Chapter 6

Time Domain Methods in Speech
Processing
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General Analysis Model

> Pitch Period, T[n]
SpeeCh -> Glottal Pulse Shape, g[n]
-» Voiced Amplitude, AV[n]

s[n]

AnaIYSIS -> V/U/S[n] Switch
-> Unvoiced Amplitude, AU[n]
MOdel -» Vocal Tract IR, v[n]

-» Radiation Characteristic, r[n]

All analysis parameters are time-varying at rates related with
information in the parameters;

We need algorithms for estimating the analysis parameters
and their variations over time



Overview

rspeech or music

A(X.t)
representation formants

speech, x[n - of speech reflection coefficients
P 7] P Signal ‘ r'< voiced-unvoiced-silence

pitch

sounds of language
speaker identification
\_emotions

Processing |

* time domain processing => direct operations on the speech waveform

* frequency domain processing => direct operations on a spectral
representation of the signal
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Fig. 4.1 Samples of a typical speech waveform (8 kHz sampling rae).

Basics
8 kHz sampled speech (bandwidth <

4 kHz)

properties of speech change with
time
— excitation goes from voiced to
unvoiced

— peak amplitude varies with the sound
being produced

— pitch varies within and across voiced
sounds

— periods of silence where background
signals are seen

the key issue is whether we can
create simple time-domain
processing methods that enable us
to measure/estimate speech
representations reliably and
accurately ’



Short-Time Analysis of Speech

Fundamental assumption

— properties of the speech signal change relatively slowly with time (5-10
sounds per second)

“short-time” processing methods => short segments of the speech

signal are “isolated” and “processed” as if they were short

segments from a “sustained” sound with fixed (non-time-varying)

properties

— this short-time processing is periodically repeated for the duration of
the waveform

— these short analysis segments, or “analysis frames” almost always
overlap one another

— the results of short-time processing can be a single number (e.g., an
estimate of the pitch period within the frame), or a set of numbers (an
estimate of the formant frequencies for the analysis frame)

the end result of the processing is a new, time-varying sequence
that serves as a new representation of the speech signal
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Frame-by-Frame Processing
in Successive Windows
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75% frame overlap => frame length=L, frame shift=R=L/4
Frame1={x[0],x[1],...,x[L-1]}
Frame2={x[R],x[R+1],..., x[R+L-1]}
Frame3={x[2R],x[2R+1],...,.x[2R+L-1]}




Frame 1: samples 0,1,...,L -1
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Frame-by-Frame Processing in
Successive Windows

I e A A hatac pa A A
K KA

+«—— Frame 1 —*

Lf Frame 2 —»

Frame 3 —»

50% frame overlap

+— Frame 4 —»

* Speech is processed frame-by-frame in overlapping intervals until
entire region of speech is covered by at least one such frame

e Results of analysis of individual frames used to derive model
parameters in some manner

* Representation goes from time sample x[n],n=...,,0, 1, 2, ... to

parameter vector fim], m=0, 1, 2, ... where n is the time index and m is
the frame index.



Frames and Windows

w[560 — m)| w(1280 — m)|
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0 240 480 720 960 1200 1440 1680 1920
time in samples (m)
 Fs=16,000 samples/second

[ =641 samples (equivalent to 40 msec frame (window) length)
* R =240 samples (equivalent to 15 msec frame (window) shift)
* Frame rate of 66.7 frames/second 10



Issue of Frame Length

* there is always uncertainty in short time
measurements and estimates from speech signals

— over very short (5-20 msec) intervals => uncertainty
due to small amount of data

— over medium length (20-100 msec) intervals =>
uncertainty due to transitions between sounds, rapid
transients in speech

— over long (100-500 msec) intervals => uncertainty due
to large amount of sound changes
* A compromise analysis frame duration of
between 10 and 40 msec is most often used in
speech processing systems



General Framework of
Short-Time Analysis

speech speech representation,
waveform, x[n] R short-time Am] R
processing

e x[n]

samples at 8000/sec rate; (e.g. 2 seconds of 4 kHz bandlimited
speech, x[n], 0 £ n <£16000)

y f[m]z{fl[m]rfz[m]r-"rfL[m]}
vectors at 100/sec rate, 1 < m <200, L is the size of the

analysis vector (e.g., 1 for pitch period estimate, 12 for
autocorrelation estimates, etc)



General Framework of
Short-Time Analysis

0, =[ i 1 (x[m]) ﬁf‘[f’f—m]]

M=—a0

n=n

Qﬁ

x[n T(x[n ~
o) D i) X
linear or non-linear window sequence
transformation (usually finite length)

* (O, isasequence of local weighted average values of the
sequence T(x[n]) at time n=n



Short-Time Energy
E:mix?[m]

* thisis the long term definition of signal energy

* thereis little or no utility of this definition for time-varying
signals

E.= > x’[m] =x[n—L+1]+...+ x7[N]

n
m=n-[+1

* short-time energy in vicinity of time »

T(x)=x"
wln]=1 0<n<L-1
=0 otherwise



Computation of Short-Time Energy
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Fig. 4.2 lllustration of the computation of snort-time energy.

* window jumps/slides across sequence of squared values, selecting interval
for processing

* what happens to £ as sequence jumps by 2,4,8,..., samples ( E.isa
Iowpass function—so it can be decimated W|thout Iost of information; why
is . lowpass?)

. effects of decimation depend on L; if L is small, then £ is a lot more
variable than if L is large (window bandwidth changes with L 1)

[n
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Effects of Windows

Q; =T (x[n])* ﬁ/[n]‘n:ﬁ

= x'[n]* w[n]|,_;

* Ww[n] serves as a lowpass filter on T(x[n]) which often has a lot
of high frequencies (most non-linearities introduce significant
high frequency)



Short-Time Energy

* serves to differentiate voiced and unvoiced sounds in speech
from silence (background signal)

* natural definition of energy of weighted signal is:

E.= > [x[m]\,r'”[.f[,f?r—m]]3 (sum or squares of portion of signal)

E,= Y XMW A-m]= 3 x*[m] h[A—m]
i) =[]
.I'IH-] ) ('r[.”])z LOWP&SS Eu Eﬁ - EJ'I n=n
——— () Filler ——— 4R «
,:;.2[”]




Short-Time Energy Properties

* depends on choice of h[n], or equivalently, window w{n]

— If w[n] duration very long and constant amplitude (w|n]=1,
n=0,1,...,L.-1), E, would not change much over time, and
would not reflect the short-time amplitudes of the sounds
of the speech

— very long duration windows correspond to narrowband
lowpass filters

— want E_ to change at a rate comparable to the changing
sounds of the speech => this is the essential conflict in all
speech processing, namely we need short duration
window to be responsive to rapid sound changes, but
short windows will not provide sufficient averaging to give
smooth and reliable energy function



Windows

e consider two windows

— rectangular window:
* h[n]=1, 0<n<L-1 and 0 otherwise
— Hamming window (raised cosine window):
* h[n]=0.54-0.46 cos(2rtn/(L-1)), 0<n<L-1 and 0 otherwise

— rectangular window gives equal weight to all L
samples in the window (n,...,n-L+1)

— Hamming window gives most weight to middle
samples and tapers off strongly at the beginning
and the end of the window



Rectangular and Hamming Windows
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Window Frequency Responses

* rectangular window

Sln(QLT / 2) o /OT(L-1)
sin(QQT /2)
— first zero occurs at f=F/L=1/(LT) (or Q=(2r)/(LT)) =>

nominal cutoff frequency of the equivalent “lowpass”
filter

* Hamming window
W, [n]=0.54%,[n]-0.46*cos(2zn/ (L -1))w,[n]

-~
e

H(e'T) =

— can decompose Hamming Window FR into
combination of three terms
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RW and HW Frequency Responses

(a

_hﬂ =

—80 1 L : :
0 0.1 0.2 03 0.4

=51 Normalized Frequency w/{2m)

=40 r

—60

(b} |

0 0.1 0.2 0.3 0.4

Mormalized Frequency w/(27)

log magnitude response of RW and
HW

bandwidth of HW is approximately
twice the bandwidth of RW

attenuation of more than 40 dB for
HW outside passband, versus 14 dB for
RW

stopband attenuation is essentially
independent of L, the window duration
=> increasing L simply decreases
window bandwidth

L needs to be larger than a pitch
period (or severe fluctuations will
occur in E,), but smaller than a sound
duration (or E, will not adequately
reflect the changes in the speech
signal)

There is no perfect value of L, since a pitch period can be as short as 20 samples (500 Hz at
a 10 kHz sampling rate) for a high pitch child or female, and up to 250 samples (40 Hz pitch
at a 10 kHz sampling rate) for a low pitch male; a compromise value of L on the order of )
100-200 samples for a 10 kHz sampling rate is often used in practice
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Shon-Time Energy

Short-Time Energy using RW/HW

/ What She Said / - Rectangular Window, £ | What She Said / - Hamming Window, £
AN ”.//\I\\ o .
L=101 L=101
.—/\/\\ E \ ,,./Hf/\
AN A
/\itm L=401
: J :

1.5 0 05 1 15
Tlme‘ iI‘I Setundﬁ Time In SEtundE
* aslincreases, the plots tend to converge (however you are smoothing sound

energies)
e short-time energy provides the basis for distinguishing voiced from unvoiced
speech regions, and for medium-to-high SNR recordings, can even be used to find

regions of silence/background signal
24
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Short-Time Energy for AGC

* Can use an lIR filter to define short-time energy, e.g.,
— time-dependent energy definition

o)

o°[n]= > x“[m]h[n—m]

Mm=—=

— consider impulse response of filter of form
hlnl=(1-a)a" uln-1]=(1-a) a" n=1

=0 n<Il1

o

c[n]= > (1-a)x' [mla"""uln —m-1]

M=—u



Recursive Short-Time Energy

amplitude

log magnitude in dB

(a) Exponential Window; « = 0.9
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(b) Discrete=Time Fourier Transform
D T T T T T T T T
_1{] - -
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Recursive Short-Time Energy

* u[n-m-1] implies the condition n-m-1 >0 or m < n-1 giving

o’[n] = ”Z_l (1-a)x’ Ml =(1—-a)(xX’[n—-1]+ax’[n—-2]+..))

e for the index n-1 we have

o’[n—-1]= ni (1-a)x’[mla"™™ =(1-a)(xX’[n—-2]+ax’[n—-3]+...)

M=—uw

* thus giving the relationship

c’lnl=a-c’[n—11+x’[n—1|(1 - «)

and defines an Automatic Gain Control (AGC) of the form

G, < Constant gain level

=




Recursive Short-Time Energy

o[n] = x*[n]=h[n]
ANl = (1— &)™ u[n 1]
a’(2)= X*(2)H(2)

o

H(z) = i h[n]Z_” = Z (1- Q-’)G(”_flU[n _ 1]2_”

N=—uw

_ i(»] —ﬂ){}f”_1 7

n=1

m=n-1
H(Z) = Z (1 —H)am Z—{m—'l] _ Z (1 —H)Z_1 oz
m=0 m=0
=(1-a)z' Y a" 2" =(1-a)Z” = o?(2)/ X*(z

a’[n] = ac’[n -1+ (1-a)x*(n-1)



Recursive Short-Time Energy

o’[nl=a-c’[n-11+x’[n-1](1-&)

x[n] )2 .172[;?] -l - ’GI-\ o
(l1-a) njz[ ] |
a’[n - -
o



Use of Short-Time Energy for AGC
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Short-Time Magnitude

* short-time energy is very sensitive to large signal

levels due to x%[n] terms

— consider a new definition of ‘pseudo-energy’ based on
average signal magnitude (rather than energy)

o
iM F:‘ — Z

m=—a0

x[m]| Wn—m]

— weighted sum of magnitudes, rather than weighted

sum of squares

x[n]

FS

g

[X[n]]

FS

wn]

M. =M

n=n

F./R



Short-Time Magnitudes

/ What She Said / - Rectangular Window, M;a, / What She Said / -- Hamming Window, Mﬁ
| r L=51 | |

L=101 L=101

\ =201 =201

Short-Time Magnitude
Shont-Time Magnitude

L=401

0 05 1 15 0 05 . 1%

Time in Seconds Time in Seconds

differences between E, and M, noticeable in unvoiced regions

dynamic range of M, ~ square root (dynamic range of E ) => level
differences between voiced and unvoiced segments are smaller

E.and M, can be sampled at a rate of 100/sec for window durations of 20
msec or so => efficient representation of signal energy/magnitude 33



Shont-Time Energy

Short Time Energy and Magnitude—
Rectangular Window

| What She Said / -- Rectangular Window, E.

Mo M

Time in Seconds

Short-Time Magnitude

/ What She Said / - Rectangular Window, M .

M
=101
¥} =201

0 05 1 1,

Time in Seconds

5
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Short-Time Energy

Short Time Energy and Magnitude—
Hamming Window

| What She Said / -- Hamming Window, £ -

Mo

[=51

WM

f/w\ﬂjf\_

0 05
Time in Seconds

ﬁ H L=401

1

15

Short-Time Magnitude

| What She Said / -- Hamming Window, M .

L=51

L=101

FiEAN
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05 i 1
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Other Lowpass Windows

can replace RW or HW with any lowpass filer
window should be positive since this guarantees E, and
M, will be positive

FIR windows are efficient computationally since they can
slide by R samples for efficiency with no loss of
information

can even use an infinite duration window if its z-
transform is a rational function, i.e.,

h[n]=a", n=0, 0<a<l
=0 n<0

H(z)=- | z[>]a]



Other Lowpass Windows

this simple lowpass filter can be used to implement E,
and M_recursively as:

E =aE_ +(1-a)x’[n] — short-time energy
M =aM_ _ +(1-a)|x[n]| — short-time magnitude

need to compute E, and M, every sample and then
down-sample to 100/sec rate

recursive computation has a non-linear phase



Short-Time Average ZC Rate

N
Zero crossing => successive samples
‘ ‘ have different algebraic signs

J

Zero crossmg zero crossing rate I EX

e zero crossing rate is a simple measure of the ‘frequency content’ of
a signal—especially true for narrowband signals (e.g., sinusoids)

* sinusoid at frequency F, with sampling rate F; has F/ F, samples
per cycle with two zero crossings per cycle, giving an average zero
crossing rate of

z,=(2) crossings/cycle x (F,/ Fg) cycles/sample
z,=2F,/ F< crossings/sample (i.e., z, proportional to F,)
z,,=M (2F, /F¢) crossings/(M samples)



Sinusoid Zero Crossing Rates

* Assume the sampling rate is F, = 10,000 Hz

— F,=100Hz sinusoid has F./ F,=10,000/100 = 100
samples/cycle; or z, = 2/100 crossings/sample; or z,,, =
2/100*100 = 2 crossings/10 msec interval

— F,=1000Hz sinusoid has F./ F,=10,000/1000 = 10
samples/cycle; or z, = 2/10 crossings/sample; or z,,, =
2/10*100 = 20 crossings/10 msec interval

— F,=5000Hz sinusoid has F./ F,=10,000/5000 = 2
samples/cycle; or z, = 2/2 crossings/sample; or z,,, =
2/2*100 = 100 crossings/10 msec interval



Zero Crossing for Sinusoids
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Zero Crossings for Noise

offseet:0.75, random noise, ZC:252, offset noise, 7C:122

ZC=252
Offset=0.75
° L |—L random gaussian noise with ac ofset |
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/C Rate Definitions

| sgn(x[m]) —sgn(x[m —1]) [W[n —m]

ﬁ

Sg”(x[”]) = x[n]=0 L= Z w [M] Effective window length
=-1 x[n]<0 m=—
* simple rectangular window:
wn]=1 0<n<l-1
=0 otherwise
L. =L
x[n] | | First U T T "*;‘*.’“]"‘f_"’“ Zi = Za| =
] | Difference ] ﬁllf:ll i
F, F F F F./R

Same form for Z. as for E. or M.

4z



/C Normalization

e The formal definition

Y. I'sgn(x{m])—sgn(xim —1])|

L. =2 =—
2L m=n—-L+1

is interpreted as the number of zero crossings per sample.

* For most practical applications, we need the rate of zero crossings
per fixed interval of samples, which is

z,, =2z,-M =rate of zero crossings per M sample interval
* Thus, for an interval of rsec., corresponding to samples we get
Zy =4 M, M=tF;=7/T
— F.=10,000Hz, T = 100usec, 7= 10msec, M = 100 samples
— F,=8,000Hz, T = 125psec, 7= 10msec, M = 80 samples
— F.=16,000Hz, T = 62.5usec, 7= 10msec, M = 160 samples



/C Normalization

* For a 1000 Hz sinewave as input, using a 40 msec window
length (L), with various values of sampling rate (F;), we get

the ZC rates per 10 msec

Fs L Z M Zy
8000 320 1/4 30 20
10000 400 1/5 100 20
16000 640 1/8 160 20

 Thus we see that the normalized (per interval) zero crossing
rate, z,,, is independent of the sampling rate and can be
used as a measure of the dominant energy in a band.



/C and Energy Computation

w[200 — m| Z:/0.564  w[1100 — m)| E;/0.033
I N~ - « §
RN v il
VAN _\ Hamming window
Y with duration
o L=201 samples
0l i T e ‘L A A ‘“ (12.5 msec at
|l R N Fs=16 kHz)
0 500 1000 1500 2000
time in samples (72)
- W[400 —m]  Za/0.54  ®[1200 — m] F/0.026
- —_——-— N - _"\
~ "

Hamming window

., with duration

- L=401 samples
ol W TN 7 (25 msec at
I kA AN Fs=16 kHz)
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ZC Rate Distributions

UNVOICED
* Unvoiced Speech: the
dominant energy
component is at about
2.5 kHz
VOICED * Voiced Speech: the
JKHz 4KHz .
: dominant energy
component is at about
: lg | 700 Hz
0 10 20 30 40 50 60 70 80

NUMBER OF ZERO CROSSINGS PER 10 msec INTERVAL

Fig. 4.11 Distribution of zero-crossings for unvoiced and voiced speech.

* for voiced speech, energy is mainly below 1.5 kHz

* for unvoiced speech, energy is mainly above 1.5 kHz

* mean ZC rate for unvoiced speech is 49 per 10 msec interval
 mean ZC rate for voiced speech is 14 per 10 msec interval .



Short-Time Energy, Magnitude, ZC
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Issues in ZC Rate Computation

* for zero crossing rate to be accurate, need zero DC in
signal => need to remove offsets, hum, noise => use
bandpass filter to eliminate DC and hum

e can gquantize the signal to 1-bit for computation of ZC
rate

e can apply the concept of ZC rate to bandpass filtered
speech to give a ‘crude’ spectral estimate in narrow
bands of speech (kind of gives an estimate of the
strongest frequency in each narrow band of speech)



Summary of Simple Time Domain
Measures

151(??) h-l Linear | :'f(??) T(.T[H]) >

win]

' Filter ! " 11 ]

E,= > X[m]W[A—-m]
2. Magnitide o
M, = Z X[m]| Wl —m]

3. Zero Crossing Rate
Z,=2,=5r 2. lsan(xlm)-sgn(x{m—1)w(3 - m
where sgn(x[m]) =”1]=_mx[m] =0
=—1 x[m] <0

oo



Short-Time Autocorrelation

for a deterministic signal, the autocorrelation function is

Olkl= > x[m]x[m+ K]

m=—w

for a random or periodic signal, the autocorrelation function is:

L

> x[m]x[m + K]

®[k] =lim |
—= (2L +1) 4~

If x[n]=x[n+P], then Dk]= D[k+P] => the autocorrelation
function preserves periodicity

Property of @[k]

— @lk] is even, D[k] = D[-k]

— @lk] is maximum atk=0

— @[0] is the signal energy or power (for random signal)



Periodic Signals

* for a periodic signal we have @Q[P]=®[0] so the
period of a periodic signal can be estimated as
the first non-zero maximum of @/[k]

— this means that the autocorrelation function is a

good candidate for speech FO detection
algorithms

— it also means that we need a good way of

measuring the short-time autocorrelation function
for speech signals



Short-Time Autocorrelation

* areasonable definition for the short-time autocorrelation is:
Ri[kl1= > x[m]w[n-m]x{m+k]w[n -k —m]

1. select a segment of speech by windowing
2. compute deterministic autocorrelation of the windowed speech
R.[k]=R.[-k] - symmetry

= Z x[m]x{m — k][ w[n — mWw[n + k —m]]

e define filter of the form
w, [A] = W[A] W[A + K]

e this enables us to write the short-time autocorrelation in the form:
R.[k]= i x[m] x[m — k]w, [A —m]

x[n] i C

Analvysis | :
e R”Ml

Window |———

wyln]

Delay by
k Samples | x[n—k)|




Short-Time Autocorrelation

N.L‘[;ﬂ] W lﬁ' _ ,”.!,_] (a}
rm \ FVVL"\. AL J'A“VJL PA A | [jlllllﬂvﬂh\_ P oree, l , I”ﬂu,ﬂ“ L _an : }
f | m

Uh n ‘JJ l'JN i+ L —\/{ \'ﬂ{

z[n + mjw'[m] ®)

_('\ WLWSUEW !."\nl A s JJI\'A A m iy

V W% T m
0 \J\} l'IN L—1
AT [+ m + kJw'[m + k] ©)
A\ JALS, : If'.'v.i HJJFL PA s ,"’\AVJL“’M L -
T N T T m
—k 0 UN \UNI L-1—-k L-1

— L points used to compute R, [0];
— L -k points used to compute R[],
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Examples of Autocorrelations
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g. 4.24 Autocorrelation function for {a) and (b) voiced speech; and (c)

unvoiced speech, using a rectangular window with & = 401,

autocorrelation peaks occur at k=72, 144, ... => 140 Hz pitch
@(P)<®(0) since windowed speech is not perfectly periodic
over a 401 sample window (40 msec of signal), pitch period
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Fig. 4.25 Autocorrelation functions for (a) and (b) voiced speech; and
(c) unvoiced speech, using a Hamming window with ¥ = 401,

Fs = 10kHz

changes occur, so P is not perfectly defined

* much less clear estimates of periodicity since
HW tapers signal so strongly, making it look
like a non-periodic signal

* no strong peak for unvoiced speech



Voiced (female) L=401 (magnitude)
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Voiced (female) =401 (log mag)
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Voiced (male) L=401
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Effects of Window Size

O - e choice of L, window duration
S\ e — small L so pitch period

———
—_—
—

N ) /\ NN [\ n . nNA almost constant in window
— large L so clear periodicity

seen in window

— as k increases, the number
of window points decrease,
reducing the accuracy and
size of R, (k) for large k =>
have a taper of the type
R(k)=1-k/L, [k|<L shaping of
autocorrelation (this is the
autocorrelation of size L
rectangular window)

e allow L to vary with detected
pitch periods (so that at least
2 full periods are included)

_1.0I-III-|IIIIJ.lJ.Ii|.IIII|.llI_1_
Q 50 100 150 200 250

LAG k

L=401, 251, 125 60




Modified Autocorrelation

want to solve problem of differing number of samples for each different k,
so modify definition as follows:

R, [k] = i x[mlw,[A — m]x[m + k]w,[n —m — k]

m=—x

- where w, is standard L-point window, and w, is extended window

of duration L + K samples, where K is the largest lag of interest
- we can rewrite modified autocorrelation as:

ﬁﬁ[k] = i x[A+m]w [m]x[A + m + k]w,[m + k]

m=—x

- where
w,[m]=w,[-m] and W, [m]=w,[-m]
- for rectangular windows we choose the following:
w,[m]=1 0<m=<L-1
w,[m]=1 0<m<L-1+K
-giving
L-1

Ri[kl=Y xlAi+m]xli+m+k], 0=k <K

m=0

- always use L samples in computation of En‘_;?[k] vk -



Examples of Modified Autocorrelation

a[m] w1 [ — m)| (a)
_________ |
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k ol V L-1 L-1+K—Fk

- ﬁ;‘n [k] is a cross-correlation, not an auto-correlation

- R, [K]= R, []

- ﬁ:‘n [k] will have a strong peak at k = P for periodic signals
and will not fall off for large k
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Examples of Modified AC

Original AC Modified AC
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Fig. 4.24 Autocorrelaiion function for {a) and (b) voiced speech; and (c)

. ; , : Modified Autocorrelations —
unvoiced speech, using a rectangular window with N = 401,
fixed value of L=401



Examples of Modified AC
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Short-Time AMDF

belief that for periodic signals of period P, the difference function
d[n] = x[n]— x[n — k]

will be approximately zero for k = 0, =P, £ 2P, ... For realistic speech
signals, d[n] will be small at k=P — but not zero. Based on this
reasoning, the short-time Average Magnitude Difference Function
(AMDF) is defined as:

v:lkl1= > | x{n+m]w,[m] - x[n +m—klw,[m k]|
with w [m] and w,[m] are both rectangular windows
— If both are the same length, similar to the short-time autocorrelation

— If w2 islonger than wl, similar to the modified short-time
autocorrelation (or cross-correlation) function.

In fact it can be shown that
- - ~ 1/2
71K~ V2 BIK]| R, [01- R, k]|

where flk] varies between 0.6 and 1.0 for different segments of speech.



AMDEF for Speech Segments
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Summary

* Short-time parameters in the time domain:
— short-time energy
— short-time magnitude

— short-time zero crossing rate

— short-time autocorrelation
— modified short-time autocorrelation
— Short-time average magnitude difference function
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