Chapter 8

The Cepstrum and Homomorphic Speech
Processing
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General Discrete-Time Model of
Speech Production
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Basic Speech Model

* short segment of speech can be modeled as having been
generated by exciting an LTI system either by a quasi-periodic
impulse train, or a random noise signal

* speech analysis => estimate parameters of the speech model
e speech = excitation * system response

—> want to deconvolve speech into excitation and system

—> do this using homomorphic filtering methods



Superposition Principle

+ +
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xi[n]+ x;[n] L{xi[n]}+ L{xo[n]}

* homomorphic ([F]Z) system for addition
* asystem obeying the superposition principle for addition

x[n] = ax,[n]+ bx,[n]
yln] = L{x[n]} = aL{x,[n]} + bL{x, [n]}

 Decomposition can be achieved if

Lixnl}=0  Lixa[n]j=x2[n]



Generalized Superposition Principle for
Convolution

x| 7] 1 { } yln|= {‘f[ }“
xq|n]* x7|n] H{rl[n]}* H {x>[n]}

e for LTI systems we have the result

")

y[n]=x[n]*hln]= > X[KIh[n K]
P

» "generalized" superposition => addition replaced by convolution
x[n] = x,[n]* x,[n]
y[n] = H {x[n]} = H {x,[n]} = H {x,[n]}

* homomorphic system for convolution



Homomorphic Filter

 homomorphic filter => homomorphic system [J’L[] that
passes the desired signal unaltered, while removing the
undesired signal

x(n) = x,[n]* x,[n] - with x,[n] the "undesired" signal
H XN = H {x,[n]} = I {x, [n]}

H{x,[n]} - S(n) - removal of x,[n]

H {x,[n]} = x,[n]

HA{x[n]}y = 5[N] * x,[n] = X, [n]



Canonic Form for Homomorphic

Deconvolution
1+ L .
> D}: B 1 —— ), | >
x[ 7] 3 } x|n] L } y|n| D. } yn|
x,[n]*x,[n] X [n]+x,[n] v,[n]+ v,[n] v, [1n]* v,[n]

* any homomorphic system can be represented as a cascade of
systems, e.g., convolution

1. system takes inputs combined by convolution and
transforms them into additive outputs

system is a conventional linear system

3. inverse of first system--takes additive inputs and
transforms them into convolutional outputs



Canonic Form for Homomorphic

Deconvolution
% + + + + | *
» D}: | —— L | SR —1y >
x[ 7] {' } x|n] { } y|n| D. } yn|
x,[n]*x,[n] x,[n]+x,[n] v,[n]+ v,[n] v, [n]*v,[n]
x[n] = x,[n]* x,[n] - convolutional relation
x[n] = D.Ax[n]} = x,[n]+ x,[n] - additive relation

y[nl = L{X,[n+ Xx,[n]} = y,[n]+ ¥,[n] - conventional linear system
y[n] = D;l{ﬁl [n]+ y,[n]} = y,[n]*y,[n] -inverse of convolutional relation

= design converted back to linear system, /£
D,| | -fixed (called the characteristic system for homomorphic deconvolution)

[FI ARG HIRFIE R St

y—1 . . I . .
D. [ ] - fixed (inverse characteristic system for homomorphic deconvolution)



Properties of Characteristic Systems

x[n] =D, {x[n]} = D.{x,[n]* x,[n]}
=D {x[n]} + D.{x,[n]}

= X,[n] + X, [n]

D Hy[nly = D, H{y,[n]+ y,[nl}

=D {y,[n]} =Dy, [n]}
= y,[n]*y,[n]=yln]



Discrete-Time Fourier Transform
Representations



Characteristic System for
Deconvolution Using DTFTs

-------------------------------------------------------------------------------

X(e’”)=log| X(e") | =log|X(e’)|+ jarg| X(e)]

X[n] = 1 J X(e'”)e’dw
2r
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Inverse Characteristic System for
Deconvolution Using DTFTs

D )
S T s ok
+ T+ e o
TR FUy = expl } — F ) —
- Y({”;m) Y(e ,.'U) y[n]

V(€)=Y ylnle”"

N=—aoc

Y(el”) = exp[?(e”)}

y[n] = : J‘Y(ef“")eﬁ””dm
Fr-—ﬁ

2
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Issues with Logarithms

it is essential that the logarithm obey the equation
log| X,(67°)- X,(e/°) | = log| X,(e/*) | +log| X,(e/*)]

this is trivial if Xl(ef”) and X:(ef"’*‘) are real, however usually
they are complex

on the unit circle the complex log can be written in the form:
X(e") - X(e/”) |’ ")
log| X(e/°) | = X(e/°) = log| | X(e/*) ||+ jarg| X(e/°)]
no problems with log magnitude term; uniqueness problems
arise in defining the imaginary part of the log; can show that

the imaginary part (the phase angle of z-transform) needs to
be a continuous odd function of w



Problems with arg Function

ARG[X(e/®)]

N )

\ S

arg[)((ef“’) ]

+ ARG X, (")}
arg{X(ef‘“ )} = arg{}(l(ef” )}
+arg{X3(e”” )}

ARG|{X(e"”)} # ARG{X,(e")|
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Complex and Real Cepstrum

define the inverse Fourier transform of )?(ef""’) as

n 1 -
x[n] = )e!" dew
2T

where X[n] called the “complex cepstrum” since a complex logarithm is
involved in the computation

can also define a “real cepstrum” using just the real part of the logarithm,
giving

1
cln| =
[] 2T

j Re[)"((ef@ )] e de

Y€/ de

can show that c[n] is the even part of X[N]



Complex Cepstrum Properties

Given a complex logarithm that satisfies the phase continuity condition,
we have:

x[n] = 2L | (log| X (e’®) | +jarg{X(’*)}) e’ dw
T

If x[n] is real, then log|X(e’®)| is an even function of @ and arg{X(¢’“)} is
an odd function of w. This means that the real and imaginary parts of the
complex log have the appropriate symmetry for x{] to be a real sequence,
and x[7] can be represented as:

x[n] = c[n]+d[n]

where c[n] is the inverse DTFT of Iog|X(;«:~"”)| and the even part of x{n],
and d[n] is the inverse DTFT of arg{X(¢’”)} and the odd part of x[»] :

dn]= .*E[H]—F?.‘?[_H] ; dn] = .f[n]—;[—;;]




Terminology

Spectrum — Fourier transform of signal

Cepstrum —inverse Fourier transform of log spectrum
Analysis — determining the spectrum of a signal
Alanysis — determining the cepstrum of a signal
Filtering — linear operation on time signal

Liftering — linear operation on cepstrum

Frequency — independent variable of spectrum
Quefrency — independent variable of cepstrum
Harmonic — integer multiple of fundamental frequency
Rahmonic — integer multiple of fundamental quefrency
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z-Transform Representation

* The z-transform of the signal:
x[n]=x[n]*x,[n]
is of the form
X(2)=X,(2)-X,(2)
* With an appropriate definition of the complex log, we get
X(z) =log{X(2)} =log{X,(2)- X, (2)}
=log{X,(2)} +log{X,(2)}

= X,(2)+ X,(2)



Characteristic System for

Deconvolution
DAy
* ¢ o + + +
— - ] — — 1 : >
x[n] <l ) X(z) ost |} X(2) e - X|n]
xy[n]sx5[n] X (7] +,f2 |n]

X(z)= i x[n]z™" = | X( z)|ef'arg{X(z>}

X(z)= log[ X(z)] =log|X(z)|+ jarg[ X(z)]
KIn] = ﬁq:f X(2)2"dz
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Inverse Characteristic System for

Deconvolution
___________________________________ Dl Y
T + o+ ¢ o
— > Z{ } —— — 2!
‘»[fﬂg ] Y(z) et ) Y(z) i y[n]
y[n]# 5 Z[HJ ----------------------------------------------------------- yln ]y, (n]

Y(z)= exp[‘?(z)] =log|Y(z)[+ jarg[Y(2)]

y[n] = L_o Y(z)z"dz
27
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z-Transform Cepstrum Alanysis

consider digital systems with rational z-transforms of the general type
M,

) AH(I—ak ]H 1—@;12‘1]

N,

[1(1-az")
- L\ _
with all coefficients a,, b,, ¢, <1 =>all ¢, poles and a, zeros are inside the

unit circle; all b, zeros are outside the unit circle

X(z) =

we can express the above equation as:




z-Transform Cepstrum Alanysis

the complex logarithm of X(z) is
M,

X(z)=log[ X(z)]=log| A +> log| by |+log[z™"]+
k=1

M, , M, N, f
D log(1-a,z™" )+ > log(1-b,z)-> log(l1-c,z" )
k=1 k=1 k=1

evaluating X(z) on the unit circle we can ignore the term
related to |og[efﬂ‘MDJ (as this contributes only to the
imaginary part and is a linear phase shift)



z-Transform Cepstrum Alanysis

we can then evaluate the remaining terms, use power series
expansion for logarithmic terms (and take the inverse
transform to give the complex cepstrum) giving:

v : jon : o Z’F’*‘
(n) je’ do log(1-Z)=-> 2, |Z|<1
—n
Mr n=l1
_Iog|A|+ZIog|bk | n=0
IM.' n M.l n
:ZC_" G n>0
= o n
M, ,-n
= bk n<o

==
L
3



Cepstrum Properties

complex cepstrum is non-zero and of infinite extent for both positive and
negative n, even though x[n] may be causal, or even of finite duration
(X(z) has only zeros).

complex cepstrum is a decaying sequence that is bounded by:

H

(4

for |n|—>

| x[n]|< B

n|
zero-frequency value of complex cepstrum (and the cepstrum) depends
on the gain constant and the zeros outside the unit circle. Setting x[0]=0
(and therefore c[0] = 0) is equivalent to normalizing the log magnitude
spectrum to a gain constant of Mo

AT (57 =1
k=1
If X(z) has no zeros outside the unit circle, then
x[n]=0, n<0 (minimum-phase signals)
If X(z) has no poles and zeros inside the unit circle, then
x[n]=0, n>=0 (maximum-phase sighals)



z-Transform Cepstrum Alanysis

 The main z-transform formula for cepstrum alanysis is based

on the power series expansions
o n+l
(_]‘) n

log(1+x)=>" - X x| <1
n=l1

 Examples 1: Apply this formula to the exponential sequence
|
1-az™

x,(n)=a"u(n) < X,(z)=

i

X, (z)=log[X,(z)] =-log(l-az™") = _i (_2

JErl("".") — a—”u(n — 1) N ;(1(2) = —|Og(1 —82_1) — i[an}n

n n=1

—n

(_a).ﬂz




z-Transform Cepstrum Alanysis

 Example 2: consider the case of a digital system with a single

zero outside the unit circle (| b|<1)

X,(n)=0o(n)+bo(n+1)
X,(z)=1+bz (zeroatz=-1/b)
X,(z)=log[X,(2)] =log(1+b2)

_ Z (_l) ) {b)n "
n=1 n

%.(n) =—— (—1);%-;(_” 1)




z-Transform Cepstrum Alanysis

* Example 3: an input sequence of two pulses of the form
Xj(n):ﬁ(ﬂ)—l-a’(S(ﬂ—Np) (0<a<)

Xi(z)=1+az "

X;(Z) = |OQ[X3(Z)] = Iog(l + {IZ_N”)

n —HN'D

:i(_ln o Z

o k

%5(n) =" (1) “? 5(n—kN,)
k=1

the cepstrum is an impulse train with impulses spaced at N,
samples

| N 2N 3N

P p



Cepstrum for Train of Impulses

* animportant special case is a train of impulses of the form:

M
x(n)= ) a,6(n—rN,)

r=0

& N
X(2)=> a,z""

r=0

e clearly X(z) is a polynomial in z " rather than z* ; thus X(2)
can be expressed as a product of factors of the form (1 _az % )
and (1- bz""*) , giving a complex cepstrum,x(n) , that is non-
zero only at integer multiples of N,



z-Transform Cepstrum Alanysis

Example 4: consider the convolution of sequence 1 and 3, i.e.,
X,(n) = x,(n)*x,(n) =] a"u(n) |*| 5(n)+as(n—N,)]

=a'u(n)+aa” "u(n-N,)

The complex cepstrum is therefore the sum of the complex
cepstra of the two sequences (since convolution in the time
domain is converted to addition in the cepstral domain)

Fa M FL

X4(”) — Xl(n)+ Xa(n)

_ a_”u(n ~1)+ i ()7

n k=1

5(n—kN.)



z-Transform Cepstrum Alanysis

Example 5: consider the convolution of sequence 1,2, and 3
X.(n)=x,(n)*x,(n)*x,(n)
— [a”u(n)]=e=[5(n)+bﬁ(nﬂ)]*[ﬁ(n)ma(n —Np)]

" n-nN, n . ) n—Ny+1
=au(n)+aa *u(n-N,)+bau(n+1)+aba uin—-N, +1)

The complex cepstrum is therefore the sum of the complex
cepstra of the three sequences

X.(n)= X,(n)+ X,(n)+ X,(n)
x _1)n+1b—n

a.’? | (_1)k+16{k ) ( |
=—u(n-1)+ y(h— kN ) — u(-n-1
- (n-1) ; P o( ») - ( )

M M




Input signal waveform

Example: a=.9, b=.8, alpha=.7, Np=15

2

<52 —
(1-az )\ -

1 ...................

-50 0 50

100

Complex cepstrum

k+ K

(_]é)n+1b—n

n ﬁ"hfn-..,.

1‘ 7
- d

k=1

Z(_”k “ 5ln—kN.]

-50

0 N

sample index n

50 100
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Homomorphic Analysis of Speech Model
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Homomorphic Analysis of Speech
Model

the transfer function for voiced speech is of the form
Hy (z) = A, -G(z)V(2)R(2)

with effective impulse response for voiced speech
hy[n] = Ay -gln]*v[n]*r[n]

similarly for unvoiced speech we have
H,(z)=A, V(z)R(z)

with effective impulse response for unvoiced speech
h,[n]= A, -v[n]*r[n]



Complex Cepstrum for Speech

the models for the speech components are as follows:

N i | fc,

AzMTTa-az ) T -b2)

1. vocal tract V(z)= k=1 k=1

N,

H(l—ckz_l)

k=1
for voiced speech, only poles => a,=b,=0, all k

unvoiced speech and nasals, need pole-zero model
all poles are inside the unit circle =>¢, <1
all speech has complex poles and zeros that occur in complex conjugate pairs

radiation model: R(2)~1-2"" (high frequency emphasis)

glottal pulse model finite duratlon pulse with transform

BH -0,z H(l—ﬁkz)
k=1

with zeros both inside and outside the unit circle



Complex Cepstrum for Voiced
Speech

 combination of vocal tract, glottal pulse and radiation will be

non-minimum phase => complex cepstrum exists for all values
of n

* the complex cepstrum will decay rapidly for large n (due to
polynomial terms in expansion of complex cepstrum)

» effect of the voiced source is a periodic pulse train for
multiples of the pitch period



Simplified Speech Model

* short-time speech model

x{n] = w[n]-[pln] * g[n] *vin] = r{n]]
~ p, [n]h, [n]

* short-time complex cepstrum

x[n]=p,[n]+gln]+v[n]+r[n]



Analysis of Model for Voiced Speech

e Assume sustained /AE/ vowel with fundamental frequency of 125 Hz
e Use glottal pulse model of the form:

(0.5 [1—cos(m(n+1)/ N,)] 0<n<N,-1
g[n]=4cos(0.57(n+1-N,)/N,) N,<n<N,+N,-2
‘ 0 otherwise

N, =25, N, =10 = 34 sample impulse response, with transform

G(z) = :‘331;[(—5;1)1;[(1—5#:) — all roots outside unit circle = maximum phase

k=l k=l
* Vocal tract system specified by 5 formants (frequencies and bandwidths)
1

V(z)=— - -
[[(—2e7 cos2aFT)="" +e ™ =)
=1

(F,.0,} =[(660.60).(1720.100).(2410.120).(3500.175). (4500, 250)]

* Radiation load is simple first difference

R(z)=1-yz"". y=0.96
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Time Domain Analysis

(a) Glottal Pulse

—

time nT in ms

(c) Radiation Load
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(b) Vocal Tract Impulse Response
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Z 06}
=%
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1:] - "
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Spectral Analysis of Model

(a) Glottal Pulse Spectrum

(b) Vocal Tract Frequency Response

2
ot
E 1t p—
n n
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(c) Radiation Load Frequency Response (d) Voiced Excitation Spectrum
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frequency in Hz frequency in Hz



Speech Model Output

(a) Synthetic Speech Waveform

ol

_0.1 | —
=015 -
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r[n]

Cepstral Analysis of Model

(a) Glottal Pulse Complex Cepstrum

i

0
quefrency nT in ms

(c) Radiation Load Complex Cepstrum

.

0
quefrency nT in ms

v [n]

pln]

(b) Vocal Tract Complex Cepstrum
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0 5
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(d) Voiced Excitation Complex Cepstrum
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Resulting Complex and Real Cepstra

(a) Complex Cepstrum of Synthetic Speech

? | I 1 I I I I I B
1+ _
E- 0 i Feoragme
‘\'.I'}
_-1 - -
-2 I L 1 I I 1 I 1 a
-25 -20 -15 =10 =5 0 5 10 15 20 25
quefrency nT in ms
(b) Cepstrum of Synthetic Speech
T | | T T | I
| | '
ol [ e 2
— =05} .
|
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| | 1 | | | |
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Computing Short-Time Cepstrums from Speech
Using DFT Implementation



The Complex Cepstrum-DFT
Implementation

Dol )
-
| ’ | &
xnl] DET X[k} Complex | X[k] ET | x|n]
| Log :
\ - T ____ - g

* XIk] isthe N point DFT corresponding to X(e’®)
X[k] = X(e’*™N) = Iog{X[k]} = log| X[k] + jarg{ X[k]}

N-1 =7 en ©
4 ZX[k]e S fn+mN] n=01...N-1

f=—0o

« x[n] isan allased version of X[n]
—> use as large a value of N as possible to minimize aliasing i



Inverse System- DFT Implementation

| " |
yln] Y[k] Complex Y[k] L y[n]
Exp
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The Cepstrum-D_f]T Implementation
C

x[n] | X[k] Log log |X[k]| | ¢[n]

| Magnitude |

cln] =

1 i ) )
[log| X(e") e d —»<n<=
2?? —T

* Approximation to cepstrum using DFT:

2x

XK1= X" )= xinle ¥ k=01..N-1

N-1 _
&[n] = %me X[K]|&  0<n<N-1
k=0

&n=Y cln+mN]  n=01..,N-1

f=—
. c[n] is an aliased version ofc[n] => use as large a value of N as possible
to minimize aliasing

&(n) = x[n] +2x[—n]
47




Cepstral Computation Aliasing

N=256, N =75,

a=0.8
1 (a) Aliased Complex Cepstrum of 8[n]+0.8 8[n-75]
® Circle dots are
05+ 1 cepstrum values in
. correct locations;
““"".""—"“—T—"—i—- all other dots are
> results of aliasing
== 44 75 119 150 194 225 256 due to finite range

quefrency n

computations
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Voiced Speech Example

x 10
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E. Hamming window
< 40 msec duration
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Voiced Speech Example
f

]

wrapped phase

Phase (Radians)
Lo

0 100 2000 3000 4000 5000 6000 7000 8000

Frequency (Hz)
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phase

] 1 1 | 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz)



Value

Value

Voiced Speech Example

Complex Cepstrum‘
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Quefrency (Samples)

o
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-0.2r

Cepstrum (

=200

=180

=100
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Computing Short-Time Cepstrums from Speech
Using Polynomial Roots



Complex Cepstrum Without Phase
Unwrapping

short-time analysis uses finite- Iength windowed segments, x[n]

X(z )—Zr[::]_ ' M"-order polynomial
Find polynomial roots n=0

X (z)=x[0] H(l—n_-‘l)n(l bz

m=1
a,, roots are inside unit circle (m|n|mum -phase part)
b,, roots are outside unit circle (maximum-phase part)
Factor out terms of form -5, =~ glvmg

X(2)= 4:”]_[(1—(; z )]‘[(1—3; z

m=1

A =x[0](—1)* H -

m=1

Use polynomial root finders to find the zeros that lie inside and outside
the unit circle and solve directly for x[#]



Cepstrum From Polynomial Roots

Speech Segment with Hamming Window
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Cepstrum From Polynomial Roots

(a) Complex Cepstrum Using Polynomial Roots

— 150 — 100 —50 0 30 100 150
Quefrency (Samples)
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Cepstrum for Minimum/Maximum Phase Signals



Cepstrum for Minimum Phase Signals

for minimum phase signals (no poles or zeros outside unit circle) the
complex cepstrum can be completely represented by the log of the
magnitude of the signal FT (real part of the cepstrum FT)

since the real part of the FT is the FT of the even part of the sequence
n)+ x(-n) |
- |

Re| X(e'® }} _ FTV{

FT[c(n)] = |og‘,>((efﬂ’}

x(n)+ x(—n)

-

c(n) =

x[n]=0, n<0 (minimum-phase signals)

giving %(n)=0

thus the complex cepstrum (for minimum phase signals) can be computed
by the real cepstrum and using the equation above



Recursive Relation for Complex
Cepstrum for Minimum Phase Signals

* the complex cepstrum for minimum phase signals can be
computed recursively from the input signal, x(n) using the
relation

X(n)=0 n<o
= log| x(0) | n=0
_M_n_l(ﬁ]i(k)x(”_k) n>0

X(0) n X(0)



Recursive Relation for Complex
Cepstrum for Minimum Phase Signals

xX(n) «—— X(2) 1. basic z-transform

nx(n) «—— -2 d);f) =-zX'(2) 2. scale by n rule

X(n) «—— X(z)= log| X(z)] 3. definition of complex cepstrum

dX(2) _d log[ X (2)]] = X'(2) 4. differentiation of z-transform
dz dz X(2)

4 d)?(z) X(z)=-zX"(2) 5. multiply both sides of equation




Recursive Relation for Complex

Cepstrum for Minimum Phase Signals

dX(z)
dz

nx(n)*x(n) «—— -z X(z)=-zX'(z) «— nx(n)

oo

nx(n)= ) X(k)x(n—k)(k)

k=—e

- for minimum phase systems we have x(n) = 0for n <0,
x(n)=0for n <0, giving:

Zx nk—‘

. separating out the term for k = n we get:

n-1

x(n}:Zx(k) (n—k) k]

Kn,f

‘+x 0)x(n)

. _&_ R
x(n)= (0 Zx(k)
og| x(

3
7
X
3
|
>

)
x(0



Cepstrum for Maximum Phase Signals

* for maximum phase signals (no poles or zeros inside unit circle)

giving R

e thus the complex cepstrum (for maximum phase signals) can
be computed by computing the cepstrum and using the
equation above



Recursive Relation for Complex
Cepstrum for Maximum Phase Signals

* the complex cepstrum for maximum phase signals can be
computed recursively from the input signal, x(n) using the
relation

x(n)=0 n >0
= log| x(0) | n=0
X) (K)o XK
" X(0) HZ[,,,\ e T



Review of Cepstral Calculation

* 3 potential methods for computing cepstral
coefficients, x[n], of sequence x[n]

— DFT implementation; using windows, with phase
unwrapping (for complex cepstra)

— analytical method; assuming X{(z) is a rational function;

find poles and zeros and expand using log power
series

— recursion method; assuming X(z) is either a minimum
phase (all poles and zeros inside unit circle) or

maximum phase (all poles and zeros outside unit
circle) sequence



Homomorphic Filtering



Homomorphic System for Convolution

e still need to define (and design) the L operator
part (the linear system component) of the
system to completely define the
homomorphic convolution system for speech
— to do this properly and correctly, need to look at

the properties of the complex cepstrum for
speech signals



Complex Cepstrum of Speech

* model of speech

— voiced speech produced by a quasi-periodic pulse
train exciting slowly time-varying linear system =>
p[n] convolved with h [n]

— unvoiced speech produced by random noise
exciting slowly time-varying linear system => u[n]
convolved with h [n]



Homomorphic Filtering of Voiced
Speech

goal is to separate out the excitation
impulses from the remaining
components of the complex
cepstrum

use cepstral window, /(n), to
separate excitation pulses from
combined vocal tract

— I(n)=1for [n|<n,<N,

— I(n)=0for |n|2n,

— this window removes excitation pulses

— I(n)=0for [n|<n,<N,

— I(n)=1 for |n|2n,

— this window removes combined vocal

tract

the filtered signal is processed by the
inverse characteristic system to
recover the combined vocal tract
component

s[n]

Fa

win|

x|n|

DIl ]

vin]

x[ 1] % yin]

I n]

y(n)=((n)-x(n)

Y(e/?) = L j X(e?)\L(e!"“?)de
2 i



Voiced Speech Example
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Amplitude

Voiced Speech Example
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Voiced Speech Example
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Amplitude

Voiced Speech Example
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Amplitude

Unvoiced Speech Example

Hamming window
40 msec duration
(section beginning
at sample 3200 in
file test_16k.wav)
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Phase (Radians)

Phase (Radians)
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Unvoiced Speech Example
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Value

Unvoiced Speech Example

Complex Cepstrum
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Log Magnitude
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Unvoiced Speech Example
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Amplitude

Unvoiced Speech Example
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‘STFT

Short-Time Homomorphic Analysis

Inverse
Digcrete Discrete
Fourier B, log 1 I ¢ E&E;ge D, | Fourier  f—=—r
transform transform transform
Cepstrum
window
ANALY%I& FOR VOICED SPEECH _
input speech sagment ‘Cepstrum Spectra
(normalized and weighted
by o Homming window) (log mognitude, in dB)
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Homomorphic Spectrum Smoothing

4 I | | I [ [ I
: : : — Short-time spectrum
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Running Cepstrum



Running Cepstrum

Section of Speech Wave and Window for Short-time Cepstrum Analysis
1

0.5

0 50 100 150 200 250
time n’’ (in msec)
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Running Cepstrum

{a) Short-Time Log Spectra
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Cepstrum Applications



Cepstrum Distance Measures

The cepstrum forms a natural basis for comparing patterns in speech
recognition or vector quantization because of its stable mathematical
characterization for speech signals

A typical "cepstral distance measure" is of the form:
D=> (n-cln]y’
n=1

where ¢[n] and ¢[n] are cepstral sequences corresponding to frames of
signal, and D is the cepstral distance between the pair of sequences.

Using Parseval's theorem, we can express the cepstral distance in the
frequency domain as

D=—[" (log| H(e)|~log| () Fde
T ¥ =T

Thus we see that the cepstral distance is actually a log magnitude spectral
distance



Mel Frequency Cepstral Coefficients

Basic idea is to compute a frequency analysis based on a filter bank with
approximately critical band spacing of the filters and bandwidths. For 4
kHz bandwidth, approximately 24 filters are used.

First perform a short-time Fourier analysis, giving X [k], k=0,1,..., N//2,
where m is the frame number and k is the frequency index (1 to half the
size of the FFT)

Next the DFT values are grouped together in critical bands and weighted
by triangular weighting functions.

0.01f

ilsoooc

0 500 1000 1500 2000 2500 3000 3500 4000 84
frequency in Hz




Mel Frequency Cepstral Coefficients

The mel-spectrum of the m-th frame for the r-th filter (r = 1,2,...,R) is
defined as:

Z VKX, [K][

where V [K] is the weighting function for the r-th filter, ranging from DFT
index L, to U,, and

4= Y| VIKIP
k=L,

is the normalizing factor for the r-th mel-filter.

A discrete cosine transform of the log magnitude of the filter outputs is
computed to form the function mfcc[n] as

mfce

mfce, [n] = -3 log(MF, [r]) cos| 22|
m R o = R

W

'n—l._ n=12_.._N
|

Typically N,_. =13 and R =24 for 4kHz bandwidth speech signals.

mfcc



Delta Cepstrum

The set of mel frequency cepstral coefficients provide perceptually
meaningful and smooth estimates of speech spectra, over time

Since speech is inherently a dynamic signal, it is reasonable to seek a
representation that includes some aspect of the dynamic nature of the
time derivatives (both first and second order derivatives) of the short-
term cepstrum

The resulting parameter sets are called the delta cepstrum (first derivative)
and the delta-delta cepstrum (second derivative). The simplest method of
computing delta cepstrum parameters is a first difference of cepstral
vectors, of the form:  Amfec,[n]=mfcc,,[n]-mfcc, 1]

The simple difference is a poor approximation to the first derivative and is

not generally used. Instead a least-squares approximation to the local

slope (over a region around the current sample) is used, and is of the form:
173

i k(mfec, [1])
Amfee,, [n] == —
> K’

k=—M

where the region is M frames before and after the current frame



Homomorphic Vocoder

time-dependent complex cepstrum retains all the information
of the time-dependent Fourier transform => exact
representation of speech

time dependent real cepstrum loses phase information -> not
an exact representation of speech

guantization of cepstral parameters also loses information

cepstrum gives good estimates of pitch, voicing, formants =>
can build homomorphic vocoder



Homomorphic Vocoder

compute cepstrum every 10-20 msec
estimate pitch period and voiced/unvoiced decision
guantize and encode low-time cepstral values

at synthesizer-get approximation to h (n) or h (n) from low
time quantized cepstral values

convolve h (n) or h (n) with excitation created from pitch,
voiced/unvoiced, and amplitude information



Homomorphic Vocoder

wln| [|n]
DFT o9 L IDFT Quantizer f—»
g [r?] Magnitude !
x|[n] c,[n did
L Pitch and
) Voicing |——p
( Estimator | Excitation
Parameters
—— DFT EXP |—{ IDFT
h|n| l
— | Excitation s| Discrete >
Excitation Generator Convolution | Synthetic
Parameters Speech

(b)

* /[(n) is cepstrum window that selects low-time
values and is of length 26 samples
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Summary

Introduced the concept of the cepstrum of a signal, defined as
the inverse Fourier transform of the log of the signal spectrum

Mnl=F"{log X(e’) ]|

Showed cepstrum reflected properties of both the excitation
(high quefrency) and the vocal tract (low quefrency)

— low quefrency window filters out excitation; high
quefrency window filters out vocal tract

Mel-scale cepstral coefficients used as feature set for speech
recognition

Delta and delta-delta cepstral coefficients used as indicators
of spectral change over time
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