

Ed Angel

Dave Shreiner

An Interactive Introduction to OpenGL
and OpenGL ES Programming

Welcome

• This morning’s Goals and Agenda

– Describe the OpenGL APIs and their uses

– Demonstrate and describe OpenGL’s capabilities and
features

– Enable you to write an interactive, 3-D computer
graphics program in OpenGL and OpenGL ES

Welcome

• This afternoon’s Goals and Agenda

– Introduce programmable features through the
OpenGL Shading Language (GLSL)

– Introduce OpenGL ES for mobile devices

– Introduce the advanced features of OpenGL that are
key to the future of OpenGL

Downloading Our Tutorials

http://www.opengl-redbook.com/asia2008/

• Executables and Source Code available

– Microsoft Windows

– Linux

– Apple

What Is OpenGL, and What Can It Do
for Me?

• OpenGL and OpenGL ES are computer graphics

rendering APIs

– Generate high-quality color images by rendering with
geometric and image primitives

– Create interactive applications with 3D graphics

– They are

• operating system independent

• window system independent

• For the time being, consider OpenGL ES to

be the same as OpenGL

G
L

3
.0

E
S

1
.1

E
S

2
.0

OpenGL is a library for doing computer graphics. By using it, you can create
interactive applications that render high-quality color images composed of 3D
geometric objects and images.

OpenGL is window and operating system independent. As such, the part of
your application which does rendering is platform independent. However, in order
for OpenGL to be able to render, it needs a window to draw into. Generally, this is
controlled by the windowing system on whatever platform you are working on.

OpenGL ES, which is short for “Embedded System” (a not “Subset” as is
commonly used), is mostly a subset of the OpenGL interface. As compared to
current OpenGL (i.e. OpenGL 3.0), OpenGL ES doesn’t contain all of the vesions of
OpenGL within the same library. That is, OpenGL ES comes in two versions: 1.1,
and 2.0. OpenGL ES 1.1 is a fixed-function interface, much as you’ll see described
this morning. OpenGL ES 2.0, on the other hand, is a programmable interface (i.e.,
it uses shaders), which we’ll describe in the afternoon of the course.

Related APIs

• GLU (OpenGL Utility Library)

– part of OpenGL

– NURBS, tessellators, quadric shapes, etc.

• EGL, GLX, WGL, AGL/CGL/Cocoa

– glue between OpenGL and windowing systems

• GLUT (OpenGL Utility Toolkit)

– portable windowing API

– not officially part of OpenGL

As mentioned, OpenGL is window and operating system independent. To
integrate it into various window systems, additional libraries are used to modify a
native window into an OpenGL capable window. Every window system has its own
unique library and functions to do this. Some examples are:

• GLX for the X Windows system, common on Unix platforms

• Cocoa and AGL for the Apple Macintosh

• WGL for Microsoft Windows

OpenGL also includes a utility library, GLU, to simplify common tasks such as:
rendering quadric surfaces (i.e., spheres, cones, cylinders, etc.), working with
NURBS and curves, and concave polygon tessellation.

Finally to simplify programming and window system dependence, we will be
using the freeware library, GLUT. GLUT, written by Mark Kilgard, is a public domain
window system independent toolkit for making simple OpenGL applications. It
simplifies the process of creating windows, working with events in the window
system and handling animation.

OpenGL and Related APIs

GLUT

GLU

GL

GLX, AGL
or WGL

X, Win32, Mac O/S

software and/or hardware

Application ProgramApplication Program

OpenGL Motif
widget or similar

The above diagram illustrates the relationships of the various libraries and
window system components.

Generally, applications which require more user interface support will use a
library designed to support those types of features (i.e., buttons, menu and scroll
bars, etc.) such as Motif or the Win32 API.

Prototype applications, or ones which do not require all the bells and whistles
of a full GUI, may choose to use GLUT instead because of its simplified
programming model and window system independence.

General Structure of an OpenGL
Program

Configure
and open a

window
Initialize

OpenGL’s
state Process user

events
Draw an
image

OpenGL was primarily designed to be able to draw high-quality images fast
enough so that an application could draw many of them a second, and provide the
user with an interactive application, where each frame could be customized by
input from the user.

The general flow of an interactive application, including OpenGL applications is:

1. Configure and open a window suitable for drawing OpenGL into.

2. Initialize any OpenGL state that you will need to use throughout the
application.

3. Process any events that the user might have entered. These could include
pressing a key on the keyboard, moving the mouse, or even moving or resizing the
application’s window.

4. Draw your 3D image using OpenGL with values that may have been entered
from the user’s actions, or other data that the program has available to it.

An OpenGL Program

void main(int argc, char *argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA |

GLUT_DEPTH);
glutCreateWindow(argv[0]);

init();

glutDisplayFunc(display);
glutReshapeFunc(reshape);

glutMainLoop();
}

The main part of
the program.

GLUT is used to
open the OpenGL

window, and handle
input from the user.

#include <GL/glut.h>
#include "cube.h"

This slide contains the program statements for the main() routine of a C
program that uses OpenGL and GLUT. For the most part, all of the programs you
will see today, and indeed may of the programs available as examples of OpenGL
programming that use GLUT will look very similar to this program.

All GLUT-based OpenGL programs begin with configuring the GLUT window
that gets opened.

Next, in the routine init() (detailed on the following slide), “global” OpenGL
state is configured. By “global”, we mean state that will be left on for the duration
of the application. By setting that state once, we can make our OpenGL
applications run as efficiently as possible.

After initialization, we set up our GLUT callback functions, which are routines
that you write to have OpenGL draw objects and other operations. Callback
functions, if you’re not familiar with them, make it easy to have a generic library
(like GLUT), that can easily be configured by providing a few routines of your own
construction.

Finally, as with all interactive programs, the event loop is entered. For GLUT-
based programs, this is done by calling glutMainLoop(). As
glutMainLop() never exits (it is essentially an infinite loop), any program
statements that follow glutMainLoop() will never be executed.

First on this slide is the init() routine, which as mentioned, is where we set
up the “global” OpenGL state. In this case, init() sets the color that the
background of the window should be painted to when the window is cleared, as
well as configuring where the eye should be located and enabling the depth test.
Although you may not know what these mean at the moment, we will discuss each
of those topics. What is important to notice is that what we set in init()
remains in affect for the rest of the program’s execution. There is nothing that
says we can not turn these features off later; the separation of these routines in
this manner is purely for clarity in the program’s structure.

The reshape() routine is called when the user of a program resizes the
application’s window. We do a number of things in this routine, all of which will be
explained in detail in the Transformations section later today.

void reshape(int width, int height)
{
glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(60, (GLfloat) width / height,

1.0, 10.0);
glMatrixMode(GL_MODELVIEW);

}

void init(void)
{
glClearColor(0, 0, 0, 1);
gluLookAt(2, 2, 2, 0, 0, 0, 0, 1, 0);
glEnable(GL_DEPTH_TEST);

}

An OpenGL Program (cont’d.)

Set up some initial
OpenGL state

Handle when the
user resizes the

window

void display(void)
{
int i, j;

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glBegin(GL_QUADS);
for (i = 0; i < NUM_CUBE_FACES; ++i) {
glColor3fv(faceColor[i]);
for (j = 0; j < NUM_VERTICES_PER_FACE; ++j) {
glVertex3fv(vertex[face[i][j]]);

}
}
glEnd();

glFlush();
}

An OpenGL Program (cont’d.)

Have OpenGL
draw a cube
from some
3D points
(vertices)

Finally, we see the display() routine which is used by GLUT to call our
OpenGL calls to make our image. Almost all of your OpenGL drawing code should
be called from display() (or routines that display() calls).

As with most display()-like functions, a number of common things occur in
the following order:

1. The window is cleared with a call to glClear(). This will color all of the
pixels in the window with the color set with glClearColor() (see the previous
slide and look in the init() routine). Any image that was in the window is
overwritten.

2. Next, we do all of our OpenGL rendering. In this case, we draw a cube, setting
the color of each face with a call to glColor3fv(), and specify where the
vertices of the cube should be positioned by calling glVertex3fv().

3. Finally, when all of the OpenGL rendering is completed, we either call
glFlush() or glutSwapBuffers() to “swap the buffers,” which will be
discussed in the Animation and Depth Buffering section.

OpenGL Command Formats

glVertex3fv(v)

Number of
components

2 - (x,y)
3 - (x,y,z)
4 - (x,y,z,w)

Data Type

b - byte
ub - unsigned byte
s - short
us - unsigned short
i - int
ui - unsigned int
f - float
d - double
x - fixed-point

Vector

omit “v” for
scalar form

glVertex2f(x, y)

The OpenGL API calls are designed to accept almost any basic data type, which
is reflected in the calls name. Knowing how the calls are structured makes it easy
to determine which call should be used for a particular data format and size.

For instance, vertices from most commercial models are stored as three
component floating point vectors. As such, the appropriate OpenGL command to
use is glVertex3fv(coords).

As mentioned before, OpenGL uses homogenous coordinates to specify
vertices. For glVertex*() calls which do not specify all the coordinates
(i.e., glVertex2f()), OpenGL will default z = 0.0, and w = 1.0 .

The fixed-point type is exclusive to OpenGL ES. Likewise, various types are
exclusive to OpenGL, and not available in OpenGL ES.

As we describe various functions, we’ll use a small icon like this
to describe which interfaces the function is compatible with. GLUT
and GLU functions are exclusive to OpenGL, so we won’t tag those
functions with the icon.

G
L

3
.0

E
S

1
.1

E
S

2
.0

What’s Required in Your Programs

• Headers Files

#include <GL/gl.h>

#include <GL/glu.h>

#include <GL/glut.h>

• Libraries

• Enumerated Types

– OpenGL defines numerous types for compatibility

• GLfloat, GLint, GLenum, etc.

All of our discussions today will be presented in the C computer language.

For C, there are a few required elements which an application must do:

• Header files describe all of the function calls, their parameters and
defined constant values to the compiler. OpenGL has header files for GL
(the core library), GLU (the utility library), and GLUT (freeware windowing
toolkit).

Note: glut.h includes gl.h and glu.h. On Microsoft Windows,
including only glut.h is recommended to avoid warnings about
redefining Windows macros.

• Libraries are the operating system dependent implementation of OpenGL
on the system you are using. Each operating system has its own set of
libraries. For Unix systems, the OpenGL library is commonly named
libGL.so (which is usually specified as -lGL on the compile line) and for
Microsoft Windows, it is named opengl32.lib.

• Finally, enumerated types are definitions for the basic types (i.e., float,
double, int, etc.) which your program uses to store variables. To simplify
platform independence for OpenGL programs, a complete set of
enumerated types are defined. Use them to simplify transferring your
programs to other operating systems.

GLUT Basics

• Application Structure:

– Configure and open window

– Initialize OpenGL state

– Register input callback functions

– Enter event processing loop

Here is the basic structure that we will be using in our applications. This is generally
what you would do in your own OpenGL applications.

The steps are:

1. Choose the type of window that you need for your application and initialize it.

2. Initialize any OpenGL state that you do not need to change every frame of your
program. This might include things like the background color, light positions and
texture maps.

3. Register the callback functions that you will need. Callbacks are routines you
write that GLUT calls when a certain sequence of events occurs, like the window
needing to be refreshed, or the user moving the mouse. The most important
callback function is the one to render your scene, which we will discuss in a few
slides.

4. Enter the main event processing loop. This is where your application receives
events, and schedules when callback functions are called.

GLUT Callback Functions

• Routine to call when something happens

– window resize or redraw

– user input

– animation

• “Register” callbacks with GLUT

glutDisplayFunc(display);

glutIdleFunc(idle);

glutKeyboardFunc(keyboard);

GLUT uses a callback mechanism to do its event processing. Callbacks simplify
event processing for the application developer. As compared to more traditional
event driven programming, where the author must receive and process each event,
and call whatever actions are necessary, callbacks simplify the process by defining
what actions are supported, and automatically handling the user events. All the
author must do is fill in what should happen when.

GLUT supports many different callback actions, including:

• glutDisplayFunc() - called when pixels in the window need to be
refreshed.

• glutReshapeFunc() - called when the window changes size

• glutKeyboardFunc() - called when a key is struck on the keyboard

• glutMouseFunc() - called when the user presses a mouse button on
the mouse

• glutMotionFunc() - called when the user moves the mouse while a
mouse button is pressed

• glutPassiveMouseFunc() - called when the mouse is moved
regardless of mouse button state

• glutIdleFunc() - a callback function called when nothing else is
going on. Very useful for animations.

What can OpenGL Draw?

• Geometric primitives

– points, lines and polygons

• Image Primitives

– images and bitmaps

– separate pipeline for images and geometry

• linked through texture mapping

• Rendering depends on state

– colors, materials, light sources, etc.

As mentioned, OpenGL is a library for rendering computer graphics. Generally,
there are two operations that you do with OpenGL:

• draw something

• change the state of how OpenGL draws

OpenGL has two types of things that it can render: geometric primitives and
image primitives. Geometric primitives are points, lines and polygons. Image
primitives are bitmaps and graphics images (i.e., the pixels that you might extract
from a JPEG image after you have read it into your program.) Additionally, OpenGL
links image and geometric primitives together using texture mapping, which is an
advanced topic we will discuss this afternoon.

The other common operation that you do with OpenGL is setting state. “Setting
state” is the process of initializing the internal data that OpenGL uses to render
your primitives. It can be as simple as setting up the size of points and the color
that you want a vertex to be, to initializing multiple mipmap levels for texture
mapping.

• All geometric primitives are specified by vertices

OpenGL Geometric Primitives

GL_QUAD_STRIPGL_QUAD_STRIP

GL_POLYGONGL_POLYGON

GL_TRIANGLE_STRIPGL_TRIANGLE_STRIP

GL_TRIANGLE_FANGL_TRIANGLE_FAN

GL_POINTSGL_POINTS

GL_LINESGL_LINES
GL_LINE_LOOPGL_LINE_LOOPGL_LINE_STRIPGL_LINE_STRIP

GL_TRIANGLESGL_TRIANGLES
GL_QUADSGL_QUADS

Every OpenGL geometric primitive is specified by its vertices, which are
homogenous coordinates. Homogenous coordinates are of the form
(x, y, z, w). Depending on how vertices are organized, OpenGL can render any of
the shown primitives.

Specifying Geometric Primitives

• Primitives are specified using

glBegin(primType);

glEnd();

• primType determines how vertices are combined

glBegin(primType);
for (i = 0; i < n; ++i) {

glColor3f(red[i], green[i], blue[i]);
glVertex3fv(coords[i]);

}
glEnd();

G
L

3
.0

E
S

1
.1

E
S

2
.0

OpenGL organizes vertices into primitives based upon which type is passed into
glBegin(). The possible types are:

GL_POINTS GL_LINE_STRIP

GL_LINES GL_LINE_LOOP

GL_POLYGON GL_TRIANGLE_STRIP

GL_TRIANGLES GL_TRIANGLE_FAN

GL_QUADS GL_QUAD_STRIP

We also see an example of setting OpenGL’s state, which is the topic of the
next few slides, and most of the course. In this case, the color that our primitive is
going to be drawn is set using the glColor() call.

How OpenGL Works:
The Conceptual Model

Configure
how OpenGL
should draw

stuff

Draw stuff

Conceptually, OpenGL allows you, the application designer, to do two things:

1. Control how the next items you draw will be processed. This is done by setting
the OpenGL’s state. OpenGL’s state includes the current drawing color,
parameters that control the color and location of lights, texture maps, and many
other configurable settings.

2. Draw, or using the technical term, render graphical objects called primitives.

Your application will consist of cycles of setting state, and rendering using the
state that you just set.

Controlling OpenGL’s Drawing

• Set OpenGL’s rendering state

– State controls how things are drawn

• shading – lighting

• texture maps – line styles (stipples)

• polygon patterns – transparency

Most of programming OpenGL is controlling its internal configuration, called
state. State is just the set of values that OpenGL uses when it draws something.
For example, if you wanted to draw a blue triangle, you would first tell OpenGL to
set the current vertex color to blue, using the glColor() function. Then you
pass the geometry to draw the triangle using the glVertex() calls you just saw.

OpenGL has over 400 function calls in it, most of which are concerned with
setting the rendering state. Among the things that state controls are:

• current rendering color

• parameters used for simulating lighting

• processing data to be used as texture maps

• patterns (called stipples, in OpenGL) for lines and polygons

The Power of Setting OpenGL State

Appearance is
controlled by
setting
OpenGL’s
state.

By only changing different parts of OpenGL’s state, the same geometry (in the
case of the image in the slide, a sphere) can be used to generate drastically
different images.

Going across the top row, the first sphere is merely a wire-frame rendering of
the sphere. The middle image was made by drawing the sphere twice, once solid
in black, and a second time as a white wire-frame sphere over the solid black one.
The right-most image shows a flat-shaded sphere, under the influence of OpenGL
lighting. Flat-shading means that each geometric primitive has the same color.

For the bottom row, the first image is the same sphere, only this time,
gouraud- (or smooth-) shaded. The only difference in the programs between the
top-row right, and bottom-row left is a single line of OpenGL code. The middle
sphere was generated using texture mapping. The final image is the smooth-
shaded sphere, with texture-mapped lines over the solid sphere.

Setting OpenGL State

• Three ways to set OpenGL state:

1. Set values to be used for processing vertices

• most common methods of setting state

– glColor() / glIndex()

– glNormal()

– glTexCoord()

• state must be set before calling glVertex()

G
L

3
.0

E
S

1
.1

E
S

2
.0

The most common state setting operation is that of modifying attributes
associated with vertices. While we’ll discuss setting vertex colors, lighting normals,
and texture coordinates, that’s only a small part–but the most common set– of the
state associated with vertices.

These collection of calls are sometimes the “immediate mode” interface, in
that as soon as the call executes, GL will do some processing. While variations of
glNormal and glColor may be used in OpenGL ES 1.1, it’s much better to use the
vertex array interface that we’ll describe later in the course for rendering
geometry. As such, strictly speaking, the icon shown above isn’

Setting OpenGL State (cont’d.)

2.2. Turning on a rendering modeTurning on a rendering mode

glEnable() / glDisable()

3.3. Configuring the specifics of a particular renderingConfiguring the specifics of a particular rendering
modemode

• Each mode has unique commands for setting
its values

glMaterialfv()

G
L

3
.0

E
S

1
.1

E
S

2
.0

G
L

3
.0

E
S

1
.1

E
S

2
.0

There are two actions that are required to control how OpenGL renders.

1.The first is turning on or off a rendering feature. This is done using the
OpenGL calls glEnable() and glDisable(). When glEnable() is
called for a particular feature, all OpenGL rendering after that point in the
program will use that feature until it is turned off with glDisable().

2.Almost all OpenGL features have configurable values that you can set.
Whether it is the color of the next thing you draw, or specifying an image that
OpenGL should use as a texture map, there will be some calls unique to that
feature that control all of its state. Most of the OpenGL API, and most of what
you will see today, is concerned with setting the state of the individual
features.

Every OpenGL feature has a default set of values so that even without setting
any state, you can still have OpenGL render things. The initial state is pretty
boring; it renders most things in white.

It’s important to note that initial state is identical for every OpenGL
implementation, regardless of which operating system, or which hardware
system you are working on.

While glEnable and glDisable are present in all of the OpenGL interfaces, each
of them accepts a different set of the possible operations.

OpenGL and Color

• The OpenGL Color Model

– OpenGL uses the RGB color space

• There is also a color-index mode, but we do not
discuss it

• Colors are specified as floating-point
numbers in the range [0.0, 1.0]

– for example, to set a window’s background color, you
would call

glClearColor(1.0, 0.3, 0.6, 1.0);

G
L

3
.0

E
S

1
.1

E
S

2
.0

Since computer graphics are all about color, it is important to know how to
specify colors when using OpenGL. Conceptually, OpenGL uses the RGB (red,
green, and blue) color space. Each of the three colors is a component of the color.
The value of each color component is a real (floating-point) number between 0.0
and 1.0. Values outside of that range are clamped.

As an example, the call to set a window’s background color in OpenGL is
glClearColor(), as demonstrated on the slide. The colors specified for the
background color are (1.0, 0.3, 0.6), for red, green, and blue, respectively. The
fourth value in glClearColor() is named alpha and is discussed later in the
course. Generally, when you call glClearColor(), you want to set the alpha
component to 1.0.

OpenGL also supports color-index mode rendering, but as RGB based rendering
is the most common, and there are some features that require RGB (most notably,
texture mapping), we do not discuss color-index mode rendering in the scope of
this class.

Shapes Tutorial

This is the first of the series of Nate Robins’ tutorials. This tutorial illustrates the
principles of rendering geometry, specifying both colors and vertices.

The shapes tutorial has two views: a screen-space window and a command
manipulation window.

In the command manipulation window, pressing the LEFT mouse while the
pointer is over the green parameter numbers allows you to move the mouse in the
y-direction (up and down) and change their values. With this action, you can
change the appearance of the geometric primitive in the other window. With the
RIGHT mouse button, you can bring up a pop-up menu to change the primitive you
are rendering. (Note that the parameters have minimum and maximum values in
the tutorials, sometimes to prevent you from wandering too far. In an application,
you probably do not want to have floating-point color values less than 0.0 or
greater than 1.0, but you are likely to want to position vertices at coordinates
outside the boundaries of this tutorial.)

In the screen-space window, the RIGHT mouse button brings up a different
pop-up menu, which has menu choices to change the appearance of the geometry
in different ways.

The left and right mouse buttons will do similar operations in the other
tutorials.

Transformations

Camera Analogy

• 3D is just like taking a photograph (lots of

photographs!)

camera

tripod model

viewing
volume

This model has become know as the synthetic camera model.

Note that both the objects to be viewed and the camera are three-dimensional
while the resulting image is two dimensional.

Camera Analogy and Transformations

• Projection transformations

– adjust the lens of the camera

• Viewing transformations

– tripod–define position and orientation of the viewing
volume in the world

• Modeling transformations

– moving the model

• Viewport transformations

– enlarge or reduce the physical photograph

Note that human vision and a camera lens have cone-shaped viewing volumes.
OpenGL (and almost all computer graphics APIs) describe a pyramid-shaped
viewing volume. Therefore, the computer will “see” differently from the natural
viewpoints, especially along the edges of viewing volumes. This is particularly
pronounced for wide-angle “fish-eye” camera lenses.

Coordinate Systems and
Transformations

• Steps in forming an image

1. specify geometry (world coordinates)

2. specify camera (camera coordinates)

3. project (window coordinates)

4. map to viewport (screen coordinates)

• Each step uses transformations

• Every transformation is equivalent to a change in

coordinate systems (frames)

Every transformation can be thought of as changing the representation of a
vertex from one coordinate system or frame to another. Thus, initially vertices are
specified in world or application coordinates. However, to view them, OpenGL
must convert these representations to ones in the reference system of the camera.
This change of representations is described by a transformation matrix (the model-
view matrix). Similarly, the projection matrix converts from camera coordinates to
window coordinates.

Homogeneous Coordinates

– each vertex is a column vector

– w is usually 1.0

– all operations are matrix multiplications

– directions (directed line segments) can be
represented with w = 0.0

w

z

y

x

v

A 3D vertex is represented by a 4-tuple vector (homogeneous coordinate
system).

Why is a 4-tuple vector used for a 3D (x, y, z) vertex? To ensure that all matrix
operations are multiplications.

If w is changed from 1.0, we can recover x, y and z by division by w. Generally,
only perspective transformations change w and require this perspective division in
the pipeline.

151173

141062

13951

12840

mmmm

mmmm

mmmm

mmmm

M

3D Transformations

• A vertex is transformed by 4 x 4 matrices

– all affine operations are matrix multiplications

– all matrices are stored column-major in OpenGL

– matrices are always post-multiplied

– product of matrix and vector is v

M

Perspective projection and translation require 4th row and column, or
operations would require addition, as well as multiplication.

For operations other than perspective projection, the fourth row is always
(0, 0, 0, 1) which leaves w unchanged..

Because OpenGL only multiplies a matrix on the right, the programmer must
remember that the last matrix specified is the first applied.

Specifying Transformations

• Programmer has two styles of specifying transformations

– specify matrices (glLoadMatrix, glMultMatrix)

– specify operation (glRotate, glOrtho)

• Programmer does not have to remember the exact
matrices

– see appendix of the OpenGL Programming Guide

Generally, a programmer can obtain the desired matrix by a sequence of simple
transformations that can be concatenated together, e.g., glRotate(),
glTranslate(), and glScale().

For the basic viewing transformations, OpenGL and the Utility library have
supporting functions.

Programming Transformations

• Prior to rendering, view, locate, and orient:

– eye/camera position

– 3D geometry

• Manage the matrices

– including matrix stack

• Combine (composite) transformations

Because transformation matrices are part of the state, they must be defined
prior to any vertices to which they are to apply.

In modeling, we often have objects specified in their own coordinate systems
and must use OpenGL transformations to bring the objects into the scene.

OpenGL provides matrix stacks for each type of supported matrix (model-view,
projection, texture) to store matrices.

v
e
r
t
e
x

Modelview
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transform

Modelview

Modelview

Projection

object eye clip normalized
device

window

Transformation Pipeline

• other calculations here

– material color
– shade model (flat)
– polygon rendering mode
– polygon culling
– clipping

The depth of matrix stacks are implementation-dependent, but the Modelview
matrix stack is guaranteed to be at least 32 matrices deep, and the Projection
matrix stack is guaranteed to be at least 2 matrices deep.

The material-to-color, flat-shading, and clipping calculations take place after
the Modelview matrix calculations, but before the Projection matrix. The polygon
culling and rendering mode operations take place after the Viewport operations.

There is also a texture matrix stack, which is outside the scope of this course. It
is an advanced texture mapping topic.

Matrix Operations

• Specify Current Matrix Stack

glMatrixMode(GL_MODELVIEW or GL_PROJECTION)

• Other Matrix or Stack Operations

glLoadIdentity() glPushMatrix()
glPopMatrix()

• Viewport

– usually same as window size

– viewport aspect ratio should be same as projection
transformation or resulting image may be distorted

glViewport(x, y, width, height)

G
L

3
.0

E
S

1
.1

E
S

2
.0

G
L

3
.0

E
S

1
.1

E
S

2
.0

glLoadMatrix*() replaces the matrix on the top of the current matrix stack.
glMultMatrix*(), post-multiples the matrix on the top of the current matrix
stack. The matrix argument is a column-major 4 x 4 double or single precision
floating point matrix.

Matrix stacks are used because it is more efficient to save and restore matrices
than to calculate and multiply new matrices. Popping a matrix stack can be said to
“jump back” to a previous location or orientation.

glViewport() clips the vertex or raster position. For geometric primitives, a
new vertex may be created. For raster primitives, the raster position is completely
clipped.

There is a per-fragment operation, the scissor test, which works in situations
where viewport clipping does not. The scissor operation is particularly good for fine
clipping raster (bitmap or image) primitives.

Projection Transformation

• Shape of viewing frustum

• Perspective projection

gluPerspective(fovy, aspect, zNear, zFar)

glFrustum(left, right, bottom, top, zNear, zFar)

• Orthographic parallel projection

glOrtho(left, right, bottom, top, zNear, zFar)

gluOrtho2D(left, right, bottom, top)

• calls glOrtho with z values near zero

G
L

3
.0

E
S

1
.1

E
S

2
.0

For perspective projections, the viewing volume is shaped like a truncated
pyramid (frustum). There is a distinct camera (eye) position, and vertexes of
objects are “projected” to camera. Objects which are further from the camera
appear smaller. The default camera position at (0, 0, 0), looks down the z-axis,
although the camera can be moved by other transformations.

For gluPerspective(), fovy is the angle of field of view (in degrees)
in the y direction. fovy must be between 0.0 and 180.0, exclusive. aspect is x/y
and should be the same as the viewport to avoid distortion. zNear and zFar
define the distance to the near and far clipping planes.

The glFrustum() call is rarely used in practice.

Warning: for gluPerspective() or glFrustum(), do not use zero
for zNear!

For glOrtho(), the viewing volume is shaped like a rectangular
parallelepiped (a box). Vertices of an object are “projected” towards infinity, and
as such, distance does not change the apparent size of an object, as happens under
perspective projection. Orthographic projection is used for drafting, and design
(such as blueprints).

Applying Projection Transformations

• Typical use (orthographic projection)

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glOrtho(left, right, bottom, top, zNear, zFar);

Many users would follow the demonstrated sequence of commands with a
glMatrixMode(GL_MODELVIEW) call to return to modelview stack.

In this example, the red line segment is inside the view volume and is projected
(with parallel projectors) to the green line on the view surface. The blue line
segment lies outside the volume specified by glOrtho() and is clipped.

Viewing Transformations

• Position the camera/eye in the scene

– place the tripod down; aim camera

• To “fly through” a scene

– change viewing transformation and
redraw scene

gluLookAt(eyex, eyey, eyez,
aimx, aimy, aimz,
upx, upy, upz)

– up vector determines unique orientation

– careful of degenerate positions

tripod

gluLookAt() multiplies itself onto the current matrix, so it usually comes
after glMatrixMode(GL_MODELVIEW) and glLoadIdentity().

Because of degenerate positions, gluLookAt() is not recommended for
most animated fly-over applications.

An alternative is to specify a sequence of rotations and translations that are
concatenated with an initial identity matrix.

Note: that the name modelview matrix is appropriate since moving objects in
the model front of the camera is equivalent to moving the camera to view a set of
objects.

Projection Tutorial

The RIGHT mouse button controls different menus. The screen-space view
menu allows you to choose different models. The command-manipulation menu
allows you to select different projection commands (including glOrtho and
glFrustum).

Modeling Transformations

• Move object

glTranslate{fd}(x, y, z)

• Rotate object around arbitrary axis

glRotate{fd}(angle, x, y, z)

– angle is in degrees

• Dilate (stretch or shrink) or mirror object

glScale{fd}(x, y, z)

 zyx

G
L

3
.0

E
S

1
.1

E
S

2
.0

glTranslate(), glRotate(), and glScale() multiplies itself onto the
current matrix, so it usually comes after glMatrixMode(GL_MODELVIEW).
There are many situations where the modeling transformation is multiplied onto a
non-identity matrix.

A vertex’s distance from the origin changes the effect of glRotate() or
glScale(). These operations have a fixed point for the origin. Generally, the
further from the origin, the more pronounced the effect. To rotate (or scale) with a
different fixed point, we must first translate, then rotate (or scale) and then undo
the translation with another translation.

Transformation Tutorial

For right now, concentrate on changing the effect of one command at a time.
After each time that you change one command, you may want to reset the values
before continuing on to the next command.

The RIGHT mouse button controls different menus. The screen-space view
menu allows you to choose different models. The command-manipulation menu
allows you to change the order of the glTranslatef() and glRotatef()
commands. Later, we will see the effect of changing the order of modeling
commands.

Connection: Viewing and Modeling

• Moving camera is equivalent to moving every object in

the world towards a stationary camera

• Viewing transformations are equivalent to several

modeling transformations

– gluLookAt() has its own command

– can make your own polar view or pilot view

Instead of gluLookAt(), one can use the following combinations of
glTranslate() and glRotate() to achieve a viewing transformation. Like
gluLookAt(), these transformations should be multiplied onto the ModelView
matrix, which should have an initial identity matrix.

To create a viewing transformation in which the viewer orbits an object, use
this sequence (which is known as “polar view”):

glTranslated(0, 0, -distance)

glRotated(-twist, 0, 0, 1)

glRotated(-incidence, 1, 0, 0)

glRotated(azimuth, 0, 0, 1)

To create a viewing transformation which orients the viewer (roll, pitch, and
heading) at position (x, y, z), use this sequence (known as “pilot view”):

glRotated(roll, 0, 0, 1)

glRotated(pitch, 0, 1, 0)

glRotated(heading, 1, 0, 0)

glTranslated(-x, -y, -z)

Compositing Modeling Transformations

• Problem: hierarchical objects

– one position depends upon a previous position

– robot arm or hand; sub-assemblies

• Solution: moving local coordinate system

– modeling transformations move coordinate system

– post-multiply column-major matrices

– OpenGL post-multiplies matrices

The order in which modeling transformations are performed is important
because each modeling transformation is represented by a matrix, and matrix
multiplication is not commutative. So a rotate followed by a translate is different
from a translate followed by a rotate.

Compositing Modeling Transformations
(cont’d.)

• Problem: objects move relative to absolute world origin

– my object rotates around the wrong origin

• make it spin around its center or something else

• Solution: fixed coordinate system

– modeling transformations move objects around fixed
coordinate system

– pre-multiply column-major matrices

– OpenGL post-multiplies matrices

– must reverse order of operations to achieve desired
effect

You will adjust to reading a lot of code backwards!

Typical sequence

glTranslatef(x,y,z);

glRotatef(theta, ax, ay, az);

glTranslatef(-x,-y,-z);

object();

Here (x, y, z) is the fixed point. We first (last transformation in code) move it to
the origin. Then we rotate about the axis (ax, ay, az) and finally move fixed point
back.

• At least 6 more clipping planes available

• Good for cross-sections

• Modelview matrix moves clipping plane

• clipped

glEnable(GL_CLIP_PLANEi)

glClipPlane(GL_CLIP_PLANEi, GLdouble* coeff)

Additional Clipping Planes

0 DCzByAx

G
L

3
.0

E
S

1
.1

E
S

2
.0

Additional clipping planes, usually called user-clip planes, are very useful for
“cutting away” part of a 3D model to allow a cross section view.

The clipping planes you define using glClipPlane() are described using the
equation of a plane, with the (A, B, C) coefficients describing the orientation (think
of a plane normal), and D representing the distance from the origin.

When you specify a clipping plane, the plane coefficients you provide are
transformed by the current modelview matrix. This enables you to transform the
plane using the standard modelview matrix stack operations, as compared to doing
a bunch of vector math to transform the clipping plane itself.

Animation and Depth Buffering

Double Buffering

1
2

4
8

16

1
2

4
8

16
Front
Buffer

Back
Buffer

Display

Double buffer is a technique for tricking the eye into seeing smooth animation
of rendered scenes. The color buffer is usually divided into two equal halves, called
the front buffer and the back buffer.

The front buffer is displayed while the application renders into the back buffer.
When the application completes rendering to the back buffer, it requests the
graphics display hardware to swap the roles of the buffers, causing the back buffer
to now be displayed, and the previous front buffer to become the new back buffer.

Animation Using Double Buffering

1. Request a double buffered color buffer

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);

2. Clear color buffer

glClear(GL_COLOR_BUFFER_BIT);

3. Render scene

4. Request swap of front and back buffers

glutSwapBuffers();

• Repeat steps 2 - 4 for animation

– Use a glutIdleFunc() callback

G
L

3
.0

E
S

1
.1

E
S

2
.0

Requesting double buffering in GLUT is simple. Adding GLUT_DOUBLE to your
glutInitDisplayMode() call will cause your window to be double buffered.

When your application is finished rendering its current frame, and wants to
swap the front and back buffers, the glutSwapBuffers() call will request the
windowing system to update the window’s color buffers.

Depth Buffering and
Hidden Surface Removal

1
2

4
8

16

1
2

4
8

16
Color
Buffer

Depth
Buffer

Display

Depth buffering is a technique to determine which primitives in your scene are
occluded by other primitives. As each pixel in a primitive is rasterized, its distance
from the eyepoint (depth value), is compared with the values stored in the depth
buffer. If the pixel’s depth value is less than the stored value, the pixel’s depth
value is written to the depth buffer, and its color is written to the color buffer.

The depth buffer algorithm is:
if (pixel->z < depthBuffer(x,y)->z) {

depthBuffer(x,y)->z = pixel->z;
colorBuffer(x,y)->color = pixel->color;

}

OpenGL depth values range from [0.0, 1.0], with 1.0 being essentially infinitely
far from the eyepoint. Generally, the depth buffer is cleared to 1.0 at the start of a
frame.

Depth Buffering Using OpenGL

G
L

3
.0

E
S

1
.1

E
S

2
.0

Enabling depth testing in OpenGL is very straightforward.

A depth buffer must be requested for your window, once again using the
glutInitDisplayMode(), and the GLUT_DEPTH bit.

Once the window is created, the depth test is enabled using
glEnable(GL_DEPTH_TEST).

Lighting

Lighting Principles

• Lighting simulates how objects reflect light

– material composition of object

– light’s color and position

– global lighting parameters

• ambient light

• two sided lighting

– available in both color index
and RGBA mode

Lighting is an important technique in computer graphics. Without lighting,
objects tend to look like they are made out of plastic.

OpenGL divides lighting into three parts: material properties, light properties
and global lighting parameters.

Lighting is available in both RGBA mode and color index mode. RGBA is more
flexible and less restrictive than color index mode lighting.

OpenGL Shading

• OpenGL computes a color or shade for each vertex

using a lighting model (the modified Phong model) that

takes into account

– Diffuse reflections

– Specular reflections

– Ambient light

– Emission

• Vertex shades are interpolated across polygons by the

rasterizer

OpenGL can use the shade at one vertex to shade an entire polygon (constant
shading) or interpolated the shades at the vertices across the polygon (smooth
shading), the default.

The Modified Phong Model

• The model is a balance between simple computation and

physical realism

• The model uses

– Light positions and intensities

– Surface orientation (normals)

– Material properties (reflectivity)

– Viewer location

• Computed for each source and each color component

The orientation of a surface is specified by the normal at each point. For a flat
polygon the normal is constant over the polygon. Because normals are specified by
the application program and can be changed between the specification of vertices,
when we shade a polygon it can appear to be curved.

How OpenGL Simulates Lights

• Phong lighting model

– Computed at vertices

• Lighting contributors

– Surface material properties

– Light properties

– Lighting model properties

OpenGL lighting is based on the Phong lighting model. At each vertex in the
primitive, a color is computed using that primitives material properties along with
the light settings.

The color for the vertex is computed by adding four computed colors for the
final vertex color. The four contributors to the vertex color are:

• Ambient is color of the object from all the undirected light in a scene.

• Diffuse is the base color of the object under current lighting. There must
be a light shining on the object to get a diffuse contribution.

• Specular is the contribution of the shiny highlights on the object.

• Emission is the contribution added in if the object emits light (i.e., glows)

Surface Normals

• Normals define how a surface reflects light

glNormal3f(x, y, z)

– Current normal is used to compute vertex’s color

– Use unit normals for proper lighting

• scaling affects a normal’s length

glEnable(GL_NORMALIZE)

or
glEnable(GL_RESCALE_NORMAL)

G
L

3
.0

E
S

1
.1

E
S

2
.0

The lighting normal tells OpenGL how the object reflects light around a vertex.
If you imagine that there is a small mirror at the vertex, the lighting normal
describes how the mirror is oriented, and consequently how light is reflected.

glNormal*() sets the current normal, which is used in the lighting
computation for all vertices until a new normal is provided.

Lighting normals should be normalized to unit length for correct lighting results.
glScale*() affects normals as well as vertices, which can change the normal’s
length, and cause it to no longer be normalized. OpenGL can automatically
normalize normals, by enabling glEnable(GL_NORMALIZE). or
glEnable(GL_RESCALE_NORMAL). GL_RESCALE_NORMAL is a special
mode for when your normals are uniformly scaled. If not, use GL_NORMALIZE
which handles all normalization situations, but requires the computation of a
square root, which can potentially lower performance

OpenGL evaluators and NURBS can provide lighting normals for generated
vertices automatically.

Material Properties

• Define the surface properties of a primitive

glMaterialfv(face, property, value);

– separate materials for front and back

GL_DIFFUSE

GL_SPECULAR

GL_AMBIENT

GL_EMISSION

GL_SHININESS

Base Color

Highlight Color

Low-light Color

Glow Color

Surface Smoothness

G
L

3
.0

E
S

1
.1

E
S

2
.0

Material properties describe the color and surface properties of a material
(dull, shiny, etc.). OpenGL supports material properties for both the front and back
of objects, as described by their vertex winding.

The OpenGL material properties are:

• GL_DIFFUSE - base color of object

• GL_SPECULAR - color of highlights on object

• GL_AMBIENT - color of object when not directly illuminated

• GL_EMISSION - color emitted from the object (think of a firefly)

• GL_SHININESS - concentration of highlights on objects. Values
range from 0 (very rough surface - no highlight) to 128 (very shiny)

Material properties can be set for each face separately by specifying either
GL_FRONT or GL_BACK, or for both faces simultaneously using
GL_FRONT_AND_BACK.

Light Sources

glLightfv(light, property, value);

– light specifies which light

• multiple lights, starting with GL_LIGHT0

glGetIntegerv(GL_MAX_LIGHTS, &n);

– properties

• colors

• position and type

• attenuation

G
L

3
.0

E
S

1
.1

E
S

2
.0

The glLight() call is used to set the parameters for a light. OpenGL
implementations must support at least eight lights, which are named GL_LIGHT0
through GL_LIGHTn, where n is one less than the maximum number supported
by an implementation.

OpenGL lights have a number of characteristics which can be changed from
their default values. Color properties allow separate interactions with the different
material properties. Position properties control the location and type of the light
and attenuation controls the natural tendency of light to decay over distance.

OpenGL lights can emit different colors for each of a materials properties. For
example, a light’s GL_AMBIENT color is combined with a material’s GL_AMBIENT
color to produce the ambient contribution to the color - Likewise for the diffuse and
specular colors.

Light Sources (cont'd.)

• Light color properties

– GL_AMBIENT

– GL_DIFFUSE

– GL_SPECULAR

Types of Lights

• OpenGL supports two types of Lights

– Local (Point) light sources

– Infinite (Directional) light sources

• Type of light controlled by w coordinate

 w

z
w

y
w

xw

zyxw

atpositionedLightLocal

alongdirectedLightInfinite

0

0

OpenGL supports two types of lights: infinite (directional) and local (point) light
sources. The type of light is determined by the w coordinate of the light’s position.

A light’s position is transformed by the current ModelView matrix when it is
specified. As such, you can achieve different effects by when you specify the
position.

w
z

w
y

w
xw

zyxw

atlightlocaladefine0

atlightinfiniteandefine0
if

Turning on the Lights

• Flip each light’s switch

glEnable(GL_LIGHTn);

• Turn on the power

glEnable(GL_LIGHTING);

G
L

3
.0

E
S

1
.1

E
S

2
.0

Each OpenGL light is controllable separately, using glEnable() and the
respective light constant GL_LIGHTn. Additionally, global control over whether
lighting will be used to compute primitive colors is controlled by passing
GL_LIGHTING to glEnable(). This provides a handy way to enable and
disable lighting without turning on or off all of the separate components.

Light Material Tutorial

In this tutorial, concentrate on noticing the affects of different material and
light properties. Additionally, compare the results of using a local light versus using
an infinite light.

In particular, experiment with the GL_SHININESS parameter to see its
affects on highlights.

Controlling a Light’s Position

Modelview matrix affects a light’s position

– Different effects based on when position is specified

• eye coordinates

• world coordinates

• model coordinates

– Push and pop matrices to uniquely control a light’s
position

As mentioned previously, a light’s position is transformed by the current
ModelView matrix when it is specified. As such, depending on when you specify
the light’s position, and what values are in the ModelView matrix, you can obtain
different lighting effects.

In general, there are three coordinate systems where you can specify a light’s
position/direction

1) Eye coordinates - which is represented by an identity matrix in the
ModelView. In this case, when the light’s position/direction is specified, it
remains fixed to the imaging plane. As such, regardless of how the objects
are manipulated, the highlights remain in the same location relative to the
eye.

2) World Coordinates - when only the viewing transformation is in the
ModelView matrix. In this case, a light’s position/direction appears fixed in
the scene, as if the light were on a lamppost.

3) Model Coordinates - any combination of viewing and modeling
transformations is in the ModelView matrix. This method allows arbitrary,
and even animated, position of a light using modeling transformations.

Light Position Tutorial

This tutorial demonstrates the different lighting affects of specifying a light’s
position in eye and world coordinates. Experiment with how highlights and
illuminated areas change under the different lighting position specifications.

Tips for Better Lighting

• Recall lighting computed only at vertices

– model tessellation heavily affects lighting results

• better results but more geometry to process

• Use a single infinite light for fastest lighting

– minimal computation per vertex

As with all of computing, time versus space is the continual tradeoff. To get the
best results from OpenGL lighting, your models should be finely tessellated to get
the best specular highlights and diffuse color boundaries. This yields better results,
but usually at a cost of more geometric primitives, which could slow application
performance.

To achieve maximum performance for lighting in your applications, use a single
infinite light source. This minimizes the amount of work that OpenGL has to do to
light every vertex.

Note that with programmable shaders (see advanced topics) we can do lighting
calculations for each pixel.

Imaging and Raster Primitives

Pixel-based primitives

• Bitmaps

– 2D array of bit masks for pixels

• update pixel color based on current color

• Images

– 2D array of pixel color information

• complete color information for each pixel

• OpenGL does not understand image formats

In addition to geometric primitives, OpenGL also supports pixel-based
primitives. These primitives contain explicit color information for each pixel that
they contain. They come in two types:

Bitmaps are single bit images, which are used as a mask to determine which
pixels to update. The current color, set with glColor()is used to
determine the new pixel color.

Images are blocks of pixels with complete color information for each pixel.

OpenGL, however, does not understand image formats, like JPEG, PNG or GIFs.
In order for OpenGL to use the information contained in those file formats, the file
must be read and decoded to obtain the color information, at which point, OpenGL
can rasterize the color values.

Frame
Buffer

Rasterization
(including

Pixel Zoom)

Per Fragment
Operations

Texture
Memory

Pixel-Transfer
Operations

(and Pixel Map)
CPU

Pixel
Storage
Modes

glReadPixels(), glCopyPixels()

glBitmap(), glDrawPixels()

glCopyTex*Image();

Pixel Pipeline

Programmable pixel storage

and transfer operations

Just as there is a pipeline that geometric primitives go through when they are
processed, so do pixels. The pixels are read from main storage, processed to obtain
the internal format which OpenGL uses, which may include color translations or
byte-swapping. After this, each pixel is rasterized into the framebuffer.

In addition to rendering into the framebuffer, pixels can be copied from the
framebuffer back into host memory, or transferred into texture mapping memory.

For best performance, the internal representation of a pixel array should match
the hardware. For example, with a 24 bit frame buffer, 8-8-8 RGB would probably
be a good match, but 10-10-10 RGB could be bad. Warning: non-default values for
pixel storage and transfer can be very slow.

Positioning Image Primitives

glRasterPos3f(x, y, z)

glWindosPos3f(x, y, z)

– raster position transformed like geometry

– discarded if raster position
is outside of viewport

• may need to fine tune
viewport for desired
results

Raster Position

G
L

3
.0

E
S

1
.1

E
S

2
.0

Images are positioned by specifying the raster position, which maps the lower
left corner of an image primitive to a point in space. Raster positions are
transformed and clipped the same as vertices. If a raster position fails the clip
check, no fragments are rasterized.

Rendering Images

glDrawPixels(width, height, format, type,

pixels)

• render pixels with lower left of

image at current raster position

• numerous formats and data types

for specifying storage in memory

– best performance by using format and type that
matches hardware

G
L

3
.0

E
S

1
.1

E
S

2
.0

Rendering images is done with the glDrawPixels()command. A block of
pixels from host CPU memory is passed into OpenGL with a format and data type
specified. For each pixel in the image, a fragment is generated using the color
retrieved from the image, and further processed.

OpenGL supports many different formats for images including:

• RGB images with an RGB triplet for every pixel

• intensity images which contain only intensity for each pixel. These images
are converted into greyscale RGB images internally.

• depth images which are depth values written to the depth buffer, as
compared to the color framebuffer. This is useful in loading the depth
buffer with values and then rendering a matching color images with depth
testing enabled.

• stencil images which copy stencil masks in the stencil buffer. This provides
an easy way to load a complicated per pixel mask.

The type of the image describes the format that the pixels stored in host
memory. This could be primitive types like GL_FLOAT or GL_INT, or pixels with
all color components packed into a primitive type, like
GL_UNSIGNED_SHORT_5_6_5.

Reading Pixels

glReadPixels(x, y, width, height, format,
type, pixels)

– read pixels from specified (x, y) position in framebuffer

– pixels automatically converted from framebuffer
format into requested format and type

• Framebuffer pixel copy

glCopyPixels(x, y, width,
height, type)

G
L

3
.0

E
S

1
.1

E
S

2
.0

G
L

3
.0

E
S

1
.1

E
S

2
.0

Just as you can send pixels to the framebuffer, you can read the pixel values
back from the framebuffer to host memory for doing storage or image processing.

Pixels read from the framebuffer are processed by the pixel storage and
transfer modes, as well as converting them into the format and type requested,
and placing them in host memory.

Additionally, pixels can be copied from the framebuffer from one location to
another using glCopyPixels(). Pixels are processed by the pixel storage and
transfer modes before being returned to the framebuffer.

Texture Mapping

Part 1

Texture Mapping

s

t

x

y

z

image

geometry screen

Textures are images that can be thought of as continuous and be one, two,
three, or four dimensional. By convention, the coordinates of the image are s, t, r
and q. Thus for the two dimensional image above, a point in the image is given by
its (s, t) values with (0, 0) in the lower-left corner and (1, 1) in the top-right corner.

A texture map for a two-dimensional geometric object in (x, y, z) world
coordinates maps a point in (s, t) space to a corresponding point on the screen.

Texture Mapping and the OpenGL
Pipeline

• Images and geometry flow through separate pipelines

that join at the rasterizer

– “complex” textures do not affect geometric complexity

geometry pipelinevertices

pixel pipelineimage

rasterizer

The advantage of texture mapping is that visual detail is in the image, not in the
geometry. Thus, the complexity of an image does not affect the geometric pipeline
(transformations, clipping) in OpenGL. Texture is added during rasterization where
the geometric and pixel pipelines meet.

Texture Example

• On the bottom-right is a

256 × 256 image that has been

mapped to a rectangular polygon

which is viewed in perspective at the

top.

This example is from the texture mapping tutorial demo.

The size of textures must be a power of two. However, we can use image
manipulation routines to convert an image to the required size.

Texture can replace lighting and material effects or be used in combination
with them.

Applying Textures I

Three steps to applying a texture

1. specify the texture

• read or generate image

• assign to texture

• enable texturing

2. assign texture coordinates to vertices

3. specify texture parameters

• wrapping, filtering

In the simplest approach, we must perform these three steps.

Textures reside in texture memory. When we assign an image to a texture it is
copied from processor memory to texture memory where pixels are formatted
differently.

Texture coordinates are actually part of the state as are other vertex attributes
such as color and normals. As with colors, OpenGL interpolates texture inside
geometric objects.

Because textures are really discrete and of limited extent, texture mapping is
subject to aliasing errors that can be controlled through filtering.

Texture memory is a limited resource and having only a single active texture
can lead to inefficient code.

Texture Objects

• Have OpenGL store your images

– one image per texture object

– may be shared by several graphics contexts

• Generate texture names

glGenTextures(n, *texIds); G
L

3
.0

E
S

1
.1

E
S

2
.0

The first step in creating texture objects is to have OpenGL reserve some
indices for your objects. glGenTextures() will request n texture ids and
return those values back to you in texIds.

To begin defining a texture object, you call glBindTexture() with the id of
the object you want to create. The target is one of GL_TEXTURE_{123}D().
All texturing calls become part of the object until the next glBindTexture() is
called.

To have OpenGL use a particular texture object, call glBindTexture() with
the target and id of the object you want to be active.

To delete texture objects, use glDeleteTextures(n, *texIds),
where texIds is an array of texture object identifiers to be deleted.

Texture Objects (cont'd.)

• Create texture objects with texture data and state

glBindTexture(target, id);

• Bind textures before using

glBindTexture(target, id);

G
L

3
.0

E
S

1
.1

E
S

2
.0

Specifying a Texture Image

• Define a texture image from an array of

texels in CPU memory

glTexImage2D(target, level, components,

w, h, border, format, type, *texels);

– dimensions of image must be powers of 2

• Texel colors are processed by pixel pipeline

– pixel scales, biases and lookups can be
done

G
L

3
.0

E
S

1
.1

E
S

2
.0

Specifying the texels for a texture is done using the glTexImage{123}D()
call. This will transfer the texels in CPU memory to OpenGL, where they will be
processed and converted into an internal format.

The array of texels sent to OpenGL with glTexImage*() must be a power of
two in both directions. An optional one texel wide border may be added around
the image. This is useful for certain wrapping modes.

The level parameter is used for defining how OpenGL should use this image
when mapping texels to pixels. Generally, you’ll set the level to 0, unless you are
using a texturing technique called mipmapping, which we will discuss in the next
section.

OpenGL ES – either version – only support 2D texutre maps (without
considering extensions).

Converting a Texture Image

• If dimensions of image are not power of 2

gluScaleImage(format, w_in, h_in,

type_in, *data_in, w_out, h_out,

type_out, *data_out);

– *_in is for source image

– *_out is for destination image

• Image interpolated and filtered during scaling

If your image does not meet the power of two requirement for a dimension,
the gluScaleImage() call will resample an image to a particular size. It uses a
simple box filter to interpolate the new images pixels from the source image.

Additionally, gluScaleImage() can be used to convert from one data type
(i.e., GL_FLOAT) to another type, which may better match the internal format in
which OpenGL stores your texture.

Note that use of gluScaleImage() can also save memory.

Mapping a Texture

• Based on parametric texture coordinates

• glTexCoord*() specified at each vertex

s

t
1, 1

0, 1

0, 0 1, 0

(s, t) = (0.2, 0.8)

(0.4, 0.2)

(0.8, 0.4)

A

B C

a

b
c

Texture Space Object Space

G
L

3
.0

E
S

1
.1

E
S

2
.0

When you want to map a texture onto a geometric primitive, you need to
provide texture coordinates. The glTexCoord*() call sets the current texture
coordinates. Valid texture coordinates are between 0 and 1, for each texture
dimension, and the default texture coordinate is (0, 0, 0, 1). If you pass fewer
texture coordinates than the currently active texture mode (for example, using
glTexCoord1d() while GL_TEXTURE_2D is enabled), the additionally
required texture coordinates take on default values.

While OpenGL ES 1.1 includes support for immediate-mode texture coordinate
specification, it doesn’t accept the glTexCoord, but rather the multi-texture routine
glMultiTexCoord. As we’re only introducing the concept of texture mapping here,
we only describe operations using a single texture. However, all versions of
OpenGL and OpenGL ES support mulit-texturing where you can apply more than
one texture to a geometric primitive in a single pass.

Generating Texture Coordinates

• Automatically generate texture coords

glTexGen{ifd}[v]()

• specify a plane

– generate texture coordinates based upon distance from plane

• generation modes

– GL_OBJECT_LINEAR

– GL_EYE_LINEAR

– GL_SPHERE_MAP

0 DCzByAx

G
L

3
.0

E
S

1
.1

E
S

2
.0

You can have OpenGL automatically generate texture coordinates for vertices
by using the glTexGen() and glEnable(GL_TEXTURE_GEN_{STRQ}).
The coordinates are computed by determining the vertex’s distance from each of
the enabled generation planes.

As with lighting positions, texture generation planes are transformed by the
ModelView matrix, which allows different results based upon when the
glTexGen() is issued.

There are three ways in which texture coordinates are generated:

GL_OBJECT_LINEAR - textures are fixed to the object (like wallpaper)

GL_EYE_LINEAR - texture fixed in space, and object move through
texture (like underwater light shining on a swimming fish)

GL_SPHERE_MAP - object reflects environment, as if it were made of
mirrors (like the shiny guy in Terminator 2)

Texture Tutorial

Texture MappingTexture Mapping

Part 2

Applying Textures II

– specify textures in texture objects

– set texture filter

– set texture function

– set texture wrap mode

– set optional perspective correction hint

– bind texture object

– enable texturing

– supply texture coordinates for vertex

• coordinates can also be generated

The general steps to enable texturing are listed above. Some steps are
optional, and due to the number of combinations, complete coverage of the topic
is outside the scope of this course.

Here we use the texture object approach. Using texture objects may enable
your OpenGL implementation to make some optimizations behind the scenes.

As with any other OpenGL state, texture mapping requires that glEnable()
be called. The tokens for texturing are:

GL_TEXTURE_1D - one dimensional texturing

GL_TEXTURE_2D - two dimensional texturing

GL_TEXTURE_3D - three dimensional texturing

2D texturing is the most commonly used. 1D texturing is useful for applying
contours to objects (like altitude contours to mountains). 3D texturing is useful
for volume rendering.

Texture Application Methods

• Filter Modes

– minification or magnification

– special mipmap minification filters

• Wrap Modes

– clamping or repeating

• Texture Functions

– how to mix primitive’s color with texture’s color

• blend, modulate or replace texels

Textures and the objects being textured are rarely the same size (in pixels).
Filter modes determine the methods used by how texels should be expanded
(magnification), or shrunk (minification) to match a pixel’s size. An additional
technique, called mipmapping is a special instance of a minification filter.

Wrap modes determine how to process texture coordinates outside of the [0,1]
range. The available modes are:

GL_CLAMP - clamp any values outside the range to closest valid value,
causing the edges of the texture to be “smeared” across the primitive

GL_REPEAT - use only the fractional part of the texture coordinate,
causing the texture to repeat across an object

Finally, the texture environment describes how a primitives fragment colors
and texel colors should be combined to produce the final framebuffer color.
Depending upon the type of texture (i.e., intensity texture vs. RGBA texture) and
the mode, pixels and texels may be simply multiplied, linearly combined, or the
texel may replace the fragment’s color altogether.

Filter Modes

Texture Polygon

Magnification Minification

PolygonTexture

Example:

glTexParameteri(target, type, mode); G
L

3
.0

E
S

1
.1

E
S

2
.0

Filter modes control how pixels are minified or magnified. Generally a color is
computed using the nearest texel or by a linear average of several texels.

The filter type, above is one of GL_TEXTURE_MIN_FILTER or
GL_TEXTURE_MAG_FILTER.

The mode is one of GL_NEAREST, GL_LINEAR, or special modes for
mipmapping. Mipmapping modes are used for minification only, and can have
values of:

GL_NEAREST_MIPMAP_NEAREST

GL_NEAREST_MIPMAP_LINEAR

GL_LINEAR_MIPMAP_NEAREST

GL_LINEAR_MIPMAP_LINEAR

Full coverage of mipmap texture filters is outside the scope of this course.

Mipmapped Textures

• Mipmap allows for prefiltered texture maps of decreasing

resolutions

• Lessens interpolation errors for smaller textured objects

• Declare mipmap level during texture definition

glTexImage*D(GL_TEXTURE_*D, level, …)

• GLU mipmap builder routines

gluBuild*DMipmaps(…)

• OpenGL 1.2 introduces advanced LOD controls

As primitives become smaller in screen space, a texture may appear to
shimmer as the minification filters creates rougher approximations. Mipmapping is
an attempt to reduce the shimmer effect by creating several approximations of the
original image at lower resolutions.

Each mipmap level should have an image which is one-half the height and
width of the previous level, to a minimum of one texel in either dimension. For
example, level 0 could be 32 x 8 texels. Then level 1 would be 16 x 4; level 2 would
be 8 x 2; level 3, 4 x 1; level 4, 2 x 1, and finally, level 5, 1 x 1.

The gluBuild*Dmipmaps() routines will automatically generate each
mipmap image, and call glTexImage*D() with the appropriate level value.

OpenGL 1.2 introduces control over the minimum and maximum mipmap
levels, so you do not have to specify every mipmap level (and also add more levels,
on the fly).

Wrapping Mode

• Example:

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S, GL_CLAMP)

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T, GL_REPEAT)

texture

s

t

GL_CLAMP
wrapping

GL_REPEAT
wrapping

Wrap mode determines what should happen if a texture coordinate lies outside
of the [0,1] range. If the GL_REPEAT wrap mode is used, for texture coordinate
values less than zero or greater than one, the integer is ignored and only the
fractional value is used.

If the GL_CLAMP wrap mode is used, the texture value at the extreme (either
0 or 1) is used.

Texture Functions

• Controls how texture is applied

glTexEnv{fi}[v](GL_TEXTURE_ENV, prop, param)

• GL_TEXTURE_ENV_MODE modes

– GL_MODULATE

– GL_BLEND

– GL_REPLACE

• Set blend color with GL_TEXTURE_ENV_COLOR

The texture mode determines how texels and fragment colors are combined.
The most common modes are:

GL_MODULATE - multiply texel and fragment color

GL_BLEND - linearly blend texel, fragment, env color

GL_REPLACE - replace fragment’s color with texel

If prop is GL_TEXTURE_ENV_COLOR, param is an array of four floating point
values representing the color to be used with the GL_BLEND texture function.

Advanced OpenGL TopicsAdvanced OpenGL Topics

Immediate Mode versus Display Listed
Rendering

• Immediate Mode Graphics

– Primitives are sent to pipeline and display right away

– No memory of graphical entities

• Display Listed Graphics

– Primitives placed in display lists

– Display lists kept on graphics server

– Can be redisplayed with different state

– Can be shared among OpenGL graphics contexts

If display lists are shared, texture objects are also shared.

To share display lists among graphics contexts in the X Window System, use the
glXCreateContext() routine.

Immediate Mode versus
Display Lists

Immediate Mode

Display Listed

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization
Per Fragment

Operations

Texture
Memory

CPU

Pixel
Operations

Frame
Buffer

In immediate mode, primitives (vertices, pixels) flow through the system and
produce images. These data are lost. New images are created by reexecuting the
display function and regenerating the primitives.

In retained mode, the primitives are stored in a display list (in “compiled”
form). Images can be recreated by “executing” the display list. Even without a
network between the server and client, display lists should be more efficient than
repeated executions of the display function.

Display Lists

• Creating a display list

GLuint id;
void init(void)
{

id = glGenLists(1);
glNewList(id, GL_COMPILE);
/* other OpenGL routines */
glEndList();

}

• Call a created list

void display(void)
{

glCallList(id);
}

G
L

3
.0

E
S

1
.1

E
S

2
.0

Instead of GL_COMPILE, glNewList also accepts the constant
GL_COMPILE_AND_EXECUTE, which both creates and executes a display list.

If a new list is created with the same identifying number as an existing display
list, the old list is replaced with the new calls. No error occurs.

Display Lists (cont’d.)

• Not all OpenGL routines can be stored in display lists

• State changes persist, even after a display list is finished

• Display lists can call other display lists

• Display lists are not editable, but you can fake it

– make a list (A) which calls other lists (B, C, and D)

– delete and replace B, C, and D, as needed

Some routines cannot be stored in a display list. Here are some of them:

all glGet* routines

glIs* routines (e.g., glIsEnabled, glIsList, glIsTexture)

glGenLists glDeleteLists glFeedbackBuffer

glSelectBuffer glRenderMode glVertexPointer

glNormalPointer glColorPointer glIndexPointer

glReadPixels glPixelStore glGenTextures

glTexCoordPointer glEdgeFlagPointer

glEnableClientState glDisableClientState

glDeleteTextures glAreTexturesResident

glFlush glFinish

If there is an attempt to store any of these routines in a display list, the routine is executed
in immediate mode. No error occurs.

Display Lists and Hierarchy

• Consider model of a car

– Create display list for chassis

– Create display list for wheel

glNewList(CAR, GL_COMPILE);

glCallList(CHASSIS);

glTranslatef(…);

glCallList(WHEEL);

glTranslatef(…);

glCallList(WHEEL);

…

glEndList();

Advanced Primitives

• Vertex Arrays

• Bernstein Polynomial Evaluators

– basis for GLU NURBS

• NURBS (Non-Uniform Rational B-Splines)

• GLU Quadric Objects

– sphere

– cylinder (or cone)

– disk (circle)

In addition to specifying vertices one at a time using glVertex*(), OpenGL
supports the use of arrays, which allows you to pass an array of vertices, lighting
normals, colors, edge flags, or texture coordinates. This is very useful for systems
where function calls are computationally expensive. Additionally, the OpenGL
implementation may be able to optimize the processing of arrays.

OpenGL evaluators, which automate the evaluation of the Bernstein
polynomials, allow curves and surfaces to be expressed algebraically. They are the
underlying implementation of the OpenGL Utility Library’s NURBS implementation.

Finally, the OpenGL Utility Library also has calls for generating polygonal
representation of quadric objects. The calls can also generate lighting normals and
texture coordinates for the quadric objects.

Alpha: the 4th Color Component

• Measure of Opacity

– simulate translucent objects

• glass, water, etc.

– composite images

– antialiasing

– ignored if blending is not enabled

glEnable(GL_BLEND) G
L

3
.0

E
S

1
.1

E
S

2
.0

The alpha component for a color is a measure of the fragment’s opacity. As
with other OpenGL color components, its value ranges from 0.0 (which represents
completely transparent) to 1.0 (completely opaque).

Alpha values are important for a number of uses:

• simulating translucent objects like glass, water, etc.

• blending and compositing images

• antialiasing geometric primitives

Blending can be enabled using glEnable(GL_BLEND).

Blending

• Combine fragments with pixel values that are already in

the framebuffer

glBlendFunc(src, dst)

FramebufferFramebuffer
PixelPixel
((dstdst))

Blending
Equation

Blending
Equation

FragmentFragment
((srcsrc))

BlendedBlended
PixelPixel

pfr CdstCsrcC

G
L

3
.0

E
S

1
.1

E
S

2
.0

Blending combines fragments with pixels to produce a new pixel color. If a
fragment makes it to the blending stage, the pixel is read from the framebuffer’s
position, combined with the fragment’s color and then written back to the
position.

The fragment and pixel each have a factor which controls their contribution to
the final pixel color. These blending factors are set using glBlendFunc(), which
sets the source factor, which is used to scale the incoming fragment color, and the
destination blending factor, which scales the pixel read from the framebuffer.
Common OpenGL blending factors are:

GL_ONE GL_ZERO

GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA

They are then combined using the blending equation, which is addition by
default.

Blending is enabled using glEnable(GL_BLEND)

Note: If your OpenGL implementation supports the GL_ARB_imaging
extension, you can modify the blending equation as well.

Fog

glFog{if}(property, value)

• Depth Cueing

– Specify a range for a linear fog ramp

• GL_FOG_LINEAR

• Environmental effects

– Simulate more realistic fog

• GL_FOG_EXP

• GL_FOG_EXP2

G
L

3
.0

E
S

1
.1

E
S

2
.0

Fog works in two modes:

Linear fog mode is used for depth cueing affects. In this mode, you provide
OpenGL with a starting and ending distance from the eye, and between those
distances, the fog color is blended into the primitive in a linear manner based on
distance from the eye.

In this mode, the fog coefficient is computed as

Here’s a code snippet for setting up linear fog:
glFogf(GL_FOG_MODE, GL_FOG_LINEAR);
glFogf(GL_FOG_START, fogStart);
glFogf(GL_FOG_END, fogEnd);
glFogfv(GL_FOG_COLOR, fogColor);
glEnable(GL_FOG);

Exponential fog mode is used for more natural environmental affects like fog,
smog and smoke. In this mode, the fog’s density increases exponentially with the
distance from the eye. For these modes, the coefficient is computed as

startend

startz
f

2GL_FOG_EXP

GL_FOG_EXP
2zdensity

zdensity

e

e
f

Fog Tutorial

In this tutorial, experiment with the different fog modes, and in particular, the
parameters which control either the fog density (for exponential mode) and the
start and end distances (for linear mode).

Multi-pass Rendering

• Blending allows results from multiple drawing passes to

be combined together

– enables more complex rendering algorithms

Example of bump-mapping
done with a multi-pass

OpenGL algorithm

OpenGL blending enables techniques which may require accumulating multiple
images of the same geometry with different rendering parameters to be done.

Antialiasing

• Removing the Jaggies

• glEnable(mode)

• GL_POINT_SMOOTH

• GL_LINE_SMOOTH

• GL_POLYGON_SMOOTH

– alpha value computed by computing
sub-pixel coverage

– available in both RGBA and colormap modes

G
L

3
.0

E
S

1
.1

E
S

2
.0

Antialiasing is a process to remove the jaggies which is the common name for
jagged edges of rasterized geometric primitives. OpenGL supports antialiasing of all
geometric primitives by enabling both GL_BLEND and one of the constants listed
above.

Antialiasing is accomplished in RGBA mode by computing an alpha value for
each pixel that the primitive touches. This value is computed by subdividing the
pixel into subpixels and determining the ratio used subpixels to total subpixels for
that pixel. Using the computed alpha value, the fragment’s colors are blended into
the existing color in the framebuffer for that pixel.

Color index mode requires a ramp of colors in the colormap to simulate the
different values for each of the pixel coverage ratios.

In certain cases, GL_POLYGON_SMOOTH may not provide sufficient results,
particularly if polygons share edges. As such, using the accumulation buffer for full
scene antialising may be a better solution.

Accumulation Buffer

• Problems of compositing into color buffers

– limited color resolution

• clamping

• loss of accuracy

– Accumulation buffer acts as a “floating point” color
buffer

• accumulate into accumulation buffer

• transfer results to frame buffer

Since most graphics hardware represents colors in the framebuffer as integer
numbers, we can run into problems if we want to accumulate multiple images
together.

Suppose the framebuffer has 8 bits per color component. If we want to prevent
any possible overflow adding 256 8 bit per color images, we would have to divide
each color component by 256 thus reducing us to 0 bits of resolution.

Many OpenGL implementations support the accumulation in software only, and
as such, using the accumulation buffer may cause some slowness in rendering.

High end graphics cards now use floating point frame buffers which allow us to
do many of the operations such as compositing without and faster without loss of
accuracy directly in the frame buffer and without use of an accumulation buffer.

Accumulation Buffer Applications

• Compositing

• Full Scene Antialiasing

• Depth of Field

• Filtering

• Motion Blur

Compositing, which combines several images into a single image, done with the
accumulation buffer generally gives better results than blending multiple passes
into the framebuffer.

Full scene antialiasing utilizes compositing in the accumulation buffer to
smooth the jagged edges of all objects in the scene. Depth of field, simulates how
a camera lens can focus on a single object while other objects in the view may be
out of focus.

Filtering techniques, such as convolutions and blurs (from image processing)
can be done easily in the accumulation buffer by rendering the same image
multiple times with slight pixel offsets.

Motion blur, a technique often used in Saturday morning cartoons, simulates
motion in a stationary object. We can do with the accumulation buffer by
rendering the same scene multiple times, and varying the position of the object we
want to appear as moving for each render pass. Compositing the results will give
the impression of the object moving.

Stencil Buffer

• Used to control drawing based on values in the stencil

buffer

– Fragments that fail the stencil test are not drawn

– Example: create a mask in stencil buffer and draw
only objects not in mask area

Unlike other buffers, we do not draw into the stencil buffer. We set its values
with the stencil functions. However, the rendering can alter the values in the
stencil buffer depending on whether a fragment passes or fails the stencil test.

Getting to the Framebuffer

BlendingBlendingDepth
Test

Depth
Test DitheringDithering Logical

Operations

Logical
Operations

Scissor
Test

Scissor
Test

Stencil
Test

Stencil
Test

Alpha
Test

Alpha
Test

F
ra

g
m

en
t

F
ra

m
eb

u
ff

er

In order for a fragment to make it to the frame buffer, it has a number of
testing stages and pixel combination modes to go through.

The tests that a fragment must pass are:

• scissor test - an additional clipping test

• alpha test - a filtering test based on the alpha color component

• stencil test - a pixel mask test

• depth test - fragment occlusion test

Each of these tests is controlled by a glEnable() capability.

If a fragment passes all enabled tests, it is then blended, dithered and/or
logically combined with pixels in the framebuffer. Each of these operations can be
enabled and disabled.

Alpha Test

• Reject pixels based on their alpha value

glAlphaFunc(func, value)

glEnable(GL_ALPHA_TEST)

– use alpha as a mask in textures

G
L

3
.0

E
S

1
.1

E
S

2
.0

Alpha values can also be used for fragment testing. glAlphaFunc() sets a
value which, if glEnable(GL_ALPHA_TEST) has been called, will test every
fragment’s alpha against the value set, and if the test fails, the fragment is
discarded.

The functions which glAlphaFunc() can use are:

GL_NEVER GL_LESS

GL_EQUAL GL_LEQUAL

GL_GREATER GL_NOTEQUAL

GL_GEUQAL GL_ALWAYS

The default is GL_ALWAYS, which always passes fragments.

Alpha testing is particularly useful when combined with texture mapping with
textures which have an alpha component. This allows your texture map to act as a
localized pixel mask. This technique is commonly used for objects like trees or
fences, where modeling the objects (and all of its holes) becomes prohibitive.

Vertex Arrays

Representing a Mesh

• Consider a mesh

• There are 8 nodes and 12 edges

• Each vertex has a location vi = (xi yi zi)

v1
v2

v7

v6
v8

v5

v4

v3

e1

e8

e3
e2

e11

e6

e7

e10

e5

e4

e9

e12

Simple Representation

• Define each polygon by the geometric locations of its
vertices

• Leads to OpenGL code such as

• Inefficient and unstructured

– Consider moving a vertex to a new location

– Must search for all occurrences

glBegin(GL_POLYGON);
glVertex3f(x1, x1, x1);
glVertex3f(x6, x6, x6);
glVertex3f(x7, x7, x7);

glEnd();

Vertex Lists

• Put the geometry in an array

• Use pointers from the vertices into this array

• Introduce a polygon list
x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5.

x6 y6 z6

x7 y7 z7

x8 y8 z8

P1
P2
P3
P4
P5

v1
v7
v6

v8
v5
v6

topology geometry

Modeling a Cube

GLfloat vertices[][3] = {{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},

{1.0,1.0,-1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0,1.0}, {1.0,-

1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};

GLfloat colors[][3] = {{0.0,0.0,0.0},{1.0,0.0,0.0}
{1.0,1.0,0.0}, {0.0,1.0,0.0}, {0.0,0.0,1.0},

{1.0,0.0,1.0}, {1.0,1.0,1.0}, {0.0,1.0,1.0}};

Model a color cube for rotating cube program

Define global arrays for vertices and colors

Drawing a polygon from a list of indices

Draw a quadrilateral from a list of indices into the array vertices and

use color corresponding to first index

void polygon(int a, int b, int c , int d)
{

glBegin(GL_POLYGON);
glColor3fv(colors[a]);
glVertex3fv(vertices[a]);
glVertex3fv(vertices[b]);
glVertex3fv(vertices[c]);
glVertex3fv(vertices[d]);

glEnd();
}

Draw cube from faces

void colorcube()

{

polygon(0,3,2,1);

polygon(2,3,7,6);

polygon(0,4,7,3);

polygon(1,2,6,5);

polygon(4,5,6,7);

polygon(0,1,5,4);

}

0

5 6

2

4
7

1

3

Note that vertices are ordered so that
we obtain correct outward facing normals

Efficiency

• The weakness of our approach is that we are building
the model in the application and must do many function
calls to draw the cube

• Drawing a cube by its faces in the most straight forward
way requires

– 6 glBegin, 6 glEnd

– 6 glColor

– 24 glVertex

– More if we use texture and lighting

Vertex Arrays

• OpenGL provides a facility called vertex arrays that allows us to

store array data in the implementation

• Six types of arrays supported

– Vertices

– Colors

– Color indices

– Normals

– Texture coordinates

– Edge flags

Initialization

• Using the same color and vertex data, first we enable

glEnableClientState(GL_COLOR_ARRAY);

glEnableClientState(GL_VERTEX_ARRAY);

• Identify location of arrays

glVertexPointer(3, GL_FLOAT, 0, vertices);

glColorPointer(3, GL_FLOAT, 0, colors);

3d arrays
stored as floats

data contiguous

data array

G
L

3
.0

E
S

1
.1

E
S

2
.0

Mapping indices to faces

• Form an array of face indices

• Each successive four indices describe a face of the cube

• Draw through glDrawElements which replaces all

glVertex and glColor calls in the display callback

GLubyte cubeIndices[24] = {0,3,2,1,2,3,7,6
0,4,7,3,1,2,6,5,4,5,6,7,0,1,5,4};

Drawing the cube

• Method 1:

• Method 2:

for(i=0; i<6; i++) glDrawElements(GL_POLYGON, 4,
GL_UNSIGNED_BYTE, &cubeIndices[4*i]);

format of index data start of index data

what to draw
number of indices

glDrawElements(GL_QUADS, 24,
GL_UNSIGNED_BYTE, cubeIndices);

Draws cube with 1 function call!!

G
L

3
.0

E
S

1
.1

E
S

2
.0

Shaders and
Programmable Graphics Pipelines

GPUs and GLSL

• Over the past few years, graphical processing units

(GPUs) have become more powerful and now are

programmable

• Support first through OpenGL extensions and OpenGL

Shading Language (GLSL)

• Incorporated in OpenGL 2.0

By most measures, GPUs are more powerful than the CPUs in workstations.
However, the architecture of a GPU is that of a stream processor.

GPUs can also be programmed using Nvidia’s Cg (C for Graphics) language
which is almost identical to Microsoft’s High Level Shading Language (HLSL). Hence
shaders written in Cg will run under both OpenGL and DirectX on Windows
platforms. Cg and GLSL are very similar. However, the advantage of GLSL is that,
like the rest of OpenGL, it is platform independent. In addition, because GLSL is
tied to OpenGL it is easier for the programmer to access OpenGL state variables.

OpenGL Pipeline Revisited

Geometry
Processing

Geometry
Processing RasterizationRasterization

Fragment
Processing
Fragment
Processing

Frame
Buffer
Frame
Buffer

CPUCPU
Texture
Memory

Texture
Memory

texelstexels

verticesvertices verticesvertices fragmentsfragments

pixelspixels

There are three types of memory that can be accessed: normal CPU memory,
texture memory, and the frame buffer.

At the present, geometry processing and fragment processing can be altered by
writing programs called shaders whereas the rasterizer is fixed.

Geometry Processing

• Coordinate Transformations

• Primitive Assembly

• Clipping

• Per-vertex lighting

• Programmable through a vertex program or vertex

shader

Geometry processing works on vertices represented in four dimensional
homogeneous coordinates.

In the fixed function pipeline (which is the default if no shader is loaded by the
application), the geometric processing includes:

The modelview and projection transformations

The assembly of groups of vertices between a glBegin and a glEnd into
primitives such as lines, points, and ploygons.

Clipping these primitives against the volume defined by glOrtho,
gluPerspective, or glFrustum.

Computing the modified Phong model (if lighting is enabled) at each vertex to
determine a vertex color.

Rasterizer

• Outputs fragments (“potential pixels”) that are interior to

primitives

• Interpolates colors, depth, texture coordinates, and other

per vertex variables to obtain values for each fragment

• Not programmable

Each fragment corresponds to a location in the frame buffer and has attributes
such as color, depth, and textures coordinates that are obtained by interpolating
the corresponding values as the vertices. However, the final color of a pixel is
determined by the color from the rasterizer, and other factors including hidden
surface removal, compositing, and texture mapping which are done as part of
fragment processing.

Fragment Processing

• Assigns color to each fragment and updates frame buffer

• Handles hidden surface removal, texture mapping, and

blending

• Programmable through fragment program or fragment

shader

Note that many of the operation that are carried out on a per vertex basis such
as shading can be carried out on a per fragment basis through a fragment shader.
For example, rather than using the vertex colors computed by the modified Phong
model and then interpolating them across a primitive, the same model can be
computed for each fragment because the rasterizer will interpolate normals and
other quantities across each primitive. This method is called Gouraud or
interpolated shading.

GLSL

• OpenGL Shading Language

• C like language for writing both vertex and fragment
shaders

• Adds matrix and vector data types + overloading of
operators

• OpenGL state variables available to shaders

• Variables can be passed among shaders and
applications

Supported as a extension in earlier versions of OpenGL but is now part of the
OpenGL standard.

Matrix and vector types are 2, 3, and 4 dimensional.

Although there are no pointers, we can pass matrices, vectors, and C-structs
back and forth.

Although the language is the same for vertex and fragment shaders, each has a
different execution model. Vertex shaders are invoked for each vertex produced by
the application; fragment shaders for each fragment that is produced by the
rasterizer. GLSL has type qualifiers to identify variables that may be local to a
shader, pass from a vertex shader to a fragment shader, and to identify input and
output variables.

Vertex Shader Execution

The vertex shader is executed for each vertex defined in the application. Minimally every vertex
shader must output a vertex position (gl_Position) to the rasterizer. A user defined vertex shader
must do all the functions that the fixed geometric processor does. Hence, most vertex shaders must
do the coordinate system changes usually done by the modelview and projection matrices on the
application on the input vertex position (gl_Vertex). Since OpenGL state variables are available to
the shader, we often see lines of code such as

gl_Position = gl_ProjectionMatrix*gl_ModeViewMatrix*gl_Vertex;

in the shader. Most shaders also produce an output color (gl_FrontColor, gl_BackColor) for each
vertex. Here is a trival vertex shader that colors every vertex red and does the standard coordinate
changes.

const vec4 red = vec4(1.0, 0.0, 0.0, 1.0);

void main(void)

{

gl_Position = gl_ModelViewProjectionMatrix*gl_Vertex;

gl_FrontColor = red;

}

Simple Vertex Shader

uniform float time;

void main()

{

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

gl_Position.xyz = (1.0+0.1*sin(0.001*time))*gl_Position.xyz;

gl_FrontColor = gl_Color;

}

In this simple shader, a variable time is provided by the application. The
product of the model-view and projection matrices
(gl_ModelViewProjectionMatrix) is provided by the state and is used to convert the
position each vertex from object coordinates (gl_Vertex) to clip coordinates
(gl_Position). The time variable is used to sinsusoidally vary the y component of the
vertex. Finally the color set by the application (gl_Color) is sent as the front color
(gl_FrontColor) along with the new position to the rasterizer.

Vertex Shader Applications

• General Vertex Lighting

• Off loading CPU

• Dynamic Meshes

• Morphing

• Additional Application Specific Vertex Attributes

Some basic fragment shader applications include:

Vertex Lighting: Use models that either more physically realistic than the
modified Phong model or are non photorealistic such as cartoon shading.

Many operations can be done either in the CPU or the GPU. Often we can
offload the CPU by pushing operations to the GPU. One example is creating waves
on a mesh by sending a time parameter to the shader which controls mesh vertex
heights sinusoidally thus creating waves. Particle system calculations are another
example.

Morphing involves interpolation between two sets of vertices. The
interpolation can be done on the GPU.

We can pass additional information on a per vertex basis to the GPU. For
example, in a simulation we might have temperature or flow data at each vertex.

Example: Vertex Shader Twisting

In this example each vertex is rotated in the about the y axis by an angle
dependent on its distance from the axis (twisting).

Although we could do this operation in the application, by doing it in the shader
we offload the CPU.

Fragment Shader Execution

The fragment shader is executed for each fragment output from the rasterizer.
Every fragment program must produce a fragment color (gl_FragmentColor). Since
each fragment has a location in the frame buffer, fragment locations cannot be
altered. Vertex attributes, either bultin (gl_FrontColor) or application defined are
available to the fragment shader with values that have been interpolated across
the primitive. Tests such as depth are done after the fragment shader.

Below is a simple fragment shader that passes through a color defined and
output by the vertex shader (color_out) for each vertex that is interpolated across
the primitive.

varying vec3 color_out;

void main(void)

{

gl_FragColor = color_out;

}

Simple Fragment Shader

uniform float time;

void main()

{

float d = length(gl_FragCoord.xy);

gl_FragColor.r = 0.5*(1.0+sin(0.001*time))*gl_FragCoord.x/d;

gl_FragColor.g = 0.5*(1.0+cos(0.001*time))*gl_FragCoord.y/d;

gl_FragColor.b = gl_FragCoord.z;

gl_FragColor.a = 1.0;

}

In this simple fragment shader the time variable provided by the application is
used to vary the red and green components of each fragment’s color sinusoidally.
The location each fragment in the frame buffer (gl_FragCoord) is available from the
state. Every fragment program must output a fragment color (gl_FragColor).

Fragment Shader Applications

• Per Fragment Lighting

• Bump Maps

• Environment Maps

• Texture Manipulation

• Shadow Maps

Fragment shaders are more powerful than vertex shaders. With a fragment
shader you can apply the lighting model to each fragment generated by the
rasterizer rather than using interpolated values from each vertex. One example is
bump mapping where the normal is altered at each fragment allowing the
rendering of surfaces that are not smooth. Fragment shader also have access to
textures so that multipass techniques such as environment maps can be carried
out in real time.

Example: Per Fragment Shading

In this example, a diffuse color was computed for each fragment by using the
interpolating normals and light vectors ouput by the rasterizer.

A texture was also applied to each fragment. Per fragment lighting using the
same model as a vertex shader or the default modified Phong model should result
in a much smoother image.

Linking with Application

• In OpenGL application, we must:

– Read shaders

– Compile shaders

– Define variables

– Link everything together

• OpenGL 2.0 contains a set of functions for each of these

steps

Similar to the initialization of other OpenGL application programs, a set of
operations must be carried out to set up user written shaders and link them with
an OpenGL application program. Shaders are placed in program objects. A program
object can contain multiple shaders of each type. Just as with any program, a
shader must be compiled and linked with other program entities. The linking stage
sets up internal tables that allow the application to tie together variables in the
shaders with variables in the application program.

Compiling and Linking Shaders

Creating a Shader Program

• Similar to compiling a “C” program

– compile, and link

• OpenGL ES supports both online and offline
compilation

• Multi-step process

1. create and compile shader objects

2. attach shader objects to program

3. link objects into executable program

Shader Compilation (Part 1)

• Create and compile a Shader (with online compilation)

GLunit shader = glCreateShader(shaderType);

const char* str = “void main() {…}”;

glShaderSource(shader, 1, &str, NULL);

glCompileShader(shader);

• shaderType is either

– GL_VERTEX_SHADER

– GL_FRAGMENT_SHADER

• Pre-complied shaders are loaded with
glShaderBinary

G
L

3
.0

E
S

1
.1

E
S

2
.0

Shader Compilation (Part 2)

• Checking to see if the shader compiled (online compilation)

GLint compiled;

glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);

if (!compiled) {

GLint len;

glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &len);

std::string msgs(len);

glGetShaderInfoLog(shader, len, &len, &msgs[0]);

std::cerr << msgs << std::endl;

throw shader_compile_error;

}

G
L

3
.0

E
S

1
.1

E
S

2
.0

Shader Program Linking (Part 1)

• Create an empty program object

GLuint program = glCreateProgram();

• Associate shader objects with program

glAttachShader(program, vertexShader);

glAttachShader(program, fragmentShader);

• Link program

glLinkProgram(program);

G
L

3
.0

E
S

1
.1

E
S

2
.0

Shader Program Linking (Part 2)

• Making sure it worked

GLint linked;

glGetProgramiv(program, GL_LINK_STATUS, &linked);

if (!linked) {

GLint len;

glGetProgramiv(program, GL_INFO_LOG_LENGTH, &len);

std::string msgs(len);

glGetProgramInfoLog(program, len, &len, &msgs[0]);

std::cerr << msgs << std::endl;

throw shader_link_error;

}

G
L

3
.0

E
S

1
.1

E
S

2
.0

Using Shaders in an Application

• Need to turn on the appropriate shader

glUseProgram(program); G
L

3
.0

E
S

1
.1

E
S

2
.0

A Shader Test Environment

• AMD’s RenderMonkey makes shader exploration very

easy

– OpenGL, OpenGL ES, DirectX shader support

Associating Shader Variables and Data

• Need to associate a shader variable with an OpenGL

data source

– vertex shader attributes → app vertex attributes

– shader uniforms → app provided uniform values

• OpenGL relates shader variables to indices for the app

to set

• Two methods for determining variable/index association

– specify association before program linkage

– query association after program linkage

Explicitly Assigning Locations

• Only available for vertex attribute variables

• Must be done before program link (e.g., glLinkProgram)

glBindAttribLocation(program, index, “name”);

G
L

3
.0

E
S

1
.1

E
S

2
.0

Determining Locations After Linking

• Assumes you already know the variables’ name

GLint idx =
glGetAttribLocation(program, “name”);

GLint idx =
glGetUniformLocation(program, “name”);

G
L

3
.0

E
S

1
.1

E
S

2
.0

OpenGL ES

OpenGL ES

• Designed for the embedded device space

– much smaller driver

• fewer function calls

• multiple versions for the different pipelines

• Integrates (through EGL) with other Khronos APIs

– OpenVG for rendering vector graphics

– OpenMAX for media acceleration

As we’ve described throughout the course, the OpenGL ES interface is closely related to
that of it’s larger counterpart, OpenGL. As it was designed for the embedded device space,
the “driver” has had many functions removed that remove redundant ways of doing the
same things, such as specify geometry, which in OpenGL ES is only done through the use of
vertex arrays.

OpenGL and OpenGL ES are both APIs developed by the Khronos Group. Others include
OpenVG for vector graphics, and OpenMAX for media acceleration, principally video.
These interfaces are able to share data and images using the EGL interface. For example,
you might decode a frame of video using OpenMAX and use it directly as a texture map in
OpenGL ES.

It should be noted that OpenGL isn’t as integrated with the other Khronos APIs currently.

OpenGL ES Versions

• OpenGL ES 1.1

– only implements a fixed-function pipeline

• fixed set of operations available

• OpenGL ES 2.0

– only implements a programmable pipeline

• almost completely controlled by programmable
shaders

• very small interface, and only supports rendering

The two OpenGL ES interfaces, 1.1 and 2.0, implement the different version of the graphics
pipeline – fixed-function and programmable – which are both available in OpenGL.
OpenGL ES 1.1 uses a large number of function calls to implement rendering, but also
includes support for transformations and matrix stacks, Phong lighting, fog, and other
features, each of which is controlled by specifying state using function calls. OpenGL ES 2.0,
on the other hand, implements a programmable pipeline that where almost all graphics
operations are done in shaders. As such, the interface is very small, and focused on only
specify geometry and textures, and dealing with shaders and their variables. None of the
functionality of the fixed-function pipeline is available.

OpenGL 3.0

OpenGL 3.0

• Completely backwards compatible with OpenGL 2.1

• New features to enable the latest hardware

– most are promoted extensions

• Provides greater control of data in the graphics hardware

• Adds a mechanism for removing obsolete methods

Enhancements for Data Control

• Keeping data local to the GPU is the secret of

performance

– framebuffer objects

– data recirculation using transform feedback

– conditional rendering using occlusion queries

– finer-grain control over buffer data management

Some New Core Features

• Floating-point rendering

– texture, color, and depth buffer formats

• Enhanced texturing support

– integer and half-float formats in shaders

• sRGB color space rendering support

Deprecation

• No features removed from OpenGL 3.0

• New context creation paradigm

– “current” context reflects all current OpenGL features

– “future” context indicates features that will (eventually)
be deprecated out of OpenGL

Summary / Q & ASummary / Q & A

Ed Angel

Dave Shreiner

On-Line Resources

– http://www.opengl.org

• start here; up to date specification and lots of
sample code

– http://www.khronos.org

– http://www.mesa3d.org

• Brian Paul’s Mesa 3D
– http://www.cs.utah.edu/~narobins/opengl.html

• very special thanks to Nate Robins for the OpenGL
Tutors

• source code for tutors available here!

Books

• OpenGL Programming Guide, 6th Edition

• OpenGL ES 2.0 Programming Guide

• Interactive Computer Graphics: A top-down approach

with OpenGL, 5th Edition

• The OpenGL Superbible, 3rd Edition

• OpenGL Programming on Mac OS X

• OpenGL Programming for the X Window System

• OpenGL: A Primer 3rd Edition

• OpenGL Distilled

The OpenGL Programming Guide is often referred to as the “Red Book” due to
the color of its cover. Likewise, there was an OpenGL Reference Manuall, called
the “Blue Book”, which is now out of print. It contained all of the OpenGL manual
pages, which are now available online at http://www.opengl.org/sdk/docs/man.

The OpenGL ES 2.0 Programming Guide details programming with OpenGL ES
2.0 in an embedded environment, including EGL.

Mark Kilgard’s OpenGL Programming for the X Window System, is the “Green
Book”, and Ron Fosner’s OpenGL Programming for Microsoft Windows, which has a
white cover is sometimes called the “Alpha Book.” The OpenGL Shading Language
is the “Orange Book.”

All of the OpenGL programming series books, including Interactive Computer
Graphics: A top-down approach with OpenGL and OpenGL: A Primer are published
by Addison Wesley Publishers.

Thanks for Coming

Questions and Answers

Ed Angel angel@cs.unm.edu

Dave Shreiner shreiner@siggraph.org

