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Speech Synthesis

• Speech synthesis
– Artificial production of human speech

• Text-to-speech (TTS)
– To convert normal language text to speech

front-end back-end



Speech Synthesis Methods (1/2)

• Rule-based, formant synthesis (~ ’90s)
– Hand-crafting each phonetic units by rules
– Base on source-filter model
• DECtalk [Klatt 1982]

• Corpus-based, concatenative synthesis ( ’90s~)
– Concatenate speech units (waveform) from a database
– Single inventory: diphone synthesis [Moulines 1990]

– Multiple inventory: unit selection synthesis (USS) [Sagisaka 1992], 
[Hunt 1996]



Speech Synthesis Methods (2/2)

• Corpus-based, statistical parametric synthesis
– Proposed in mid-’90s, becomes popular since mid-’00s

• Statistical
– Statistical acoustic model based prediction from context 

features to acoustic features
• Parametric

– speech vocoder based acoustic feature extraction and 
waveform reconstruction
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Speech Synthesis Methods (2/2)

• Corpus-based, statistical parametric synthesis
– Corpus + automatic training

⇒ Automatic voice building
– Source-filter model + statistical acoustic model

⇒ Flexible to change its voice characteristics
– HMM as its statistical acoustic model

⇒ HMM-based Speech Synthesis System (HTS)            
[Yoshimura 1999]
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Hidden Markov model (HMM)
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• Generate an observation 
sequence using a discrete 
and hidden state sequence



HMM-based Speech Synthesis (HTS)

• Framework



HMM-based Speech Synthesis (HTS)

• How to represent p (X |C ) 
– Context-dependent phoneme HMMs [Yoshimura 1999]

– Construct sentence HMM by concatenating phoneme HMMs

联合国…
Text

Context-dependent phonemes

Text analysis
Manual labeling

• ID of current/ surrounding phoneme
• Tones of current/surrounding syllables
• # of phonemes at current/ surrounding 

syllable
• Position of current syllable in current word
• …

Context features of each phoneme



HMM-based Speech Synthesis (HTS)

• Model training
– Maximum likelihood estimation 

using training database

– Decision tree clustering [Shinoda
2000]

– To train context-dependent 
state duration models
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HMM-based Speech Synthesis (HTS)

• Parameter generation
– To maximize p (X |C ) given the text analysis output C
– Two steps

– To generate smooth trajectories by introducing dynamic acoustic 
features and considering the constraints between static and 
dynamic features during parameter generation [Tokuda 2000]

State duration PDFs

Clustered HMM state PDFs



Limitations

• Degraded quality of synthetic speech
• Three factors [Zen et al. 2009]

– Limitations of the vocoder
e.g. STRAIGHT [Kawahara 1999]

– Inadequacy of acoustic modeling
e.g. trajectory HMM [Zen 2007], MGE training [Wu 2006]

– Over-smoothing effect of parameter generation
e.g. global variance [Toda 2007], minimum KLD [Ling 2012], 
modulation spectrum [Takamichi 2015]

How can deep learning techniques cope 
with these limitations?
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What is Deep Learning ?

 One of the various definitions: A class of machine learning
techniques that exploit many layers of non-linear information
processing for supervised or unsupervised feature extraction
and transformation, and for pattern analysis and classification.



Key Techniques of DL

• Modeling joint distribution, i.e., p(x) or p(x,y)
– Restricted Boltzmann Machine (RBM)
– Deep Belief Network (DBN)

• Modeling conditional distribution, i.e., p(y|x)
– Deep Neural Network (DNN)
– Recurrent Neural Network (RNN)



Key Techniques of DL

• Modeling joint distribution, i.e., p(x) or p(x,y)
– Restricted Boltzmann Machine (RBM)
– Deep Belief Network (DBN)

• Modeling conditional distribution, i.e., p(y|x)
– Deep Neural Network (DNN)
– Recurrent Neural Network (RNN)



Restricted Boltzmann Machines

• Model structure
– two-layer undirected graphical model without 

within-layer connections [Smolensky 1986]

– binary/real-valued visible units
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Restricted Boltzmann Machines

• As a density model 
– joint distribution over the visible and hidden units

where partition function can be estimated using the annealed 
importance sampling (AIS) method [Salakhutdinov 2009]

– marginal distribution over the visible units

– Estimate model parameters by ML learning using the 
contrastive divergence (CD) algorithm [Hinton 2002]

ࢎ

density model describing the distribution of vector



Restricted Boltzmann Machines

• As a density model
– Gaussian-Bernoulli RBM

• elements in the first product represent single-variable experts
• elements in the second product represent constraints between the input 

variables

• ு mixtures
• structured mean vectors ૚

• shared identity covariance matrices
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Restricted Boltzmann Machines

• As a density model — better than GMM
– Capable of modeling high dimensional features

• Visible units are conditional independent on each other
• Weights can capture cross dimensional correlations

– RBM can model more patterns than GMM
• A GMM with ு mixtures

– RBM can model shaper distributions
• Product of experts

– Better generalization and less over-fitting
• Binary hidden units create a information bottleneck and act as an 

effective regularizer



Deep Belief Networks

• Model structure
– a graphical model with multi-layer 

hidden units  [Hinton 2006]

– real-valued visible units and binary 
hidden units

– ௅ିଵ ௅ is represented by an RBM
௅, ௅, ௅

– ଵ and ௟ିଵ ௟ , 
are represented by sigmoid belief 

networks [Neal 1992] L=3
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Deep Belief Networks

• Popularly used for pre-training of DNNs [Hinton 2006]

• As a density model
– joint distribution over the visible and all hidden units

– marginal distribution over the visible units

• Model training
– difficult to estimate the model parameters directly under ML 

criterion
– Greedy learning using a stack of RBMs
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Key Techniques of DL

• Modeling joint distribution, i.e., p(x) or p(x,y)
– Restricted Boltzmann Machine (RBM)
– Deep Belief Network (DBN)

• Modeling conditional distribution, i.e., p(y|x)
– Deep Neural Network (DNN)
– Recurrent Neural Network (RNN)



Deep Neural Networks

• Model structure
– a feed-forward, artificial neural network 

with than one layer of hidden units 
between input and output layers [Hinton 
2006]

– non-linear activation function at hidden 
units

•

• Sigmoid / ReLU …



Deep Neural Networks

• Model structure
– Output layer

• Softmax function for classification

• Linear function for regression

– Parameter set



Deep Neural Networks

• Model training
– Loss function

• Cross entropy for classification

• Mean square error for regression

– Parameter estimation
• Back-propagation [Rumelhart 1985]

• Momentum / Weight decay
• Pre-training using DBNs (stack RBMs), DAEs (deep auto-

encoders)



Deep Neural Networks

• Consider a DNN for regression as a probabilistic model
– a conditional PDF of y given x

– minimizing the mean square error between and with respect to  
is equivalent to the ML estimation of

Observed output Observed input

Gaussian distribution

Nonlinear transform 
from input using 



• Model structure
– a dynamic neural network where there are cyclical connections 

among hidden nodes [Hopfield 1982]

– provide better ability of processing dynamic and temporal information
– e.g. a regression RNN with one hidden layer

– stacking multiple recurrent hidden layers to build a deep RNN
– unidirectional vs. bidirectional

Recurrent Neural Networks



• Consider a RNN as a conditional PDF
– Unidirectional

– Bidirectional 

• Model training
– Back-propagation through time (BPTT) [Werbos 1990]

– Training difficulty: exploding and vanishing gradients

Long Short-Term Memory (LSTM) cell

Recurrent Neural Networks



Long-Short Term Memory (LSTM)

• An LSTM cell [Hochreiter 1997]

– a complex hidden unit with gating structure
– the information flow transmitting iteratively through the network is 

controlled by the input gate , forget gate, output gate and the cell 
memory state

– capable of remembering information from a long span of time steps
– success in speech recognition [Graves 2013a], handwriting generation 

[Graves 2013b], etc.
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• Input-to-Cluster mapping using decision trees
– Inefficient for expressing complex context dependencies, e.g. XOR

Overfitting to the training data due to the data partitioning issue

• Cluster-to-feature mapping using Gaussians
– Difficulty in estimating full covariance matrices

Using low-dimensional spectral parameters (mel-cepstra / LSPs)
Detailed characteristics of the raw spectra are lost

– Averaged model means by ML training
Outputs of MLPG distribute near the modes (means) of Gaussians
The generated spectral features are over-smoothed

Need better models for acoustic modeling of SPSS !

Limitations of HMM-Based AMs



DL-Based Acoustic Modeling for SPSS

• Since 2013

• Three different strategies
– Cluster-to-feature mapping using 

RBMs (USTC & Microsoft)
– Input-to-feature mapping using 

DBNs (CUHK)
– Input-to-feature mapping using 

deep-structured NNs (Google)

• A survey paper @ IEEE SPM



Cluster-to-feature mapping using RBMs



Framework

• Motivation
– The advantages of RBMs in describing 

the distribution of high-dimensional 
observations with cross-dimension 
correlations

• Method [Ling 2013]

– Features
High level spectral parameters         

Low level spectral envelopes
– State PDFs

Gaussian distributions

RBMs



Implementation

F0 and Spectral 
Parameter Extraction

Clustered CD-HMM 
Training

Speech Corpus

Parameter Generation 
& Synthesizer

Synthetic Speech

Input Text

Fully CD-HMM 
Training

Decision-Tree-based 
Model Clustering

• Conventional HTS model training
• Spectral parameters (mel-cepstra/LSPs)



Implementation

F0 and Spectral 
Parameter Extraction

Clustered CD-HMM 
Training

Speech Corpus

Parameter Generation 
& Synthesizer

Synthetic Speech

Input Text

Fully CD-HMM 
Training

Decision-Tree-based 
Model Clustering

• Store the original spectral envelopes 
extracted by STRAIGHT



Implementation

F0 and Spectral 
Parameter Extraction

Clustered CD-HMM 
Training

Speech Corpus

Parameter Generation 
& Synthesizer

Synthetic Speech

Input Text

Fully CD-HMM 
Training

Decision-Tree-based 
Model Clustering

• Gather spectral envelopes for each 
clustered context-dependent state

• Feature vector of spectral envelopes 
consists of static / velocity / 
acceleration components



Implementation

F0 and Spectral 
Parameter Extraction

Clustered CD-HMM 
Training

Speech Corpus

Parameter Generation 
& Synthesizer

Synthetic Speech

Input Text

Fully CD-HMM 
Training

Decision-Tree-based 
Model Clustering

• RBM estimation for each state



Implementation

F0 and Spectral 
Parameter Extraction

Clustered CD-HMM 
Training

Speech Corpus

Parameter Generation 
& Synthesizer

Synthetic Speech

Input Text

Fully CD-HMM 
Training

Decision-Tree-based 
Model Clustering

• Simplify the generation problem by 
Gaussian Approximation



Mode Estimation

- RBM no close-form solution gradient descent updating

Gaussian Approximation

N
Gaussian distribution RBM at each HMM state

࢜ sample covariances & diagonal

[Ling 2013]



Experiments

• Experimental Conditions
– 1-hour Chinese speech database; female speaker; 16kHz/16bits
– 800 utterances for training / 200 utterances for test
– Low-level spectral features: STRAIGHT spectral envelopes (513)
– High-level spectral features: mel-cepstra (41)
– Context-dependent HMM training using mel-cepstra

• MDL-based DT clustering: 1,612 states for spectral stream

– RBM training
• CD with 1-step Gibbs Sampling
• learning rate = 0.0001; batch size = 10; epoch = 200



Experiments
• Comparison between GMMs and RBMs as state PDFs

– average log-prob. on the training and test sets when modeling the 
mel-cepstra (left) and the spectral envelopes (right)

– a state with 650 training frames and 130 test frames
– GMM mixture number: 1~64
– RBM hidden unit number: 1~1,000
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Experiments
• Comparison between GMMs and RBMs as state PDFs

– GMMs have a clear tendency of over-fitting with the increasing of 
model complexity

– RBM shows consistently good generalization ability with the 
increasing of the number of hidden units
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Experiments
• Comparison between GMMs and RBMs as state PDFs

– Mel-cepstra
• the gain of using the density models more complex than a single Gaussian 

distribution are relatively small  ←  decorrelation processing of cepstral analysis

– Spectral envelopes
• the gain becomes much more significant for both GMMs and RBMs
• RBMs can give much higher test log-prob. than GMMs 
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Experiments

• System construction

System Spectral Features State PDF

Baseline mel-cepstra single Gaussian

GMM(1) spectral envelopes single Gaussian

GMM(8) spectral envelopes GMM, 8 mixtures

RBM(10) spectral envelopes RBM, 10 hidden units

RBM(50) spectral envelopes RBM, 50 hidden units



Experiments

• Subjective preference scores

– Baseline and GMM(1) have very similar synthetic results
– GMMs and RBMs are significantly better than single Gaussian 

when modeling spectral envelopes
– superiority of RBM over GMM in modeling the spectral envelopes
– performance of the RBM-based systems is influenced by the 

number of hidden units used in the model

Baseline GMM(8) RBM(10) RBM(50) N/P p

18.67 48.00 - - 33.33 0.0014

12.00 - 50.67 - 37.33 0.00

5.33 - - 70.67 24.00 0.00

- 16.00 - 69.33 14.67 0.00

- - 9.33 37.33 53.33 0.00



Demos

System Spectral Features State PDF Demo

Baseline mel-cepstra single Gaussian

GMM(1) spectral envelopes single Gaussian

GMM(8) spectral envelopes GMM, 8 mixtures

RBM(10) spectral envelopes RBM, 10 hidden units

RBM(50) spectral envelopes RBM, 50 hidden units



Extensions

• Other generative models
– Deep Belief Network (DBN) 

[Ling 2013]

– Neural Autoregressive Distribution 
Estimator (NADE) [Yin 2014]



Extensions

• Other applications
– Voice conversion [Chen 2013]



Input-to-feature mapping using DBNs



Framework

• Motivation
– To model all data in a centralized network and avoid data partitioning
– To model spectral coefficients without independence assumptions

• Method
– Model the joint distribution p(x,y) using a single DBN

x input context features
y output acoustic features



Implementation

• Mandarin Chinese speech 
synthesis with MD-DBN [Kang 2013]

– Input context features
• 1-of-k code of tonal syllables

– Output acoustic features
• Syllable-level spectrum and 

excitation features
• MGCs / log energy / log F0 / UV flag

– Multi-distribution DBN
• Different types of distribution units 

in  the visible layer 
(Gaussian/Bernoulli)



Implementation

• Mandarin Chinese speech 
synthesis with MD-DBN [Kang 2013]

– Model training
• Stacking up RBMs
• Extend the (L-1)-th layer with 

context features
– Synthesis

• ሺ௅ିଵሻ

– Gibbs sampling between ሾ࢞,  ሺ௅ିଵሻ] andࢎ
ሺ௅ሻࢎ with ࢞ clamped

• ሺ௅ିଵሻ ሺଵሻ

– Using the mean value of Pr ࢎ ௟ିଵ ࢎ ௟

and ݌ ࢟ ࢎ ଵ

• Frame interpolation



Experiments

• Mandarin corpus ~80min

• Objective evaluation
– HMM baseline = 0.223

• Subjective evaluation
– outperform HMM baseline for 

modeling and predicting spectral 
features

– the low-dimensional F0 features 
are not well modeled

[Kang 2013]



Extensions

• Visual Speech Synthesis [Liu 2015]

– 2D image-based approach
– HMM-based lip movement generation
– Using RBM/DBN to model visual features for HMM states

• PCA coefficients or raw pixels as visual features
• RBM for each HMM state
• DBN for joint modeling of context features and visual features

baseline RBM-PCA RBM-PXL DBN-PXL DBN-PXL



Input-to-feature mapping using 
deep-structured NNs



Framework

• Motivation
– To better describe the complex dependency 

between input context features and output 
acoustic 

• Method
– Model the conditional distribution p(y | x) 

directly using deep conditional models, e.g. 
DNNs or RNNs

x input context features
y output acoustic features



History

• Application of NNs in speech synthesis since 1980’s

• Popularity of DNN-based acoustic modeling for speech 
recognition since 2009

• The first attempt of DNN-based acoustic modeling for 
speech synthesis at ICASSP 2013 [Zen 2013]



Implementation

• Input linguistic features
– frame-level

• binary answers to questions about contexts
• numeric context descriptors
• position of current frame within a segment
• segment durations

– HMM-based alignment is necessary
• Output acoustic features

– frame-level (static+dynamic)
• MCC
• logF0
• excitation aperiodicity
• voiced/unvoiced flag

[Zen 2013]



Implementation

• Model training
– sigmoid activation function
– {input, output} pairs from training data
– minimize mean square error
– random initialization / BP training

• Synthesis
– text analysis
– duration prediction
– compose frame-level linguistic features
– predict acoustic features using DNN
– parameter generation with dynamic features

• predicted output acoustic features as mean vectors
• frame-independent variances of all training data

[Zen 2013]



Experiments

• Database
– a US English female voice of 33,000 utterances

• Objective evaluation

[Zen 2013]



Experiments

• Subjective evaluation

– The DNN-based system achieved better naturalness than the 
HMM-based one with similar number of parameters

[Zen 2013]
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Variations

• Model structure
– DNN DMDN [Zen 2014] DCRBM [Yin 2016a]

• Provide better modelling ability of p(y|x)

Deep Conditional Restricted Boltzmann MachineDeep Mixture Density Network

DNN DMDN DCRBM

p(y|x) single Gaussian GMM RBM



• Model structure
– DNN RNN [Fan 2014]

• Better capture temporal information for 
sequence transformation

• Bidirectional Deep RNN
• LSTM units

Hybrid_A 3 FF + 1 BLSTM
Hybrid_B 2 FF + 2 BLSTM

• A investigation on the effects of LSTM gates 
[Wu 2016]

– The forget gate is the only critical component

Variations
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Variations

• Representation of input features
– Vector space representation of linguistic contexts [Lu 2013]

• gather co-occurrence statistics of words/letters
• derive low-dimensional representation of words/letters by SVD
• only orthographic information (graphemes) used 
• require no language knowledge to build a model

[Watts 2013]



Variations

• Representation of input features
– Word embedding for RNN-based TTS [Wang 2015]

• Word embedding: low-dimensional continuous-valued vector for words
• Achieve word embeddings using neural network language model (NNLM)

• significantly improve the performance of the baseline system without using TOBI 
and POS as input features

• still has a gap to the upper bound system, which uses manually labeled POS 
and TOBI as input features for both training and testing

structure of NNLM structure of BLSTM-RNN with word embeddings



Variations

• Representation of input features
– Sentence-level control vector [Watts 2015]

• Use a low-dimensional vector representation of sentence acoustics to control 
the output of DNNs

• Learn sentence vectors together with other model parameters
• Control the global prosodic characteristics of synthetic speech using sentence 

vectors at run time

model architecture variation in synthetic F0 and gain controlled by sentence vectors



Variations

• Representation of input features
– Speaker code for DNN-based speech synthesis [Hojo 2016]

• To utilize multi-speaker corpus
• To achieve speaker-adaptation under DNN framework

• produce more natural speech than the speaker-dependent method
• adaptation using speaker codes can achieve quality comparable to or better 

than the conventional HMM-based methods



Variations

• Model structure

• Representation of input features

• Representation of output features

• Training Criterion

• Other topics



Variations

• Representation of output features
– Low-dimensional spectral features, 

e.g.
• mel-cepstral coefficients [Zen 2013]
• line spectral pairs [Fan 2014]

– Raw spectral envelopes extracted by 
STRAIGHT [Yin 2016a]

– Complex-valued spectral features [Hu 
2016]

– Speech waveforms [Tokuda 2016]
diagram of waveform-based framework



• Representation of output features
– WaveNet by DeepMind [van den Oord 2016]

• Model the joint probability of a waveform using a product of conditional PDFs

• The conditional PDF is modelled by a stack of convolutional layers

• Gated convolution: works better than ReLU

Variations

dilated causal convolutional layers to increase receptive field



Variations

• Representation of output features
– WaveNet by DeepMind [van den Oord 2016]

• Softmax at output layer
– law companding, 16bit -ߤ 8bit, 65536  256

• Residual and skip connections for entire architecture

• Conditional WaveNet for integrating linguistic features for TTS 

transformed from linguistic features



Variations

• Representation of output features
– WaveNet by DeepMind [van den Oord 2016]

• Performance

• unified NN structure for acoustic modeling + vocoder
• nonlinear adaptive filtering
• key points: wide receptive field + softmax output
• issues: prosodic modeling; efficiency at synthesis time
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Variations

• Training criterion
– Minimum perceptual error training [Valentini-Botinhao 2015]

• Spectro-Temporal Excitation Pattern (STEP) domain for cost calculation

• Experimental results: warped log spectrum > STEP > mel-cepstra



Variations

• Training criterion
– Multi-task learning and stacked bottleneck features [Wu 2015a]

• to predict a perceptual representation of the target speech as a secondary task
• to produce a wide context around the current frame using bottleneck features

MUSHRA evaluation results with 90% confidence interval



Variations

• Training criterion
– Trajectory training considering global variance [Hashimoto 2016]

• the inconsistency between training and synthesis criteria  trajectory training
• the over-smoothing of generated parameter trajectories  GV

conventional objective function

objective function of trajectory training with ࢕ ൌ ࢉࢃ

objective function of trajectory training considering GV
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Variations

• Other topics
– Multi-speaker & Multi-lingual

• Multi-speaker & speaker adaptation [Fan 2015] [Wu 2015b]

• Multi-lingual multi-speaker acoustic modeling [Li 2016]

• Cross-lingual learning for low-resource languages [Yu 2016]

– Modeling excitation features
• Modeling F0 in hierarchically structured DNNs [Yin et al. 2016b]

• Modeling glottal flow signals using DNNs [Raitio 2014]

• Modeling SEW/REW components using DNNs [Song et al. 2015]

– Practical implementation
• Uni-directional LSTM-RNN for low-latency TTS [Zen 2015]

• LSTM-RNN TTS on mobile devices [Zen 2016]
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Overview

• Aims
– To extract spectral features from raw spectral representations for 

acoustic modeling using deep learning techniques
– Raw spectral representations

• Spectral envelope extracted by STRAIGHT [Kawahara 1999]

• Spectral envelope extracted by WORLD [Morise 2015]

• FFT  spectrum
– Deep learning techniques

• DBN
• Deep Auto-Encoder (DAE)



DBN-base feature extraction [Hu 2016]

• Train a DBN to model STRAIGHT spectral envelope
– Binary samples are drawn as training data for upper layer RBMs

DBC

STRAIGHT spectrum

Gaussian-Bernoulli RBM

Bernoulli-Bernoulli RBM



• Map STRAIGHT spectrum into binary codes
– a visible feature vector  DBN-based binary codes (DBC) ௅

– are binarized using a threshold of 0.5 to obtain ௅

DBN-base feature extraction [Hu 2016a]

DBC

STRAIGHT spectrum

Gaussian-Bernoulli RBM

Bernoulli-Bernoulli RBM



DBN-base feature extraction [Hu 2016a]

• Use DBC in HMM-based 
acoustic modeling
– model clustering / alignment 

using conventional HMM with 
mel-cepstra as spectral features

– model DBCs with Bernoulli 
distributions at HMM states

– maximum likelihood training

– maximum output probability 
generation



DBN-base feature extraction [Hu 2016a]

• Experiments
– CMU ARCTIC database / female speaker SLT

Preference Scores (%)

STRAIGHT spectrogram of synthetic speech



DAE-base feature extraction [Takaki 2016]

• Build a DAE to extract low-dimensional features from 
STRAIGHT/WORLD/FFT spectrum

• Deep auto-encoder (DAE)
– an deep neural network with multiple layers of encoders and 

decoders to learn a compressed representation of input vector

– layer-wise pre-training
– minimum MSE fine-tuning

• DNN acoustic modeling



DAE-base feature extraction [Takaki 2016]

• Experiments
– Blizzard Challenge 2011 database, 17hrs, 48kHz

Subjective results

Objective results
(mean GV of log spectra)
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Overview

• Motivation
– To deal with the over-smoothing effect of parameter generation

• Method
– To map generated spectral features towards natural ones using 

DNNs or DBNs



GTDNN for post-filtering [Chen 2015]

• Generatively trained DNN (GTDNN)
– train a DNN in a generative way without fine-tuning to map 

generated spectral features towards natural ones
– initially proposed for voice conversion



GTDNN for post-filtering [Chen 2015]

• Experiments
– British male/Scottish female speakers (2840/4546 sentences); 48kHz
– MUSHRA tests with other post-filtering techniques

– Disadvantage: poste-filter depends on parameter generation
male speaker female speaker



DBN for post-filtering [Hu 2016b]

• A simplified version of GTDNN-based post-filtering
– Discard the BAM for feature mapping
– Use two identical DBNs trained from natural speech

• Training
– Train a DBN similar to the DBN-based feature extraction

• Synthesis
– Convert generated spectral features into spectral envelopes
– Map spectral envelopes into DBCs in a bottom-up manner
– Reconstruct spectral envelopes from DBCs in a top-down manner

• Performance
– mel-cepstra: achieve equivalent performance to GV
– LSPs: outperform the formant enhancement method
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End-to-End SPSS

• Attention-based Recurrent Sequence Transducer (ARST) 
for end-to-end SPSS [Wang 2016]

– Motivation
• directly mapping from text sequence to acoustic trajectory
• bypass text analysis / learn alignment
• success of attention-based recurrent networks in machine translation, ASR, etc.

– ARST generate ࢟ ൌ ሺ࢟ଵ, ,ଶ࢟ … , ሻ்࢟ from ࢞ ൌ ,ଵ࢞ ,ଶ࢞ … , ௅࢞ , where ܶ ≫ ܮ

attention selectionmain architecture

encoded representation of x



End-to-End SPSS

• Attention-based Recurrent Sequence Transducer (ARST) 
for end-to-end SPSS [Wang 2016]

– Some specific techniques for applying ARST to TTS
– Experiments

• 7-hr Mandarin database; 16kHz
• untoned phoneme  LSPs 
• ARST can generate smooth trajectories; fairly intelligible; inferior to DNN



Deep Learning for Unit Selection

• DNN-guided unit selection [Merritt 2016]

– Hybrid synthesis
• Use statistical models to guide the selection of natural units
• HMMs + acoustic feature domain

– Proposed hybrid target cost
• DNNs + context embedding (bottleneck feature)  domain

[Wu 2015a]



Deep Learning for Text Analysis

• Grapheme-to-Phoneme Conversion using LSTM-RNN [Rao 
2015]

results on the CMU datasetmodel structure



Deep Learning for Text Analysis

• Prosodic boundary prediction using BLSTM-RNN [Ding 2015]

results of using CRF

model structure results of using BLSTM-RNN & word embeddings
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Discussion

• Deep learning in ASR
– acoustic model: to map acoustic features towards posterior 

probabilities of senones using various NN architectures
– language model: to predict current word using context words

• Issues of applying deep learning to TTS
– rich context features 
– detailed spectral representations
– long-term dependency,  especially for prosodic features
– perceptual-related objective function
– comparison / integration with existing techniques
– common datasets for evaluation



Discussion

• Future directions
– to grow with the development of deep learning techniques

• DNN  LSTM-RNN  PixelCNN… 
– towards unified modeling

• acoustic modeling + vocoder 
• text analysis + acoustic modeling

– to be more flexible
• multi-speaker / multi-lingual / multi-style / expressive

– to make use of big data
• 1 hr 10 hrs 100 hrs… 



Software

• HMM-based Speech Synthesis System (HTS)
– http://hts.sp.nitech.ac.jp/?Home

• The Merlin toolkit
– For building neural networks for SPSS
– http://www.cstr.ed.ac.uk/projects/merlin/

• Toolkits for NN implementation
– Theano http://deeplearning.net/software/theano/
– TensorFlow https://www.tensorflow.org/
– CNTK https://www.cntk.ai/



Summary

• the limitations of conventional HMM-based SPSS

• some basic techniques of deep learning, e.g., RBM, DBN, DNN, RNN

• various ways of applying deep learning techniques to SPSS, including 
acoustic modeling, feature representation, and post-filtering, which 
improved the quality of SPSS effectively

• three approaches to deep-learning-based acoustic modeling for SPSS

• detailed review on the acoustic modeling of SPSS using deep NNs

• the topics to be explored in the future



Thanks for your attention ! 
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