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l Speech Synthesis -

« Speech synthesis
— Atrtificial production of human speech
« Text-to-speech (TTS)
— To convert normal language text to speech
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Speech Synthesis Methods (1/2) -

— Hand-crafting each phonetic units by rules
— Base on source-filter model
« DECtalk [Kiatt 1982]

— Concatenate speech units (waveform) from a database
— Single inventory: diphone synthesis [Moulines 1990]

— Multiple inventory: unit selection synthesis (USS) [Sagisaka 1992,
[Hunt 1996]
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Speech Synthesis Methods (2/2) -

— Proposed in mid-"90s, becomes popular since mid-'00s

Context Acoustic
Features i Features
Text — Text. > Acoustic » Vocoder [— Speech
Analysis C Model ¥
[c1, €0 ien]  P(X]|C)  [x4, x5, ., x7]
o Statistical

— Statistical acoustic model based prediction from context
features to acoustic features

« Parametric

— speech vocoder based acoustic feature extraction and
waveform reconstruction
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Speech Synthesis Methods (2/2) -

— Corpus + automatic training
= Automatic voice building
— Source-filter model + statistical acoustic model
=> Flexible to change its voice characteristics
— HMM as its statistical acoustic model

> HMM-based Speech Synthesis System (HTS)
[Yoshimura 1999]

1\
| National Engineering Laboratory
| for Speech and Language Information Processing



Outline -

Statistical Parametric Speech Synthesis (SPSS)
HMM-Based SPSS

Some Key Techniques of Deep Learning

Deep Learning Based Acoustic Modeling for SPSS

Deep Learning Based Feature Representation for SPSS
Deep Learning Based Post-Filtering for SPSS

Other Applications of Deep Learning for Speech Synthesis

Summary

National Engineering Laboratory _
for Speech and Language Information Processing




Hidden Markov model (HMM)

* Generate an observation
sequence using a discrete
and hidden state sequence
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. HMM-based Speech Synthesis (HTS)

* Framework

ERECE Specch Vv d Josi Training
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¢ Acoustic features
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Decision trees & Clustered
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. HMM-based Speech Synthesis (HTS)

 How to represent p (X|C)
— Context-dependent phoneme HMMSs [Yoshimura 1999]

H;é’%." o XX-sil+I/A

, sil-l+ian/A:XX_2@1/B:SH_H@HS$H#A/C:8_8@1$1#1/D:3_3@1/V:0_1@1$0
Manual labeling
Text Text analysis l-ian+h/A:XX_2@1/B:SH_H@HS$H#A/C:8_8@1$1#1/D:3_3@1/V:1_1@0$0
v ian-h+e/A:2_1@2/B:WM_M@HS$H#A/C:8_8@1$1#1/D:3_3@1/V:1_0@150

* ID of current/ surrounding phoneme

* Tones of current/surrounding syllables

* # of phonemes at current/ surrounding
syllable

* Position of current syllable in current word | | e

h-e+g/A:2_1@2/B:WM_M@HSH#A/C:8_8@151#1/D:3_3@1/V:0_1@050

e-g+uo/A:l_2@4/B:WT_T@HSHHA/C:8_8@151#1/D:3_3@1/V:1_0@1%0

A 4

g-uo+m/A:1_2@4/B:WT_T@HSH#A/C:8_8@151#1/D:3_3@1/V:0_1@150

Context features of each phoneme Context-dependent phonemes

— Construct sentence HMM by concatenating phoneme HMMs
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. HMM-based Speech Synthesis (HTS) -

* Model training

— Maximum likelihood estimation
using training database

Vowel 7

p&IO = ) pXal0) =) p@lO)] [peida) T oAy
q q t=1 @
Gaussian Distribution A'Cl;stered PDFs
b = NG E)
Clustering
— Decision tree clustering [Shinoda ./\.C'/\D S
2000] ;@O TS s
— To train context-dependent @@ (‘/_\D

state duration models et X T
~ State PDF of CD-HMMs
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. HMM-based Speech Synthesis (HTS) -

« Parameter generation
— To maximize p (X|C) given the text analysis output C
— Two steps

q* = arg maxp(q|C) <—— State duration PDFs
q

X" =arg m}?xp(X|q*, C) <— Clustered HMIM state PDFs

— To generate smooth trajectories by introducing dynamic acoustic
features and considering the constraints between static and
dynamic features during parameter generation [Tokuda 2000]
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l Limitations -

« Degraded quality of synthetic speech

 Three factors [zen etal 2009]

— Limitations of the vocoder
— e.9. STRAIGHT [Kawahara 1999]

— Inadequacy of acoustic modeling
— e.g. trajectory HMM {[zen 2007], MGE training [Wu 2006]

— Over-smoothing effect of parameter generation

— e.g. global variance [Toda 2007], minimum KLD [Ling 2012],
modulation spectrum [Takamichi 2015]

— ~> Dl
How can deep learning techniques cope
| with these limitations?

\
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e One of the various definitions: A class of machine learning
techniques that exploit many layers of non-linear information
processing for supervised or unsupervised feature extraction
and transformation, and for pattern analysis and classification.

What is Deep Learning ? l

-
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Key Techniques of DL

* Modeling joint distribution, i.e., p(x) or p(x,y)
— Restricted Boltzmann Machine (RBM)
— Deep Belief Network (DBN)

« Modeling conditional distribution, i.e., p(y|x)
— Deep Neural Network (DNN)
— Recurrent Neural Network (RNN)

1\
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Key Techniques of DL

* Modeling joint distribution, i.e., p(x) or p(x,y)
— Restricted Boltzmann Machine (RBM)
— Deep Belief Network (DBN)

« Modeling conditional distribution, i.e., p(y|x)
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Restricted Boltzmann Machines

 Model structure

— two-layer undirected graphical model without
within-layer connections [Smolensky 1986]

— binary/real-valued visible units
T

V= [V, Vy, ..., Vy]
— Dbinary hidden units

h=[hy,hy, .., hy]T v
— energy function of the state {v, h}

% H vV H
Bernoulli-Bernoulli RBM E(w,h) = — 2 a;v; — 2 bih; — 2 2 w;vih;
i=1 j=1 i=1j=1
% H vV H
: : (v; — a;)?
Gaussian-Bernoulli RBM E(w, h) = s——— ) bl = w;Vih;
i=1 j=1 i=1j=1
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* As a density model
— joint distribution over the visible and hidden units

Restricted Boltzmann Machines -

1
P(v,h) = ~ exp(—E (v, h))

where partition function Z can be estimated using the annealed
importance sampling (AlS) method [Salakhutdinov 2009]

— marginal distribution over the visible units

1
P(v) = Ez exp(—E(v, h))

I R

density model describing the distribution of vector v

— Estimate model parameters {W, a, b} by ML learning using the
contrastive divergence (CD) algorithm [Hinton 2002]

-
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* As a density model
— Gaussian-Bernoulli RBM

Restricted Boltzmann Machines -

74
1 1 v —a;)?
P(v) = Ez exp(—E(v, h)) = 22 exp —z wi > 2 +bTh+vwh
I h i=1
1 - (vi _ ai)z - T
Product of Experts model El_[ exp | — > 1_[(1 + exp(b; + v'w)))
i=1 j=1

» elements in the first product represent single-variable experts
» elements in the second product represent constraints between the input

variables
|74 H
1 v; — a;)*
GMM - €XP —Z @ > 2 1_[(1 + exp(b; + vaj))
« 2" mixtures =1 j=1
 structured mean vectors a(H=0)->{aa+w}(H=1)

« shared identity covariance matrices

- =
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* As a density model — better than GMM

— Capable of modeling high dimensional features
 Visible units are conditional independent on each other
* Weights can capture cross dimensional correlations

— RBM can model more patterns than GMM
« A GMM with 2 mixtures

— RBM can model shaper distributions
» Product of experts

— Better generalization and less over-fitting

» Binary hidden units create a information bottleneck and act as an
effective regularizer

Restricted Boltzmann Machines -
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Deep Belief Networks

 Model structure

— a graphical model with multi-layer
hidden units [Hinton 2006]

— real-valued visible units and binary
hidden units

— P(h*~1, hl) is represented by an RBM
(Wt, at, b*}

— P(v|h') and P(h"Y|RY), L€ {2,3,..,L —
1} are represented by sigmoid belief
networks [Neal 1992]

Pwlh') = & (v; W' Th' + a',1)

P(hi't=1laY) =g <a§ + z w;jh}> g(x) =1/(1+ exp(—x))
j

oy T
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. Deep Belief Networks -

« Popularly used for pre-training of DNNS [Hinton 2006]

* As a density model
— joint distribution over the visible and all hidden units

P(v,h, ..., hY) = P(w|hY)P(h'|h2) - P(hE~2|hL~1)P(hL~1, hL)
SBN RBM

— marginal distribution over the visible units

P(v) = z z P(v, hY, ... hY)

hl hL
* Model training

— difficult to estimate the model parameters directly under ML
criterion

— Greedy learning using a stack of RBMs

National Engineering Laboratory @
for Speech and Language Information Processing



Key Techniques of DL -

« Modeling joint distribution, i.e., p(x) or p(x,y)

« Modeling conditional distribution, i.e., p(y|x)
— Deep Neural Network (DNN)
— Recurrent Neural Network (RNN)

\
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Deep Neural Networks

 Model structure

— a feed-forward, artificial neural network
with than one layer of hidden units

between input and output layers [Hinton
2006]

— non-linear activation function at hidden

units
h_gg) =5 (hg” 3 Z hgl)u*g))
. /?,EU) == i

« Sigmoid / RelLU ...

-
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Deep Neural Networks

 Model structure
— Output layer
o Softmax function for classification
exp {b§L+1) 2 W th) u*(L+1)}

i

o

5=

o (H 4 5, O
* Linear function for regression

Y = bE,-LJrl) -+ Z ]1.,EL)1{,!(‘.['+1)

1]

— Parameter set
A= {p() W) pE+l) wl+l))

\
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* Model training
— Loss function
« Cross entropy for classification
Ly, g:\) =—_ y;log(i;)
J
« Mean square error for regression
Ly, §;2) =D _(yi — ;)

J

Deep Neural Networks

— Parameter estimation
« Back-propagation [Rumelhart 1985]
« Momentum / Weight decay

» Pre-training using DBNSs (stack RBMs), DAEs (deep auto-
encoders)

-
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l Deep Neural Networks -

« Consider a DNN for regression as a probabilistic model
— a conditional PDF of y given x

Gaussian distribution

p(ylx, 1) = N(y; y(x,4),1)

Il T

Observed output Observed input Nonlinear transform
from input using A

— minimizing the mean square error between y and y with respect to
A is equivalent to the ML estimation of 4

1\
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 Model structure

— a dynamic neural network where there are cyclical connections
among hidden nodes [Hopfield 1982]

— provide better ability of processing dynamic and temporal information
— e.g. aregression RNN with one hidden Iayer

Recurrent Neural Networks -

f yr+1
— % (th..wt 20 Wh_.h, ht—l + bh_.) L /T \
Yt = Wh,y ht —+ by \ /'_H\Tf 4—»1\%9—»
» Xy g X X

+1 "7

— stacking multiple recurrent hidden layers to build a deep RNN
— unidirectional vs. bidirectional

oy T
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« Consider a RNN as a conditional PDF
— Unidirectional

Recurrent Neural Networks -

p(ytlxl) xZ) e xt: A)

— Bidirectional
P(VilXq, Xo, ey Xgy ooey X, A)
* Model training
— Back-propagation through time (BPTT) [Werbos 1990]

— Training difficulty: exploding and vanishing gradients

— Long Short-Term Memory (LSTM) cell

National Engineering Laboratory @
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Long-Short Term Memory (LSTM)

e An LSTM cell [Hochreiter 1997]
— a complex hidden unit with gating structure

— the information flow transmitting iteratively through the network is
controlled by the input gate , forget gate, output gate and the cell

memory state

b, 4
it = o(Waixe + Whihey + Weicea + b;) 2
t = 0(Waszi + Whihi 1 + Wepera + by)
ct = fi ¥ ceq + 14 * tanh(Waexe + Whehet + be)
0 = 0(Waxoxt + Whohe1 + Weoet + bo)

h: = o; * tanh(c:)

— capable of remembering information from a long span of time steps
— success in speech recognition [Graves 2013a], handwriting generation
[Graves 2013b], etc.

oy .
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Limitations of HMM-Based AMs -

 Input-to-Cluster mapping using decision trees
— Inefficient for expressing complex context dependencies, e.g. XOR
Overfitting to the training data due to the data partitioning issue

» Cluster-to-feature mapping using Gaussians
— Difficulty in estimating full covariance matrices
Using low-dimensional spectral parameters (mel-cepstra / LSPs)
Detailed characteristics of the raw spectra are lost

— Averaged model means by ML training
Outputs of MLPG distribute near the modes (means) of Gaussians

The generated spectral features are over-smoothed

Need better models for acoustic modeling of SPSS !

1\
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l DL-Based Acoustic Modeling for SPSS -

« Since 2013

« Three different strategies

— Cluster-to-feature mapping using
RBMs (USTC & Microsoft)

— Input-to-feature mapping using
DBNs (CUHK)

— Input-to-feature mapping using
deep-structured NNs (Google)

« A survey paper @ IEEE SPM

Zhen-Hua Ling, Shi-Yin Kang, Heiga Zen, Andrew Senior, Mike Schuster,
Xiao-Jun Qian, Helen Meng, and Li Deng

Deep Learning for Acoustic
Modeling in Parametric
Speech Generation

A systematic review of existing technigues and future trends

idden Markow models (HMMs) and Gaussian mixture models (GMMs) are Lhe two mosL common Lypes of

acoustic models used in statistical parametric approaches for generating low-level speech waveforms

from high-level symbolic inputs via intermediate acoustic feature sequences. However, these models

have their limilalions in representing complex, nonlinear relationships bebween the speech genevation

inputs and the acoustic features. Inspired by the intrinsically hevarchical process of human speech pro-

duetion and by the suecessiul application of deep nevral nelworks (DNNs) Lo aulomalic speech recognilion (ASR),
deep learning technigues have also been applied successfully to speech generation, as reported in recent literature.

This arlicle syslemalically reviews Lhese emerging speech generalion approaches, with the dual goal of help-
ing readers gain a better understanding of the existing techniques as well ag stimulating new work in the
hurgeoning area of deep learning lor paramelric speech generalion.

In speech signal and information processing. many applications have been formulated as machine-learmn-
ing tasks, ASK is a typical classification task that predicts word sequences from speech waveforms or fea-
lure sequences. There are also many regression lasks in speech processing Lhal are aimed (o generale
speech signals from various types of inputs. They are referred to as speech generation tasks in this
arlicle. Speech generalion covers a wide range of research Lopics in speech processing, such as
text-to-speech (TTS) synthesis (generating speech from text), voice conversion {modifving
nonlinguistic informalion of the inpul speech), speech enhancement (improving
speech quality hy noise veduction or other processzing). and articulatory-to-acous
Lic mapping (converling articulalory movements Lo acouslic features). These

Digital Oljecd Monifier 10,0 WMSE 201 2359957
Dute af riblication: 6 Apeil 2045
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Cluster-to-feature mapping using RBMs

\
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Framework

 Motivation

— The advantages of RBMs in describing
the distribution of high-dimensional
observations with cross-dimension

correlations
° Method [Llng 2013] Context Features
— Features — ! ________
High level spectral parameters P aie 3
Low level spectral envelopes / { \
Cluster 1 Cluster 2 Cluster N
- State PDFs e ==
Gaussian distributions A ) S | | S O B | S
 [0o0-0] || [00-0] | | ©o-0]
!Acous‘[ic Features | ! Acoustic Features ! ! Acoustic Features i

RBMs

N
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Implementation

Speech C i ini
peecl orpus e Conventional HTS model training

* Spectral parameters (mel-cepstra/LSPs)

FO and Spectral
Parameter Extraction

\ 4
Fully CD-HMM
Training

v

Decision-Tree-based
Model Clustering

\ 4
Clustered CD-HMM
Training

l

Gaussian HMMs
(Spectral Parameters)

Training
Synthesis A
Input Text Parameter Generation
& Synthesizer
Synthetic Speech
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Implementation

S hCorpus ——————————— Tedl
peecl orpus i * Store the original spectral envelopes
|
______ v

extracted by STRAIGHT

FO and Spectral Spectral Envelope |
Parameter Extraction I Extraction

- — e — —_ — =

\ 4
Fully CD-HMM
Training

v

Decision-Tree-based
Model Clustering

\ 4
Clustered CD-HMM
Training

l

Gaussian HMMs
(Spectral Parameters)

Training
Synthesis A
Input Text Parameter Generation
& Synthesizer
Synthetic Speech

1\
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Implementation

S hCorpus ———————=———7
peech Corpus i * Gather spectral envelopes for each
|

l ______ Y______ clustered context-dependent state
FO and Spectral Spectral Envelope |
Parameter Extraction |\ | Extraction * Feature vector of spectral envelopes

- — e — —_ — =

v \ consists of static / velocity /
Fully CD-HMM \ .
Training \ acceleration components

) N

|
Decision-Tree-based |
Model Clustering I |

Y /
Clustered CD-HMM /
Training /

/
/
/
/

Gaussian HMMs
(Spectral Parameters)

Training

Synthesis L
Parameter Generation
& Synthesizer

Input Text

Synthetic Speech
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Implementation

Speech Corpus ———————=———- . .
l ! * RBM estimation for each state
[
—— ) A
FO and Spectral , Spectral Envelope |- —————————
Parameter Extraction \\ I Extraction : :
N |
\ 4 \ |
Fully CD-HMM AN |
Training AN |
I S N Yo
Decision-Tree-based | State Alignment |- — ! Context-Dependent |
Model Clustering L __ I L B%M Tri"l'n_g_ -
> i T
Y // :
Clustered CD-HMM e |
Training / [
/ [
/ [
T ;
/
Gaussian HMMs RBM-HMMs
(Spectral Parameters) (Spectral Envelopes)
Training
Synthesis L
Inout Text Parameter Generation
P & Synthesizer
Synthetic Speech
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Implementation

Speech Corpus ——————————-,

: * Simplify the generation problem by
l ______ v Gaussian Approximation

Spectral Envelope |- — — — — ———__

FO and Spectral

Parameter Extraction \\ I Extraction | :
N |
\ 4 \ |
Fully CD-HMM N |
Training AN |
I S N Yo
Decision-Tree-based | State Alignment :_ — 3l Context-Depe.ndent !
Model Clustering L __ I L B%M Tri"l'n_g_ -
T T
Y // :
Clustered CD-HMM e |
Training / '
/ |
/ |
// \j
/
Gaussian HMMs RBM-HMMs
(Spectral Parameters) (Spectral Envelopes)
|
Training I
Synthesis A i
. I_ - - - - = ._ _____
Input Text Parameter Gerjerahon -_d Gausls|ar? :
& Synthesizer | Approximation |

Synthetic Speech
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Gaussian Approximation -

Gaussian distribution RBM at each HMM state
N u X) > P(v)
u = arg mglxlogP(v) sample covariances & diagonal
Mode Estimation [Ling 2013]

-RBM  no close-form solution — gradient descent updating

Eilugp(v) exp(b; +v'w;)
ov gr= a+zl+9pr + v w,_.)wj

\
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l Experiments -

« Experimental Conditions
— 1-hour Chinese speech database; female speaker; 16kHz/16bits
— 800 utterances for training / 200 utterances for test
— Low-level spectral features: STRAIGHT spectral envelopes (513)
— High-level spectral features: mel-cepstra (41)

— Context-dependent HMM training using mel-cepstra
 MDL-based DT clustering: 1,612 states for spectral stream

— RBM training
« CD with 1-step Gibbs Sampling
* learning rate = 0.0001; batch size = 10; epoch = 200

National Engineering Laboratory f
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Experiments

 Comparison between GMMs and RBMs as state PDFs

GMM mixture number GMM mixture number
1 2 4 8 16 32 64 1 2 4 8 16 32 64
-130 . T . T . . ) -1400

-140 / -1600

// —@— GMM(train)

3 3
5-150 5:1800 - M- GMM(test)
S g = RBM(train)
o o - rain
3160 — 2000 - AT @ g _
a 2 a” ®  _ .A- RBM(test)
— A L
-170 +——— A= - A= -=-A -2200 ==
'180 T T T T . 1 '2400 T T T T 1
1 10 50 200 1000 1 10 50 200 1000
RBM hidden unit number RBM hidden unit number

— average log-prob. on the training and test sets when modeling the
mel-cepstra (left) and the spectral envelopes (right)

— a state with 650 training frames and 130 test frames
— GMM mixture number: 1~64
— RBM hidden unit number: 1~1,000

N
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Experiments

 Comparison between GMMs and RBMs as state PDFs

L

GMM mixture number GMM mixture number

1 2 4 8 16 32 64 1 2 4 8 16 32

64
-1400
- -1600 _
5 5 ’
£- 51800
oo oo
o o
o 2000 -
> >
© ©
- -2200 -
T 1 '2400 T T T T 1
1 10 50 200 1000 1 10 50 200 1000
RBM hidden unit number RBM hidden unit number
mel-cepstra spectral envelopes

— GMNMs have a clear tendency of over-fitting with the increasing of
model complexity

— RBM shows consistently good generalization ability with the
increasing of the number of hidden units
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Experiments

 Comparison between GMMs and RBMs as state PDFs

GMM mixture number GMM mixture number

1 2 4 8 16 32 64 1 2 4 8 16 32 64
-1400 . )

- -1600 /

. . —— GMM(train)
§_. §:1800 == —a y .- GMM(test)
S S -k U RBM(train)
e 52000 - X .

2 S - - #® _ .A- RBM(test)
© © 7 ek

_ -2200 <Q(,l

W
T T 1 '2400 T T T T 1
1 10 50 200 1000 1 10 50 200 1000
RBM hidden unit number RBM hidden unit number
mel-cepstra

spectral envelopes

— Mel-cepstra

+ the gain of using the density models more complex than a single Gaussian
distribution are relatively small < decorrelation processing of cepstral analysis

— Spectral envelopes

» the gain becomes much more significant for both GMMs and RBMs
* RBMs can give much higher test log-prob. than GMMs

\
National Engineering Laboratory
| for Speech and Language Information Processing



« System construction

Experiments

Spectral Features State PDF

Baseline
GMM(1)
GMM(8)
RBM(10)
RBM(50)

mel-cepstra
spectral envelopes
spectral envelopes
spectral envelopes

spectral envelopes

single Gaussian
single Gaussian
GMM, 8 mixtures
RBM, 10 hidden units
RBM, 50 hidden units
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Experiments -

. Subjective preference scores

_-

18.67 48.00 33.33 0.0014
12.00 - 50.67 - 37.33 0.00
5.33 - - 70.67 24.00 0.00
16.00 - 69.33 14.67 0.00
9.33 37.33 53.33 0.00

— Baseline and GMM/(7)have very similar synthetic results

— GMMs and RBMs are significantly better than single Gaussian
when modeling spectral envelopes

— superiority of RBM over GMM in modeling the spectral envelopes

— performance of the RBM-based systems is influenced by the
number of hidden units used in the model

\x National Engineering Laboratory @
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Demos

Spectral Features State PDF m

Baseline mel-cepstra single Gaussian

GMM(1) spectral envelopes single Gaussian 4:
GMM(8) spectral envelopes GMM, 8 mixtures .13-
RBM(10) spectral envelopes RBM, 10 hidden units {:
RBM(50) spectral envelopes RBM, 50 hidden units oz
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Extensions

« QOther generative models
— Deep Belief Network (DBN)
[Ling 2013]

— Neural Autoregressive Distribution
Estimator (NADE) [Yin 2014]

) () Gy
N
National Engineering Laboratory
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Extensions

« Other applications
— Voice conversion [Chen 2013]

10 3.6 T wMCEP-GMM  ®SPE-GMM i SPE-RBM
———— SOURCE
0.9 ——— TARGET
——— MCEP-GMM
0.8 — — — SPE-GMM O
o ——— SPE-RBM '5
% 0.7 furl
> v
5 06F E
T /) =
G 05 —
@ (=
o o
» 0.4H o
E o
o 0.3 L]
= =
0.2
0.1
i fr e

- s 1 |
2000 3000 4000 5000 6000 7000 8000
Frequency (Hz)

Similarity Naturalness
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Input-to-feature mapping using DBNs

\
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Framework -
 Motivation

— To model all data in a centralized network and avoid data partitioning
— To model spectral coefficients without independence assumptions

« Method

— Model the joint distribution p(Xx,y) using a single DBN
X input context features
y output acoustic features

\
National Engineering Laboratory
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l Implementation -

 Mandarin Chinese speech
synthesis with MD-DBN [Kang 2013]

— Input context features QO Qi
* 1-of-k code of tonal syllables A 0® 0| (OO0 O kb
— Output acoustic features Context Features I
 Syllable-level spectrum and "
e>}</citation featuirges @@@"@ H
« MGCs/log energy/log FO/ UV flag D00 |y
— Multi-distribution DBN Acoustic Features

« Different types of distribution units
in the visible layer
(Gaussian/Bernoulli)

National Engineering Laboratory
for Speech and Language Information Processing



l Implementation -

 Mandarin Chinese speech
synthesis with MD-DBN [Kang 2013]
— Model training
« Stacking up RBMs

[oloRNoY e

MICIOEN®) Q@ Q@ heh

- Extend the (L-1)-th layer with Context Features &4
context features o @ oo
— Synthesis a
e ¥ » LD DO --Qy
— Gibbs sampling between [x, h(:=D] and Acoustic Features

h®) with x clamped
° h(L_l) > eee N h(l) —y

— Using the mean value of Pr(h(~V|p®)
and p(y|h®D)

* Frame interpolation

-
National Engineering Laboratory @
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Experiments

« Mandarin corpus ~80min

* QObjective evaluation
— HMM baseline = 0.223

MGC Distortion

« Subjective evaluation il ol
— outperform HMM baseline for
modeling and predicting spectral Sﬁ’;‘{i’;{“ 1\7/1(;):
features DBN 5 88
— the low-dimensional FO features e DR i s HED Dt
are not well modeled Table 1. MOS test result

[Kang 2013]

1\
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Extensions -

* Visual Speech Synthesis [Liu 2015]
— 2D image-based approach

— HMM-based lip movement generation
— Using RBM/DBN to model visual features for HMM states
* PCA coefficients or raw pixels as visual features
* RBM for each HMM state
* DBN for joint modeling of context features and visual features

baseline  RBM-PCA RBM-PXL DBN-PXL DBN-PXL

\ National Engineering Laboratory @
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Input-to-feature mapping using
deep-structured NNs

\
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l Framework -
 Motivation

— To better describe the complex dependency
between input context features and output

acoustic
Acoustic Features
Q0«0
 Method 3
— Model the conditional distribution p(y | x) OOﬁ---O
directly using deep conditional models, e.qg.
DNNs or RNNs QOO
X input context features O Oﬁ o
y output acoustic features e a e

1\
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l History -

« Application of NNs in speech synthesis since 1980’s

. (1986) ,
Terrence J. Sejnowski and Charles R. Rosenberg

NETtalk: a parallel network that learns to read aloud
The Johns Hopkins University Electrical Engineering and Computer Science Technical Report
JHU/EECS-86/01, 32 pp.

« Popularity of DNN-based acoustic modeling for speech
recognition since 2009

* The first attempt of DNN-based acoustic modeling for
speech synthesis at ICASSP 2013 [zen 2013

STATISTICAL PARAMETRIC SPEECH SYNTHESIS USING DEEP NEURAL NETWORKS
Heiga Zen, Andrew Senior, Mike Schuster

Google

{heigazen, andrewsenior, schuster}@google.com
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Implementation

 Input linguistic features

B e I
— frame-level ' )
Input layer Hidden layers utput layer
* binary answers to questions about contexts —— (Db @ @,
* numeric context descriptors @W@M@X@}?
‘0"2 \0 \‘

 position of current frame within a segment
« segment durations

— HMM-based alignment is necessary

* Output acoustic features
— frame-level (static+dynamic)

features at frame 1

Input features including
binary & numeric

) : T /)
o

\/‘ \\/ ‘\\// \
"‘@m @vv
AN //‘\.

binary & numeric
features at frame T'

Input features including

|_i aouanbas Jojea Jejeweled yoeads Jo (JeA § ueaLl) sonsnels |

« MCC
* logF0
- excitation aperiodicity S| Cods 1| seredr

« voiced/unvoiced flag [Zen 2013]
en

oy .
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* Model training

Implementation

— sigmoid activation function

— {input, output} pairs from training data
— minimize mean square error

— random initialization / BP training

« Synthesis

— text analysis

— duration prediction
— compose frame-level linguistic features
— predict acoustic features using DNN

— parameter generation with dynamic features
» predicted output acoustic features as mean vectors
» frame-independent variances of all training data

"

Text
analysis

Input feature
extraction

Input layer Hldden layers

\«'

Input features including
binary & numeric
features at frame 1

D
Yooy

0
M“\\{%

~—— TEXT

Output layer

@\\

binary & numeric
features at frame T'

Input features including

WE N NN
W@%\% @Q\\'fi@}

&\. V4 ‘0 ’
froodios

|_i aouanbas JojaA Jejewelred yoaads Jo (JBA § UBBLW) SONSIIEIS |

SPEEBH Waveform |

Parameter

synthesis

generation

[Zen
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Experiments

« Database
— a US English female voice of 33,000 utterances

* QObjective evaluation

—+— DNN (256 units / layer)

—+— DNN (512 units / layer)

—+— DNN (1024 units / layer)

—s=— DNN (2048 units / layer)

—a— HMM

Total number of parameters

[Zen 2013]

Total number of parameters

for Speech and Language Information Processing
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Experiments

« Subjective evaluation

HMM DNN
(o) (#layers x #units) | Neutral p value | z value
15.8(16) | 38.5 (4 x 256) 45.7 S | -9.9
16.1(4) 27.2 (4 x 512) 56.8 < 1076 -5.1
12.7 (1) 36.6 (4 x 1024) 50.7 <106 -11.5

[Zen 2013]

— The DNN-based system achieved better naturalness than the
HMM-based one with similar number of parameters

\
National Engineering Laboratory
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Variations -

* Model structure

* Representation of input features
* Representation of output features
« Training Criterion

» Other topics

-
National Engineering Laboratory _'
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Variations -

 Model structure

\ . ..
National Engineering Laboratory
- for Speech and Language Information Processing



Mod

el structure

Variations

DNN—-DMDN [zen 2014] = DCRBM [Yin 20163a]
* Provide better modelling ability of p(y|x)

o v | oo

p(y|x) single Gaussian

E walx) w2y )
m . wi(es) wales) ;
ol wn (z1) d
. 721} ay(zz) a,(2z)
l ay(z) /
@ - - y — - - ¥
E i“l pilxn)  pale) milze) pal=s) milEr) palEr)
]
£ S| wiles) palwy) ou(@a) walz) palen)aa (@i hwa(ma) palas) o) walzs) palaa) 7a(Ta) wy(zr) m(rr) ofer) wazr) palzr) oaler)

)
25
[ =]

3] f
boll Iir—«\‘?\
g3 ttt
El "“'- ‘»’7’
§5
e
ER!

o (=%
=]
[ t [}

g

Deep Mixture Density Network

i

uonessualb
Jajaweled

sisayjuls
[ITTTSTET TV

HMM- RBM- DNN- DMDN  DCRBM N/P
Baseline HMM  Baseline

HOAIdS =—

15.00 - — — 74.38 10.62
- 30.62 - - 58.75 10.63
— — 18.75 - 69.38 11.87

— - 21.88 63.75 9.38

AN RIS A ST TS > .
Deep Conditional Restricted Boltzmann Machine
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Variations

» Model structure
— DNN—-=RNN [Fan 2014]

Vocoder —m Waveform

Y

» Better capture temporgl information for 7 e TR D
sequence transformation ? T T
« Bidirectional Deep RNN 5 g
.‘_
 LSTM units 3
Hybrid_B Neutral Hybrid_A

59% 19% 22%
Hybrid_B Neutral HMM

a8

.

55% 25% 20%
Hybrid_B Neutral DNN_B

Hybrid_A 3 FF + 1 BLSTM %l %1 | i
Hybrid_B 2 FF + 2 BLSTM .r‘ f‘
C Input featres —
« A investigation on the effects of LSTM gate e "

[WU 2016] Taxh—W Analysis ™| Extraction

— The forget gate is the only critical component

\ . ..
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Variations -

* Representation of input features

\
National Engineering Laboratory
for Speech and Language Information Processing



Variations

» Representation of input features

— Vector space representation of linguistic contexts [Lu 2013]
« gather co-occurrence statistics of words/letters
 derive low-dimensional representation of words/letters by SVD
 only orthographic information (graphemes) used
* require no language knowledge to build a model

requires
makes
education
research
cooperation
requires
educalbn
research

W
O
=
[ —

makes

L]
o
E
=

[=
2
=
a
=]
8

the . the ...
and .. = and...
G it .. :
S
| = =
w 5 ¢ 8 8 &
- ™ - oy T og 2 8 ©
o o o a E ¢ E B 2 8
the . the D1 . D1
and = and D2 | D2

..........

Figure 4.1: Graphical toy example of the induction of word representations vie  [Watts 2013]

stngular value decomposition (a logarithmic grey-scale is used).
\ National kngineering Laboratory
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Variations

» Representation of input features
— Word embedding for RNN-based TTS [wang 2015]

* Word embedding: low-dimensional continuous-valued vector for words
» Achieve word embeddings using neural network language model (NNLM)

| |
I
Neural Network BL-_S_-[‘M‘BNN____ :
Clwi_1) Clwi_a) C'lwe)
W W [w
E I -2 ; I () |
structure of NNLM structure of BLSTM-RNN with word embeddings

« significantly improve the performance of the baseline system without using TOBI
and POS as input features

« still has a gap to the upper bound system, which uses manually labeled POS
and TOBI as input features for both training and testing

1\
| National Engineering Laboratory
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Variations

» Representation of input features

— Sentence-level control vector [Watts 2015]

» Use a low-dimensional vector representation of sentence acoustics to control
the output of DNNs

« Learn sentence vectors together with other model parameters

« Control the global prosodic characteristics of synthetic speech using sentence
vectors at run time

vocoder
[ parameters
W, — 300
[ | T 250
-~ o 200
W, T 150
F
W,
[ | 5
1 W 4 sentence 2
1 control vector %
| V4 | | /l/ 1-of-k coding of 2
1 P sentence index -30 L . L
linguistic 0.0 0.5 1.0 15 2.0
Seatures | G I time (seconds)
model architecture variation in synthetic FO and gain controlled by sentence vectors

-
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Variations

Representation of input features

— Speaker code for DNN-based speech synthesis [Hojo 2016]
* To utilize multi-speaker corpus
» To achieve speaker-adaptation under DNN framework

Output Qutput QOutput

Input Speaker Code (S) Input Speaker Code (S) Input

Figure 1: The architecture of DNNs. (left: the conventional
model, middle: the proposed model using a single hidden layer,
right: the proposed model using all hidden layers)

« produce more natural speech than the speaker-dependent method

« adaptation using speaker codes can achieve quality comparable to or better
than the conventional HMM-based methods

National Engineering Laboratory
for Speech and Language Information Processing




Variations -

* Representation of output features

\
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Variations

* Representation of output features
— Low-dimensional spectral features,

e . g . F'ul::ﬁ train
« mel-cepstral coefficients [Zen 2013] AL e}
- - ot nnmnn
* line spectral pairs [Fan 2014] TN e Bl F.T.“.T.W
Speech | | LG LTIJLG;%L@ITL%@LI |
311
— Raw spectral envelopes extracted by ceopsm oo ”" Lo
STRAIGHT [Yin 20163] “ (5
— Complex-valued spectral features [Hu ) M
2016] ks
] Linguistic fea:ure extraction |
— Speech waveforms [Tokuda 2016] ?

diagram of waveform-based framework

\ ; ..
National Engineering Laboratory
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Variations

* Representation of output features

— WaveNet by DeepMind [van den Oord 2016]
* Model the joint probability of a waveform using a product of conditional PDFs

HPIt|11 b 1]

» The conditional PDF is modelled by a stack of convolutional layers

O O O O .O__ ® @ @ 0 O ® @ @ @ O i Output

: :-_::__'___._: = Dilation = 8
O e Hidden Layer

P I S e S - (iman =4
O 18 i ; O : - Hidden Layer

e b . '. | Dilation = 2
o ) O Hidden Layer

l l Dilation = 1

Input

dilated causal convolutional layers to increase receptive field

e (ated convolution: works better than ReLU
z = tanh (Wy *x) © o (W1 * x)

\
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Variations

* Representation of output features

— WaveNet by DeepMind [van den Oord 2016]
« Softmax at output layer
— u-law companding, 16bit - 8bit, 65536 - 256
« Residual and skip connections for entire architecture

= [COSmIT

Skip-connections

« Conditional WaveNet for integrating linguistic features for TTS

z = tanh (I‘I"Tf_k * X + L‘rﬁk *xyV) O o (va;\ * X L;,L * y)\

transformed from linguistic features

\
National Engineering Laboratory
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Variations

* Representation of output features

— WaveNet by DeepMind [van den Oord 2016]
» Performance

| Subjective 5-scale MOS in naturalness

Speech samples \ North American English Mandarin Chinese
'~ LSTM-RNN parametric 3.67 £ 0.098 3.79 + 0.084
HMM-driven concatenative 3.86 +0.137 3.47 +£0.108
WaveNet (L+F) 4.21 + 0.081 4.08 £ 0.085
Natural (8-bit p-law) 4.46 £+ 0.067 4.25 + 0.082
Natural (16-bit linear PCM) 4.55 4+ 0.075 4.21 40,071

 unified NN structure for acoustic modeling + vocoder

* nonlinear adaptive filtering

« Kkey points: wide receptive field + softmax output
 issues: prosodic modeling; efficiency at synthesis time

\
National Engineering Laboratory
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Variations -

« Training Criterion

\ . ..
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 Training criterion

Variations

— Minimum perceptual error training [Valentini-Botinhao 2015]
» Spectro-Temporal Excitation Pattern (STEP) domain for cost calculation

Training
E

Vuv
FO

— DNN e @5?&: ﬁsmﬁ “f“

BAP

normalized

label T
FO SPEC BAP

normalization

Generation
Fo — MLPG
u
| DNN IJI;‘ '2 vocoder —
MCEP SPEC. |5
m
i —— MLPG
BAP
normalized
label

- - Il . | * #
Figure 1: Training and generation for DNN-step. D and T represent the transformation from Mel cepstral coefficients to spectrum and

spectrum to STEP respectively.

+ Experimental results: warped log spectrum > STEP > mel-cepstra

L

National Engineering Laboratory
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Variations

 Training criterion

— Multi-task learning and stacked bottleneck features [Wu 2015a]
 to predict a perceptual representation of the target speech as a secondary task
» to produce a wide context around the current frame using bottleneck features

Main task  Secondary task Main task  Secondary task
| Z, Vi U | [ ﬂ | z,
QOO
'\'-‘-..__‘:"1-‘:"_;5-‘?" — :
.""""1Bottleneck feature .I. . . h %gmmv T
: T T 3 _IMTLDNN (Formant) [——
SRR LM (5P ' '
; MTLDNM (Gammatone)
.I,I,I. h, I MTLDNN (STEP)
i;.h-";ﬁ:«;ﬂ [ ONN-DNN :
0 P P B TLDNN-MTLDNN
OQOO A, _ , ,
Y ﬁ 25 30 a5 40 45 50 55 60
O O"O O O 6] Maturalness score
Xy B, vq Bz Biya X, MUSHRA evaluation results with 90% confidence interval

\ . ..
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Variations

 Training criterion
— Trajectory training considering global variance [Hashimoto 2016]

+ the inconsistency between training and synthesis criteria - trajectory training
» the over-smoothing of generated parameter trajectories > GV

conventional objective function

T
L = P(o|A) = N(o|p, 2) = [ [N(ot|pt, =)

3.63
3.54
objective function of trajectory training with o = W¢ |
1 = - 3.12
ﬁTi‘j = -Z-P(ﬂl)i) = P(C|A) = N(C|C, P) g5
objective function of trajectory training considering GV : 2 I
HMM DNN

wT
ﬁGVTr_;-' = P(Cl)‘)P(”(c”A: Av) THDNN  GVTDNN

o N(C|E P)N('v(ﬂ) |'U(E) ¥ )-wT Fig. 2. Mean opinion scores of the four speech synthesis systems.
- 1 ! v
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Variations -

» Other topics

\ . .
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l Variations -
» Other topics

— Multi-speaker & Multi-lingual

» Multi-speaker & speaker adaptation [Fan 2015] [Wu 2015b]

« Multi-lingual multi-speaker acoustic modeling [Li 2016]

» Cross-lingual learning for low-resource languages [Yu 2016]
— Modeling excitation features

* Modeling FO in hierarchically structured DNNS [Yin et a/. 2016b]

» Modeling glottal flow signals using DNNSs [Raitio 2014]

* Modeling SEW/REW components using DNNs [Song ef a/. 2015]
— Practical implementation

» Uni-directional LSTM-RNN for low-latency TTS [zen 2015]

« LSTM-RNN TTS on mobile devices [zen 2016]

oy .
National Engineering Laboratory _
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Outline -

« Statistical Parametric Speech Synthesis (SPSS)
« HMM-Based SPSS

« Some Key Techniques of Deep Learning

* Deep Learning Based Acoustic Modeling for SPSS

* Deep Learning Based Feature Representation for SPSS

« Deep Learning Based Post-Filtering for SPSS

« Other Applications of Deep Learning for Speech Synthesis

e Discussion & Summary
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B =
e Aims

— To extract spectral features from raw spectral representations for
acoustic modeling using deep learning techniques

— Raw spectral representations
» Spectral envelope extracted by STRAIGHT [Kawahara 1999]
» Spectral envelope extracted by WORLD [Morise 2015]
« FFT spectrum
— Deep learning techniques
« DBN
* Deep Auto-Encoder (DAE)

-
National Engineering Laboratory @
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. DBN-base feature extraction (2016 -

« Train a DBN to model STRAIGHT spectral envelope

— Binary samples are drawn as training data for upper layer RBMs

> Bernoulli-Bernoulli RBM

<— Gaussian-Bernoulli RBM

STRAIGHT spectrum

N
National Engineering Laboratory
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. DBN-base feature extraction jHu 20164 -

« Map STRAIGHT spectrum into binary codes
— a visible feature vector ¥ > DBN-based binary codes (DBC) h’

;}}‘;‘ = p(hs = [jRrF1) h) = o

- plhs = 1|h"~1) are binarized using a threshold of 0.5 to obtain i
DBC

> Bernoulli-Bernoulli RBM

_ *“(. <— Gaussian-Bernoulli RBM
L) i)

STRAIGHT spectrum

\
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. DBN-base feature extraction jHu 20164

* Use DBC in HMM-based B

Speech Corpus

acoustic modeling | T et
FO and Spectral B sonsmmnong! DEBE Fez;ture :
. . Parameter h_____f(_r_a,c__o_'l_____l
— model clustering / alignment L L
using conventional HMM with I | 4 st gnmen | =<, ooz |
mel-cepstra as spectral features | #vmaining |* '
— m0d§| DBCS with Bernoulli oot (DBN-bace inary Codes)
distributions at HMM states | Training
Synthesis _________ Wiy
— maximum likelihood training predton
— maximum output probability ! " Spectrl Envelope
. Input_' Spectral Parameter ! Reconstruction |
generahon Text Prediction | andTemporal |
h |___Smoothing |
Synthesizer
v
Synthetic Speech

oy T
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DBN-base feature extraction jHu 20164

« Experiments

— CMU ARCTIC database / female speaker SLT

HMM_Baseline
8000
N 6000
=
; 2 4000
4> ¢S S IS S
L;.E 2000
DBC- HMM- HMM-  RBM- N/P !
HMM _ Baseline GV HMM ¥
68.3 S - 14.2 < 0.001
47.0 i 202 . ME <000l s
56.0 - - 24.2 288 <0001 _
;N_ 6000
Preference Scores (%) 2 4000
£ 2000

o

Time (s)

STRAIGHT spectrogram of synthetic speech
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. DAE-base feature extraction rakaki 2016; -

 Build a DAE to extract low-dimensional features from
STRAIGHT/WORLD/FFT spectrum

« Deep auto-encoder (DAE)

— an deep neural network with multiple layers of encoders and
decoders to learn a compressed representation of input vector

ﬂ‘l1

20019

— layer-wise pre-training
— minimum MSE fine-tuning

B4

2049

 DNN acoustic modeling

1-hidden—layer
114 | auto—encoder

|”ﬁ

1-hidden—layer
auto—encoder

- =
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l DAE-base feature extraction rakaki 2016;

« Experiments
— Blizzard Challenge 2011 database, 17hrs, 48kHz

50
45|

95% confidence interval —

< 40}

o
t5 35|
|
S 30}
25| o
55 Subjective results
MCELp DA

ﬁMM RT MCE RT DP\E MCEP

g 26

S 25,

5 241 .

€ 53 | Objective results

2 48
2 ﬂMM RTM TDP*E M CEPTDAE (mean GV of log spectra)
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Outline -

Statistical Parametric Speech Synthesis (SPSS)
HMM-Based SPSS

Some Key Techniques of Deep Learning

Deep Learning Based Acoustic Modeling for SPSS

Deep Learning Based Feature Representation for SPSS
Deep Learning Based Post-Filtering for SPSS

Other Applications of Deep Learning for Speech Synthesis

Discussion & Summary
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Overview -
 Motivation

— To deal with the over-smoothing effect of parameter generation

« Method

— To map generated spectral features towards natural ones using
DNNs or DBNs

\ ; ..
National Engineering Laboratory
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GTDNN for post-filtering chen 2015

« Generatively trained DNN (GTDNN)

— train a DNN in a generative way without fine-tuning to map
generated spectral features towards natural ones

— initially proposed for voice conversion

[
| | |
I 01 |
hi : — | hi
| i DNN Postfilter
L BAM___ | ’ .
i s

E _r_é__iiif_?:»]_ | QO B
ot T i g
Rl
. oo cooo |
| _ _DBN(Sw) | | DBN(Nay_

\ ; ..
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GTDNN for post-filtering chen 2015

« Experiments
— British male/Scottish female speakers (2840/4546 sentences); 48kHz

L

- MU

100 i
50 > |
a0t
70
Bl 3
sl
4{].—
of
20t |

10—

SHRA tests with other post-fil

!
NONE

— | 1
PF Gv MS DMN-MCEP DNM-SPEC

male speaker

100

gG.

a0

70

&0

50

4_G_

30

tering techniques

/AN \JEN KN JEN
| ! :
} | | | L
4 ! ! I . l
lf ] : . : ; 1
i ' L '
— i I [ L
[ | ) oe
i ‘ = | :
Lo ! | | .
i i -t | A i
MNOMNE PF GY MS DNN-MCEP DNN-SPEC

female speaker

— Disadvantage: poste-filter depends on parameter generation
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l DBN for post-filtering [Hu 2016b; -

A simplified version of GTDNN-based post-filtering

— Discard the BAM for feature mapping

— Use two identical DBNs trained from natural speech
Training

— Train a DBN similar to the DBN-based feature extraction
Synthesis

— Convert generated spectral features into spectral envelopes

— Map spectral envelopes into DBCs in a bottom-up manner

— Reconstruct spectral envelopes from DBCs in a top-down manner
Performance

— mel-cepstra: achieve equivalent performance to GV
— LSPs: outperform the formant enhancement method

\ \ \ (LN
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Outline -

« Statistical Parametric Speech Synthesis (SPSS)
« HMM-Based SPSS

« Some Key Techniques of Deep Learning

* Deep Learning Based Acoustic Modeling for SPSS

* Deep Learning Based Feature Representation for SPSS

« Deep Learning Based Post-Filtering for SPSS

« Other Applications of Deep Learning for Speech Synthesis

e Discussion & Summary
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End-to-End SPSS

« Attention-based Recurrent Sequence Transducer (ARST)
for end-to-end SPSS [wang 2016]

— Motivation
« directly mapping from text sequence to acoustic trajectory
* bypass text analysis / learn alignment
» success of attention-based recurrent networks in machine translation, ASR, etc.

— ARST generate y = (y1,y,, ..., y7) from x = (x4, x5, ..., x), where T >» L

'
Yia

e et At SRS |
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End-to-End SPSS -

« Attention-based Recurrent Sequence Transducer (ARST)
for end-to-end SPSS [wang 2016]
— Some specific techniques for applying ARST to TTS

— Experiments
* 7-hr Mandarin database; 16kHz
» untoned phoneme - LSPs
» ARST can generate smooth trajectories; fairly intelligible; inferior to DNN
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Deep Learning for Unit Selection

« DNN-guided unit selection [merritt 2016]
— Hybrid synthesis

» Use statistical models to guide the selection of natural units
 HMMs + acoustic feature domain

— Proposed hybrid target cost

 DNNs + context embedding (bottleneck feature) domain

Main task ~ Secondary task Main task  Secondary task

[Wu 2015a]
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Deep Learning for Text Analysis

« Grapheme-to-Phoneme Conversion using LSTM-RNN [Rao

2015]
[{g, 0,0,0l €} ]
Model Word Error Rate (%)

Galescu and Allen [4] 285
Chen [7] 24.7
Bisani and Ney [2] 24.5
Novak et al. [6] 244
Wuetal [12] 234
5-gram FST 27.2
8-gram FST 26.5
Unidirectional LSTM with Full-delay 30.1
DBLSTM-CTC 128 Units 279
DBLSTM-CTC 512 Unuts 258

— — —
[ 0. 0.0.@0 J DBLSTM-CTC 512 + 5-gram FS' 213
model structure results on the CMU dataset
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Deep Learning for Text Analysis

* Prosodic boundary prediction using BLSTM-RNN [Ding 2015]

InputText: h EW T AR EEZERZDN

. : Boundary | P(%) | R(%) | F(%)
one-, Tepresen

Feature vectors: (L teatures PW | 9534 | 96.73 | 96.03
PPH | 8341 | 83.68 | 83.06

FFNN: IPH 84.85 | 73.39 | 78.71
results of using CRF
BLSTM-RNN:
= | Boundary | P(%) | R(%) | F(%) | Embedding feature size
Tag Inference s NBOSKIOSL i:‘:I PW 96.27 | 9691 | 96.59 300
0SS PPH | 82.80 | 87.13 | 84.96 400
sl S [PH 84.81 | 79.88 | 82.27 100
model structure results of using BLSTM-RNN & word embeddings
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Outline -

Statistical Parametric Speech Synthesis (SPSS)
HMM-Based SPSS

Some Key Techniques of Deep Learning

Deep Learning Based Acoustic Modeling for SPSS

Deep Learning Based Feature Representation for SPSS
Deep Learning Based Post-Filtering for SPSS

Other Applications of Deep Learning for Speech Synthesis

Discussions & Summary
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Discussion -

* Deep learning in ASR

acoustic model: to map acoustic features towards posterior
probabilities of senones using various NN architectures

language model: to predict current word using context words

 Issues of applying deep learning to TTS

rich context features

detailed spectral representations

long-term dependency, especially for prosodic features
perceptual-related objective function

comparison / integration with existing techniques
common datasets for evaluation

National Engineering Laboratory
for Speech and Language Information Processing



Discussion -
 Future directions

— to grow with the development of deep learning techniques
* DNN - LSTM-RNN - PixelCNN - ...
— towards unified modeling
« acoustic modeling + vocoder
 text analysis + acoustic modeling
— to be more flexible
* multi-speaker / multi-lingual / multi-style / expressive
— to make use of big data
* 1hr-> 10 hrs > 100 hrs - ...

\
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l Software -

« HMM-based Speech Synthesis System (HTS)
— http://hts.sp.nitech.ac.jp/?Home

 The Merlin toolkit

— For building neural networks for SPSS
— http://www.cstr.ed.ac.uk/projects/merlin/

« Toolkits for NN implementation
— Theano http://deeplearning.net/software/theano/

— TensorFlow https://www.tensorflow.orqg/
— CNTK https://www.cntk.ai/

National Engineering Laboratory
for Speech and Language Information Processing



Summary -

* the limitations of conventional HMM-based SPSS

« some basic techniques of deep learning, e.g., RBM, DBN, DNN, RNN

« various ways of applying deep learning techniques to SPSS, including
acoustic modeling, feature representation, and post-filtering, which
improved the quality of SPSS effectively

» three approaches to deep-learning-based acoustic modeling for SPSS
« detailed review on the acoustic modeling of SPSS using deep NNs

» the topics to be explored in the future
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Thanks for your attention !
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