Chapter 9

Linear Predictive Analysis of
Speech Signals
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LPC Methods

* LPC methods are the most widely used in speech
coding, speech synthesis, speech recognition,
speaker recognition and verification and for

speech storage
— LPC methods provide extremely accurate estimates of
speech parameters, and does it extremely efficiently
— basic idea of Linear Prediction: current speech sample
can be closely approximated as a linear combination
of past samples, i.e.,

p
s(n) = Z a, S(n—k) for some value of p,a,'s
k=1




Speech Production Model

p
s(n) = Z.aks(n —K)+Gu(n)
k=1
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* the time-varying digital filter

represents the effects of the
glottal pulse shape, the vocal
tract IR, and radiation at the lips

e the system is excited by an

impulse train for voiced speech,
or a random noise sequence for
unvoiced speech

* this ‘all-pole’ model is a natural

representation for non-nasal
voiced speech—but it also works
reasonably well for nasals and
unvoiced sounds



LPC Methods

* for periodic signals with N, period , it is obvious that

s(n)=s(n—- N,)

but that is not what LP is doing; it is estimating s(n) from the p
(p<< N,) most recent values of s(n) by linearly predicting its
value

« for LP, the predictor coefficients (the ¢,'s) are determined
(computed) by minimizing the sum of squared differences
(over a finite interval) between the actual speech samples and
the linearly predicted ones



Linear Prediction Model

* ap-th order linear predictor is a system of the form

Zaksn k)= P(z Z”kz )

k=1
* the prediction error, e(n), is of the form

e(n)=s(n)-s(n)=s(n)- i. o, S(n - k)

* the prediction error is the output of a system with transfer function

A(z) = E@_,_ P(z)=1 —i a,Z"



LP Estimation Issues

need to determine {¢,} directly from speech such that they
give good estimates of the time-varying spectrum

need to estimate {¢,} from short segments of speech

minimize mean-squared prediction error over short segments
of speech

— if the speech signal obeys the production model exactly,
then

- 06k=ak
— e(n) = Gu(n)
— A(z) is an inverse filter for H(z)



Solution for {«a, }

short-time average prediction squared-error is defined as

2

Ey = D im)= ) (s3(m)=8;(m))’

p \?
= | s5(m)= > ays;(m—k)
k=1 |

m

select segment of speech s;(m) = s(m+n) in the vicinity of
sample A

the key issue to resolve is the range of m for summation (to
be discussed later)



Solution for {a,}

* can find values of a, that minimize E; by setting
OEj _

Sa;-

0, i=12,..p

* giving the set of equations

where ¢, are the values of o, that minimize E; (from now
on just use a, rather than &, for the optimum values)

* prediction error (e;(m)) is orthogonal to signal (s;(m—1))
for delays (i) of 1 to p



Solution for {«a, }

defining
¢ (1,k) = > s5(m—1)s;(m—k)

m
we get

P
D cyilik) = ¢(0,0), i=12,...p
k=1

leading to a set of p equations in p unknowns that can be
solved in an efficient manner for the {a,}



Solution for {«a, }

minimum mean-squared prediction error has the form

E. _Zs akaS -(m—k)

k=1 m
which can be written in the form

p
E; = #5(0,0)= > & 4:(0,k)
k=1

Process
— Compute @;(I,K) forl<i<p,0<k<p
— Solve matrix equation for o,

need to specify range of m to compute @;(/, k)
need to specify S;(M)



minimum mean-squared prediction error:

En= ) [ea(m)]?

p
= ; en(m) {Sﬁ(m) - ; apsy(m — k)}

= z ea(m)sp(m) — zp: ay Z e (m)sa(m — k)
k=1 m

m



Autocorrelation Method

* assume S;(mM) existsfor0 <m <L -1 andis exactly zero
everywhere else (i.e., window of length L samples)

(Assumption #1)

s;(m)=s(m+n)w(m), 0<m<L-1

where w(m) is a finite length window of length L samples
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Autocorrelation Method

if s;(m) isnon-zeroonlyforo<m<L-1, then

p

e5(m)=s;(m) > a,s;(m—k)

k=1

is non-zero only over the interval o =m=<L-1+p, giving

@ L-1+p
E;= Y ei(m)=>" ei(m)
M=—x m=0

at values of m near O (i.e. m=0,1,...,p-1) we are predicting signal from
zero-valued samples outside the window range => e;(m) will be (relatively)
large

at values near m=L (i.e. m = L,L+1,...,L+p-1) we are predicting zero-valued
samples (outside window range) from non-zero values => e;(m) will be
(relatively) large

for these reasons, normally use windows that taper the segment to zero
(e.g., Homming window) m=0 m=L
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Autocorrelation Method

s[n],w[n — n]
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Autocorrelation Method

for calculation of ¢;(/.k) since s;(m) =0 outside the range0 <m <L -1 then
L-1+p

9 (1.K) = ZS -(m—-k), 1<i<p0<k=p

m=0

which is equivalent to the form
L-1—(i—k)

#;(1.K) = Z S;( +i—k), 1<i<p0<k<p

m=0

can easily show that

P (LK)=T(i-k)=R;(i—k), 1<i<p0<k<p

where R:(i—k) is the shot-time autocorrelation of s;(m) evaluated at i-k,

where Lk

Ra(k)= > s3(m)s;(m+k)

m=0



Autocorrelation Method

* since R;(k) is even, then
5(ik)=R;(|i —k|),1<i<p,0<k<p

* thus the basic equation becomes

Zakgf)n i—K)=¢:(1,0), 1<i<p

P
> Ry(li — k)= R;(i). 1<i<p

k=1
with the minimum mean-squared prediction error of the form

p
E; = ¢7(0,0)= > atye5(0,k)
k=1

p
—Zﬁ-’kRﬁ(k)
pa



Autocorrelation Method

as expressed in matrix form

 R;(0)  R;(1) Ri(p-1)] e | [R:(1)]

R;(1) 5(0) R:(p—2)|| &, R:(2)
Ri(p-1) Ry(p-2) . . R;©0) |a,| |R:(p)]
Ra=r

with solution
a=R"r
N is a pxp Toeplitz Matrix => symmetric with all diagonal elements equal

=> there exist more efficient algorithms to solve for {a,} than simple
matrix inversion



Covariance Method

* there is a second basic approach to defining the speech
segment sﬁ(m) and the limits on the sums, namely fix the
interval over which the mean-squared error is computed,

giving (Assumption
#2)
L1 L-1] p 72
E. =) el(m)= sﬁ(m)—zaksﬁ(m—k)
m=0 m=0| k=1 |
L-1



Covariance Method

changing the summation index gives

[—i-1
B (1K) = D" s5(m)s;(m+i—k), 1<i<p, 0<k<p
m=—i

L—k-1
b1, K)= D sz(m)ss(m+k—i), 1<i<p 0<k<p
m=—k

key difference from Autocorrelation Method is that limits of summation
include terms before m = 0 => window extends p samples backwards
from s(n-p) to s(n+L-1)

since we are extending window backwards, don't need to taper it using a
HW- since there is no transition at window edges
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Covariance Method

(7 — p) o (A+L-1)e
salm] = s[m + (b)

-
1
(c)
— »>
T 1
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Covariance Method

cannot use autocorrelation formulation => this is a true cross correlation

need to solve set of equations of the form

P
Zaﬂbﬁ(;,k):@aﬁ(fﬁ), i=12,...p,
k=1

p
E; = ¢;(0,0)= > oy ¢5(0,k)
k=1

g (L) ¢5(L2) . . gi(Lp) || o ¢ (1,0)
?:(2,1) #;(2,2) . . G;(2,p) | $5(2,0)

g:(P,1) 2:(p.2) . . g(pPP)]| % | | 45(P.0)
pa=y or a=¢"y



Covariance Method

we have ¢;(i,k) = ¢5(k,i) =>symmetric but not Toeplitz matrix

all terms ¢;(/,k) have a fixed number of terms contributing to
the computed values (L terms)

#,(1,K) is a covariance matrix => specialized solution for {a,}
called the Covariance Method



LPC Summary

1. Speech Production Model
s(n):iaks(n—k)JrGu(n)
._S(z) _ 1

i GU(2) | _ i az"

2. Linear Prediction Model
Zcx s(n—k)

AME

k=1
S



LPC Summary

3. LPC Minimization

E.*"? = Zﬁ(m) —

:ZS
m

> s (m—i)s;(m

m

Z[sﬁ(m)—éﬁ(m)f

p 2
m) - &s;(m—k)
=

Zﬂ'kzsnm i)s,(m—k)

i K) =2 8;(m—i)s;(m—K)

P
Z{xk(‘éﬁ(flk) —

E.=¢.(00)

95(1,0), I=12,..,p

Z@:’kgé (0,k)
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LPC Summary

4. Autocorrelation Method
s.(m)=s(m+nw(m), 0=<m=<L-1
p

e;(m)=s;(m)=> a,s;(m—k), 0=sm<L-1+p

n n
k=1

s-.(m)definedforO=m<L -1, e,(m)definedfor0<sm=<L-1+p

I

= large errorsforO<m<p-landforL<m<L+p-1
[—1+p

k=1 25



LPC Summary

4. Autocorrelation Method

— resulting matrix equation

Ra=rora=R"r

— matrix equation solved using Levinsn-Durbin method

I R;(0) R:(1) .. F\’ﬁ(p—l)_ a,
R;(1) R,(0) . . R,(p-2)| «,
_Rﬁ(p—l) Rn(p—2) .. Rﬁ(O) __G:P_ ]




LPC Summary

5. Covariance Method

fix interval for error signal

L-1

Eﬁ = Z:lei(m): Z

m=0

> a,,(.K)= (i

{sﬁ (m

E. =¢.(0,0) Zaqﬁ{]k

expressed as a matrlx equation

P

)—iaksﬁ(m—k)]

need signal for from s(n—p) to s(n+L-1)

0),i=12,..

=> [+p samples

da =y Or a=¢ 'y, ¢symmetric matrix

gL g(L2) .
¢:(2,1) ¢:(22) . .

4:(p.1) #:(p.2) . .

?:(2,p)

(P, P)

¢, (Lp) |

o]

a, |

a, |

¢:(2,0)

| ¢:(P.0)

- ¢5(L,0) |
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Frequency Domain Interpretations of Linear
Predictive Analysis



The Resulting LPC Model

* The final LPC model consists of the LPC parameters, {¢,},
k=1,2,...,p, and the gain, G, which together define the system
function G

H(z)=—:;
I—Zakz_k
k=1

with frequency response

G G
s —jwk A(e’?)

1-> ae

k=1

H(e™”) =

with the gain determined by matching the energy of the
model to the short-time energy of the speech signal, i.e.,

Gl — Eﬁ — Z(eﬁ(m)f — Rﬁ(o)_ iakRﬁ(k)



LPC Spectrum

40 —— Fourier spectrum
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LP Analysis is seen to be a method of short-time spectrum estimation with
removal of excitation fine structure (a form of wideband spectrum analysis)
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log magnitude in dB

20

Effects of Model Order
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Effects of Model Order

TIME IN SAMPLES

16549 — .
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plots show Fourier transform of
segment and LP spectra for
various orders

— as p increases, more details
of the spectrum are
preserved

— need to choose a value of p
that represents the spectral
effects of the glottal pulse,
vocal tract and radiation--
nothing else
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Linear Prediction Spectrogram

Speech spectrogram previously defined as:

L1 TV AT
20log| S,[k]|=20log| > s[rR+ m]w{m]e G
m=0
for set of times, ¢, =rRT , and set of frequencies, F, =kF. /N, k=12....N/2
where R is the time shift (in samples) between adjacent STFTS, T is the
sampling period, F. =1/ T is the sampling frequency, and N is the size of
the discrete Fourier transform used to computed each STFT estimate.

Similarly we can define the LP spectrogram as an image plot of:
6, |

4;- (E::-'f (2 Nk )

20log | H,[k]|=20log

where G, and 4,(e’“"*") are the gain and prediction error polynomial at
analysis time rR.



frequency

Lmear Predlctlon Spectrogram
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Wideband Fourier spectrogram
(=81, R=3, N=1000,
40 db dynamic range)

Linear predictive spectrogram
(p=12)
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Log Magnitude (dB)

Log Magnitude (dB)

Comparison to Other Spectrum
Analysis Methods

120 ——————————————— 120
: (a) .
g rd o] sl 8 JID et omyedacini Spectra of synthetic vowel
100 {4 g 100 e pereifit ety /IY/
90 | 2 9
=)
80 2 %0 (a) Narrowband spectrum
< . .
70 @ 70 JER chi S using 40 msec window
w2} . : - X
()() 6() ..»l_.....V.. .
so LLLPRRRRRLT LT L i L LS N (b) Wideband spectrum
0 I 2 3 0 I 2 3 4 5 .
Frequency (kHz) Frequency (kHz) USIng d 10 msec
120 T R 120 — window
. . . ' C : ' s
110 [ - (c) Cepstrally smoothed
sl L g W spectrum
9() WS | 7 R fepyen a ) ' ; ' .
; ‘ : ' | pa . .
(L i e 3 TR T M [ 40 msec section using
3 N ...... 4 (,()
2:: R N R a p=12 order LPC
0 l 2 3 4 5 0 | 2 3 4 5 analysis
Frequency (kHz) Frequency (kHz)

35



Log (dB)

0

Comparison to Other Spectrum
Analysis Methods

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency (Hz)

Natural speech spectral
estimates using cepstral
smoothing (solid line) and
linear prediction analysis
(dashed line).

Note the fewer (spurious)
peaks in the LP analysis
spectrum since LP used p=12
which restricted the spectral
match to a maximum of 6
resonance peaks.

Note the narrow bandwidths of
the LP resonances versus the
cepstrally smoothed
resonances.



Solutions of LPC Equations

Autocorrelation Method
(Levinson-Durbin Algorithm)



Levinson-Durbin Algorithm 1

Autocorrelation equations (at each framen )
P
ZakR[\r:’—k\]:R[f] 1<i<p
k=1

Ra=r
R is a positive definite symmetric Toeplitz matrix
The set of optimum predictor coefficients satisfy

p
R[z’]—ZakR[\f—k 1=0, I<i<p
k=1

with minimum mean-squared prediction error of

P
R[0]-Y &, R[k]= E®
k=1



Levinson-Durbin Algorithm 2

* By combining the last two equations we get a larger matrix
equation of the form:

| R[0] R[1] R[2] ... R[p] 11 1 | [®]

R[] R[O] R[] .. Rp-1|-a? 0

R[2]  R[1] R[0]  R[p-2]|-a® |=| 0 |=E®
()/_R[p] Rlp-1] Rlp-2] .. R[0] |l-a”| | 0 |
R a® =

* expanded (p+1)x(p+1) matrix is still Toeplitz and can be solved
iteratively by incorporating new correlation value at each
iteration and solving for higher order predictor in terms of
new correlation value and previous predictor



Levinson-Durbin Algorithm 3

Show how i-th order solution can be derived from (i-1)-st
order solution; i.e., given "™ the solution toR“ Vg = Y
we derive solution toR"a"” = EV

The (i-1)-st solution can be expressed as

- R[0] R[1 R[2] R[i —1] 1 ECD
R[1] R[0 R[1] R[i-2]|| —& ™" 0
R[2] R[] R[0] R[i-3]|| - |=| 0




Levinson-Durbin Algorithm 4

« Appending a 0 to vector "™ and multiplying by the matrixR"
gives a new set of (i+1) equations of the form:

| R[0] R[1] R[21 ... RGN 1 7T [E™]
R[1]  R[0] R[] .. RL-1]|| -

R[2] R[] R[0O] .. R[i-2]||-&%"

3] .. R[] ||-a%? | 0
] RlO] || O | |,7]

i-1
« where 7“7 =R[i]-) a"R[i-j] and R[i] are introduced
i=1



Levinson-Durbin Algorithm 5

* Key step is that since Toeplitz matrix has special symmetry we
can reverse the order of the equations (first equation last, last

equation first), giving:

- R[0] R[1 R[2] R[i] 0 y D
R[1] R[0 R[1] R[i—1] | —a "
R[2] R[1 R[0] Rli 2]~ |
R[i—1] R[i—-2] R[i-3] R[1] || - 0
| R[i] R[i-1] R[i-2] RO] || 1 | |E"Y]




Levinson-Durbin Algorithm 6

* To get the equation into the desired form (a single component
in the vector £'”) we combine the two sets of matrices (with a
multiplicative factork, ) giving:

1 0 ‘|‘| E[f‘—l} }f{:‘—n ‘H
() _a:_ﬁ_h _{H’f;leJ 0
R® —k, |= ~k,
—a Y —a ™ || 0 0
] D | | l JJ ;V[f'—l} E{:’—l] JJ

 Choosek; so that vector on right has only a single non-zero
entry, i.e., .
(1) R[;’]—;{IE’_”R[;' — 7l

- — / o o
"r‘r' - E(s—u - E{:—n




Levinson-Durbin Algorithm 7

The first element of the right hand side vector is now:
E{E’} — '—1] ;1 { (i-1) E{E’—l] (1—;{5)

The k; parameters are called PARCOR (partial correlation)
coefficients

With this choice of k., the vector of i-th order predictor
coefficients is: . o _

| 1 0
—a® —of ol
_aE;} _ﬂEf—l] —(ﬂ?”
£ — L . kf 1—2
_{I,E:ll _"'j‘ff'(il_l:I _"5‘51“_1;1
_—af":’ 0 7 1 |
yielding the updating procedure
U‘ ) —.'::f” = A:cx;ﬁ_’_” j=L12 ..

a” =I
i i



Levinson-Durbin Algorithm 8

The final solution for order p is:
) -
o, =a, 1£7<p
with prediction error

p P
E® =E[0][ (1K) =RIO][JA-%;)

m=l1 m=l1

If we use hormalized autocorrelation coefficients:

k1= R[k]/ R[O]

we get normalized errors of the form:

E(I) i

) = ——l Za(” H(I—Am)

m=1

where
O<v”<lor —1<k <1



Levinson-Durbin Algorithm

Levinson-Durbin Algorithm

£ = R0
fori=1,2,...,p
i—1

ki = | Rli] Y o\ VR[i -] | /€G-

j=1
{? A
|fs‘,>1thenforj—1 ...... 1 — 1

(¢2)  (i—1) (i— 1}
a;” =, — k;« X;_

end
g = (1 — kff)é’“‘”
end

, (p) .
aj = Q; LN Y

(9.98)

(9.93)

(9.96b)

(9.961

— AD(z)= AV(z)

~kz' A"V (z)

(9.947

(9.97)
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Autocorrelation Example

e consider a simple p = 2 solution of the form

RO) R[] TR

R(1) RO)||a, | |RQ)

e with solution

E© = R(0)
k, = R(1)/R(0)

oV = R(1)/ R(0)
R?(0)- R*(1)
R(0)

EL)



Autocorrelation Example

o

_ R(2)R(0)-R"(1)

k, =
2T RX0)-RX(1)
o _ RQRO)-R*()
2 2 7
R2(0)— R(1)
@ _ RORO)-RMR(Q)
| R*(0)- R*(1)

e with final coefficients

04 _{I(E)
2 M2

E) = prediction error for predictor of order /



Prediction Error as a Functlon of p

0.35

0.3r

5:':
—
N

o
—

normalized prediction error

0.05+

o

N

&)
|

o
ho
I

- R[K]
V. = a, —"
" [0] -2, R,[0]

k=1

Model order is usually determined
by the following rule of thumb:
F./1000 poles for vocal tract
2-4 poles for radiation
2 poles for glottal pulse

;\ J l

5 10 15
predictor order p
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Autocorrelation Method Properties

* mean-squared prediction error always non-zero
— decreases monotonically with increasing model order
e autocorrelation matching property
— model and data match up to order p
e spectrum matching property
— favors peaks of short-time FT
* minimum-phase property
— zeros of A(z) are inside the unit circle
* Levinson-Durbin recursion

— efficient algorithm for finding prediction coefficients
— PARCOR coefficients and MSE are by-products



