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Minimum Kullback–Leibler Divergence Parameter
Generation for HMM-Based Speech Synthesis

Zhen-Hua Ling, Member, IEEE, and Li-Rong Dai

Abstract—This paper presents a parameter generation method
for hidden Markov model (HMM)-based statistical parametric
speech synthesis that uses a similarity measure for probability
distributions. In contrast to conventional maximum output
probability parameter generation (MOPPG), the method we
propose derives a parameter generation criterion from the
distribution characteristics of the generated acoustic features.
Kullback–Leibler (KL) divergence between the sentence HMM
used for parameter generation and the HMM estimated from the
generated features is calculated by upper bound approximation.
During parameter generation, this KL divergence is minimized
either by optimizing the generated acoustic parameters directly
or by applying a linear transform to the MOPPG outputs. Our
experiments show both these approaches are effective for allevi-
ating over-smoothing in the generated spectral features and for
improving the naturalness of synthetic speech. Compared with the
direct optimization approach, which is susceptible to over-fitting,
the feature transform approach gives better performance. In order
to reduce the computational complexity of transform estimation,
an offline training method is further developed to estimate a global
transform under the minimum KL divergence criterion for the
training set. Experimental results show that this global transform
is as effective as the transform estimated for each sentence at
synthesis stage.

Index Terms—Hidden Markov model (HMM), Kullback–
Leibler (KL) divergence, parameter generation, speech synthesis.

I. INTRODUCTION

H IDDEN Markov model (HMM)-based statistical para-
metric speech synthesis has become a mainstream speech

synthesis method in recent years [1], [2]. In this method, the
spectrum, F0 and segment durations are modeled simultane-
ously within a unified HMM framework [1]. At synthesis time,
these features are predicted from the sentence HMM, which is
decided by the results of text analysis. Maximum output prob-

Manuscript received July 29, 2011; revised October 27, 2011, December 18,
2011; accepted December 28, 2011. Date of publication January 02, 2012; date
of current version March 14, 2012. This work was supported by the National
Nature Science Foundation of China under Grant 60905010. The associate ed-
itor coordinating the review of this manuscript and approving it for publication
was Prof. Chung-Hsien Wu.

The authors are with iFLYTEK Speech Lab, University of Science and Tech-
nology of China, Hefei 230027, China (e-mail: zhling@ustc.edu; lrdai@ustc.
edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASL.2011.2182511

ability parameter generation (MOPPG)1 incorporating dynamic
features [3] is currently the most popular parameter generation
method. The predicted parameter trajectories are then sent to
a parametric synthesizer to reconstruct the speech waveform.
This method is able to synthesize highly intelligible and smooth
speech sounds [4], [5]. However, the quality of the synthetic
speech may be degraded by the parametric synthesizer itself, in-
accuracy of acoustic modelling, and the over-smoothing effect
of parameter generation [6].

Among these three factors that degrade the quality of syn-
thetic speech, this paper focuses on the over-smoothing problem,
which is closely related to the parameter generation method used
at synthesis time. In the conventional MOPPG algorithm, the
acoustic parameters are predicted so as to maximize their output
probabilities from the sentence HMM given the text analysis
results of the input sentence [3]. Although the MOPPG outputs
evolve from piecewise-constant mean sequences into smooth
trajectories by incorporating the constraints between static and
dynamic features, they still tend to distribute near the means
of the HMM state probability density functions (pdfs). These
means are estimated by averaging observations with similar
context descriptions in the training set. This averaging process
improves the robustness of parameter generation. However,
the detailed characteristics of the speech parameters are lost,
especially for the spectral parameters. The generated spectral
envelopes are over-smoothed, which leads to a muffled voice
quality in the synthetic speech.

Many methods have been proposed to overcome this
over-smoothing problem, such as post-filtering after param-
eter generation [5], [7], using real speech parameters or segments
to generate the speech waveform [8], [9], or sampling trajectories
from the predictive distribution [10], [11], and so on. Some of
these methods are incorporated into the parameter generation
criterion directly, e.g., the global variance (GV) method [12]. In
this method, a global statistical model is trained for the variances
of the spectral parameters within each training sentence. During
synthesis, the spectral parameters are generated by maximizing
the weighted product of the probability functions of the sentence
HMM and the GV model. This method has been shown to be
effective at alleviating the over-smoothing of generated spec-
tral envelopes by increasing their variance, and thus improving
the naturalness of synthetic speech significantly [12]. The GV
method has been extended from spectral parameters to the log
power spectrum [13] and has been integrated into the genera-
tion error measurement of minimum generation error (MGE)
training to decrease computational complexity at synthesis time

1This algorithm is also named maximum-likelihood parameter generation
(MLPG) in the literature. In order to clarify the technical difference between
“likelihood” (which interprets the probability distribution as a function of the
model parameters given a fixed outcome) and “probability” (which interprets
the probability distribution as a function of the outcome given fixed model
parameters), the term “output probability” is adopted in this paper to replace
“likelihood” for describing the parameter generation criterion.
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[14]. A parameter generation method based on segment-wise
representation has also been proposed [15] to cope with the
over-smoothing problem. In this method, the output probability
function in the parameter generation criterion is calculated
using the means of the generated state segments instead of the
parameters of individual frames, which allows the parameters
to move far away from the distribution center of each state, thus
alleviating the over-smoothing effect. This segment-wise param-
eter generation method can achieve similar mean opinion score
(MOS) results in terms of naturalness as the GV approach [15].

We see that both the GV method and the segment-wise param-
eter generation method guide the generation of acoustic features
by examining the similarity between the distribution parameters
of acoustic models trained on natural speech and the same distri-
bution parameters derived from the generated acoustic features.
The distribution parameter is the sentence-level variance in the
GV method [12] and a state-level mean in the segment-wise
method [15]. The effectiveness of these two methods suggests
that such distribution similarity measures can help the param-
eter generation criterion overcome the over-smoothing problem
because it relaxes the constraint inherent in the MOPPG algo-
rithm that the acoustic features for each frame should be close
to the distribution center.

However, both these methods have shortcomings in how they
incorporate a distribution similarity measure into the param-
eter generation criterion. First, they both consider only one lim-
ited parameter of the generated acoustic feature distribution, and
lack accurate calculation of the divergence between the distribu-
tions of natural and generated features. Second, the distribution
similarity measurement used in both methods must be combined
with other components, such as the probability function of the
sentence HMM [12] or the norm constraint of the static features
[15], in order to construct the final parameter generation crite-
rion, which introduces the issue of weight tuning for how best
to combine these components.

To address these shortcomings, an explicit distribution
similarity measure-based parameter generation algorithm is
proposed in this paper. We expect the sentence HMM estimated
from the generated acoustic features to be as close as possible
to the HMM used for parameter generation. Kullback–Leibler
(KL) divergence [16] is a popular distribution divergence
measure and is adopted in this paper to calculate the distance
between these two HMMs. This criterion is integrated into the
parameter generation algorithm in two separate approaches.
In the first approach, it is applied to optimize the generated
acoustic parameters directly. In the second approach, a linear
transform is estimated under this criterion and applied to the
MOPPG output for each sentence. An offline transform estima-
tion method is further developed to reduce the computational
complexity of the linear transform method at synthesis time.

This paper is organized as follows. The framework of
HMM-based parametric speech synthesis and the conventional
MOPPG algorithm is briefly reviewed in Section II. Section III
describes our proposed methods in detail. Experimental results
are introduced in Section IV and Section V concludes this
paper.

II. HMM-BASED PARAMETRIC SPEECH SYNTHESIS

A. Model Training

Fig. 1 shows a diagram of standard HMM-based speech syn-
thesis systems. It consists of a training stage and the synthesis

Fig. 1. Diagram of a typical HMM-based parametric speech synthesis system.

stage. During training, the F0 and spectral parameters of di-
mensions are extracted from the waveforms contained in the
training set. Then a set of context-dependent HMMs are es-
timated to maximize the likelihood function for these
features. Here is the observation feature
sequence, denotes the matrix transpose and is the length
of the sequence. The observation feature vector for
the th frame typically consists of static acoustic parameters

and their delta and acceleration components as

(1)

where

(2)

(3)

and

(4)

(5)

Therefore, the complete feature sequence can be consid-
ered to be a linear transform of the static feature sequence

such that

(6)

where is determined by the delta and accel-
eration calculation functions in (2)–(5) [3]. Because F0 is only
defined for voiced speech frames, a multi-space probability dis-
tribution (MSD) [17] is applied to incorporate a distribution
for F0 into the probabilistic framework of the HMM. A deci-
sion-tree-based model clustering technique is adopted to deal
with the data-sparsity problem and to estimate the parameters
of models whose context description is missing in the training
set. The tree construction is guided by the minimum descrip-
tion length (MDL) criterion [18] after initial training of con-
text-dependent HMMs. Next, a state alignment is conducted
using the trained HMMs to train context-dependent state dura-
tion probabilities [1] for state duration prediction. A single-mix-
ture Gaussian distribution is used to model the duration prob-
ability for each state. A decision-tree-based model clustering
technique is similarly applied to these duration distributions.
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B. Maximum Output Probability Parameter Generation

During synthesis, the MOPPG algorithm is used to generate
acoustic parameters for waveform reconstruction [3]. The re-
sult of front-end linguistic analysis on the input text is used
to determine the sentence HMM . The state sequence

is predicted using the trained state duration
probabilities [1]. Then, the speech feature sequence is gener-
ated by maximizing . Considering the constraints
between static and dynamic features as in (6), the parameter gen-
eration criterion can be rewritten as

(7)

where is the output of MOPPG. By setting

(8)

we obtain

(9)

where and
are the mean vector and covariance matrix of the sentence as
decided by the state sequence [3].

III. MINIMUM KULLBACK–LEIBLER DIVERGENCE

PARAMETER GENERATION

The maximum output probability criterion used in the
MOPPG algorithm restricts the generated acoustic features to
distributing close to the means of the HMM states, which adds
to the over-smoothing problem and degrades the naturalness of
the synthetic speech. To overcome this problem, we propose
a distribution similarity measure-based parameter generation
method. In this method, the sentence HMM derived from the
trained HMM using the input text is defined as the target
model for parameter generation. Another HMM is estimated
from the generated acoustic features of each sentence, which
is termed the generated model. Rather than examine the gen-
erated acoustic features frame by frame as in the MOPPG
algorithm, we expect the stochastic characteristics of the gen-
erated acoustic features to be as similar as possible to those
of natural recordings given specific context information. This
means the distance between the target model which describes
natural features and the generated model which represents the
generated features should be minimized. Kullback–Leibler
(KL) divergence [16] is adopted here to calculated the diver-
gence between these two HMMs. The details of this proposed
method will be introduced next.

A. Estimation of the Generated HMM

For each sentence to be synthesized,
and represent the target HMM and the
generated HMM, respectively, where and are initial state
distributions of and and denote state transition prob-
ability from state to state in and . and

are the pdf of state for models and ,
where is a Gaussian distribution with a mean vector

and a covariance matrix ; the mean vector and covariance
matrix consist of static, delta and acceleration components as2

(10)

(11)

The parameters of the target HMM are determined by the
trained HMM set and the context information derived from the
input text. Meanwhile, the parameters of the generated HMM

need to be estimated from the generated acoustic features
. Because of the small amount of training data avail-

able within a single sentence, the state transition probabilities
are copied over to use as the values of , and the distribu-

tion parameters of are estimated under the maximum a poste-
riori (MAP) [19] criterion to improve the robustness of param-
eter estimation. Using MAP estimation, we have [19]

(12)

(13)

where means the generated acoustic feature
at time and for dimension is the occupancy probability
of state at time and denote the prior distribution
parameters of state and dimension

(14)

is the adaptation coefficient controlling the balance between
the prior distribution and the estimation given by the observed
training data; is set manually.

Because the state pdf is context-dependent and rich con-
text features including detailed phonetic and prosodic descrip-
tions [2] are adopted here for context-dependent model training,
the chances of finding identical state pdfs within a sentence are
very low. For the sake of simplifying the derivation, we assume
that each state appears only once in a sentence and use the hard
segmentation results given by state duration prediction to re-
place the calculation of . Therefore, (12) and (13) can be
rewritten as

(15)

(16)

where denotes the beginning frame index of
state which is determined by the predicted state sequence
is an all-one vector of length is the acoustic feature

2Because the covariance matrices of state pdfs are commonly set to be diag-
onal in practical implementation of HMM-based speech synthesis systems, the
parameter generation for each dimension is independent. Therefore, the number
of static feature dimensions� is set to 1 in this section to simplify the notation.
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vector of state and dimension . Here, is extracted from the
feature sequence as

(17)

where is the matrix for feature sequence
segmentation and its th row is defined as

otherwise
(18)

In (12) and (13), and are introduced to represent the
prior distribution of generated acoustic features for a given con-
text input. It is inappropriate to derive these prior distributions
from the context-dependent HMM set trained in Section II-A
because the distribution characteristics of the generated acoustic
features may be different from those of the natural features.
Furthermore, these prior distribution parameters should be es-
timated before the acoustic features for the input sentence are
generated and observed. Therefore, the acoustic features gen-
erated by MOPPG for the text of all sentences in the training
set are used here to estimate these prior distribution parameters.
First, a prior HMM set is trained on these features under the
maximum-likelihood criterion and the decision trees for model
clustering are set to be the same as the ones of HMM set
trained in Section II-A. Then, and can be derived from

using the context information of the sentence for synthesis.

B. KL Divergence Between Target and Generated Models

Once the target HMM and the generated HMM are given,
the KL divergence in symmetrical form between them is defined
as

(19)

where

(20)

is the directional KL divergence using as the reference model.
However, there is no closed form solution for calculating the KL
divergence between two HMMs. Thus, the upper bound of the
KL divergence between two left-to-right HMMs [20] is adopted
as an approximation in our method as follows:

(21)

where is the number of states in the sentence HMM and

(22)

is the KL divergence between two Gaussian distributions for
the th HMM state. Substituting (22) into (21) and considering

can be rewritten as

(23)

During parameter generation, the minimum KL divergence cri-
terion is implemented by minimizing this upper bound .

Note our method adopts the symmetrical form of KL diver-
gence in (19) instead of the directional form in (20), where the
target HMM is used as the reference model. In addition to the
fact that the directional KL divergence is asymmetrical and thus
not a distance metric, another important reason for this is that the
directional KL divergence between two Gaussian distributions
in (22) is unequally influenced by deviations of in different
directions. For example, assuming in (22), the con-
dition that can lead to much smaller
than the condition that . This means the criterion
using directional KL divergence could lead to overly large vari-
ances in the generated acoustic features. Therefore, the symmet-
rical form of KL divergence is adopted to avoid this problem in
our proposed method.

C. Minimum KL Divergence Parameter Generation

The minimum KL divergence criterion is adopted to optimize
the generated acoustic parameters directly so that

(24)

In order to determine , we iteratively update using a steepest
decent algorithm similar to that used in [12]

(25)

where denotes the iteration number and is the step size.
Substituting (14)–(17) into (23), we obtain

(26)

where

(27)
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(28)

is an identity matrix. For the first iter-
ation, is initialized using the output of the MOPPG method.
The iterative updating stops either when decreases by an
amount smaller than a given threshold or the number of itera-
tions reaches a preset maximum value.

D. Minimum KL Divergence Feature Transform

When estimating each state pdf of the generated HMM
using (15)–(16), the number of frames within each state seg-
ment is very limited. Although the MAP method has been
adopted to deal with the data-sparsity problem, still tends to
have much smaller variance than of the target HMM , which
is estimated after decision-tree-based model clustering as in-
troduced in Section II-A. Thus, the variance of the generated
parameters could become overly large when optimized directly
under the minimum KL divergence criterion in (24). This poten-
tial risk of over-fitting could introduce unanticipated noise and
discontinuities into the generated feature trajectories. Some ex-
perimental results related to this issue will be shown in the next
section.

Meanwhile, an alternative approach is proposed here to
avoid this problem. Here, a linear transform is estimated for
the MOPPG outputs for each sentence under the minimum KL
divergence criterion. The flowchart is shown in Fig. 2. Because
the same linear transform is applied to all frames within a
sentence, this method is able to compensate the over-smoothing
effect of MOPPG and preserve the temporal continuity of
transformed feature trajectories at the same time. The transform
matrix is set to be diagonal with an extra bias vector. We can
use a scalar to represent each frame’s static acoustic feature for
the sake of simplifying the notation. For the th frame, the static
acoustic feature generated by MOPPG is transformed
such that

(29)

where and denote the diagonal transform matrix and bias
vector of a single dimension. The distribution parameters
and estimated from MOPPG outputs using (15)–(16) are
simultaneously transformed to and such that

(30)

(31)

where

(32)

is decided by the delta and acceleration calculation functions in
(2)–(5). The optimal linear transform parameters are determined
under the minimum KL divergence criterion as

(33)

Fig. 2. Flowchart for the minimum KL divergence feature transform method.

where and are used to replace and in (23) to cal-
culate . Equation (33) can also be solved using the steepest
descent algorithm as

(34)

where stands for either or . Substituting (30)–(31) into (23),
we have

(35)

where

(36)

(37)

and are used for the first iteration and the
iterative updating stops when the descent of is smaller than
a given threshold value or the number of iterations reaches a
preset maximum value.

E. Global Transform Estimation Using Training Database

In the minimum KL divergence linear transform method de-
scribed in Section III-D, it is necessary to estimate the transform
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parameters for each sentence at the synthesis stage, but unfor-
tunately the steepest descent updating in (34) incurs high com-
putational cost. Therefore, we develop a method to estimate the
linear transform globally at the training stage as

(38)

where denotes the th sentence in the training database and
is calculated in the same way as (23). Equation (38) is

solved using a steepest descent algorithm similar to (34). At syn-
thesis time, this linear transform is applied to the MOPPG out-
puts for each sentence to obtain the final generated acoustic pa-
rameters. This method can be considered to represent a kind of
post-filtering of the MOPPG outputs, with the post-filter being
in the form of a linear transform that is estimated under the min-
imum KL divergence criterion at the training stage.

IV. EXPERIMENTS

A. Experimental Conditions

A 1-hour Chinese speech database produced by a profes-
sional female speaker was used in our experiments. It consisted
of 1050 sentences together with the segmental and prosodic
labels. 1000 sentences were selected for training and the re-
maining 50 sentences were used as a test set. The waveforms
were recorded in 16-kHz/16-bit format. In addition to logarith-
mized F0, 41-order mel-cepstrum (including 0th coefficient)
were derived from the spectral envelope by STRAIGHT [21]
analysis at 5-ms frame shift. For the spectral and F0 features, a
5-state left-to-right HMM structure with no skips (not hidden
semi-Markov model) was adopted to train context-dependent
phone models, whose covariance matrices were set to be di-
agonal. Single-mixture Gaussian distributions were used to
model the state duration probabilities. Decision-tree-based dis-
tribution clustering [18] was applied in the context-dependent
model training to avoid the data-sparsity problem. Here, the
question set for tree splitting was designed specifically to match
the characteristics of Chinese. A modified version of the HTS
toolkit [22] based on HTS-1.1b was used to train the system.

Five parameter generation methods were compared in our ex-
periments. A description of each of these methods is listed in
Table I. Here, the GV method employed a single-Gaussian dis-
tribution with a diagonal covariance matrix for the sentence-
level variances of the static features. KLD GEN, KLD FT, and
GLB FT followed the methods proposed in Sections III-C, D,
and E, respectively, where in the MAP estimation of (14)
was empirically set to 50. The stopping threshold of a min-
imum decrease of was set to 1 and the maximum itera-
tion number was set to 100 for the iterative updating of (25) and
(34). In our experiments, we focused on the effects of these pa-
rameter generation methods on spectral features. For each sen-
tence in the test set, five stimuli were synthesized using these
five methods to generate spectral parameters, but using the same

Fig. 3. Convergence of KL divergence in the iterative updating of KLD GEN
method for one test sentence. The KL divergences of the 5th, 15th, 25th, and
35th mel-cepstrum dimensions are shown as examples.

TABLE I
DESCRIPTION OF PARAMETER GENERATION METHODS

USED IN OUR EXPERIMENTS

MOPPG method to generate F0 contours.3 Fig. 3 shows the
convergence of the KLD GEN method for one test sentence.
We found that convergence is almost always achieved in (25)
and (34) within 100 iterations. In terms of computational com-
plexity, the KLD GEN and KLD FT methods are comparable to
the GV method and much higher than MOPPG because iterative
optimization for each dimension of the static acoustic features
is required. The computational cost of the GLB FT method at
synthesis stage is close to that of the MOPPG method because
its transform matrix is estimated globally before synthesis.

B. Objective Evaluation

The difference between the target HMM and the generated
HMM using MOPPG was studied. An example is shown
in Fig. 4, where generated spectral parameters (including
the static, delta, and acceleration components of the 0th
mel-cepstrum coefficient) are illustrated together with the cor-
responding mean and standard deviation sequences of the target
and generated HMMs. The generated HMM was estimated
according to (15)–(16). Comparing the two columns in Fig. 4,
we see that the mean sequences of the target HMM and the
generated HMM are quite similar. However, the state pdfs of the
generated HMM have much smaller variances than the target
HMM, especially for the delta and acceleration components.

In order to study such distribution differences mathemati-
cally, the KL divergences per state between the target HMM

3Some examples of the synthetic speech using the five methods can be found
at http://staff.ustc.edu.cn/~zhling/MKLDParaGen/demo.html.
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Fig. 4. Example for the state mean and standard deviation parameters of the target HMM (solid and dashed red lines in left column) and the generated HMM
(solid and dashed red lines in right column). The spectral parameters (the solid blue lines in both columns) are generated from the target HMM using MOPPG and
are used to estimated the generated HMM according to (15)–(16).

and the generated HMM were calculated according to (23) for
each sentence in the test set using the natural recordings of the
test sentences, the MOPPG outputs and the GV outputs, respec-
tively. The average KL divergences for each mel-cepstrum di-
mension are shown in Fig. 5. From this figure, we can see that
the HMM estimated from natural parameters has much smaller
KL divergence with respect to the target HMM than the models
estimated from the parameters generated by MOPPG and GV.
For the MOPPG method, the generated models for the dynamic
features have higher KL divergence than those for the static fea-
tures. This is consistent with the findings from Fig. 4. The KL
divergence also increases with mel-cepstrum coefficient index.
Furthermore, the GV method reduces the KL divergence be-
tween the target HMM and the generated HMM, even though
it does not optimize the HMM divergence directly. The static
dimensions exhibit greater reduction in KL divergence than the
dynamic dimensions because our GV model only handles the
sentence-level variances of the static features [12].

We also calculated the average KL divergence between the
target HMM and the generated HMMs using the KLD GEN
and KLD FT methods for the test set. The results are shown
in Fig. 6. It is found that both the KLD GEN and the KLD FT
methods can generate spectral features that have a far more
similar distribution with respect to the target HMM than the
MOPPG and GV methods shown in Fig. 5. The KL divergence
given by KLD GEN is smaller than that of KLD FT for most
mel-cepstrum dimensions because the minimum KL divergence
criterion is applied to guide the generation of the acoustic pa-
rameters directly in the KLD GEN method. There are still some

dimensions where KLD GEN has higher KL divergence than
KLD FT. This may be caused by the local-optimization prop-
erty of the steepest descent algorithm. For some mel-cepstrum
dimensions, the KL divergence calculated from the parameters
generated by KLD GEN are much smaller than that calculated
from natural parameters. This implies there may exist a problem
of over-fitting when optimizing the generated acoustic features
directly under the minimum KL divergence criterion, as dis-
cussed in Section III-D.

The mel-cepstral distortion (MCD) on the test set between the
natural spectral parameters and the parameters generated using
the five methods listed in Table I were calculated. To simplify
the calculation of MCD, the spectral parameters were generated
using state durations derived from state alignment performed on
the natural speech. The results are shown in Fig. 7. We can see
both the GV method and our proposed minimum KL divergence
parameter generation methods increase mel-cepstral distortion
in comparison with the conventional MOPPG method. Similar
findings have been previously described in [23], i.e., that in-
creasing the GV of the generated parameters usually causes an
increase of MCD.

C. Subjective Evaluation

Twenty sentences in the test set were selected for subjec-
tive evaluation. Their synthetic results using the MOPPG, GV,
KLD GEN, and KLD FT methods were evaluated by five Chi-
nese-native listeners. The listeners were required to give a score
from 1 (very unnatural) to 5 (very natural) for each synthesized
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Fig. 5. Average KL divergence of each mel-cepstrum dimension between the
target HMM and the generated HMMs in the test set. The generated HMMs are
estimated using the natural recordings of the test sentences, the MOPPG outputs
and the GV outputs, respectively.

utterance. The mean opinion scores (MOS) with 95% confi-
dence interval for the four methods are shown in Fig. 8.

Compared with the conventional MOPPG method, both
KLD GEN and KLD FT methods improve the naturalness of
the synthetic speech significantly when they are applied to the
generation of mel-cepstra. This is inconsistent with the MCD
evaluation results shown in Fig. 7 and proves the effectiveness
of our proposed minimum KL divergence parameter generation
criterion. We also find that the naturalness of KLD GEN is not
as good as KLD FT. Fig. 9 gives an example comparing the
spectral parameters generated using MOPPG, KLD GEN, and
KLD FT. We can see that both the KLD GEN and KLD FT
methods increase the variance of the generated acoustic fea-
tures. However, the trajectory generated by KLD GEN contains
much more noise than the other two methods. This noise is
caused by the over-fitting problem of the direct optimization
approach as discussed in Section III-D. They lead to disconti-
nuity in the generated parameters and degrade the naturalness
of the synthetic speech in this evaluation. On the other hand,

Fig. 6. Average KL divergence of each mel-cepstrum dimension between the
target HMM and the generated HMMs in the test set. The generated HMMs
are estimated using the natural recordings of the test sentences, the KLD GEN
outputs and the KLD FT outputs, respectively.

Fig. 7. Mel-cepstral distortions (dB) on test set between the natural parameters
and the parameters generated using the five methods listed in Table I.

the KLD FT method is able to alleviate the over-smoothing
problem of MOPPG while preserving the temporal continuity
of the generated feature trajectories. Furthermore, the perfor-
mance of the KLD FT method is as good as the GV method.
The advantage of KLD FT is that it requires no extra models
aside from the context-dependent phoneme HMM and it is not
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Fig. 8. Mean opinion scores (MOS) with 95% confidence interval for the
MOPPGGV, KLD GEN, and KLD FT methods listed in Table I.

Fig. 9. Sample trajectory of spectral parameters (the 15th mel-cepstrum) gen-
erated using the MOPPG, KLD GEN, and KLD FT methods.

necessary to tune the weights for integrating multilevel acoustic
models with the GV method.

Another preference test was conducted to compare the per-
formance of the GV, KLD FT, and GLB FT methods directly.
Fifteen sentences in the test set were selected and synthesized
using these three methods, respectively. Five Chinese-native
listeners took part in the test. Table II shows the preference
scores between every pair of the three methods and the -values
given by -test. We see that there is no significant difference
between the GV and KLD FT methods at the 5% significance
level, and the GLB FT method is significantly better than GV
and KLD FT. The superiority of GLB FT over KLD FT is
attributed to the more robust estimation of the linear transform
using richer context information of the whole training set.
Combining the results shown in Fig. 8 and Table II, we find
the naturalness of speech synthesized using the conventional
MOPPG algorithm can be improved significantly by applying
the global linear transform estimated under the minimum
KL divergence criterion as a simple post-filtering operation.
Fig. 10 shows the values of the linear transform estimated
by GLB FT in our experiment. We can see that the variances
of all mel-cepstrum dimensions are enlarged after the linear
transform because the estimated transform factors are always
larger than one. There is a trend that the higher dimensions of
the mel-cepstrum coefficients get larger transform factors than
the lower dimensions. This is consistent with Fig. 5 where the
KL divergence of MOPPG outputs increases with mel-cep-
strum coefficient index, and the linear transforms in Fig. 10 are
estimated to reduce such distribution divergences.

D. Discussion

In our experiments, the value of in (14) for the MAP es-
timation is set to 50 empirically. In order to evaluate whether

Fig. 10. Global linear transform estimated using the GLB FT method,
including (a) the transform factor and (b) the bias for each mel-cepstrum
dimension.

TABLE II
SUBJECTIVE PREFERENCE SCORES (%) AMONG SPEECH SYNTHESIZED

USING THE GV, KLD FT, AND GLB FT METHODS, WHERE

N/P DENOTES “NO PREFERENCE“ AND � MEANS THE �-VALUE

OF �-TEST BETWEEN TWO METHODS

TABLE III
MEL-CEPSTRAL DISTORTIONS (dB) FOR THE TEST SENTENCES GENERATED

USING THE KLD FT METHOD WITH DIFFERENT VALUES OF �

the system performance is sensitive to the setting of , we gen-
erated the sentences in the test set using the KLD FT method
with , and , respectively. We found that the sub-
jective perception of these three groups of synthetic speech are
very close. Furthermore, the mel-cepstral distortions among the
parameters generated using the three configurations were cal-
culated. The results are shown in Table III. It can be seen that the
differences are very small, which means the proposed method
is insensitive to in the range of (10–100).

Based on all the experimental results presented, we assert
our proposed criterion of calculating KL divergence between
the target and generated HMMs is indeed able to reproduce the
qualities of naturalness in the generated acoustic features to a
certain extent. For example, the spectral features derived from
the natural recordings exhibit low KL divergence, as shown in
Fig. 5. The KL divergences of GV, KLD GEN, and KLD FT
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are much lower than that of the MOPPG method, as shown in
Figs. 5 and 6, which is consistent with the subjective evalua-
tion results in Fig. 8. However, in some instances, the proposed
KL divergence criterion does not work well, e.g., the KLD FT
method has higher KL divergence but better naturalness than
the KLD GEN method. Some experimental results related to the
KL divergence of the generated acoustic features were also pre-
sented in [10] and [11], where a method of sampling acoustic
feature sequences from a trajectory HMM was studied. It was re-
ported that the models estimated using the samples drawn from a
trajectory HMM can converge well to the target model in terms
of KL divergence [10]. The spectrum of the sampled trajecto-
ries appeared similar to the natural speech qualitatively, but re-
sults obtained in a subjective evaluation were not as strong as
for the conventional MOPPG method [11]. Our experimental
results, together with the work of [10] and [11], indicate the
minimum KL divergence parameter generation method is cur-
rently still far from ideal and the estimation of both target and
generated models could be improved. The trajectory HMM pro-
vides a better candidate to represent the target model than the
standard HMM since it has better predictive distributions [11].
Compared with the target model, to achieve reliable estimation
of the generated model is more difficult. The process of esti-
mating the generated model in our proposed method is affected
by the data-sparsity problem. In [10], the generated model was
estimated using repeatedly sampled trajectories and its KL di-
vergence decreased as the number of drawn samples increased.

V. CONCLUSION

We have proposed a minimum KL divergence parameter gen-
eration method for HMM-based statistical parametric speech
synthesis in this paper. It aims to alleviate the over-smoothing
problem caused by the conventional maximum output proba-
bility parameter generation (MOPPG) algorithm and to improve
the quality of synthetic speech. In our approach, the distribu-
tion parameters of the generated acoustic features are first es-
timated using the maximum a posteriori (MAP) method. Then,
the KL divergence between the target HMM, which is used for
parameter generation, and the generated HMM, which is esti-
mated from the generated acoustic features, is derived as a mea-
sure to guide parameter generation. Two approaches, namely di-
rect optimization of feature trajectories and a linear transform of
MOPPG outputs, have been proposed in order to integrate the
minimum KL divergence criterion into the parameter genera-
tion procedure. In our experiments, both these approaches have
been shown to significantly improve the naturalness of speech
synthesized using MOPPG and mel-cepstrum features. For the
linear transform approach, our experimental results show that it
is not necessary to estimate the transform matrix for each input
sentence at synthesis time, which is computationally expensive.
Instead, this transform matrix can be estimated on the training
set according to the minimum KL divergence criterion, which
makes the postfiltering of MOPPG outputs simple and efficient.
Finally, to improve the estimation of the target and generated
HMMs and to overcome the over-fitting problem of the direct
optimization approach will be the focus of our future work.
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