that ∂̄f = g and∫
X

|f |2dVω ≤
∫
X

〈B−1g , g〉dVω.
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Definition

Let (X , ω) be a Kähler manifold of dimension n, which admits
a positive line bundle, (E , h) be a (singular) Hermitian vector
bundle (maybe of infinite rank) over X , and p > 0.

(1) (E , h) satisfies the optimal Lp-estimate condition if for
any positive line bundle (A, hA) on X , for any
f ∈ C∞c (X ,∧n,1T ∗X ⊗ E ⊗ A) with ∂̄f = 0, there is
u ∈ Lp(X ,∧n,0T ∗X ⊗ E ⊗ A), satisfying ∂̄u = f and∫
X
|u|ph⊗hAdVω ≤

∫
X
〈B−1

A,hA
f , f 〉 p2 dVω, where

BA,hA = [iΘA,hA ⊗ IdE ,Λω].

(2) (E , h) satisfies the multiple coarse Lp-estimate condition if
for any m ≥ 1, for any positive line bundle (A, hA) on X ,
and for any f ∈ C∞c (X ,∧n,1T ∗X ⊗ E⊗m ⊗ A) with ∂̄f = 0,
there is u ∈ Lp(X ,∧n,0T ∗X ⊗ E⊗m ⊗ A), satisfying ∂̄u = f
and

∫
X
|u|ph⊗m⊗hAdVω ≤ Cm

∫
X
〈B−1

A,hA
f , f 〉 p2 dVω, where Cm

are constants satisfying 1
m

log Cm → 0 as m→∞.
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Theorem (1)

Let (X , ω) be a Kähler manifold of dimension n, which admits
a positive Hermitian holomorphic line bundle, (E , h) be a
smooth Hermitian vector bundle over X , and
θ ∈ C 0(X ,Λ1,1T ∗X ⊗ End(E )) such that θ∗ = θ. If for any
f ∈ C∞c (X ,∧n,1T ∗X ⊗ E ⊗ A) with ∂̄f = 0, and any positive
Hermitian line bundle (A, hA) on X with iΘA,hA ⊗ IdE + θ > 0
on suppf , there is u ∈ L2(X ,∧n,0T ∗X ⊗ E ⊗ A), satisfying
∂̄u = f and

∫
X
|u|2h⊗hAdVω ≤

∫
X
〈B−1

hA,θ
f , f 〉h⊗hAdVω, provided

that the right hand side is finite, where
BhA,θ = [iΘA,hA ⊗ IdE + θ,Λω], then iΘE ,h ≥ θ in the sense of
Nakano. On the other hand, if in addition X is assumed to
have a complete Kähler metric, the above condition is also
necessary for that iΘE ,h ≥ θ in the sense of Nakano. In
particular, if (E , h) satisfies the optimal L2-estimate condition,
then (E , h) is Nakano semi-positive.
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Theorem (2)

Let (X , ω) be a Kähler manifold, which admits a positive
Hermitian holomorphic line bundle, and (E , h) be a
holomorphic vector bundle over X with a continuous Hermitian
metric h. If (E , h) satisfies the multiple coarse Lp-estimate
condition for some p > 1, then (E , h) is Griffiths semi-positive.

The case that p = 2 and h is Hölder continuous for the above
theorem was proved by G. Hosono and T. Inayama, by showing
that the multiple coarse L2-estimate condition implies the the
multiple coarse L2-extension condition.
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Lp extension

B. Berndtsson and M. Păun(2010) and Q. A. Guan and X. Y.
Zhou(2015) proved the Lp extension theorem.

Theorem

Let Ω be a bounded pseudoconvex domain in Cn, L be a
complex affine line in Cn, and Ω ∩ L 6= ∅. For 0 < p ≤ 2, then
for any f ∈ Ap(Ω ∩ L), there is F ∈ Ap(Ω), such that
F |Ω∩L = f and ∫

Ω

|F |p ≤ C

∫
Ω∩L
|f |p,

where C is a constant depending only on diam Ω and n.
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Optimal L2-extension Theorem(Zhou-Zhu 19’)

Let π : X → B be a proper holomorphic submersion from a
complex n-dimensional Kähler manifold (X , ω) onto a unit ball
in Cm. Let (E , h = hE ) be a Hermitian holomorphic vector
bundle over X , such that the curvature iΘE ,hE ≥ 0 in the
sense of Nakano. Let t0 ∈ B be an arbitrarily fixed point.
Then for every section u ∈ H0(Xt0 ,KXt0

⊗ E |Xt0
), such that∫

Xt0
|u|2ω,hdVωXt0

< +∞, there is a section ũ ∈ H0(X ,KX ⊗ E ),

such that ũ|Xt0
= ũ ∧ dt, with the following L2-estimate∫

X

|ũ|2ω,hdVX ,ω ≤ µ(B)

∫
Xt0

|u|2ω,hdVωXt0
,

where dt = dt1 ∧ · · · ∧ dtm, and t = (t1, · · · , tm) are the
holomorphic coordintes on Cm, and µ(B) is the volume of the
unit ball in Cm with respect to the Lebesgue measure on Cm.
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Definition

Let (E , h) be a Hermitian vector bundle over a domain
D ⊂ Cn with a singular Finsler metric h, and p > 0.

(1) (E , h) satisfies the optimal Lp-extension condition if for
any z ∈ D, and a ∈ Ez with |a| = 1, and any holomorphic
cylinder P with z + P ⊂ D, there is f ∈ H0(z + P ,E )
such that f (z) = a and 1

µ(P)

∫
z+P
|f |p ≤ 1, where µ(P) is

the volume of P with respect to the Lebesgue measure.
(Here by a holomorphic cylinder we mean a domain of the
form A(Pr ,s) for some A ∈ U(n) and r , s > 0, with Pr ,s =
{(z1, z2, · · · , zn) : |z1|2 < r 2, |z2|2 + · · ·+ |zn|2 < s2}).

(2) (E , h) satisfies the multiple coarse Lp-extension condition
if for any z ∈ D, and a ∈ Ez with |a| = 1, and any m ≥ 1,
there is fm ∈ H0(D,E⊗m) such that fm(z) = a⊗m and
satisfies the following estimate:

∫
D
|fm|p ≤ Cm, where Cm

are constants independent of z and satisfying
limm→∞

1
m

log Cm = 0.
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Two theorems

The following theorems are first prove by F.S. Deng, Z.W.
Wang, L.Y. Zhang and X.Y. Zhou.

Theorem (3)

Let E be a holomorphic vector bundle over a domain D ⊂ Cn,
and h be a singular Finsler metric on E , such that |s|h∗ is
upper semi-continuous for any local holomorphic section s of
E ∗. If (E , h) satisfies the optimal Lp-extension condition for
some p > 0, then (E , h) is Griffiths semi-positive.

Theorem (4)

Let E be a holomorphic vector bundle over a domain D ⊂ Cn,
and h be a singular Finsler metric on E , such that |s|h∗ is
upper semi-continuous for any local holomorphic section s of
E ∗. If (E , h) satisfies the multiple coarse Lp-extension
condition for some p > 0, then (E , h) is Griffiths semi-positive.
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Lemma

Let D ⊂ Cn be a domain, and φ be an upper-semicontinuous
function on D. If for any z0 ∈ D and any holomorphic cylinder
P with with z0 + P ⊂⊂ D,

φ(z0) ≤ 1

µ(P)

∫
z0+P

φ,

then φ is plurisubharmonic on D.

Positivity of holomorphic vector bundles in terms of Lp -conditions of ∂̄



Proof of Theorem (3)

Let u be a holomorphic section of E ∗ over D. Let z ∈ D and
P be any holomorphic cylinder such that z + P ⊂ D. Take
a ∈ Ez such that |a|h = 1 and |u|h∗(z) = |〈u(z), a〉|. Since
(E , h) satisfies the optimal Lp-extension condition, there is a
holomorphic section f of E on z + P , such that f (z) = a and
satisfies the estimate

1

µ(P)

∫
z+P

|f |ph ≤ 1.

Note that |u|h∗ ≥ |〈u, f 〉|/|f |h on z + P , it follows that

log |u|h∗ ≥ log |〈u, f 〉| − log |f |h.
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Taking integration, we get that

p

(
1

µ(P)

∫
z+P

log |u|h∗
)

≥ p

(
1

µ(P)

∫
z+P

log |〈u, f 〉|
)
− 1

µ(P)

∫
z+P

log |f |ph

≥ p

(
1

µ(P)

∫
z+P

log |〈u, f 〉|
)
− log

(
1

µ(P)

∫
z+P

|f |ph
)

≥ p log |〈u(z), f (z)〉|
= p log |〈u(z), a〉| = p log |u(z)|h∗ ,

where the second inequality follows from Jensen’s inequality,
and the third inequality follows from the fact that log |〈u, f 〉|
is a plurisubharmonic function. Dividing by p, we obtain that

log |u(z)|h∗ ≤
1

µ(P)

∫
z+P

log |u|h∗ .

By the Lemma above, we see that log |u|h∗ is plurisubharmonic
on D.
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Proof of Theorem (4)

Let u be a holomorphic section of E ∗ over D. Then
u⊗m ∈ H0(D, (E ∗)⊗m).
Let z ∈ D and P be any holomorphic cylinder such that
z + P ⊂ D. Take a ∈ Ez such that |a|h = 1 and
|u|h∗(z) = |〈u(z), a〉|. Since (E , h) satisfies the multiple coarse
Lp-extension condition, there is fm ∈ H0(D,E⊗m), such that
fm(z) = a⊗m and satisfies the following estimate∫

D

|fm|p ≤ Cm,

where Cm are constants independent of z and satisfy the
growth condition 1

m
log Cm → 0 as m→∞. Since

|u⊗m|(h∗)⊗m = |u|mh∗ ≥
|〈u⊗m,fm〉|
|fm|h⊗m

, we have that

m log |u|h∗ ≥ log |〈u⊗m, fm〉| − log |fm|.
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Taking integration, we get that

m

(
1

µ(P)

∫
z+P

log |u|h∗
)

≥ 1

µ(P)

∫
z+P

log |〈u⊗m, fm〉| −
1

p

(
1

µ(P)

∫
z+P

log |fm|p
)

≥ m log |u(z)|h∗ −
1

p
log

(
1

µ(P)

∫
z+P

|fm|p
)

≥ m log |u(z)|h∗ −
1

p
log

(
1

µ(P)

∫
D

|fm|p
)

≥ m log |u(z)|h∗ −
1

p
log(Cm/µ(P)),

Dividing by m in both sides, we obtain that

1

µ(P)

∫
z+P

log |u|h∗ ≥ log |u(z)|h∗ −
1

mp
log(Cm/µ(P)).

Letting m→∞, we get log |u(z)|h∗ ≤ 1
µ(P)

∫
z+P

log |u|h∗ .
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Figure 1: L2
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Some problems

Q1: Does Theorem (1) still hold if the optimal L2-estimate
condition is replaced by the optimal Lp-estimate condition for
some p 6= 2?

Q2: Establish results analogous to Theorem (1) for
holomorphic vector bundles with singular Hermitian metrics.

Q3: Does the multiple coarse L2-estimate condition of (E , h)
imply the Nakano positivity of (E , h)?

Q4: Does the Griffiths positivity imply the optimal
L2-extension condition and the multiple coarse L2-extension
condition?
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Applications

Theorem (Berndtsson)

Let U and D be bounded domains in Cn
t and Cm

z respectively,
and φ ∈ C2(U × D) ∩ PSH(U × D). Assume that D is
pseudoconvex. For t ∈ U, let
A2
t := {f ∈ O(D) : ||f ||2t :=

∫
D
|f |2e−φ(t,·) <∞} and

F :=
∐

t∈U A2
t . We may view F as a Hermitian holomorphic

vector bundle on U. Then (F , || · ||t) is Nakano semi-positive.
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Proof

We will first prove that (F , || · ||t) satisfies the ∂̄ optimal
L2-estimate for pseudoconvex domains contained in U . We
may assume U is pseudoconvex.
For any smooth strictly plurisubharmonic function ψ on U , for
any ∂̄ closed f ∈ C∞c (T ∗UΛ(0,1) ⊗ F ) (We identify
C∞c (T ∗UΛ(0,1) ⊗ F ) with C∞c (T ∗UΛ(n,1) ⊗ F )). We may write
f =

∑n
j=1 fj(t, z)dt̄j with fj(t, ·) ∈ Ft for t ∈ U and

j = 1, 2, · · · , n. Therefore, we may view f as a ∂̄-closed
(0, 1)-form on U × D.
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By L2-estimate theorem, there exists a function u on U × D,
satisfying ∂̄u = f and∫

U×D
|u|2e−(φ+ψ) ≤

∫
U×D
|f |2i∂∂̄(φ+ψ)e

−(φ+ψ)

≤
∫
U×D
|f |2i∂∂̄ψe−(φ+ψ)

=

∫
U

n∑
j ,k=1

ψj k̄〈fj(t, ·), fk(t, ·)〉te−ψ,

where (ψj k̄)n×n := ( ∂2ψ
∂tj∂t̄k

)−1
n×n. Note that∫

U×D |u|
2e−(φ+ψ) =

∫
U
||u||2t e−ψ <∞ and ∂u

∂z̄j
= 0 for

j = 1, 2, · · · ,m, we may view u as a L2-section of F on U . By
Theorem (1), (F , || · ||t) is Nakano semi-positive.

Positivity of holomorphic vector bundles in terms of Lp -conditions of ∂̄



Let Ω = U × D ⊂ Cn
t × Cm

z be a bounded pseudoconvex
domains and p : Ω→ U be the natural projection. Let h be a
Hermitian metric on the trivial bundle E = Ω× Cr that is
C 2-smooth to Ω. For t ∈ U , let

Ft := {f ∈ H0(D,E |{t}×D) : ‖f ‖2
t :=

∫
D

|f |2ht <∞}

and F :=
∐

t∈U Ft . Since h is continuous to Ω, Ft are equal for
all t ∈ U as vector spaces. We may view (F , ‖ · ‖) as a trivial
holomorphic Hermitian vector bundle of infinite rank over U .

Theorem (direc image in stein)

Let θ be a continuous real (1, 1)-form on U such that
iΘE ≥ p∗θ ⊗ IdE , then iΘF ≥ θ ⊗ IdF in the sense of Nakano.
In particular, if iΘE > 0 in the sense of Nakano, then iΘF > 0
in the sense of Nakano.
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Proof

By Theorem (1), it suffices to prove that (F , ‖ · ‖) satisfies:
for any f ∈ C∞c (U ,∧n,1T ∗U ⊗ F ⊗ A) with ∂̄f = 0, and any
positive Hermitian line bundle (A, hA) on U with
iΘA,hA + θ > 0 on suppf , there is u ∈ L2(U ,∧n,0T ∗U ⊗ F ⊗ A),
satisfying ∂̄u = f and∫

U

|u|2h⊗hAdVω ≤
∫
U

〈B−1
hA,θ

f , f 〉h⊗hAdVω,

provided that the right hand side is finite, where
BhA,θ = [(iΘA,hA + θ)⊗ IdF ,Λω].
We may write f =

∑n
j=1 fj(t, z)dt ∧ dt̄j with fj(t, ·) ∈ Ft ⊗ A

for t ∈ U and j = 1, 2, · · · , n. Therefore, we may view f as a
∂̄-closed E ⊗ p∗A-valued (n, 1)-form on Ω. Let f̃ = f ∧ dz ,
then f̃ is a ∂̄-closed E ⊗ p∗A-valued (m + n, 1)-form on Ω. By
assumption, iΘE ≥ p∗θ ⊗ IdE .
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We get

iΘE + ip∗(ΘA,hA)⊗ IdE ≥ p∗(θ + iΘA,hA)⊗ IdE .

Therefore,

〈[iΘE + ip∗(ΘA,hA)⊗ IdE ,Λω]−1f̃ , f̃ 〉h⊗hA
≤〈[p∗(θ + iΘA,hA)⊗ IdE ,Λω]−1f̃ , f̃ 〉h⊗hA

By L2-estimate theorem, we can find an E ⊗ p∗A-valued
(n + m, 0)-form ũ on Ω, satisfying ∂̄ũ = f̃ and∫

Ω

|ũ|2h⊗hA

≤
∫

Ω

〈[p∗(θ + iΘA,hA)⊗ IdE ,Λω]−1f̃ , f̃ 〉h⊗hA

=

∫
U

〈B−1
hA,θ

f , f 〉h⊗hA ,

where the last equality holds by the Fubini theorem.
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Since ∂ũ
∂z̄j

= 0, ũ is holomorphic along fibers and we may view

u = ũ/dz as a section of KU ⊗ F ⊗ A. Also by the Fubini
theorem, we have∫

Ω

|ũ|2h⊗hA =

∫
U

||u||2h⊗hA <∞.

We also have ∂̄u = f . Hence (F , ‖ · ‖) satisfies the optimal
L2-estimate condition and is Nakano semi-positive by Theorem
(1).
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Let π : X → U be a proper holomorphic submersion from
Kähler manifold X of complex dimension m + n, to a bounded
pseudoconvex domain U ⊂ Cn, and (E , h) be a Hermitian
holomorphic vector bundle over X , with the Chern curvature
Nakano semi-positive. From L2-extension theorem, the direct
image F := π∗(KX/U ⊗ E ) is a vector bundle, whose fiber over
t ∈ U is Ft = H0(Xt ,KXt ⊗ E |Xt ). There is a hermtian metric
‖ · ‖ on F induced by h: for any u ∈ Ft ,

‖u(t)‖2
t :=

∫
Xt

cmu ∧ ū,

where m = dim Xt , cm = im
2
, and u ∧ ū is the composition of

the wedge product and the inner product on E . So we get a
Hermitian holomorphic vector bundle (F , ‖ · ‖) over U .
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Theorem

The Hermitian holomorphic vector bundle (F , ‖ · ‖) over U
defined above satisfies the optimal L2-estimate condition.
Moreover, if iΘE ≥ p∗θ ⊗ IdE for a continuous real (1, 1)-form
θ on U, then iΘF ≥ θ ⊗ IdF in the sense of Nakano.

Remark

The conclusion that iΘF ≥ θ⊗ IdF is semipositive in the sense
of Nakano is proved by Berndtsson, our proof is different with
his.
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Theorem

The Hermitian holomorphic vector bundle (F , ‖ · ‖) over U
satisfies the multiple coarse L2-estimate condition. In
particular, F is Griffiths semipositive.

Theorem

The Hermitian holomorphic vector bundle (F , ‖ · ‖) over U
satisfies the multiple coarse L2-extension condition. In
particular, F is Griffiths semipositive.
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Theorem

The Hermitian holomorphic vector bundle (F , ‖ · ‖) over U
satisfies the optimal L2-extension condition. In particular, F is
Griffiths semipositive.

Proof. For any t0 ∈ U , any holomorphic cylinder P such that
t0 + P ⊂ U , and any at0 ∈ Ft0 , which is a holomorphic section
of KXt0

⊗ E |Xt0
on Xt0 . Since E is Nakano semi-positive, from

the optimal L2-extention Theorem, we get a homolomorphic
extension a ∈ H0(X ,KX ⊗ E ) such that a|Xt0

= at0 ∧ dt, and
with the estimate∫
π−1(t0+P)

cm+na ∧ ā ≤ µ(P)
∫
Xt0

cmat0 ∧ āt0 = µ(P)|at0|2t0
,

where µ(P) is the volume of P with respect to the Lebesgue
measure dµ on Cm. Since
at := (a/dt)|Xt ∈ H0(Xt ,KXt ⊗ E |Xt ), a/dt can be seen as a
holomorphic section of the direct image bundle F over t0 + P ,
and from Fubini’s theorem, we can obtain that∫
t0+P
|at |2tdVω0 ≤ µ(P)|at0|2t0

.
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Thank You!
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