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LPC Methods

• LPC methods  are the most widely used in speech 
coding, speech synthesis, speech recognition, 
speaker recognition and verification and for 
speech storage
– LPC methods provide extremely accurate estimates of 

speech parameters, and does it extremely efficiently
– basic idea of Linear Prediction: current speech sample 

can be closely approximated as a linear combination 
of past samples, i.e.,
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Speech Production Model

• the time-varying digital filter 
represents the effects of the 
glottal pulse shape, the vocal 
tract IR, and radiation at the lips

• the system is excited by an 
impulse train for voiced speech, 
or a random noise sequence for 
unvoiced speech

• this ‘all-pole’ model is a natural 
representation for non-nasal 
voiced speech—but it also works 
reasonably well for nasals and 
unvoiced sounds
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LPC Methods
• for periodic signals with Np period , it is obvious that

but that is not what LP is doing; it is estimating s(n) from the p
(p<< Np) most recent values of s(n) by linearly predicting its 
value

• for LP, the predictor coefficients (the k's) are determined 
(computed) by minimizing the sum of squared differences 
(over a finite interval) between the actual speech samples and 
the linearly predicted ones
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Linear Prediction Model
• a p-th order linear predictor is a system of the form

• the prediction error, e(n), is of the form

• the prediction error is the output of a system with transfer function
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LP Estimation Issues

• need to determine {k} directly from speech such that they 
give good estimates of the time-varying spectrum

• need to estimate {k} from short segments of speech

• minimize mean-squared prediction error over short segments 
of speech

– if the speech signal obeys the production model exactly, 
then 

– k=ak

– e(n) = Gu(n)

– A(z) is an inverse filter for H(z)
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Solution for {αk}

• short-time average prediction squared-error is defined as

• select segment of speech                                   in the vicinity of 
sample

• the key issue to resolve is the range of m for summation (to 
be discussed later)
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Solution for {αk}
• can find values of αk that minimize        by setting

• giving the set of equations

where          are the values of αk that minimize       (from now 
on just use αk rather than       for the optimum values)

• prediction error                is orthogonal to signal                         
for delays (i) of 1 to p
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Solution for {αk}

• defining

• we get

• leading to a set of p equations in p unknowns that can be 
solved in an efficient manner for the {αk}
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Solution for {αk}
• minimum mean-squared prediction error has the form

• which can be written in the form

• Process
– Compute                  for

– Solve matrix equation for αk

• need to specify range of m to compute

• need to specify
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minimum mean-squared prediction error:
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Autocorrelation Method
• assume               exists for                            and is exactly zero 

everywhere else (i.e., window of length L samples) 

(Assumption #1)

where w(m) is a finite length window of length L samples
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Autocorrelation Method
• if             is non-zero only for                    , then

is non-zero only over the interval                          , giving

• at values of m near 0 (i.e. m = 0,1,…,p-1) we are predicting signal from 
zero-valued samples outside the window range =>            will be (relatively) 
large

• at values near m=L (i.e. m = L,L+1,…,L+p-1) we are predicting zero-valued 
samples (outside window range) from non-zero values =>            will be 
(relatively) large

• for these reasons, normally use windows that taper the segment to zero 
(e.g., Hamming window)
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Autocorrelation Method
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Autocorrelation Method
• for calculation of              since                  outside the range                       then

• which is equivalent to the form

• can easily show that

where                  is the shot-time autocorrelation of              evaluated at i-k, 
where
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Autocorrelation Method
• since             is even, then

• thus the basic equation becomes

with the minimum mean-squared prediction error of the form

16



Autocorrelation Method
• as expressed  in matrix form

with solution

• is a pxp Toeplitz Matrix => symmetric with all diagonal elements equal 
=> there exist more efficient algorithms to solve for {αk} than simple 
matrix inversion

17



Covariance Method

• there is a second basic approach to defining the speech 
segment              and the limits on the sums, namely fix the 
interval over which the mean-squared error is computed, 
giving                                                                         (Assumption 
#2)
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Covariance Method
• changing the summation index gives

• key difference from Autocorrelation Method is that limits of summation 
include terms before m = 0 => window extends p samples backwards    
from                  to              

• since we are extending window backwards, don't need to taper it using a 
HW- since there is no transition at window edges
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Covariance Method
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Covariance Method

• cannot use autocorrelation formulation => this is a true cross correlation

• need to solve set of equations of the form

21



Covariance Method
• we have                             => symmetric but not Toeplitz matrix

• all terms               have a fixed number of terms contributing to 
the computed values (L terms)

• is a covariance matrix => specialized solution for {αk} 
called the Covariance Method
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LPC Summary

1. Speech Production Model

2. Linear Prediction Model

23



LPC Summary

3. LPC Minimization
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LPC Summary

4. Autocorrelation Method
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LPC Summary

4. Autocorrelation Method
– resulting matrix equation

– matrix equation solved using Levinsn-Durbin method
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LPC Summary
5. Covariance Method

– fix interval for error signal

– need signal for from                 to                    => L+p samples

– expressed as a matrix equation
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Frequency Domain Interpretations of Linear 
Predictive Analysis
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The Resulting LPC Model
• The final LPC model consists of the LPC parameters, {k}, 

k=1,2,…,p, and the gain, G, which together define the system 
function

with frequency response

with the gain determined by matching the energy of the 
model to the short-time energy of the speech signal, i.e.,
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LPC Spectrum

LP Analysis is seen to be a method of short-time spectrum estimation with 
removal of excitation fine structure (a form of wideband spectrum analysis)
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Effects of Model Order
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Effects of Model Order

• plots show Fourier transform of 
segment and LP spectra for 
various orders

– as p increases, more details 
of the spectrum are 
preserved

– need to choose a value of p 
that represents the spectral 
effects of the glottal pulse, 
vocal tract and radiation--
nothing else
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Linear Prediction Spectrogram
• Speech spectrogram previously defined as:

for set of times,                , and set of frequencies,                                           
where R is the time shift (in samples) between adjacent STFTS, T is the 
sampling period, FS = 1 / T is the sampling frequency, and N is the size of 
the discrete Fourier transform used to computed each STFT estimate.

• Similarly we can define the LP spectrogram as an image plot of:

where       and                      are the gain and prediction error polynomial at 
analysis time rR.

33



Linear Prediction Spectrogram

Wideband Fourier spectrogram

( L=81, R=3, N=1000,

40 db dynamic range)

Linear predictive spectrogram

(p=12)
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Comparison to Other Spectrum
Analysis Methods

Spectra of synthetic vowel 
/IY/

(a) Narrowband spectrum 
using 40 msec window

(b) Wideband spectrum 
using a 10 msec
window

(c) Cepstrally smoothed 
spectrum 

(d) LPC spectrum from a 
40 msec section using 
a p=12 order LPC 
analysis
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Comparison to Other Spectrum
Analysis Methods

• Natural speech spectral 
estimates using cepstral
smoothing (solid line) and 
linear prediction analysis 
(dashed line).

• Note the fewer (spurious) 
peaks in the LP analysis 
spectrum since LP used p=12 
which restricted the spectral 
match to a maximum of 6 
resonance peaks.

• Note the narrow bandwidths of 
the LP resonances versus the 
cepstrally smoothed 
resonances.
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Solutions of LPC Equations 

Autocorrelation Method

(Levinson-Durbin Algorithm)
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Levinson-Durbin Algorithm 1
• Autocorrelation equations (at each frame    )

• R is a positive definite symmetric Toeplitz matrix

• The set of optimum predictor coefficients satisfy

• with minimum mean-squared prediction error of
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Levinson-Durbin Algorithm 2
• By combining the last two equations we get a larger matrix  

equation of the form:

• expanded (p+1)x(p+1) matrix is still Toeplitz and can be solved 
iteratively by incorporating new correlation value at each 
iteration and solving for higher order predictor in terms of 
new correlation value and previous predictor
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Levinson-Durbin Algorithm 3
• Show how i-th order solution can be derived from (i-1)-st

order solution; i.e., given           the solution to                         
we derive solution to

• The (i-1)-st solution can be expressed as
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Levinson-Durbin Algorithm 4

• Appending a 0 to vector          and multiplying by the matrix 
gives a new set of (i+1) equations of the form:

• where                                           and R[i] are introduced
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Levinson-Durbin Algorithm 5

• Key step is that since Toeplitz matrix has special symmetry we 
can reverse the order of the equations (first equation last, last 
equation first), giving:
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Levinson-Durbin Algorithm 6
• To get the equation into the desired form (a single component 

in the vector      ) we combine the two sets of matrices (with a 
multiplicative factor    ) giving:

• Choose      so that vector on right has only a single non-zero 
entry, i.e.,
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Levinson-Durbin Algorithm 7
• The first element of the right hand side vector is now:

• The ki parameters are called PARCOR (partial correlation) 
coefficients

• With this choice of         , the vector of i-th order predictor 
coefficients is:

• yielding the updating procedure 
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Levinson-Durbin Algorithm 8
• The final solution for order p is:

• with prediction error

• If we use normalized autocorrelation coefficients:

• we get normalized errors of the form:

where
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Levinson-Durbin Algorithm
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Autocorrelation Example

• consider a simple p = 2 solution of the form

• with solution
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Autocorrelation Example

• with final coefficients
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Prediction Error as a Function of p
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Autocorrelation Method Properties

• mean-squared prediction error always non-zero
– decreases monotonically with increasing model order

• autocorrelation matching property
– model and data match up to order p

• spectrum matching property
– favors peaks of short-time FT

• minimum-phase property
– zeros of A(z) are inside the unit circle

• Levinson-Durbin recursion
– efficient algorithm for finding prediction coefficients
– PARCOR coefficients and MSE are by-products
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