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Abstract

This paper presents an investigation into predicting the movement of a speaker’s mouth from text input using hidden Markov models
(HMM). A corpus of human articulatory movements, recorded by electromagnetic articulography (EMA), is used to train HMMs. To
predict articulatory movements for input text, a suitable model sequence is selected and a maximum-likelihood parameter generation
(MLPG) algorithm is used to generate output articulatory trajectories. Unified acoustic-articulatory HMMs are introduced to integrate
acoustic features when an acoustic signal is also provided with the input text. Several aspects of this method are analyzed in this paper,
including the effectiveness of context-dependent modeling, the role of supplementary acoustic input, and the appropriateness of certain
model structures for the unified acoustic-articulatory models. When text is the sole input, we find that fully context-dependent models
significantly outperform monophone and quinphone models, achieving an average root mean square (RMS) error of 1.945 mm and an
average correlation coefficient of 0.600. When both text and acoustic features are given as input to the system, the difference between the
performance of quinphone models and fully context-dependent models is no longer significant. The best performance overall is achieved
using unified acoustic-articulatory quinphone HMMs with separate clustering of acoustic and articulatory model parameters, a synchro-
nous-state sequence, and a dependent-feature model structure, with an RMS error of 0.900 mm and a correlation coefficient of 0.855 on
average. Finally, we also apply the same quinphone HMMs to the acoustic-articulatory, or inversion, mapping problem, where only
acoustic input is available. An average root mean square (RMS) error of 1.076 mm and an average correlation coefficient of 0.812
are achieved. Taken together, our results demonstrate how text and acoustic inputs both contribute to the prediction of articulatory
movements in the method used.
� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

In human speech production it is the movements of
articulators, such as the tongue, jaw, lips and velum, that
generate and shape the acoustic signal. Hence, articulatory
features which may be recorded by human articulography
(Schönle et al., 1987; Kiritani, 1986; Baer et al., 1987), pro-
vide an effective and important description of speech as an
alternative to an acoustic representation. Similar to the
generation of an acoustic representation of speech in stan-
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dard text-to-speech (TTS) synthesis, the generation of
articulatory movements from text has many potential
applications. For example, it could help users of a language
tutoring system to learn correct pronunciation, or for the
analysis of pronunciation defects; it could be employed in
an animated talking-head system; or it could feature in
an articulation-based speech synthesis system.

This paper presents an approach to predicting articula-
tory movements from text that adopts a similar framework
to hidden Markov model (HMM) based parametric speech
synthesis (Tokuda et al., 2004). When text is the only input
from which to predict articulatory movements, HMMs are
trained using the recorded articulatory features and
linguistic context labeling of a speech corpus recorded with
a human articulography technique, here electromagnetic
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articulography (EMA). When acoustic features are pro-
vided to supplement the text, it is necessary to train unified
acoustic-articulatory HMMs to capture the relationship
between the acoustic and articulatory features. To perform
synthesis, optimal trajectories of articulatory movements
are generated from the trained models using a maximum-
likelihood criterion with dynamic feature constraints
(Tokuda et al., 2000).

Related research on predicting or estimating articula-
tory movements has previously been presented in the liter-
ature, and we consider here a few of the most relevant
examples. In Blackburn and Young (2000), articulator
movements were predicted from time-aligned phone strings
using Gaussian distribution models at phone midpoints
together with an explicit coarticulation model. In contrast,
we use an HMM here to achieve temporal modeling of
articulatory movements. In Tamura et al. (1999), lip shapes
(derived from video) were predicted alongside synchronous
acoustic speech synthesis parameters from textual input
using an HMM-based parameter generation method. Here,
we predict not only lip movements, but also movements of
articulators inside the mouth, with EMA providing the
articulatory training and testing data. In addition, we
investigate optionally using an acoustic speech signal to
supplement the input text in order to guide prediction of
articulatory movements.

The focus of Toda et al. (2008), Richmond (2007), Rich-
mond (2009), Hiroya and Honda (2004) and Zhang and
Renals (2008) was the inversion mapping (also known as
the acoustic-articulatory mapping), where the aim is to esti-
mate the articulatory movements underlying a given acous-
tic speech signal. In Toda et al. (2008), a Gaussian mixture
model for the joint distribution of acoustic and articulatory
features was adopted to achieve the mapping from acoustic
features to articulatory movements. In Richmond (2007)
and Richmond (2009), an artificial neural network (ANN)
and MLPG algorithm were combined to form a statistical
trajectory model to estimate articulation from an acoustic
speech signal. The work described in Hiroya and Honda
(2004) and Zhang and Renals (2008) was based on the
HMM, which is similar to the approach presented in this
paper. However, since their focus was on the inversion map-
ping, they were limited to using only very simple context
information to define the set of HMMs. Our aim here, in
contrast, is primarily to predict articulatory movements
from text. Therefore, we can readily use much more fine-
grained linguistic features to define our model set, as is com-
mon in acoustic speech synthesis, since we do not face the
problem of a decoding search with a huge model set.

Finally, a similar HMM-based approach was also used
in Hiroya and Mochida (2006). Their aim was to use
speaker adaptive training (SAT) to train a speaker-indepen-

dent model to predict articulatory movements from text.
The work presented here has three key differences. First,
unlike Hiroya and Mochida (2006), we evaluate using a
large set of models defined in terms of a fine-grained set
of linguistic context features. This can theoretically improve
accuracy by modeling the characteristics of articulatory
movements in differing environments. Second, in Hiroya
and Mochida (2006), the state durations for the articulatory
movement generation from HMMs were not predicted, but
derived from the measured articulatory data by Viterbi
alignment. In contrast, we use a statistical model to predict
state durations from text and the influence of state duration
prediction is studied in our experiments for the articulatory
HMMs using different forms of context information. Third,
we augment our system to model the dependence of the
acoustic features on the associated articulatory features.
This provides a unified acoustic-articulatory model which
may be trained to predict articulatory features that are syn-
chronized with an input acoustic signal.

In summary, several important aspects of HMM-based
prediction of articulatory movements are studied in this
paper:

(1) The effectiveness of context-dependent modeling. As
mentioned above, fine-grained linguistic features
can be used here to define our model set because
the text from which these are derived is given. It is
necessary to evaluate the effect of introducing rich
context features into the model definition, both when
text is the only input and when acoustic input is also
available.

(2) The role of supplementary acoustic input. Due to the
mechanism of speech production the acoustic signal
is strongly correlated with articulatory movements.
In this paper we analyze how acoustic input comple-
ments text in the prediction of articulatory move-
ments. We compare prediction performance using:
(a) text input alone; (b) audio input alone (i.e. the
inversion mapping); and (c) both text and audio input
together.

(3) Appropriate model structures for unified acoustic-artic-

ulatory modeling. In previous work, we have explored
various model structures for an articulatorily control-
lable HMM-based speech synthesis system (Ling
et al., 2009). However, the purpose of the current
paper is to predict articulatory movements, and not
to generate acoustic synthesis parameters as in our
previous work. Hence, similar investigations into
model structure are conducted in this paper.

In the remainder of the paper, Section 2 describes the
HMM-based articulatory movement prediction method in
detail, Section 3 presents the results of our experiments,
and Section 4 gives the conclusions we draw on the basis
of these.

2. Method

2.1. Articulatory movement prediction from text

The framework of the HMM-based method used to pre-
dict articulatory movements is shown in Fig. 1. To begin
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Fig. 1. Flowchart of the HMM-based text-to-articulatory movement prediction method. The dashed lines are used for the condition that acoustic
waveforms are input with the text to guide prediction.
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with, we consider the case of predicting articulation from
text alone. To construct the training data set, articulatory
movements of dimensionality DX are recorded by human
articulography. During training, a set of context-dependent
HMMs k are estimated to maximize the likelihood function
P(Xjk). Here X ¼ xT

1 ; x
T
2 ; . . . ; xT

N

� �T
is the observed articu-

latory feature sequence, (�)T denotes the matrix transpose
and N is the length of the sequence. The observation fea-
ture vector xt 2 R3DX for each frame consists of static artic-
ulatory parameters xSt 2 RDX and their velocity and
acceleration components as

xt ¼ xT
St
;DxT

St
;D2xT

St

� �T
; ð1Þ
where

DxSt ¼ 0:5xStþ1
� 0:5xSt�1

; ð2Þ
D2xSt ¼ xStþ1

� 2xSt þ xSt�1
: ð3Þ
After initial context-dependent HMM training, a deci-
sion tree is trained using the minimum description length
(MDL) criterion (Shinoda and Watanabe, 2000) to cluster
the probability density functions of all HMM states. This is
to mitigate problems of data sparsity and to formulate esti-
mates for the parameters of models whose context descrip-
tion is missing in the training set. Next, a state alignment is
derived using the trained HMMs. This is then used to train
context-dependent state duration probabilities (Yoshimura
et al., 1998) for state duration prediction.

To generate articulatory movements, the results of
front-end linguistic analysis on the input text are used to
determine the sentence HMM by consulting the clustering
decision tree built during training. The MLPG algorithm
(Tokuda et al., 2000) is then applied to generate the opti-
mal articulatory trajectories using dynamic features, such
that
X�S ¼ arg max
XS

P ðX jkÞ ¼ arg max
XS

P ðWXXS jkÞ; ð4Þ

¼ arg max
XS

X
8q

P ðWX XS ; qjkÞ; ð5Þ

where X ¼WX XS ; XS ¼ xT
S1
; xT

S2
; . . . ; xT

SN

h iT

is the static

articulatory feature sequence; WX 2 R3NDX�NDX is deter-
mined by the velocity and acceleration calculation func-
tions in (1)–(3); and q = {q1,q2, . . . ,qN} denotes the state
sequence for the articulatory features. We solve (5) by
keeping only the optimal state sequence in the accumula-
tion and approximating it as a two-step optimization

X�S ; q
�� �
� arg max

XS ;q
P ðWX XS ; qjkÞ; ð6Þ

¼ arg max
XS ;q

PðWXXS jk; qÞP ðqjkÞ; ð7Þ

where the optimal state sequence

q� ¼ arg max
q

P ðqjkÞ; ð8Þ

is determined from the trained state duration probabilities
(Yoshimura et al., 1998) and X�S is calculated by setting
@ log P ðWXXS jk; q�Þ=@XS ¼ 0, as introduced in (Tokuda
et al., 2000).
2.2. Articulatory movement prediction with acoustic inputs

When acoustic waveforms are available with the input
text, the predicted articulatory movements are required to
be synchronized with the reference acoustic signal. A uni-
fied acoustic-articulatory model is necessary to represent
the relationship between these two parameter streams.
During training, HMMs k for the combined acoustic and
articulatory features are estimated to maximize the likeli-
hood function of their joint distribution P(X,Yjk), where
X and Y ¼ ½yT

1 ; y
T
2 ; . . . ; yT

N �
T denote the parallel articulatory

and acoustic observation sequences of length N respec-
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tively. At each frame the acoustic feature vector yt 2 R3DY

is similarly composed of static features ySt
2 RDY and their

velocity and acceleration components as

yt ¼ yT
St
;DyT

St
;D2yT

St

� �T
; ð9Þ

where DY is the dimensionality of the static acoustic
features.

Various structures may be adopted to model the joint
distribution P(X,Yjk). In previous work on an articulatori-
ly controllable HMM-based speech synthesis system (Ling
et al., 2009), we investigated three aspects of model
structure:

(1) Model clustering. Model clustering, using decision
trees, is an important step in the training of con-
text-dependent HMMs. We can choose either to clus-
ter the acoustic model components and articulatory
model components independently (“separate cluster-
ing”) or to build a shared decision tree to cluster
the models for both feature types simultaneously
(“shared clustering”).

(2) Cross-stream synchrony. The acoustic and articula-
tory feature sequences can be assumed to be gener-
ated from different state sequences (“asynchronous-

state”) or from a single state sequence (“synchro-

nous-state”).
(3) Cross-stream dependency. The generation of acoustic

features can be assumed to depend only upon the cur-
rent state (“independent-feature”) or also depend
upon the current articulatory features (“dependent-

feature”).

In this paper, the synchronous-state model structure is
assumed. However, the other two aspects pertaining to
model structure are investigated in our experiments below.

We model the dependency between the acoustic and
articulatory features using a piecewise linear transform
within the HMM states (Ling et al., 2009). Mathematically,
we can write the joint distribution as

P ðX ;YjkÞ ¼
X
8q

P ðX ;Y ; qjkÞ; ð10Þ

¼
X
8q

pq0

YN
t¼1

aqt�1qt
bðxt; ytÞ; ð11Þ

bjðxt; ytÞ ¼ bjðxtÞbjðytjxtÞ; ð12Þ
bjðxtÞ ¼ N ðxt; lXj

;RX jÞ; ð13Þ
bjðytjxtÞ ¼ N ðyt; Ajxt þ lY j

;RYjÞ; ð14Þ

where q = {q1,q2, . . .,qN} denotes the state sequence shared
by the two feature streams; pj and aij represent initial state
probability and state transition probability respectively;
bj(�) denotes the state observation probability density func-
tion (PDF) for state j; Nð; l;RÞ denotes a Gaussian distri-
bution with a mean vector l and a covariance matrix R;
and Aj 2 R3DY�3DX is the linear transform matrix for state
j to model the dependency of acoustic features on articula-
tory features. As the transform matrix is state-dependent, a
piecewise linear transform is achieved globally. An Expec-
tation-Maximization (EM) algorithm can be used to esti-
mate the model parameters; the re-estimation formulae
may be found in (Ling et al., 2009).

To predict articulatory movements from text with sup-
plementary acoustic inputs the same maximum-likelihood
criterion as in Section 2.1 is followed, though (4) is modi-
fied so that

X�S ¼ arg max
XS

P ðWX XSjk;YÞ; ð15Þ

¼ arg max
XS

X
8q

P ðWXXS ; qjk;YÞ: ð16Þ

Again, we simplify the optimization for (16) by consid-
ering only the optimal state sequence. Therefore, we have

X�S ; q
�� �
� arg max

XS ;q
P ðWX XS; qjk;YÞ: ð17Þ

An iterative update method that alternately optimizes
the state sequence is adopted here to solve (17). Each iter-
ation consists of two-steps.

(1) Optimize articulatory features XS given Y and q

X�Si ¼ arg max
XS

PðWXXS jk; qi�1;YÞ; ð18Þ

¼ arg max
XS

PðWXXS ;Y jk; qi�1Þ; ð19Þ

where i 2 {1,2, . . .} denotes the i-th iteration and q0 is cal-
culated by Viterbi alignment on Y using an isolated acous-
tic model. If X and Y are assumed to be independent given
the state sequence, (18) can be solved using the conven-
tional MLPG algorithm (Tokuda et al., 2000), and Y can-
not affect the prediction of XS at all (other than through the
shared state sequence in step (2) below). Once the depen-
dent-feature model structure is adopted, as in (14), the joint
distribution in (19) can be rewritten as

log P ðWX XS ;Y jk; qi�1Þ

¼ YTU�1
Y AWXXS �

1

2
YTU�1

Y Y þ YTU�1
Y MY

� 1

2
XT

S WT
X U�1

X þ ATU�1
Y A

� �
WXXS

þ XT
S WT

X U�1
X MX � ATU�1

Y MY

� �
þ K ð20Þ

where

U�1
X ¼ diag R�1

Xq1
;R�1

Xq2
; . . . ;R�1

XqN

h i
; ð21Þ

MX ¼ lT
Xq1
; lT

Xq2
; . . . ; lT

XqN

h iT

; ð22Þ

U�1
Y ¼ diag R�1

Yq1
;R�1

Yq2
; . . . ;R�1

YqN

h i
; ð23Þ

MY ¼ lT
Yq1
; lT

Yq2
; . . . ; lT

YqN

h iT

; ð24Þ

A ¼ diag½Aq1
;Aq2

; . . . ;AqN
� ð25Þ
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and K is a constant value. Therefore, by setting
@PðWXXS ;Y jk; qi�1Þ=@XS ¼ 0, we have

X�Si ¼ WT
X U�1

X þ ATU�1
Y A

� �
WX

� ��1

�WT
X U�1

X MX þ ATU�1
Y ðY �MYÞ

� �
: ð26Þ

(2) Optimize state sequence q given X�S and Y

q�i ¼ arg max
q

P qjk;WX X�Si;Y
� �

: ð27Þ

This can be solved with a Viterbi alignment using the
trained HMMs on the feature sequence pair ðWX X�Si;YÞ.
The updated optimal state sequence q�i is then used to gen-
erate articulatory features according to (21)–(26) in the
next iteration.
3. Experiments

3.1. Database

In our experiments, we have used a data set comprised
of articulatory movements recorded concurrently with the
corresponding acoustic waveforms. A Carstens AG500
electromagnetic articulograph was used to record 1,263
phonetically balanced sentences, which were read by a male
British English speaker. The waveforms were in 16kHz
PCM format with 16 bit precision. Six EMA sensors were
used, located at the tongue dorsum (T3), tongue body (T2),
tongue tip (T1), lower incisor (LI), upper lip (UL), and lower

lip (LL) of the speaker. This is illustrated in Fig. 8(a). Each
sensor recorded spatial location in 3 dimensions at a 200Hz
sample rate: coordinates on the x- (front to back), y- (bot-
tom to top) and z- (left to right) axes (relative to viewing
the speaker’s face from the front). All six sensors were
placed in the midsagittal plane, and their movements in
the z-axis were very small. Therefore, only the x- and y-
coordinates of the six sensors were used in our experiments,
making a total of 12 static articulatory features at each
sample instant.

3.2. System construction

To create context-dependent HMMs, we first labeled the
database using tools from Unilex (Fitt and Isard, 1999) and
Festival (Taylor et al., 1998). Phone boundaries were deter-
mined automatically using HTK (Young et al., 2002). 1,200
sentences were selected for training and the remaining 63
sentences were used as a test set. A 5-state, left-to-right
model structure with no skips was adopted to train phone
HMMs. A single Gaussian distribution with diagonal
covariance was used for each HMM state. Our training
and prediction implementation was based upon the HTS
toolkits (Zen et al., 2007). In addition to simple mono-
phone models, two forms of context-dependent HMMs
were trained and evaluated in our experiments:

(1) Quinphone model. The context features for each
model comprised the identity of the current phone,
together with those of the preceding and follow two
neighbouring phones.

(2) Fully context-dependent model. In addition to the
phone identities used in the quinphone models, a
broad set of linguistic and prosodic features were
adopted, similar to those used in HMM-based TTS
systems (Tokuda et al., 2004). A full list of the specific
context features used is given in Table 1.
3.3. Articulatory movement prediction from text

In this experiment, only articulatory features and lin-
guistic context labels were used for training, and no acous-
tic signals were used during articulatory movement
prediction (as in Section 2.1). Three systems were trained,
one with monophone models, one with quinphone models,
and one with fully context-dependent models. RMS error
calculated for the 63 test sentences (with silence segments
excluded) and averaged over all 12 EMA features was used
as an objective measure to evaluate the accuracy of articu-
latory movement prediction. To facilitate the calculation of
the error for each utterance, the state duration prediction
in (8) was solved under the constraint of setting the total
length of generated articulatory frames to be the same as
the duration of the natural utterance (Yoshimura et al.,
1998).

Results for the three systems are shown in Fig. 2. A t-
test informs us that the differences among these three sys-
tems are significant (p < 0.05). From these results, we see
the context-dependent modeling approach which is com-
monly used in HMM-based speech synthesis is also an
effective method to predict articulatory movements from
text. Compared with monophone models, using quinphone
models improves the accuracy of articulatory feature pre-
diction significantly, as it can account for the coarticulato-
ry effects of nearby phones on the movement of articulators
when producing a given phone.

The rich linguistic context features that were used in
addition to the neighbouring phone identities (see Table
1) when training the fully context-dependent models are
commonly believed to be correlated with the suprasegmen-
tal characteristics of speech, such as pitch and duration.
However, Fig. 2 shows that the fully context-dependent
models are also significantly better than quinphone models
for the prediction of articulatory movements. We con-
ducted a further experiment to explore the reasons for this
difference. Similar to Hiroya and Mochida (2006), the
result of Viterbi alignment on the natural articulatory
recordings by the monophone, quinphone, and fully con-
text-dependent models was adopted to replace the duration
prediction in (8) when generating the articulatory move-
ments using the three models respectively. The average
RMS error of predicted articulatory movements for the
63 test sentences was then calculated, as shown in Fig. 3.
Compared with the results in Fig. 2, we see that RMS error
is greatly reduced for all three systems when natural state
durations are provided. Furthermore, the difference



Table 1
The linguistic context features used for fully context-dependent model
training.

The identity of the current and neighbouring 4 phones (phone before
the previous, previous, current, next, phone after the next);

The position of the current phone in the current syllable;
The number of phones in the {previous, current, next} syllable;
Whether the {previous, current, next} syllable is stressed or not;
Whether the {previous, current, next} syllable is accented or not;
The position of the current syllable in the current word;
The number of syllables in the {previous, current, next} word;
The number of {stressed, accented} syllables in the current {word,

phrase};
The distance between the current syllable and the neighbouring

{stressed, accented} syllable;
The part-of speech of the {previous, current, next} word;
The position of the current {syllable, word} in the current phrase;
The number of {syllables, words} in the {previous, current, next}

phrase;
The number of content words in the current phrase;
The distance between the current word and the neighbouring content

word;
The boundary tone of the current phrase;
The position of the current phrase in the utterance;
The number of {syllables, words, phrases} in the utterance
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Fig. 2. RMS error of EMA features predicted from text using monophone
(MONO), quinphone (QUIN), and fully context-dependent (FULL)
models. “*” indicates the difference between two systems is significant.
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Fig. 3. RMS error of EMA features predicted from text using monophone
(MONO), quinphone (QUIN), and fully context-dependent (FULL)
models when the natural state segmentations are given. “*” indicates the
difference between two systems is significant and “x” indicates the
difference is insignificant.
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between the quinphone models and the fully context-
dependent models is not significant any more. This implies
the superiority of the fully context-dependent models over
the quinphone models in Fig. 2 lies in better duration pre-
diction. This is reasonable since the fully context-depen-
dent models take context features related to prosody into
account to train the duration probabilities.

Although we have used a different data set here, which
inhibits direct comparison, we nevertheless note these
RMSE results for the same task of predicting articulation
from text compare very well with other methods and results
previously reported, such as Blackburn and Young (2000)
and Hiroya and Mochida (2006), especially when con-
text-dependent models are used.
3.4. Articulatory movement prediction with acoustic inputs

3.4.1. Without cross-stream dependency modeling

Unified acoustic-articulatory HMMs were trained to
predict articulatory movements, using acoustic features as
input to supplement the text. Frequency-warped LSFs of
order 40 plus an extra gain dimension were derived with
a 5ms frame shift from the spectral envelope provided by
STRAIGHT (Kawahara et al., 1999) analysis on the acous-
tic waveforms. These spectral parameters and the logarith-
mized F0 of each frame were used as two separate acoustic
feature streams and were combined with the articulatory
features to train the unified acoustic-articulatory HMMs.
A multi-space probability distribution (MSD) (Tokuda
et al., 1999) was used to model the F0 stream.

First, five models were compared to evaluate the effec-
tiveness of context-dependent modeling and different
model clustering strategies:

� Monophone models with independent-feature model
structure (MONO);
� Quinphone models with separate clustering and inde-

pendent-feature model structure (QUIN);
� Quinphone models with shared clustering and indepen-

dent-feature model structure (QUIN-SC);
� Fully context-dependent models with separate clustering

and independent-feature model structure (FULL);
� Fully context-dependent models with shared clustering

and independent-feature model structure (FULL-SC).

A fully context-dependent acoustic model was trained
using the same acoustic features as for the unified acous-
tic-articulatory HMMs to get the initial state sequence q0

in (19) by Viterbi force-alignment on the acoustic inputs
for all the five systems. Then iterative optimization on
the predicted articulatory movements was conducted. The
results of the iterative optimization using monophone



Fig. 4. RMS error of EMA features predicted from text with acoustic
inputs for monophone model (“MONO”). The x-axis refers to the number
of iterations in the articulatory feature generation.
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models are shown in Fig. 4. Although the iterative updates
do not guarantee to find the global optimum for (17),
depending on the calculation of initial state sequence q0,
we see that prediction error decreases as a result of optimiz-
ing the state sequence, with convergence after approxi-
mately 3 iterations. Thus, the number of iterations was
set to 3 for all systems in the following experiments.

The performance of systems MONO, QUIN, QUIN-SC,
FULL, and FULL-SC is compared in Fig. 5. A t-test at
95% confidence level was applied to analyze the signifi-
cance of the difference between two systems. Comparing
Fig. 2 with Fig. 5, we note that the supplementary audio
features reduce the prediction error significantly. Table 2
shows RMS error for phone duration prediction for system
FULL when only text input is used and system QUIN when
both text and audio inputs are available. The reference
phone durations are calculated by Viterbi alignment on
the natural articulatory movements using corresponding
Fig. 5. RMS error of EMA features predicted from text with acoustic
inputs for monophone model (“MONO”), quinphone model with separate
clustering (“QUIN”), quinphone model with shared clustering (“QUIN-

SC”), fully context-dependent model with separate clustering (“FULL”),
and fully context-dependent model with shared clustering (“FULL-SC”).
All systems adopt independent-feature model structures. “*” indicates the
difference between two systems is significant and “x” indicates the
difference is insignificant.
models. Comparing the second row with the first row in
this table, we can see that the phone durations obtained
by Viterbi alignment on input acoustic features are far
more accurate than those predicted from text using fully
context-dependent distributions. This is due to the syn-
chronous relationship between acoustic and articulatory
features incorporated in the unified HMMs. We also see
that the error in predicted durations for system QUIN with
text and audio input are reduced further when the optimi-
zation of the state sequence is conducted iteratively. The
advantage of context-dependent modeling is reaffirmed
by comparing MONO (1.373 mm) with QUIN

(0.978 mm) and FULL (0.987 mm) in Fig. 5. However, in
contrast to the results in Fig. 2, we find there are no signif-
icant differences between the systems using quinphone
models and fully context-dependent models irrespective
of whether separate or shared clustering is applied. In Sec-
tion 3.3, we concluded that it is the better duration predic-
tion that leads to the superiority of the fully context-
dependent model over the quinphone model when only text
inputs are available. However, when acoustic inputs are
given and a synchronous-state model structure is used for
the unified acoustic-articulatory HMMs, the state dura-
tions are not predicted using trained duration probabilities,
but are decided by Viterbi alignment according to (27).
Therefore, it is reasonable that the fully context-dependent
models cannot outperform the quinphone models here.
This is consistent with the results shown in Fig. 3.

Finally, Fig. 5 also makes clear that separate clustering
is significantly better than shared clustering when either
quinphone models or fully context-dependent models are
used. Table 3 lists the sizes of trained decision trees for
the EMA and LSF model clustering for different systems
when the same MDL criterion is followed. In this table,
we see that performing clustering separately results in a lar-
ger decision tree for the articulatory features and a smaller
decision tree for the acoustic features than when models for
both these features are clustered jointly (“shared”). This
confirms our previous observation (Ling et al., 2009) that
articulatory features provide better discrimination in terms
of pronunciation variation than acoustic features. Shared
clustering can improve the model tying topology for the
acoustic features, but impairs that for the articulatory fea-
Table 2
RMS error of predicted phone duration for system FULL when only text
input is used and system QUIN when both text and audio inputs are
available. For Text & Audio input, the values in the brackets indicate the
numbers of iterations in the articulatory feature generation and the phone
durations of the generated articulatory movements after the 1st iteration is
determined by the Viterbi alignment on the input acoustic features.

Input System Phone duration RMSE (ms)

Consonants Vowels All

Text FULL 35.19 40.49 37.38
Text & Audio QUIN (1) 16.66 14.32 15.77

QUIN (3) 12.22 8.80 10.99



Table 3
A comparison of the number of leaf nodes contained
in model clustering decision trees for EMA and LSF
features (see Fig. 5 for a key to the labels).

System EMA LSF

QUIN 5926 2159
QUIN-SC 3300 3300
FULL 6358 2265
FULL-SC 3548 3548
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tures. Therefore, separate clustering should be adopted
when predicting articulatory movements.
3.4.2. With cross-stream dependency modeling

The effect of cross-stream dependency modeling is eval-
uated next. Two more systems were trained:

� Quinphone models with separate clustering and a depen-
dent-feature model structure, where a single global
transform matrix Aj (see (14)) was used (QUIN-GLB).
� Quinphone models with separate clustering and depen-

dent-feature model structure where the transform matrix
Aj was tied for each leaf node of the model clustering
decision tree for the acoustic features (QUIN-REG).

To train models QUIN-GLB and QUIN-REG, Aj was
defined as a three-block matrix corresponding to static,
velocity and acceleration components of the feature vector
in order to reduce the number of parameters to be esti-
mated. Only the dependency between the articulatory fea-
tures and the spectral features was considered (i.e. any
potential dependency between the articulatory features
and the F0 stream was ignored). The results for systems
QUIN, QUIN-GLB, and QUIN-REG are presented in
Fig. 6. These results show that the addition of cross-stream
dependency modeling does not reduce the prediction error
if a single, global transform is applied. However, when Aj is
Fig. 6. RMS error of EMA features predicted from text with acoustic
inputs for quinphone model (QUIN), quinphone model with global cross-
stream dependency modeling (QUIN-GLB), and quinphone model with
cross-stream dependency modeling using regression classes (QUIN-REG).
All systems adopt the separate clustering model structure. “*” indicates
the difference between two systems is significant and “x” indicates the
difference is insignificant.
set to be state-dependent using regression classes, the RMS
error decreases from 0.978 mm for system QUIN to
0.900 mm for system QUIN-REG, which is statistically sig-
nificant. This means using a piecewise linear transform is a
more reasonable model for the dependency between LSFs
and EMA movements than the global linear transform.
This coincides with our previous study on integrating artic-
ulatory features into HMM-based speech synthesis (Ling
et al., 2009).

Previously, it has been noted that certain articulators
may be more key to the production of a given phone than
others. Papcun et al. (1992) presented evidence for what
they termed critical articulators. They demonstrated, for
example, that the variance of trajectories of a point at
the back of the tongue is significantly lower for phones
for which this articulatory location is critical (i.e. for velar
oral stops [k, g]) than for phones for which it is not (i.e.
alveolar and bilabial stops [t,d,p,b]). In short, the implica-
tion is that the movements of articulators which are critical
to the production of a given phone are inherently more
constrained, and may thus be estimated with lower error,
than those which are non-critical. With this in mind, we
have further analyzed RMS error for specific EMA sensor
coordinates according to phone type. Fig. 7 shows normal-
ized RMS error for the y-coordinates of the LL, T1, T2 and
T3 sensors as predicted by system QUIN-REG according to
the phone types listed in Table 4. Interestingly, we indeed
find that the movements of critical articulators can be pre-
dicted more accurately than the average performance. Spe-
cifically, we note:

� For vowels, the position of the tongue body is important
for defining the shape of vocal tract. Fig. 7 shows that
T2_y has the lowest prediction error (0.282) among
the four EMA dimensions for type “Vowel”, which is
lower than the average T2_y prediction error of all
phones (0.299).
� For consonants, the critical articulators depend upon a

phone’s place of articulation, e.g. the point where an
obstruction occurs in the vocal tract. Fig. 8 illustrates
the place of articulation for several consonant types,
together with the placement of EMA sensors used in
our experiments. It shows that the critical articulators

for “Labiodental”, “Alveolar”, “Palatal” and “Velar”

correspond to the LL, T1, T2 and T3 sensors respec-
tively. The clear pattern which emerges is that, for each
consonant type, the critical articulator has the lowest
prediction error among the four EMA dimensions. Fur-
thermore, Fig. 7 shows that these EMA dimensions can
be predicted more accurately for the corresponding con-
sonant types than for the others.

3.5. Inversion mapping

In this section, we compare the prediction of articula-
tory movements using concurrent text and audio inputs



Fig. 7. Normalized RMS error for the y-coordinates of the LL, T1, T2 and T3 sensors for different phone types when both text and audio inputs are used
in system QUIN-REG. RMS errors have been normalized by dividing by the global standard deviation for each EMA sensor coordinate separately.

Table 4
Definition of phone types. The phone symbols used here are in Unilex
format (Fitt and Isard, 1999).

Vowel aa uu i ei @ ii ai a ou iy eir uw

@r e oi oo ow o uh u i@ ur

Consonant Labial p b m m!

Labiodental f v

Labial-velar w

Dental dh th

Alveolar t d s z n n! l l! lw r

Postalveolar sh ch jh zh

Palatal y

Velar k g ng

Glottal h
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with the condition where only audio input is available,
which is commonly known as the inversion mapping. An
inversion mapping method using HMMs with cross-stream
dependency modeling has been previously proposed (Hir-
oya and Honda, 2004), where the formula for articulatory
movement prediction is the same as (26), with a state
sequence q decoded from the acoustic feature stream using
automatic speech recognition (ASR). In the experiment
here, the iterative optimization approach introduced in
Section 2.2 was applied to achieve the inversion mapping.
The key difference is that, whereas in Section 2.2 the initial
state sequence q0 was calculated by Viterbi alignment when
both text and acoustic features are given, here ASR decod-
ing becomes necessary because only acoustic inputs are
available.

Two acoustic HMMs, a monophone model and a tri-
phone model, were trained to provide a phone recognizer.
To facilitate training, the acoustic features were the same as
those used in Section 3.4, which were composed of spectral
and F0 streams. As part of the training of the triphone
models, decision tree-based model clustering was applied.
The HVite tool in the HTS toolkit (Zen et al., 2007) was
used to perform the decoding of acoustic features to give
a phone sequence. A simple phone-loop grammar was used
and no language model was applied. The phone recogni-
tion accuracy of the two models on the 63 test sentences
is shown in Table 5.
Because ASR was performed using only a phone-loop
grammar, and the recognition accuracy was not sufficiently
high, the decoded phone sequence could not be reliably
subjected to further analysis to extract further linguistic
context features. Therefore, only the identities of neigh-
bouring phones were available as context features, and
the fully context-dependent models in Section 3.4 were
not appropriate for the inversion mapping. Therefore, the
systems MONO, QUIN, and QUIN-REG were compared
in this experiment. The results of these three models are
shown in Fig. 9.

From this figure, we see that

(1) The performance of the phone recognizer plays an
important role. The phone recognition accuracy
obtained using triphone models is higher than with
monophone models, which in turn results in lower
RMS error for all MONO, QUIN, and QUIN-REG

systems. Once both text and audio inputs are given,
the correct phone sequences can be ascertained and
the RMS error of predicted articulatory movements
is lower than when using recognized phone
sequences. This implies that the performance of this
inversion mapping could be improved further should
a better acoustic recognizer be available.

(2) Because the identity of quinphone models depends on
a greater number of phones, phone recognition errors
can exert a greater adverse effect on the QUIN system
in comparison to the MONO system. As shown in
Fig. 9, the RMS error gap between the phone
sequence from the triphone recognizer and the cor-
rect phone sequence is 0.049 mm for system MONO,
and 0.165/0.177 mm for systems QUIN/QUIN-REG.

(3) The benefit of cross-stream dependency modeling is
reaffirmed by comparing the QUIN system with the
QUIN-REG system in Fig. 9. When the triphone
ASR model is used with the QUIN-REG system, an
average RMS error of 1.076 mm is achieved, which
is the best result in our experiments for the inversion
mapping. Compared with previously reported results,
using both the same and different databases, such as



(a)

(b)

(RMSE) Labiodental Alveolar Palatal Velar
LL_y 0.278 0.362 0.371 0.420
T1_y 0.346 0.281 0.239 0.392
T2_y 0.320 0.321 0.181 0.274
T3_y 0.374 0.384 0.327 0.215

Fig. 8. Illustrations for (a) the placement of the six EMA sensors used in
our experiments and (b) the place of articulation and the normalized RMS
error of four EMA dimensions for varying consonant types. The
normalized RMS error values are copied from Fig. 7. We have underlined
the EMA dimension which has the lowest prediction error among the
four-dimensions for each consonant type.

Table 5
Phone recognition accuracy using monophone and triphone acoustic
models.

ASR Model Monophone Triphone

Phone accuracy (%) 59.12 71.49

Fig. 9. RMS error for inversion mapping using monophone models
(MONO), quinphone models (QUIN), and quinphone models with cross-
stream dependency modeling (QUIN-REG). Labels “ASR-Mono” and
“ASR-Tri” mean the initial state sequence is decoded using monophone
and triphone acoustic models respectively; label “Text” indicates the initial
state sequence is given by text analysis when text input is also available.
“*” indicates the difference between two systems is significant.

Table 6
RMS error of EMA feature prediction using different inputs. The “_x”

and “_y” indicate the x- and y-coordinates of each EMA sensor
respectively. The two values in each column indicate the absolute RMS
error (mm) and RMS error normalized by the standard deviation of each
EMA feature dimension respectively.

Text Audio Text & Audio

T3_x 2.061/0.876 1.352/0.575 1.229/0.523
T3_y 3.091/0.858 1.798/0.499 1.307/0.363
T2_x 2.269/0.866 1.478/0.564 1.264/0.482
T2_y 3.011/0.831 1.314/0.363 1.082/0.299
T1_x 2.488/0.820 1.321/0.435 1.095/0.361
T1_y 2.966/0.853 1.335/0.384 1.178/0.339
LI_x 0.916/0.885 0.633/0.611 0.600/0.580
LI_y 1.636/0.905 0.835/0.462 0.730/0.404
UL_x 0.517/0.853 0.358/0.591 0.331/0.546
UL_y 0.731/0.868 0.482/0.573 0.385/0.457
LL_x 1.167/0.875 0.742/0.557 0.614/0.461
LL_y 2.519/0.980 1.270/0.494 0.989/0.385

Average 1.948/0.873 1.076/0.509 0.900/0.433

Table 7
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Toda et al. (2008), Richmond (2007), Richmond
(2009), Hiroya and Honda (2004) and Zhang and
Renals (2008), this result is strong.
Correlation coefficients between the natural and predicted EMA features
using different inputs. The “_x” and “_y” indicate the x- and y-coordinates
of each EMA sensor respectively.

Text Audio Text Audio

T3_x 0.608 0.786 0.822
T3_y 0.661 0.837 0.908
T2_x 0.581 0.747 0.792
T2_y 0.668 0.906 0.932
T1_x 0.580 0.781 0.819
T1_y 0.602 0.874 0.899
LI_x 0.599 0.766 0.791
LI_y 0.582 0.858 0.883
UL_x 0.568 0.761 0.812
UL_y 0.627 0.787 0.864
LL_x 0.608 0.818 0.867
LL_y 0.514 0.825 0.875

Average 0.600 0.812 0.855
3.6. A summary of articulatory movement prediction

The results of the above experiments on articulatory
movement prediction with different inputs are summarized
in Tables 6 and 7, where the RMS errors and the correla-
tion coefficients of the predicted movements for the 12
EMA channels are listed. For each kind of input feature
in the tables, the best results of the corresponding experi-
ments are chosen, i.e. the system FULL shown in Fig. 2
for text input, the system QUIN-REG using the triphone-
based phone recognizer in Fig. 9 for audio input, and the
system QUIN-REG in Fig. 6 for concurrent text and audio
inputs. In these tables, we see that both the linguistic infor-
mation and the supplementary audio features contribute to
the prediction of all EMA channels.
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Fig. 10. Scatter plots for the x-coordinate of the T3 EMA sensor
predicted using (a) text, (b) audio, and (c) text and audio inputs. The x-
and y-axes in these plots represent the natural and predicted T3_x
positions respectively. Each circle in the plots corresponds to one frame in
the test set.
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Fig. 10 compares the prediction of EMA trajectories
using different inputs in the form of scatter plots. An exam-
ple of predicted EMA trajectories is given in Fig. 11. From
these figures, we see that when both the text and acoustic
features are input, the predicted articulatory features
achieve the highest consistency with the natural ones in
both static positions and dynamic movements. The text
input is useful because it provides the correct phone tran-
scription and context information to determine the sen-
tence HMM for articulatory movement prediction. The
importance of acoustic features lies in its synchronous
and dependent relationship with the articulatory move-
ments, which is dictated by the human speech production
mechanism. Comparing system QUIN-REG in Fig. 6 with
system QUIN and FULL in Fig. 3, we can see that if both
text and audio inputs are available, the accuracy of EMA
feature prediction is very close to the condition where only
text input is used and state durations are given by Viterbi
alignment to natural EMA trajectories. This also confirms
the effectiveness of acoustic features for the task of estimat-
ing articulatory movements.

Finally, we have calculated the average RMS error when
different input combinations are used for the same phone
types as in Table 4. These results are shown in Fig. 12.
We see that both text and acoustic inputs help the predic-
tion of EMA features for all classes of phone. The errors
for “Labial”, “Labial-velar”, “Velar”, and “Glottal” are
larger than that for the “Vowel” class when both text
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(a) Text natural predicted

Fig. 11. Comparison between the natural and predicted x-coordinate
movements of the T3 EMA sensor using (a) text, (b) audio, and (c) text
and audio inputs. The sentence is taken from the test set and the text is
“For services to Lothian and Edinburgh Enterprise”. Silence segments are
excluded from the illustration.



Fig. 12. Summary of RMS error of EMA feature prediction using different inputs for each phone type.
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and acoustic features are provided as input. Comparing the
Audio input with the Text & Audio input, we see that the
consonants benefit more from the correct phone sequence
than the vowels, especially for the “Postalveolar”, ‘Pala-
tal”, and “Velar” phone types.

4. Conclusion

In this paper, we have investigated several aspects of
using an HMM-based method for predicting articulatory
movements. When text is the sole input, articulatory move-
ments are generated using an MLPG algorithm from con-
text-dependent HMMs, which have been trained on the
articulatory features. Fully context-dependent models,
using rich context specifications similar to that used in
TTS, outperform quinphone models, due to better model-
ing and prediction of state duration. For cases where an
acoustic signal is available, we have introduced a unified
acoustic-articulatory model and iterative optimization on
state sequence to predict the articulatory movements. Our
experiments have shown that quinphone models perform
as well as fully context-dependent models when the acous-
tic signal is input with text. Furthermore, we observed the
best performance using unified acoustic-articulatory
HMMs with separate clustering, synchronous-state and a
dependent-feature model structure. Supplementary acous-
tic input plays an important role in the prediction of artic-
ulatory movements. By Viterbi alignment with the input
acoustic features, the predicted state durations for the
articulatory movement generation are much more accurate
than those predicted from the context-dependent duration
probabilities for text input alone. If the acoustic features
are input without text, we have found that the performance
of the acoustic phone recognizer affects the inversion map-
ping significantly.

Finally, in terms of our intended future work in this
area, we aim to look at reducing the amount of training
data required for a specific speaker by applying speaker-
independent modeling and model adaptation techniques.
Among other benefits, this will reduce the impact of the
inconvenience and cost of recording articulatory move-
ments for any given speaker by EMA.
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