The OpenGL® Graphics System:

A Specification
(Version 2.1 - December 1, 2006)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2-2.1): Jon Leech
Editor (version 2.0): Pat Brown

Copyright (©) 1992-2006 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains information proprietary to
Silicon Graphics, Inc. Any copying, adaptation, distribution, public performance,
or public display of this document without the express written consent of Silicon
Graphics, Inc. is strictly prohibited. The receipt or possession of this document
does not convey any rights to reproduce, disclose, or distribute its contents, or to
manufacture, use, or sell anything that it may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions set forth
in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013 and/or in similar or succes-
sor clauses in the FAR or the DOD or NASA FAR Supplement. Unpublished rights
reserved under the copyright laws of the United States. Contractor/manufacturer is
Silicon Graphics, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043.

OpenGL is a registered trademark of Silicon Graphics, Inc.
Unix is a registered trademark of The Open Group.
The ”X” device and X Windows System are trademarks of
The Open Group.

Contents

1 Introduction 1
1.1 Formatting of Optional Features 1
1.2 What is the OpenGL Graphics System? 1
1.3 Programmer’s View of OpenGL 2
1.4 Implementor’s View of OpenGL 2
1.5 OurView e 3
1.6 Companion Documents 3

2 OpenGL Operation 4
2.1 OpenGL Fundamentals 4

2.1.1 Floating-Point Computation 6
22 GLState 6
23 GLCommandSyntax 7
24 BasicGLOperation 10
2.5 GLErors 11
2.6 Begin/End Paradigm 12
26.1 BeginandEnd 15
2.6.2 PolygonEdges 19
2.6.3 GL Commands within Begin/End 19
2.7 Vertex Specification 20
2.8 VerteX Arrays o v i e e e e 23
2.9 BufferObjects. 33
29.1 Vertex Arrays in Buffer Objects 38
29.2 Array Indices in Buffer Objects 39
293 BufferObjectState 39
2.10 Rectangles 40
2.11 Coordinate Transformations 40
2.11.1 Controlling the Viewport 42
2112 Matrices v oo e e 43

ii

CONTENTS

2.11.3 Normal Transformation. 48
2.11.4 Generating Texture Coordinates 50
212 CHPPING .« « o v v o o e e e e e 52
2.13 Current Raster Position 54
2.14 ColorsandColoring 57
2.14.1 Lighting 59
2.14.2 Lighting Parameter Specification 64
2.143 ColorMaterial 66
2.144 LightingState 68
2.14.5 Color Index Lighting 68
2.14.6 Clampingor Masking 69
2.14.7 Flatshading 69
2.14.8 Color and Associated Data Clipping 70
2.14.9 Final Color Processing 71
2.15 Vertex Shaders 71
2.15.1 ShaderObjects 72
2.15.2 Program Objects 73
2.15.3 Shader Variables 75
2.15.4 Shader Execution 84
2.15.5 Required State 88
Rasterization 90
3.1 Invariance 92
3.2 Antialiasing 92
3.2.1 Multisampling L. 93
33 Points 95
3.3.1 Basic Point Rasterization 97
3.3.2 Point Rasterization State 101
3.3.3 Point Multisample Rasterization 101
34 Line Segmentsol 101
3.4.1 Basic Line Segment Rasterization 102
3.4.2 Other Line Segment Features 104
34.3 Line Rasterization State 107
344 Line Multisample Rasterization 107
3.5 Polygons 108
3.5.1 Basic Polygon Rasterization 108
352 Stippling 110
353 Antialiasing 111
3.5.4 Options Controlling Polygon Rasterization 111
355 DepthOffset 111

Version 2.1 - December 1, 2006

CONTENTS iii

3.5.6 Polygon Multisample Rasterization 113

3.5.7 Polygon Rasterization State 113

3.6 PixelRectangles. L. 113
3.6.1 Pixel Storage Modes and Pixel Buffer Objects 114

3.6.2 ThelImaging Subset 115

3.6.3 Pixel TransferModes 116

3.6.4 Rasterization of Pixel Rectangles 127

3.6.5 Pixel Transfer Operations 138

3.6.6 Pixel Rectangle Multisample Rasterization 148

37 Bitmaps 148
3.8 Texturing 150
3.8.1 Texture Image Specification 151

3.8.2 Alternate Texture Image Specification Commands 159

3.8.3 Compressed Texture Images 165

3.8.4 Texture Parameters 168

3.8.5 Depth Component Textures 170

3.8.6 Cube Map Texture Selection 170

3.8.7 Texture WrapModes 171

3.8.8 Texture Minification 172

3.8.9 Texture Magnification 178
3.8.10 Texture Completeness 179
3.8.11 Texture State and Proxy State 180
3.8.12 Texture Objects 182
3.8.13 Texture Environments and Texture Functions 184
3.8.14 Texture Comparison Modes 187
3.8.15 sRGB Texture Color Conversion 191
3.8.16 Texture Application. 191

39 ColorSum L 194
310 Fog e 194
3.11 Fragment Shaders 196
3.11.1 Shader Variables 196
3.11.2 Shader Execution 197

3.12 Antialiasing Application oL 199
3.13 Multisample PointFade 200
4 Per-Fragment Operations and the Framebuffer 201
4.1 Per-Fragment Operations 202
4.1.1 Pixel OwnershipTest 202

412 ScissorTest oo 203

4.1.3 Multisample Fragment Operations 203

Version 2.1 - December 1, 2006

v

CONTENTS

414 AlphaTest, 204
415 Stencil Test 205
41.6 DepthBufferTest. 206
4.1.7 Occlusion Queries 207
418 Blending 209
419 Dithering oL 212
4.1.10 Logical Operation 213
4.1.11 Additional Multisample Fragment Operations 213
4.2 Whole Framebuffer Operations 215
4.2.1 Selecting a Buffer for Writing 215
4.2.2 Fine Control of Buffer Updates 217
423 Clearing the Buffers 218
424 The Accumulation Buffer 220
4.3 Drawing, Reading, and Copying Pixels 221
4.3.1 Writing to the Stencil Buffer 221
432 ReadingPixels 222
433 CopyingPixels oL 226
434 Pixel Draw/Read State 229
Special Functions 230
5.1 Evaluators 230
5.2 Selection 236
5.3 Feedback 238
54 DisplayLists L 240
5.5 FlushandFinish. 245
5.6 Hints. L 245
State and State Requests 247
6.1 QueryingGL State L. 247
6.1.1 SimpleQueries L. 247
6.1.2 DataConversions 248
6.1.3 Enumerated Queries 249
6.14 TextureQueries 251
6.1.5 StippleQuery 253
6.1.6 ColorMatrixQuery. 253
6.1.7 ColorTableQuery 254
6.1.8 Convolution Query 254
6.1.9 Histogram Query 255
6.1.10 Minmax Query 256
6.1.11 Pointer and String Queries 257

Version 2.1 - December 1, 2006

CONTENTS

6.1.12 Occlusion Queries
6.1.13 Buffer Object Queries
6.1.14 Shader and Program Queries
6.1.15 Saving and Restoring State
6.2 State Tables

Invariance
A.1 Repeatability,
A.2 Multi-pass Algorithms L.
A3 InvarianceRules.
A.4 What All This Means

Corollaries

Version 1.1

C.1
C2
C3
C4
Cs5
C.6
C.7
C.8
C9

C.10 Acknowledgements

D.1
D.2
D3
D.4
D.5
D.6
D.7
D.8
D.9

VerteX Array o e e
Polygon Offset
Logical Operation
Texture Image Formats
Texture Replace Environment
Texture Proxies
Copy Texture and Subtexture
Texture Objects
Other Changes

Version 1.2

Three-Dimensional Texturing
BGRA Pixel Formats
Packed Pixel Formats
Normal Rescaling
Separate Specular Color
Texture Coordinate Edge Clamping
Texture Level of Detail Control
Vertex Array Draw Element Range
Imaging Subset

D.9.1
D.9.2
D.9.3
D94

Color Tables
Convolution
Color Matrix
Pixel Pipeline Statistics

Version 2.1 - December 1, 2006

304
304
305
305
307

308

311
311
312
312
312
312
313
313
313
313
314

vi

CONTENTS

D95 ConstantBlendColor. 320
D.9.6 New Blending Equations 320

D.10 Acknowledgements 320
Version 1.2.1 324
Version 1.3 325
F1 Compressed Textures 325
F2 CubeMap Textures 325
F3 Multisample 326
F4 Multitexture e 326
FE5 Texture Add EnvironmentMode 327
F.6 Texture Combine Environment Mode 327
FE7 Texture Dot3 EnvironmentMode 327
FE8 Texture BorderClamp 327
F9 Transpose Matrix, 328
F10 Acknowledgements 328
Version 1.4 333
G.1 Automatic Mipmap Generation 333
G.2 BlendSquaring 333
G.3 Changes to the Imaging Subset 334
G.4 Depth Textures and Shadows 334
G5 FogCoordinate 334
G.6 Multiple Draw Arrays oo 334
G.7 Point Parameters 335
G.8 SecondaryColor 335
G.9 Separate Blend Functions 335
G.10 Stencil Wrapo 335
G.11 Texture Crossbar EnvironmentMode 335
G2 Texture LODBias 336
G.13 Texture Mirrored Repeat 336
G.14 Window Raster Position 336
G.15 Acknowledgements 336
Version 1.5 339
H.1 BufferObjects. 339
H.2 OcclusionQueries 340
H.3 ShadowFunctions 340
H4 ChangedTokens 340

Version 2.1 - December 1, 2006

CONTENTS

H.5 Acknowledgements

I Version 2.0

I.1 Programmable Shading

K.10 Point Parameters
K.11 Vertex Blend

K.12 Matrix Palette
K.13 Texture Combine Environment Mode
K.14 Texture Crossbar Environment Mode
K.15 Texture Dot3 Environment Mode

I.L1.1 ShaderObjects

I.L1.2 Shader Programs

I.L1.3 OpenGL Shading Language

I.L1.4 Changes To Shader APIs
1.2 Multiple Render Targets
I3 Non-Power-Of-Two Textures
14 PointSprites e
1.5 Separate Blend Equation
1.6 Separate Stencil L oL
17 OtherChanges,
.8 Acknowledgements

J Version 2.1
J.1 OpenGL Shading Language
J.2° Non-Square Matrices
J.3 Pixel BufferObjects
J4 SsRGBTextures
J.5 OtherChanges
J.6 Acknowledgements L.
K ARB Extensions

K.1 Naming Conventions
K.2 Promoting Extensions to Core Features
K3 Multitexture oo o
K.4 Transpose Matrix
K5 Multisample L
K.6 Texture Add EnvironmentMode
K7 CubeMap Textures
K.8 Compressed Textures
K.9 Texture BorderClamp

Version 2.1 - December 1, 2006

vii

345
345
345
345
346
346
346
346
347
347
347
347
349

351
351
351
351
352
352
354

viii CONTENTS

K.16 Texture Mirrored Repeat 359
K17 Depth Texture 359
K18 Shadow oo 359
K.19 Shadow Ambient 360
K.20 Window Raster Position 360
K.21 Low-Level Vertex Programming 360
K.22 Low-Level Fragment Programming 360
K23 BufferObjects 360
K.24 Occlusion Queries e 361
K.25 Shader Objects 361
K.26 High-Level Vertex Programming 361
K.27 High-Level Fragment Programming 361
K.28 OpenGL Shading Language 361
K.29 Non-Power-Of-Two Textures 361
K30 Point Sprites L 362
K.31 Fragment Program Shadow 362
K.32 Multiple Render Targets 362
K.33 Rectangular Textures 362
K.34 Floating-Point Color Buffers 362
K.35 Half-Precision Floating Point 363
K.36 Floating-Point Textures 363
K.37 Pixel Buffer Objects 363

Version 2.1 - December 1, 2006

List of Figures

2.1
2.2

2.3
24
2.5
2.6
2.7
2.8
29
2.10

3.1
3.2
33
3.4
3.5
3.6
3.7
3.8
39
3.10
3.11

4.1
4.2
4.3

5.1
52

Block diagramofthe GL. 10
Creation of a processed vertex from a transformed vertex and cur-

rentvalues. 13
Primitive assembly and processing. 13
Triangle strips, fans, and independent triangles. 16
Quadrilateral strips and independent quadrilaterals. 18
Vertex transformation sequence. 41
Current raster position.o 55
Processing of RGBA colors. 57
Processing of colorindices. 57
ColorMaterial operation. 66
Rasterization. Lo 90
Rasterization of non-antialiased wide points. 97
Rasterization of antialiased wide points. 97
Visualization of Bresenham’s algorithm. 102
Rasterization of non-antialiased wide lines. 105
The region used in rasterizing an antialiased line segment. 106
Operation of DrawPixels. 127
Selecting a subimage from animage 131
A bitmap and its associated parameters. 149
A texture image and the coordinates used to accessit. 159
Multitexture pipeline. 192
Per-fragment operations., 202
Operation of ReadPixels. 222
Operation of CopyPixels. 226
Map Evaluation. 232
Feedback syntax. 241

X

List of Tables

2.1
2.2
23
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12

3.1
32
33
34
3.5
3.6
3.7
3.8
39

3.10
3.11
3.12
3.13
3.14

GL command suffixes 8
GLdatatypes e 9
Summary of GL errors 12
Vertex array sizes (values per vertex) and data types 25
Variables that direct the execution of InterleavedArrays. 32
Buffer object parameters and their values. 34
Buffer object initial state. 36
Buffer object state set by MapBuffer. 37
Component CONVErsions o v v v v v v 59
Summary of lighting parameters. 61
Correspondence of lighting parameter symbols to names. 65
Polygon flatshading color selection. 70
PixelStore parameters., 115
PixelTransfer parameters. 117
PixelMap parameters. 118
Colortablenames. 119
DrawPixels and ReadPixels types. 129
DrawPixels and ReadPixels formats. 130
Swap Bytes bitordering. 130
Packed pixel formats. 132
UNSIGNED_BYTE formats. Bit numbers are indicated for each com-

PONENt. e e e 133
UNSIGNED_SHORT formats 134
UNSIGNED_INT formats. 135
Packed pixel field assignments. 136
Color table lookup. 141
Computation of filtered color components. 142

LIST OF TABLES

3.15

3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
53

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Conversion from RGBA and depth pixel components to internal
texture, table, or filter components.
Correspondence of sized internal formats to base internal formats.
Generic and specific compressed internal formats.
Texture parameters and their values.
Selection of cube map images.
Correspondence of filtered texture components.
Texture functions REPLACE, MODULATE, and DECAL
Texture functions BLEND and ADD.
COMBINE texture functions.
Arguments for COMBINE_RGB functions.
Arguments for COMBINE_ALPHA functions.
Depth texture comparison functions.

RGB and Alpha blend equations.
Blending functions.
Arguments to LogicOp and their corresponding operations.
Arguments to DrawBuffer and the buffers that they indicate. . . .
PixelStore parameters.
ReadPixels index masks.
ReadPixels GL data types and reversed component conversion for-

Values specified by the targettoMapl.
Correspondence of feedback type to number of values per vertex. .
Hint targets and descriptions

Texture, table, and filter return values.
Attribute groups Lo
State Variable Types.
GL Internal begin-end state variables (inaccessible)
Current Values and Associated Data
Vertex Array Data L o oL
Vertex Array Data(cont.)
Vertex Array Data(cont.)
Buffer Object State
Transformation state
Coloring e
Lighting (see also table 2.10 for defaults)
Lighting (cont.)

Version 2.1 - December 1, 2006

xi

Xii

6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38

H.1

LIST OF TABLES

Rasterization 279
Multisampling 280
Textures (state per texture unit and binding point) 281
Textures (state per texture object) 282
Textures (state per texture image) 283
Texture Environment and Generation 284
Pixel Operations, 285
Pixel Operations (cont.) 286
Framebuffer Control 287
Pixels 288
Pixels(cont.) 289
Pixels(cont.)) 290
Pixels(cont.) 201
Pixels(cont.)) 292
Evaluators (GetMap takes a mapname) 293
Shader Object State 294
Program Object State 295
Vertex Shader State 296
Hints. e 297
Implementation Dependent Values 298
Implementation Dependent Values (cont.) 299
Implementation Dependent Values (cont.) 300
Implementation Dependent Values (cont.) 301
Implementation Dependent Pixel Depths 302
Miscellaneous o 303
Newtokennames 341

Version 2.1 - December 1, 2006

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it acts, and
what is required to implement it. We assume that the reader has at least a rudi-
mentary understanding of computer graphics. This means familiarity with the es-
sentials of computer graphics algorithms as well as familiarity with basic graphics
hardware and associated terms.

1.1 Formatting of Optional Features

Starting with version 1.2 of OpenGL, some features in the specification are consid-
ered optional; an OpenGL implementation may or may not choose to provide them
(see section 3.6.2).

Portions of the specification which are optional are so described where the
optional features are first defined (see section 3.6.2). State table entries which are
optional are typeset against a gray background .

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics hard-
ware. The interface consists of a set of several hundred procedures and functions
that allow a programmer to specify the objects and operations involved in produc-
ing high-quality graphical images, specifically color images of three-dimensional
objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls pertain to drawing objects such as points, lines, polygons, and
bitmaps, but the way that some of this drawing occurs (such as when antialiasing

2 CHAPTER 1. INTRODUCTION

or texturing is enabled) relies on the existence of a framebuffer. Further, some of
OpenGL is specifically concerned with framebuffer manipulation.

1.3 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
geometric objects in two or three dimensions, together with commands that control
how these objects are rendered into the framebuffer. For the most part, OpenGL
provides an immediate-mode interface, meaning that specifying an object causes it
to be drawn.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
a GL context and associate it with the window. Once a GL context is allocated,
the programmer is free to issue OpenGL commands. Some calls are used to draw
simple geometric objects (i.e. points, line segments, and polygons), while others
affect the rendering of these primitives including how they are lit or colored and
how they are mapped from the user’s two- or three-dimensional model space to
the two-dimensional screen. There are also calls to effect direct control of the
framebuffer, such as reading and writing pixels.

1.4 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL must be implemented almost entirely on the host CPU. More typi-
cally, the graphics hardware may comprise varying degrees of graphics accelera-
tion, from a raster subsystem capable of rendering two-dimensional lines and poly-
gons to sophisticated floating-point processors capable of transforming and com-
puting on geometric data. The OpenGL implementor’s task is to provide the CPU
software interface while dividing the work for each OpenGL command between
the CPU and the graphics hardware. This division must be tailored to the available
graphics hardware to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This state con-
trols how objects are drawn into the framebuffer. Some of this state is directly
available to the user: he or she can make calls to obtain its value. Some of it, how-
ever, is visible only by the effect it has on what is drawn. One of the main goals of
this specification is to make OpenGL state information explicit, to elucidate how it
changes, and to indicate what its effects are.

Version 2.1 - December 1, 2006

1.5. OUR VIEW 3

1.5 Our View

We view OpenGL as a state machine that controls a set of specific drawing oper-
ations. This model should engender a specification that satisfies the needs of both
programmers and implementors. It does not, however, necessarily provide a model
for implementation. An implementation must produce results conforming to those
produced by the specified methods, but there may be ways to carry out a particular
computation that are more efficient than the one specified.

1.6 Companion Documents

This specification should be read together with a companion document titled 7he
OpenGL Shading Language. The latter document (referred to as the OpenGL Shad-
ing Language Specification hereafter) defines the syntax and semantics of the pro-
gramming language used to write vertex and fragment shaders (see sections 2.15
and 3.11). These sections may include references to concepts and terms (such as
shading language variable types) defined in the companion document.

OpenGL 2.0 implementations are guaranteed to support at least version 1.10 of
the shading language; the actual version supported may be queried as described in
section 6.1.11.

Version 2.1 - December 1, 2006

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms to obtain user input.

The GL draws primitives subject to a number of selectable modes. Each prim-
itive is a point, line segment, polygon, or pixel rectangle. Each mode may be
changed independently; the setting of one does not affect the settings of others
(although many modes may interact to determine what eventually ends up in the
framebuffer). Modes are set, primitives specified, and other GL operations de-
scribed by sending commands in the form of function or procedure calls.

Primitives are defined by a group of one or more vertices. A vertex defines a
point, an endpoint of an edge, or a corner of a polygon where two edges meet. Data
(consisting of positional coordinates, colors, normals, and texture coordinates) are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all
previously invoked GL commands, except where explicitly specified otherwise. In

4

2.1. OPENGL FUNDAMENTALS 5

general, the effects of a GL command on either GL modes or the framebuffer must
be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of such parameters as transformation matri-
ces, lighting equation coefficients, antialiasing methods, and pixel update opera-
tors. It does not provide a means for describing or modeling complex geometric
objects. Another way to describe this situation is to say that the GL provides mech-
anisms to describe how complex geometric objects are to be rendered rather than
mechanisms to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer as the client. In this sense, the GL is “network-transparent.” A server
may maintain a number of GL contexts, each of which is an encapsulation of cur-
rent GL state. A client may choose to connect to any one of these contexts. Issuing
GL commands when the program is not connected to a context results in undefined
behavior.

The effects of GL commands on the framebuffer are ultimately controlled by
the window system that allocates framebuffer resources. It is the window sys-
tem that determines which portions of the framebuffer the GL may access at any
given time and that communicates to the GL how those portions are structured.
Therefore, there are no GL. commands to configure the framebuffer or initialize the
GL. Similarly, display of framebuffer contents on a CRT monitor (including the
transformation of individual framebuffer values by such techniques as gamma cor-
rection) is not addressed by the GL. Framebuffer configuration occurs outside of
the GL in conjunction with the window system; the initialization of a GL context
occurs when the window system allocates a window for GL rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL. implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.

Version 2.1 - December 1, 2006

6 CHAPTER 2. OPENGL OPERATION

Finally, command names, constants, and types are prefixed in the GL (by gl,
GL_, and GL, respectively in C) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of floating-point operations during the course of
its operation. We do not specify how floating-point numbers are to be represented
or how operations on them are to be performed. We require simply that numbers’
floating-point parts contain enough bits and that their exponent fields are large
enough so that individual results of floating-point operations are accurate to about
1 part in 10°. The maximum representable magnitude of a floating-point number
used to represent positional, normal, or texture coordinates must be at least 232 the
maximum representable magnitude for colors must be at least 2'°. The maximum
representable magnitude for all other floating-point values must be at least 232.
z-0 = 0.2 = 0 for any non-infinite and non-NaN z. 1-z =z -1 = =x.
24+0=0+z =2 0" = 1. (Occasionally further requirements will be specified.)
Most single-precision floating-point formats meet these requirements.

Any representable floating-point value is legal as input to a GL command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we
describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of state, called GL server
state, resides in the GL server. The majority of GL state falls into this category.
The second type of state, called GL client state, resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL

Version 2.1 - December 1, 2006

2.3. GL COMMAND SYNTAX 7

client state is specifically identified. Each instance of a GL context implies one
complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed from a name followed, depending on the particular
command, by up to 4 characters. The first character indicates the number of values
of the indicated type that must be presented to the command. The second character
or character pair indicates the specific type of the arguments: 8-bit integer, 16-bit
integer, 32-bit integer, single-precision floating-point, or double-precision floating-
point. The final character, if present, is v, indicating that the command takes a
pointer to an array (a vector) of values rather than a series of individual arguments.
Two specific examples come from the Vertex command:

void Vertex3f(float x, floaty, float z);
and
void Vertex2sv(short v[2]);

These examples show the ANSI C declarations for these commands. In general,
a command declaration has the form'

rtype Name{e1234}{c bsifd ub us ui}{ev}
([args,]Targl, ..., TargN [, args]) ;

rtype is the return type of the function. The braces ({}) enclose a series of char-
acters (or character pairs) of which one is selected. e indicates no character. The
arguments enclosed in brackets ([args ,] and [, args]) may or may not be present.

!The declarations shown in this document apply to ANSI C. Languages such as C++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.

Version 2.1 - December 1, 2006

8 CHAPTER 2. OPENGL OPERATION

’ Letter ‘ Corresponding GL Type

byte
S short
i int
f float
d double
ub ubyte
us ushort
ui uint

Table 2.1: Correspondence of command suffix letters to GL argument types. Refer
to table 2.2 for definitions of the GL types.

The N arguments argl through arg N have type T, which corresponds to one of the
type letters or letter pairs as indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then IV is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only argl/ is present and it is an array of N values
of the indicated type. Finally, we indicate an unsigned type by the shorthand of
prepending a u to the beginning of the type name (so that, for instance, unsigned
char is abbreviated uchar).
For example,

void Normal3{fd}(T arg);
indicates the two declarations

void Normal3f(float argl, float arg2, float arg3);
void Normal3dd(double argl, double arg2, double argl3);

while
void Normal3{fd}v(T arg);
means the two declarations

void Normal3fv(float arg/3]);
void Normal3dv(double arg/3]);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of 14 types (or pointers to one of these). These types are summarized in
table 2.2.

Version 2.1 - December 1, 2006

2.3. GL COMMAND SYNTAX 9

GL Type Minimum | Description

Bit Width
boolean 1 Boolean
byte 8 signed 2’s complement binary integer
ubyte 8 unsigned binary integer
char 8 characters making up strings
short 16 signed 2’s complement binary integer
ushort 16 unsigned binary integer
int 32 signed 2’s complement binary integer
uint 32 unsigned binary integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits signed 2’s complement binary integer
sizeiptr | ptrbits Non-negative binary integer size
bitfield 32 Bit field
float 32 Floating-point value
clampf 32 Floating-point value clamped to [0, 1]
double 64 Floating-point value
clampd 64 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation may use more bits than the
number indicated in the table to represent a GL type. Correct interpretation of
integer values outside the minimum range is not required, however.

ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr and sizeiptr must be sufficiently large as to store any address.

Version 2.1 - December 1, 2006

10 CHAPTER 2. OPENGL OPERATION

Display
List

Per-Vertex
o Y Operations R : Per—
asteriz—
Evaluator Primitive ation (F)ragmte_mt Framebuffer
Assembly perations
|\
Texture
Memory
- Y =Pixel
Operations [

Figure 2.1. Block diagram of the GL.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages. Most commands may be ac-
cumulated in a display list for processing by the GL at a later time. Otherwise,
commands are effectively sent through a processing pipeline.

The first stage provides an efficient means for approximating curve and sur-
face geometry by evaluating polynomial functions of input values. The next stage
operates on geometric primitives described by vertices: points, line segments, and
polygons. In this stage vertices are transformed and lit, and primitives are clipped
to a viewing volume in preparation for the next stage, rasterization. The rasterizer
produces a series of framebuffer addresses and values using a two-dimensional de-
scription of a point, line segment, or polygon. Each fragment so produced is fed
to the next stage that performs operations on individual fragments before they fi-
nally alter the framebuffer. These operations include conditional updates into the
framebuffer based on incoming and previously stored depth values (to effect depth
buffering), blending of incoming fragment colors with stored colors, as well as
masking and other logical operations on fragment values.

Finally, there is a way to bypass the vertex processing portion of the pipeline to
send a block of fragments directly to the individual fragment operations, eventually
causing a block of pixels to be written to the framebuffer; values may also be read

Version 2.1 - December 1, 2006

2.5. GL ERRORS 11

back from the framebuffer or copied from one portion of the framebuffer to another.
These transfers may include some type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL. Objects such as curved surfaces, for instance, may
be transformed before they are converted to polygons.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_.ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only if OUT_OF _MEMORY has occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. If the generating command returns a value, it returns zero. If
the generating command modifies values through a pointer argument, no change is
made to these values. These error semantics apply only to GL errors, not to system
errors such as memory access errors. This behavior is the current behavior; the
action of the GL in the presence of errors is subject to change.

Several error generation conditions are implicit in the description of every GL
command:

Version 2.1 - December 1, 2006

12 CHAPTER 2. OPENGL OPERATION

Error Description Offending com-
mand ignored?

INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range | Yes
INVALID_OPERATION || Operation illegal in current state | Yes
STACK-OVERFLOW Command would cause a stack | Yes

overflow
STACK_UNDERFLOW Command would cause a stack | Yes

underflow
OUT_OF MEMORY Not enough memory left to exe- | Unknown

cute command
TABLE_TOO_LARGE The specified table is too large Yes

Table 2.3: Summary of GL errors

e If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, the
error INVALID_ENUM is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value pointed to is not allowable for
the given command.

e If a negative number is provided where an argument of type sizei or
sizeiptr is specified, the error INVALID_VALUE is generated.

o If memory is exhausted as a side effect of the execution of a command, the
error OUT_OF MEMORY may be generated.

Otherwise, errors are generated only for conditions that are explicitly described in
this specification.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordinate
sets that specify vertices and optionally normals, texture coordinates, and colors
between Begin/End pairs. There are ten geometric objects that are drawn this
way: points, line segments, line segment loops, separated line segments, polygons,
triangle strips, triangle fans, separated triangles, quadrilateral strips, and separated
quadrilaterals.

Version 2.1 - December 1, 2006

2.6. BEGIN/END PARADIGM 13

Each vertex is specified with two, three, or four coordinates. In addition, a
current normal, multiple current texture coordinate sets, multiple current generic
vertex attributes, current color, current secondary color, and current fog coor-
dinate may be used in processing each vertex. Normals are used by the GL in
lighting calculations; the current normal is a three-dimensional vector that may be
set by sending three coordinates that specify it. Texture coordinates determine how
a texture image is mapped onto a primitive. Multiple sets of texture coordinates
may be used to specify how multiple texture images are mapped onto a primitive.
The number of texture units supported is implementation dependent but must be
at least two. The number of texture units supported can be queried with the state
MAX_TEXTURE_UNITS. Generic vertex attributes can be accessed from within ver-
tex shaders (section 2.15) and used to compute values for consumption by later
processing stages.

Primary and secondary colors are associated with each vertex (see section 3.9).
These associated colors are either based on the current color and current secondary
color or produced by lighting, depending on whether or not lighting is enabled.
Texture and fog coordinates are similarly associated with each vertex. Multiple
sets of texture coordinates may be associated with a vertex. Figure 2.2 summarizes
the association of auxiliary data with a transformed vertex to produce a processed
vertex.

The current values are part of GL state. Vertices and normals are transformed,
colors may be affected or replaced by lighting, and texture coordinates are trans-
formed and possibly affected by a texture coordinate generation function. The
processing indicated for each current value is applied for each vertex that is sent to
the GL.

The methods by which vertices, normals, texture coordinates, fog coordinate,
generic attributes, and colors are sent to the GL, as well as how normals are trans-
formed and how vertices are mapped to the two-dimensional screen, are discussed
later.

Before colors have been assigned to a vertex, the state required by a vertex
is the vertex’s coordinates, the current normal, the current edge flag (see sec-
tion 2.6.2), the current material properties (see section 2.14.2), the current fog co-
ordinate, the multiple generic vertex attribute sets, and the multiple current texture
coordinate sets. Because color assignment is done vertex-by-vertex, a processed
vertex comprises the vertex’s coordinates, its edge flag, its fog coordinate, its as-
signed colors, and its multiple texture coordinate sets.

Figure 2.3 shows the sequence of operations that builds a primitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it
is clipped to a viewing volume. This may alter the primitive by altering vertex
coordinates, texture coordinates, and colors. In the case of line and polygon prim-

Version 2.1 - December 1, 2006

CHAPTER 2. OPENGL OPERATION

Vertex
Coordinates In

Y

vertex / normal Transformed
L transformation L)
Coordinates
Current
Normal >
! Processed
> Vertex
Out
Current lighting Q< | gl Associated
Colors & T> T Data
Materials (Colors, Edge Flag)
Fog and Texture
Coordinates)
Current 1
Edge Flag &
Fog Coord n—oi
Current
Texture }— texgen | texture
matrix O
Coord Set 0 T
| {
Current

Texture texgen Qe texture
Coord Set 1 _| T

matrix 1
I—O{

Current
Texture texgen | texture
matrix 2
Coord Set 2 _| T
0{
Current
Texture texgen | r;e:ttrLij;ea
Coord Set 3 _| T

Figure 2.2. Association of current values with a vertex. The heavy lined boxes rep-
resent GL state. Four texture units are shown; however, multitexturing may support
a different number of units depending on the implementation.

Version 2.1 - December 1, 2006

2.6. BEGIN/END PARADIGM 15

Point culling;
Line Segment
Coordinates > Point, - or Polygon —
Line Segment, or o Clippin
Procgssed Pol?/gon — Rasterization
Vertices Associated g, (Primitive) > I
Data Assembly Color
Processing

A

Begin/End
State

Figure 2.3. Primitive assembly and processing.

itives, clipping may insert new vertices into the primitive. The vertices defining a
primitive to be rasterized have texture coordinates and colors associated with them.

2.6.1 Begin and End

Vertices making up one of the supported geometric object types are specified by
enclosing commands defining those vertices between the two commands

void Begin(enum mode);
void End(void);

There is no limit on the number of vertices that may be specified between a Begin
and an End.

Points. A series of individual points may be specified by calling Begin with an
argument value of POINTS. No special state need be kept between Begin and End
in this case, since each point is independent of previous and following points.

Line Strips. A series of one or more connected line segments is specified by
enclosing a series of two or more endpoints within a Begin/End pair when Begin is
called with LINE_STRIP. In this case, the first vertex specifies the first segment’s
start point while the second vertex specifies the first segment’s endpoint and the
second segment’s start point. In general, the ith vertex (for ¢ > 1) specifies the
beginning of the ith segment and the end of the ¢+ — 1st. The last vertex specifies
the end of the last segment. If only one vertex is specified between the Begin/End
pair, then no primitive is generated.

Version 2.1 - December 1, 2006

16 CHAPTER 2. OPENGL OPERATION

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops. Line loops, specified with the LINE_LOOP argument value to
Begin, are the same as line strips except that a final segment is added from the final
specified vertex to the first vertex. The additional state consists of the processed
first vertex.

Separate Lines. Individual line segments, each specified by a pair of vertices,
are generated by surrounding vertex pairs with Begin and End when the value
of the argument to Begin is LINES. In this case, the first two vertices between a
Begin and End pair define the first segment, with subsequent pairs of vertices each
defining one more segment. If the number of specified vertices is odd, then the last
one is ignored. The state required is the same as for lines but it is used differently: a
vertex holding the first vertex of the current segment, and a boolean flag indicating
whether the current vertex is odd or even (a segment start or end).

Polygons. A polygon is described by specifying its boundary as a series of
line segments. When Begin is called with POLYGON, the bounding line segments
are specified in the same way as line loops. Depending on the current state of the
GL, a polygon may be rendered in one of several ways such as outlining its border
or filling its interior. A polygon described with fewer than three vertices does not
generate a primitive.

Only convex polygons are guaranteed to be drawn correctly by the GL. If a
specified polygon is nonconvex when projected onto the window, then the rendered
polygon need only lie within the convex hull of the projected vertices defining its
boundary.

The state required to support polygons consists of at least two processed ver-
tices (more than two are never required, although an implementation may use
more); this is because a convex polygon can be rasterized as its vertices arrive,
before all of them have been specified. The order of the vertices is significant in
lighting and polygon rasterization (see sections 2.14.1 and 3.5.1).

Triangle strips. A triangle strip is a series of triangles connected along shared
edges. A triangle strip is specified by giving a series of defining vertices between
a Begin/End pair when Begin is called with TRIANGLE_STRIP. In this case, the
first three vertices define the first triangle (and their order is significant, just as for
polygons). Each subsequent vertex defines a new triangle using that point along
with two vertices from the previous triangle. A Begin/End pair enclosing fewer
than three vertices, when TRIANGLE_STRIP has been supplied to Begin, produces
no primitive. See figure 2.4.

The state required to support triangle strips consists of a flag indicating if the
first triangle has been completed, two stored processed vertices, (called vertex A

Version 2.1 - December 1, 2006

2.6. BEGIN/END PARADIGM 17

NN

1 3

(@) (b) (c)

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices between Begin and End. Note that in
(a) and (b) triangle edge ordering is determined by the first triangle, while in (c) the
order of each triangle’s edges is independent of the other triangles.

and vertex B), and a one bit pointer indicating which stored vertex will be replaced
with the next vertex. After a Begin (TRIANGLE_STRIP), the pointer is initialized
to point to vertex A. Each vertex sent between a Begin/End pair toggles the pointer.
Therefore, the first vertex is stored as vertex A, the second stored as vertex B, the
third stored as vertex A, and so on. Any vertex after the second one sent forms a
triangle from vertex A, vertex B, and the current vertex (in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one exception:
each vertex after the first always replaces vertex B of the two stored vertices. The
vertices of a triangle fan are enclosed between Begin and End when the value of
the argument to Begin is TRIANGLE _FAN.

Separate Triangles. Separate triangles are specified by placing vertices be-
tween Begin and End when the value of the argument to Begin is TRIANGLES. In
this case, The 37 + 1st, 37 4+ 2nd, and 3¢ + 3rd vertices (in that order) determine
a triangle for each ¢ = 0,1,...,n — 1, where there are 3n + k vertices between
the Begin and End. % is either O, 1, or 2; if £ is not zero, the final k vertices are
ignored. For each triangle, vertex A is vertex 3¢ and vertex B is vertex 3¢ + 1.
Otherwise, separate triangles are the same as a triangle strip.

The rules given for polygons also apply to each triangle generated from a tri-
angle strip, triangle fan or from separate triangles.

Quadrilateral (quad) strips. Quad strips generate a series of edge-sharing
quadrilaterals from vertices appearing between Begin and End, when Begin is

Version 2.1 - December 1, 2006

18 CHAPTER 2. OPENGL OPERATION

2 i >0 > 6 >
A A A A
- Yl y _ y - \j
1 3 5 1 4 5 8
(@) (b)

Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the sequenc-
ing of the vertices between Begin and End.

called with QUAD_STRIP. If the m vertices between the Begin and End are
v1,...,Um, Where v; is the jth specified vertex, then quad ¢ has vertices (in or-
der) va;, V2i+1, V2i+3, and vg;+o With i = 0,..., |m/2]. The state required is thus
three processed vertices, to store the last two vertices of the previous quad along
with the third vertex (the first new vertex) of the current quad, a flag to indicate
when the first quad has been completed, and a one-bit counter to count members
of a vertex pair. See figure 2.5.

A quad strip with fewer than four vertices generates no primitive. If the number
of vertices specified for a quadrilateral strip between Begin and End is odd, the
final vertex is ignored.

Separate Quadrilaterals Separate quads are just like quad strips except that
each group of four vertices, the 45 + 1st, the 45 + 2nd, the 45 + 3rd, and the
47 + 4th, generate a single quad, for 5 = 0,1,...,n — 1. The total number of
vertices between Begin and End is 4n + k, where 0 < k < 3; if k is not zero, the
final k vertices are ignored. Separate quads are generated by calling Begin with
the argument value QUADS.

The rules given for polygons also apply to each quad generated in a quad strip
or from separate quads.

The state required for Begin and End consists of an eleven-valued integer indi-
cating either one of the ten possible Begin/End modes, or that no Begin/End mode
is being processed.

Version 2.1 - December 1, 2006

2.6. BEGIN/END PARADIGM 19

2.6.2 Polygon Edges

Each edge of each primitive generated from a polygon, triangle strip, triangle fan,
separate triangle set, quadrilateral strip, or separate quadrilateral set, is flagged as
either boundary or non-boundary. These classifications are used during polygon
rasterization; some modes affect the interpretation of polygon boundary edges (see
section 3.5.4). By default, all edges are boundary edges, but the flagging of poly-
gons, separate triangles, or separate quadrilaterals may be altered by calling

void EdgeFlag(boolean flag);
void EdgeFlagv(boolean *flag);

to change the value of a flag bit. If flag is zero, then the flag bit is set to FALSE; if
flag is non-zero, then the flag bit is set to TRUE.

When Begin is supplied with one of the argument values POLYGON,
TRIANGLES, or QUADS, each vertex specified within a Begin and End pair be-
gins an edge. If the edge flag bit is TRUE, then each specified vertex begins an edge
that is flagged as boundary. If the bit is FALSE, then induced edges are flagged as
non-boundary.

The state required for edge flagging consists of one current flag bit. Initially, the
bit is TRUE. In addition, each processed vertex of an assembled polygonal primitive
must be augmented with a bit indicating whether or not the edge beginning on that
vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin/End

The only GL commands that are allowed within any Begin/End pairs are the com-
mands for specifying vertex coordinates, vertex colors, normal coordinates, texture
coordinates, generic vertex attributes, and fog coordinates (Vertex, Color, Sec-
ondaryColor, Index, Normal, TexCoord and MultiTexCoord, VertexAttrib,
FogCoord), the ArrayElement command (see section 2.8), the EvalCoord and
EvalPoint commands (see section 5.1), commands for specifying lighting mate-
rial parameters (Material commands; see section 2.14.2), display list invocation
commands (CallList and CallLists; see section 5.4), and the EdgeFlag command.
Executing any other GL command between the execution of Begin and the corre-
sponding execution of End results in the error INVALID_OPERATION. Executing
Begin after Begin has already been executed but before an End is executed gen-
erates the INVALID_OPERATION error, as does executing End without a previous
corresponding Begin.

Execution of the commands EnableClientState, DisableClientState, Push-
ClientAttrib, PopClientAttrib, ColorPointer, FogCoordPointer, EdgeFlag-

Version 2.1 - December 1, 2006

20 CHAPTER 2. OPENGL OPERATION

Pointer, IndexPointer, NormalPointer, TexCoordPointer, SecondaryCol-
orPointer, VertexPointer, VertexAttribPointer, ClientActiveTexture, Inter-
leavedArrays, and PixelStore is not allowed within any Begin/End pair, but an
error may or may not be generated if such execution occurs. If an error is not gen-
erated, GL operation is undefined. (These commands are described in sections 2.8,
3.6.1, and chapter 6.)

2.7 Vertex Specification

Vertices are specified by giving their coordinates in two, three, or four dimensions.
This is done using one of several versions of the Vertex command:

void Vertex{234}{sifd}(T coords);
void Vertex{234}{sifd}v(T coords);

A call to any Vertex command specifies four coordinates: x, y, 2z, and w. The
x coordinate is the first coordinate, y is second, z is third, and w is fourth. A
call to Vertex2 sets the = and y coordinates; the z coordinate is implicitly set to
zero and the w coordinate to one. Vertex3 sets x, ¢, and z to the provided values
and w to one. Vertex4 sets all four coordinates, allowing the specification of an
arbitrary point in projective three-space. Invoking a Vertex command outside of a
Begin/End pair results in undefined behavior.

Current values are used in associating auxiliary data with a vertex as described
in section 2.6. A current value may be changed at any time by issuing an appropri-
ate command. The commands

void TexCoord{1234}{sifd}(T coords);
void TexCoord{1234}{sifd}v(T coords);

specify the current homogeneous texture coordinates, named s, ¢, r, and q. The
TexCoord1 family of commands set the s coordinate to the provided single argu-
ment while setting ¢ and r to 0 and ¢ to 1. Similarly, TexCoord2 sets s and ¢ to the
specified values, 7 to 0 and ¢ to 1; TexCoord3 sets s, ¢, and r, with ¢ set to 1, and
TexCoord4 sets all four texture coordinates.

Implementations must support at least two sets of texture coordinates. The
commands

void MultiTexCoord{1234}{sifd} (enum texture, T coords)
void MultiTexCoord{1234}{sifd}v (enum texture, T
coords)

Version 2.1 - December 1, 2006

2.7. VERTEX SPECIFICATION 21

take the coordinate set to be modified as the fexture parameter. texture is a symbolic
constant of the form TEXTURE:, indicating that texture coordinate set ¢ is to be
modified. The constants obey TEXTURE: = TEXTUREO + ¢ (¢ is in the range O to
k — 1, where k is the implementation-dependent number of texture coordinate sets
defined by MAX_TEXTURE_COORDS).

The TexCoord commands are exactly equivalent to the corresponding Multi-
TexCoord commands with texture set to TEXTUREQ.

Gets of CURRENT_TEXTURE_COORDS return the texture coordinate set defined
by the value of ACTIVE_TEXTURE.

Specifying an invalid texture coordinate set for the texture argument of Multi-
TexCoord results in undefined behavior.

The current normal is set using

void Normal3{bsifd}(T coords);
void Normal3{bsifd}v(T coords);

Byte, short, or integer values passed to Normal are converted to floating-point
values as indicated for the corresponding (signed) type in table 2.9.
The current fog coordinate is set using

void FogCoord{fd}(T coord);
void FogCoord{fd}v(T coord);

There are several ways to set the current color and secondary color. The GL
stores a current single-valued color index, as well as a current four-valued RGBA
color and secondary color. Either the index or the color and secondary color are
significant depending as the GL is in color index mode or RGBA mode. The mode
selection is made when the GL is initialized.

The commands to set RGBA colors are

void Color{34}{bsifd ubusui}(T components);

void Color{34}{bsifd ubusui}v(T components);

void SecondaryColor3{bsifd ubusui}(T components);
void SecondaryColor3{bsifd ubusui}v(T components);

The Color command has two major variants: Color3 and Color4. The four value
versions set all four values. The three value versions set R, G, and B to the provided
values; A is set to 1.0. (The conversion of integer color components (R, G, B, and
A) to floating-point values is discussed in section 2.14.)

The secondary color has only the three value versions. Secondary A is always
set to 1.0.

Version 2.1 - December 1, 2006

22 CHAPTER 2. OPENGL OPERATION

Versions of the Color and SecondaryColor commands that take floating-point
values accept values nominally between 0.0 and 1.0. 0.0 corresponds to the min-
imum while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebuffer (see section 2.14 on colors and color-
ing). Values outside [0, 1] are not clamped.

The command

void Index{sifd ub}(T index);
void Index{sifd ub}v(T index);

updates the current (single-valued) color index. It takes one argument, the value
to which the current color index should be set. Values outside the (machine-
dependent) representable range of color indices are not clamped.

Vertex shaders (see section 2.15) can be written to access an array of 4-
component generic vertex attributes in addition to the conventional attributes spec-
ified previously. The first slot of this array is numbered 0, and the size of the array
is specified by the implementation-dependent constant MAX VERTEX_ATTRIBS.

The commands

void VertexAttrib{1234}{sfd}(uint index, T values);
void VertexAttrib{123}{sfd}v(uint index, T values);
void VertexAttrib4{bsifd ubusui}v(uint index, T values);

can be used to load the given value(s) into the generic attribute at slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to 0 and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates. The error INVALID_VALUE is
generated if index is greater than or equal to MAX VERTEX_ATTRIBS.
The commands

void VertexAttribdNub(uint index, T values);
void VertexAttrib4N{bsi ubusui}v(uint index, T values);

also specify vertex attributes with fixed-point coordinates that are scaled to a nor-
malized range, according to table 2.9.

The VertexAttrib* entry points defined earlier can also be used to load at-
tributes declared as a matrix in a vertex shader. Each column of a matrix takes up
one generic 4-component attribute slot out of the MAX VERTEX_ATTRIBS available

Version 2.1 - December 1, 2006

2.8. VERTEX ARRAYS 23

slots. Matrices are loaded into these slots in column major order. Matrix columns
need to be loaded in increasing slot numbers.

Setting generic vertex attribute zero specifies a vertex; the four vertex coordi-
nates are taken from the values of attribute zero. A Vertex2, Vertex3, or Vertex4
command is completely equivalent to the corresponding VertexAttrib* command
with an index of zero. Setting any other generic vertex attribute updates the current
values of the attribute. There are no current values for vertex attribute zero.

There is no aliasing among generic attributes and conventional attributes. In
other words, an application can set all MAX_ VERTEX_ATTRIBS generic attributes
and all conventional attributes without fear of one particular attribute overwriting
the value of another attribute.

The state required to support vertex specification consists of four floating-point
numbers per texture coordinate set to store the current texture coordinates s, ¢, 7,
and ¢, three floating-point numbers to store the three coordinates of the current
normal, one floating-point number to store the current fog coordinate, four floating-
point values to store the current RGBA color, four floating-point values to store the
current RGBA secondary color, one floating-point value to store the current color
index, and MAX_VERTEX_ATTRIBS — 1 four-component floating-point vectors to
store generic vertex attributes.

There is no notion of a current vertex, so no state is devoted to vertex coor-
dinates or generic attribute zero. The initial texture coordinates are (s,t,r,q) =
(0,0,0,1) for each texture coordinate set. The initial current normal has coor-
dinates (0,0,1). The initial fog coordinate is zero. The initial RGBA color is
(R,G,B,A) = (1,1,1,1) and the initial RGBA secondary color is (0,0,0,1).
The initial color index is 1. The initial values for all generic vertex attributes are
(0,0,0,1).

2.8 Vertex Arrays

The vertex specification commands described in section 2.7 accept data in almost
any format, but their use requires many command executions to specify even sim-
ple geometry. Vertex data may also be placed into arrays that are stored in the
client’s address space. Blocks of data in these arrays may then be used to spec-
ify multiple geometric primitives through the execution of a single GL command.
The client may specify up to seven plus the values of MAX_TEXTURE_COORDS and
MAX_VERTEX_ATTRIBS arrays: one each to store vertex coordinates, normals, col-
ors, secondary colors, color indices, edge flags, fog coordinates, two or more tex-
ture coordinate sets, and one or more generic vertex attributes. The commands

Version 2.1 - December 1, 2006

24 CHAPTER 2. OPENGL OPERATION

void VertexPointer(int size, enumtype, sizei stride,
void *pointer);

void NormalPointer(enum type, sizei stride,
void *pointer);

void ColorPointer(int size, enum type, sizei stride,
void *pointer);

void SecondaryColorPointer(int size, enum type,
sizei stride, void *pointer);

void IndexPointer(enum type, sizei stride, void *pointer);
void EdgeFlagPointer(sizei stride, void *pointer);

void FogCoordPointer(enum type, sizei stride,
void *pointer);

void TexCoordPointer(int size, enum type, sizei stride,
void *pointer);

void VertexAttribPointer(uint index, int size, enum type,
boolean normalized, sizei stride, const
void *pointer);

describe the locations and organizations of these arrays. For each command,
type specifies the data type of the values stored in the array. Because edge flags
are always type boolean, EdgeFlagPointer has no fype argument. size, when
present, indicates the number of values per vertex that are stored in the array.
Because normals are always specified with three values, NormalPointer has no
size argument. Likewise, because color indices and edge flags are always spec-
ified with a single value, IndexPointer and EdgeFlagPointer also have no size
argument. Table 2.4 indicates the allowable values for size and type (when
present). For type the values BYTE, SHORT, INT, FLOAT, and DOUBLE indicate
types byte, short, int, float, and double, respectively; and the values
UNSIGNED_BYTE, UNSIGNED_SHORT, and UNSIGNED_INT indicate types ubyte,
ushort, and uint, respectively. The error INVALID_VALUE is generated if size
is specified with a value other than that indicated in the table.

The index parameter in the VertexAttribPointer command identifies the
generic vertex attribute array being described. The error INVALID_VALUE is gener-
ated if index is greater than or equal to MAX_VERTEX_ATTRIBS. The normalized pa-
rameter in the VertexAttribPointer command identifies whether fixed-point types

Version 2.1 - December 1, 2006

2.8. VERTEX ARRAYS 25

Command Sizes | Normalized | Types

VertexPointer 2,3,4 | no short, int, float, double

NormalPointer 3 yes byte, short, int, float,
double

ColorPointer 34 yes byte, ubyte, short,
ushort, int, uint, float,
double

SecondaryColorPointer 3 yes byte, ubyte, short,
ushort, int, uint, float,
double

IndexPointer 1 no ubyte, short, int, float,
double

FogCoordPointer 1 - float, double

TexCoordPointer 1,2,3,4 | no short, int, float, double

EdgeFlagPointer 1 no boolean

VertexAttribPointer 1,234 | flag byte, ubyte, short,
ushort, int, uint, float,
double

Table 2.4: Vertex array sizes (values per vertex) and data types. The “normalized”
column indicates whether fixed-point types are accepted directly or normalized
to [0, 1] (for unsigned types) or [—1, 1] (for signed types). For generic vertex at-
tributes, fixed-point data are normalized if and only if the VertexAttribPointer
normalized flag is set.

Version 2.1 - December 1, 2006

26 CHAPTER 2. OPENGL OPERATION

should be normalized when converted to floating-point. If normalized is TRUE,
fixed-point data are converted as specified in table 2.9; otherwise, the fixed-point
values are converted directly.

The one, two, three, or four values in an array that correspond to a single vertex
comprise an array element. The values within each array element are stored se-
quentially in memory. If stride is specified as zero, then array elements are stored
sequentially as well. The error INVALID_VALUE is generated if stride is negative.
Otherwise pointers to the ith and (i + 1)st elements of an array differ by stride
basic machine units (typically unsigned bytes), the pointer to the (i + 1)st element
being greater. For each command, pointer specifies the location in memory of the
first value of the first element of the array being specified.

An individual array is enabled or disabled by calling one of

void EnableClientState(enum array);
void DisableClientState(enum array);

with array set to VERTEX_ARRAY, NORMAL_ARRAY, COLOR_ARRAY,
SECONDARY_COLOR_ARRAY, INDEX_ARRAY, EDGE_FLAG_ARRAY,
FOG_COORD_ARRAY, or TEXTURE_COORD_ARRAY, for the vertex, normal, color,
secondary color, color index, edge flag, fog coordinate, or texture coordinate array,
respectively.

An individual generic vertex attribute array is enabled or disabled by calling
one of

void EnableVertexAttribArray(uint index);
void DisableVertexAttribArray(uint index);

where index identifies the generic vertex attribute array to enable or disable.
The error INVALID_VALUE is generated if index is greater than or equal to
MAX_VERTEX_ATTRIBS.

The command

void ClientActiveTexture(enum texture);

is used to select the vertex array client state parameters to be modified by
the TexCoordPointer command and the array affected by EnableClientState and
DisableClientState with parameter TEXTURE_COORD_ARRAY. This command sets
the client state variable CLIENT_ACTIVE_TEXTURE. Each texture coordinate set
has a client state vector which is selected when this command is invoked. This
state vector includes the vertex array state. This call also selects the texture coor-
dinate set state used for queries of client state.

Version 2.1 - December 1, 2006

2.8. VERTEX ARRAYS 27

Specifying an invalid fexture generates the error INVALID_ENUM. Valid values
of texture are the same as for the MultiTexCoord commands described in sec-
tion 2.7.

The command

void ArrayElement(int i);

transfers the ith element of every enabled array to the GL. The effect of
ArrayElement(?) is the same as the effect of the command sequence

if (normal array enabled)
Normal3[type]v(normal array element 1i);
if (color array enabled)
Color[size][type]v(color array element 1i);
if (secondary color array enabled)
SecondaryColor3[type]v(secondary color array element 1);
if (fog coordinate array enabled)
FogCoord[type]v(fog coordinate array element 1);
for (3 = 0; j < textureUnits; j++) {
if (texture coordinate set j array enabled)
MultiTexCoord[size][type]v(TEXTUREO + j, texture coordinate set j array element 1);
if (colorindex array enabled)
Index[type]v(color index array element i);
if (edge flag array enabled)
EdgeFlagv(edge flag array element 1);
for (j = 1; j < genericAttributes; J++) {
if (generic vertex attribute j array enabled) {
if (generic vertex attribute j array normalization flag is set, and
type is not FLOAT or DOUBLE)
VertexAttrib[size]N[type]v(], generic vertex attribute j array element i);
else
VertexAttrib[size][type]v(j, generic vertex attribute j array element 1);
}

}

if (generic attribute array O enabled) {
if (generic vertex attribute O array normalization flag is set, and
type is not FLOAT or DOUBLE)
VertexAttrib[size]N[type]v(0, generic vertex attribute O array element 1);
else
VertexAttrib[size][type]v(0, generic vertex attribute O array element 1i);

Version 2.1 - December 1, 2006

28 CHAPTER 2. OPENGL OPERATION

} else if (vertex array enabled) {
Vertex[size][type]v(vertex array element 1i);
}

where textureUnits and genericAttributes give the number of texture coordinate
sets and generic vertex attributes supported by the implementation, respectively.
”[size]” and [type]” correspond to the size and type of the corresponding array.
For generic vertex attributes, it is assumed that a complete set of vertex attribute
commands exists, even though not all such functions are provided by the GL.

Changes made to array data between the execution of Begin and the corre-
sponding execution of End may affect calls to ArrayElement that are made within
the same Begin/End period in non-sequential ways. That is, a call to ArrayEle-
ment that precedes a change to array data may access the changed data, and a call
that follows a change to array data may access original data.

Specifying 7 < 0 results in undefined behavior. ~Generating the error
INVALID_VALUE is recommended in this case.

The command

void DrawArrays(enum mode, int first, sizei count);

constructs a sequence of geometric primitives using elements first through
first 4+ count — 1 of each enabled array. mode specifies what kind of primi-
tives are constructed; it accepts the same token values as the mode parameter of
the Begin command. The effect of

DrawArrays (mode, first, count) ;

is the same as the effect of the command sequence

if (mode or count is invalid)
generate appropriate error

else {
Begin (mode) ;
for (int i = 0; 1 < count; i++)
ArrayElement (first+ 1) ;
End () ;

}

with one exception: the current normal coordinates, color, secondary color, color
index, edge flag, fog coordinate, texture coordinates, and generic attributes are
each indeterminate after execution of DrawArrays, if the corresponding array is

Version 2.1 - December 1, 2006

2.8. VERTEX ARRAYS 29

enabled. Current values corresponding to disabled arrays are not modified by the
execution of DrawArrays.

Specifying first < 0 results in undefined behavior. Generating the error
INVALID_VALUE is recommended in this case.

The command

void MultiDrawArrays(enum mode, int *first,
sizei *count, sizei primcount);

behaves identically to DrawArrays except that primcount separate ranges of
elements are specified instead. It has the same effect as:

for (i = 0; 1 < primcount; i++) {
if (count[i] > 0)
DrawArrays (mode, first[i], count[i]);

}

The command

void DrawElements(enum mode, sizei count, enum type,
void *indices);

constructs a sequence of geometric primitives using the count elements
whose indices are stored in indices. type must be one of UNSIGNED BYTE,
UNSIGNED.SHORT, or UNSIGNED_INT, indicating that the values in indices are in-
dices of GL type ubyte, ushort, or uint respectively. mode specifies what
kind of primitives are constructed; it accepts the same token values as the mode
parameter of the Begin command. The effect of

DrawElements (mode, count, type, indices) ;
is the same as the effect of the command sequence

if (mode, count, or type is invalid)
generate appropriate error

else {
Begin (mode) ;
for (int i = 0; 1 < count; 1i++)
ArrayElement (indices[i]) ;
End () ;

}

Version 2.1 - December 1, 2006

30 CHAPTER 2. OPENGL OPERATION

with one exception: the current normal coordinates, color, secondary color, color
index, edge flag, fog coordinate, texture coordinates, and generic attributes are each
indeterminate after the execution of DrawElements, if the corresponding array is
enabled. Current values corresponding to disabled arrays are not modified by the
execution of DrawElements.

The command

void MultiDrawElements(enum mode, sizei *count,
enum type, void **indices, sizei primcount);

behaves identically to DrawElements except that primcount separate lists of
elements are specified instead. It has the same effect as:

for (1 = 0; i < primcount; i++) {
if (count[i]) > 0)
DrawElements (mode, count[i], type, indices[1]);

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enum type, void *indices);

is a restricted form of DrawElements. mode, count, type, and indices match the
corresponding arguments to DrawElements, with the additional constraint that all
values in the array indices must lie between start and end inclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by calling GetIntegerv with the symbolic constants
MAX_ELEMENTS_VERTICES and MAX ELEMENTS_INDICES. If end — start + 1 is
greater than the value of MAX ELEMENTS_VERTICES, or if count is greater than
the value of MAX_ELEMENTS_INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

The error INVALID_VALUE is generated if end < start. Invalid mode, count,
or type parameters generate the same errors as would the corresponding call to
DrawElements. It is an error for indices to lie outside the range [start, end], but
implementations may not check for this. Such indices will cause implementation-
dependent behavior.

The command

Version 2.1 - December 1, 2006

2.8. VERTEX ARRAYS 31

void InterleavedArrays(enum format, sizei stride,
void *pointer);

efficiently initializes the six arrays and their enables to one of 14 con-
figurations. format must be one of 14 symbolic constants: V2F,
V3F, CAUB.V2F, C4UB.V3F, C3F.V3F, N3F_V3F, C4F.N3F.V3F, T2F._V3F,
T4F _VAF, T2F_C4UB_V3F, T2F_C3F_V3F, T2F N3F_V3F, T2F_C4F_N3F_V3F, Oor
T4F_CAF_N3F_VA4F.

The effect of

InterleavedArrays (format, stride, pointer) ;

is the same as the effect of the command sequence

if (format or stride is invalid)
generate appropriate error
else {
int str;
set €¢, €c, €, St, Scy Su, tes Pes Py Pu, and s as a function
of table 2.5 and the value of format.
str = stride;
if (striszero)
str = s;
DisableClientState (EDGE_FLAG_ARRAY) ;
DisableClientState (INDEX_ARRAY) ;
DisableClientState (SECONDARY_COLOR_ARRAY) ;
DisableClientState (FOG_COORD_ARRAY) ;
if (ey) {
EnableClientState (TEXTURE_COORD_ARRAY) ;
TexCoordPointer (s;, FLOAT, str, pointer) ;
} else
DisableClientState (TEXTURE_COORD_ARRAY) ;
if (er) {
EnableClientState (COLOR_ARRAY) ;
ColorPointer (s, t., str, pointer + p.) ;
} else
DisableClientState (COLOR_ARRAY) ;
if (en) |
EnableClientState (NORMAL_ARRAY) ;
NormalPointer (FLOAT, str, pointer + p,) ;
} else

Version 2.1 - December 1, 2006

32 CHAPTER 2. OPENGL OPERATION

’ format \ ey \ €e \ en \ St \ S \ Su \ te
V2F False | False | False 2
V3F False | False | False 3
C4UB_V2F False | True | False 4 | 2 | UNSIGNED_BYTE
C4UB_V3F False | True | False 4 | 3 | UNSIGNED_BYTE
C3F_V3F False | True | False 313 FLOAT
N3F_V3F False | False | True 3
C4F N3F_V3F False | True | True 4 13 FLOAT
T2F_V3F True | False | False | 2 3
T4F_V4F True | False | False | 4 4
T2F_C4UB_V3F True | True | False | 2 | 4 | 3 | UNSIGNED_BYTE
T2F_C3F_V3F True | True | False | 2 | 3 | 3 FLOAT
T2F_N3F_V3F True | False | True | 2 3
T2F_C4F N3F_V3F | True | True | True | 2 | 4 | 3 FLOAT
T4F_C4F_N3F_V4F | True | True | True | 4 | 4 | 4 FLOAT
| format [pe [pn| po | s |
V2F 0 2f
V3F 0 3f
C4UB_V2F 0 c c+2f
C4UB_V3F 0 c c+3f
C3F_V3F 0 3f 6f
N3F_V3F 0 3f 6f
C4F_N3F_V3F 0 | 4f 7f 10f
T2F_V3F 2f 5f
T4F_V4F 4f 8f
T2F_C4UB_V3F 2f c+2f | c+5f
T2F_C3F_V3F 2f 5f 8f
T2F_N3F_V3F 2f 5f 8f
T2F _CAF N3F.V3F | 2f | 6f 9f 12f
TAF_C4F N3F_V4F | 4f | 8f 11f 15f

Table 2.5: Variables that direct the execution of InterleavedArrays. f is
sizeof (FLOAT). c is 4 times sizeof (UNSIGNED BYTE), rounded up to
the nearest multiple of f. All pointer arithmetic is performed in units of
sizeof (UNSIGNED_BYTE).

Version 2.1 - December 1, 2006

2.9. BUFFER OBJECTS 33

DisableClientState (NORMAL_ARRAY) ;
EnableClientState (VERTEX_ARRAY) ;
VertexPointer (s,, FLOAT, str, pointer + p,) ;

}

If the number of supported texture units (the value of MAX_TEXTURE_COORDS)
is m and the number of supported generic vertex attributes (the value of
MAX_VERTEX.ATTRIBS) is n, then the client state required to implement vertex
arrays consists of an integer for the client active texture unit selector, 7 + m + n
boolean values, 7 + m + n memory pointers, 7 + m + n integer stride values,
7+ m + n symbolic constants representing array types, 3 + m -+ n integers repre-
senting values per element, and n boolean values indicating normalization. In the
initial state, the client active texture unit selector is TEXTUREDO, the boolean values
are each false, the memory pointers are each NULL, the strides are each zero, the
array types are each FLOAT, and the integers representing values per element are
each four.

2.9 Buffer Objects

The vertex data arrays described in section 2.8 are stored in client memory. It
is sometimes desirable to store frequently used client data, such as vertex array
and pixel data, in high-performance server memory. GL buffer objects provide a
mechanism that clients can use to allocate, initialize, and render from such memory.

The name space for buffer objects is the unsigned integers, with zero reserved
for the GL. A buffer object is created by binding an unused name to a buffer target.
The binding is effected by calling

void BindBuffer(enum target, uint buffer);

target must be one of ARRAY.BUFFER, ELEMENT_ARRAY_BUFFER,
PIXEL_UNPACK_BUFFER, Oor PIXEL PACK BUFFER. The ARRAY BUFFER target is
discussed in section 2.9.1. The ELEMENT_ARRAY BUFFER target is discussed in
section 2.9.2. The PIXEL_UNPACK_BUFFER and PIXEL_PACK_BUFFER targets are
discussed later in sections 3.6, 4.3.2, and 6.1. If the buffer object named buffer has
not been previously bound or has been deleted since the last binding, the GL cre-
ates a new state vector, initialized with a zero-sized memory buffer and comprising
the state values listed in table 2.6.
BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

Version 2.1 - December 1, 2006

34 CHAPTER 2. OPENGL OPERATION

Name Type Initial Value | Legal Values
BUFFER_SIZE integer 0 any non-negative integer
BUFFER_USAGE enum STATIC_DRAW | STREAM_DRAW, STREAM_READ,

STREAM_COPY, STATIC_DRAW,
STATIC_READ, STATIC_COPY,
DYNAMIC_DRAW, DYNAMIC_READ,
DYNAMIC_COPY

BUFFER_ACCESS enum READ_WRITE | READ_ONLY, WRITE_ONLY,
READ _WRITE

BUFFER_MAPPED boolean FALSE TRUE, FALSE

BUFFER_MAP_POINTER | void* NULL address

Table 2.6: Buffer object parameters and their values.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object.

Initially, each buffer object target is bound to zero. There is no buffer object
corresponding to the name zero, so client attempts to modify or query buffer object
state for a target bound to zero generate an INVALID_OPERATION error.

Buffer objects are deleted by calling

void DeleteBuffers(sizein, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. Unused names in buffers
are silently ignored, as is the value zero.

The command

void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound, just as if they were unused.

While a buffer object is bound, any GL operations on that object affect any
other bindings of that object. If a buffer object is deleted while it is bound, all
bindings to that object in the current context (i.e. in the thread that called Delete-
Buffers) are reset to zero. Bindings to that buffer in other contexts and other
threads are not affected, but attempting to use a deleted buffer in another thread

Version 2.1 - December 1, 2006

2.9. BUFFER OBJECTS 35

produces undefined results, including but not limited to possible GL errors and
rendering corruption. Using a deleted buffer in another context or thread may not,
however, result in program termination.

The data store of a buffer object is created and initialized by calling

void BufferData(enum rarget, sizeiptr size, const
void *data, enum usage);

with target set to one of ARRAY BUFFER, ELEMENT _ARRAY BUFFER,
PIXEL_UNPACK_BUFFER, or PIXEL_PACK_BUFFER, size set to the size of the data
store in basic machine units, and data pointing to the source data in client memory.
If data is non-null, then the source data is copied to the buffer object’s data store.
If data is null, then the contents of the buffer object’s data store are undefined.

usage is specified as one of nine enumerated values, indicating the expected
application usage pattern of the data store. The values are:

STREAM_DRAW The data store contents will be specified once by the application,
and used at most a few times as the source for GL drawing and image speci-
fication commands.

STREAM_READ The data store contents will be specified once by reading data
from the GL, and queried at most a few times by the application.

STREAM_COPY The data store contents will be specified once by reading data
from the GL, and used at most a few times as the source for GL drawing and
image specification commands.

STATIC_DRAW The data store contents will be specified once by the application,
and used many times as the source for GL drawing and image specification
commands.

STATIC_READ The data store contents will be specified once by reading data
from the GL, and queried many times by the application.

sTaTIC cOoPY The data store contents will be specified once by reading data
from the GL, and used many times as the source for GL drawing and image
specification commands.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and used many times as the source for GL drawing and image
specification commands.

Version 2.1 - December 1, 2006

36 CHAPTER 2. OPENGL OPERATION

Name Value
BUFFER_SIZE size
BUFFER_USAGE usage
BUFFER_ACCESS READ_WRITE
BUFFER_MAPPED FALSE
BUFFER_MAP_POINTER | NULL

Table 2.7: Buffer object initial state.

DYNAMIC_READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC_COPY The data store contents will be respecified repeatedly by reading
data from the GL, and used many times as the source for GL drawing and
image specification commands.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in table 2.7.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprising [V basic machine units be a multiple of N.

If the GL is unable to create a data store of the requested size, the error
OUT_OF _MEMORY is generated.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData(enum farget, intptr offset,
sizeiptr size, const void *data);

with farget set to ARRAY_BUFFER. offset and size indicate the range of data in the
buffer object that is to be replaced, in terms of basic machine units. data specifies a
region of client memory size basic machine units in length, containing the data that
replace the specified buffer range. An INVALID_VALUE error is generated if offset
or size is less than zero, or if offset + size is greater than the value of BUFFER_SIZE.

The entire data store of a buffer object can be mapped into the client’s address
space by calling

void *MapBuffer(enum target, enum access);

Version 2.1 - December 1, 2006

2.9. BUFFER OBJECTS

Name Value
BUFFER_ACCESS access
BUFFER_MAPPED TRUE

BUFFER_MAP_POINTER | pointer to the data store

Table 2.8: Buffer object state set by MapBuffer.

with target set to one of ARRAY BUFFER, ELEMENT_ARRAY_BUFFER,
PIXEL_UNPACK_BUFFER, or PIXEL_PACK_BUFFER. If the GL is able to map the
buffer object’s data store into the client’s address space, MapBuffer returns the
pointer value to the data store. If the buffer data store is already in the mapped
state, MapBuffer returns NULL, and an INVALID_OPERATION error is generated.
Otherwise MapBuffer returns NULL, and the error OUT_OF MEMORY is generated.
access is specified as one of READ_ONLY, WRITE_ONLY, or READ _WRITE, indicat-
ing the operations that the client may perform on the data store through the pointer
while the data store is mapped.
MapBuffer sets buffer object state values as shown in table 2.8.

Non-NULL pointers returned by MapBuffer may be used by the client to mod-
ify and query buffer object data, consistent with the access rules of the mapping,
while the mapping remains valid. No GL error is generated if the pointer is
used to attempt to modify a READ_ONLY data store, or to attempt to read from a
WRITE_ONLY data store, but operation may be slow and system errors (possibly in-
cluding program termination) may result. Pointer values returned by MapBuffer
may not be passed as parameter values to GL commands. For example, they may
not be used to specify array pointers, or to specify or query pixel or texture image
data; such actions produce undefined results, although implementations may not
check for such behavior for performance reasons.

Calling BufferSubData to modify the data store of a mapped buffer will gen-
erate an INVALID_OPERATION error.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To
ensure optimal performance, the client should use the mapping in a fashion consis-
tent with the values of BUFFER_USAGE and BUFFER_ACCESS. Using a mapping in
a fashion inconsistent with these values is liable to be multiple orders of magnitude
slower than using normal memory.

After the client has specified the contents of a mapped data store, and before
the data in that store are dereferenced by any GL commands, the mapping must be

Version 2.1 - December 1, 2006

37

38 CHAPTER 2. OPENGL OPERATION

relinquished by calling
boolean UnmapBuffer(enum rarget);

with target set to one of ARRAY BUFFER, ELEMENT_ARRAY BUFFER,
PIXEL_UNPACK_BUFFER, Or PIXEL_PACK_BUFFER. Unmapping a mapped buffer
object invalidates the pointers to its data store and sets the object’s
BUFFER_MAPPED state to FALSE and its BUFFER_MAP_POINTER state to NULL.

UnmapBuffer returns TRUE unless data values in the buffer’s data store have
become corrupted during the period that the buffer was mapped. Such corruption
can be the result of a screen resolution change or other window-system-dependent
event that causes system heaps such as those for high-performance graphics mem-
ory to be discarded. GL implementations must guarantee that such corruption can
occur only during the periods that a buffer’s data store is mapped. If such corrup-
tion has occurred, UnmapBuffer returns FALSE, and the contents of the buffer’s
data store become undefined.

If the buffer data store is already in the unmapped state, UnmapBuffer returns
FALSE, and an INVALID_OPERATION error is generated. However, unmapping
that occurs as a side effect of buffer deletion or reinitialization is not an error.

2.9.1 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same format
and layout options supported for client-side vertex arrays. However, it is expected
that GL implementations will (at minimum) be optimized for data with all compo-
nents represented as floats, as well as for color data with components represented
as either floats or unsigned bytes.

A buffer object binding point is added to the client state associated with
each vertex array type. The commands that specify the locations and or-
ganizations of vertex arrays copy the buffer object name that is bound to
ARRAY BUFFER to the binding point corresponding to the vertex array of the
type being specified. For example, the NormalPointer command copies the
value of ARRAY BUFFER BINDING (the queriable name of the buffer bind-
ing corresponding to the target ARRAY_BUFFER) to the client state variable
NORMAL_ARRAY_BUFFER_BINDING.

Rendering commands ArrayElement, DrawArrays, DrawElements,
DrawRangeElements, MultiDrawArrays, and MultiDrawElements operate as
previously defined, except that data for enabled vertex and attrib arrays are sourced
from buffers if the array’s buffer binding is non-zero. When an array is sourced
from a buffer object, the pointer value of that array is used to compute an offset, in

Version 2.1 - December 1, 2006

2.9. BUFFER OBJECTS 39

basic machine units, into the data store of the buffer object. This offset is computed
by subtracting a null pointer from the pointer value, where both pointers are treated
as pointers to basic machine units.
It is acceptable for vertex or attrib arrays to be sourced from any combination
of client memory and various buffer objects during a single rendering operation.
Attempts to source data from a currently mapped buffer object will generate an
INVALID_OPERATION error.

2.9.2 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format op-
tions that are supported for client-side index arrays. Initially zero is bound to
ELEMENT_ARRAY _BUFFER, indicating that DrawElements and DrawRangeEle-
ments are to source their indices from arrays passed as their indices parameters,
and that MultiDrawElements is to source its indices from the array of pointers to
arrays passed in as its indices parameter.

A buffer object is bound to ELEMENT_ARRAY_BUFFER by calling BindBuffer
with farget set to ELEMENT_ARRAY _BUFFER, and buffer set to the name of the buffer
object. If no corresponding buffer object exists, one is initialized as defined in
section 2.9.

While a non-zero buffer object name is bound to ELEMENT_ARRAY_BUFFER,
DrawElements and DrawRangeElements source their indices from that buffer
object, using their indices parameters as offsets into the buffer object in the same
fashion as described in section 2.9.1. MultiDrawElements also sources its in-
dices from that buffer object, using its indices parameter as a pointer to an array of
pointers that represent offsets into the buffer object.

Buffer objects created by binding an unused name to ARRAY_BUFFER and to
ELEMENT_ARRAY _BUFFER are formally equivalent, but the GL may make different
choices about storage implementation based on the initial binding. In some cases
performance will be optimized by storing indices and array data in separate buffer
objects, and by creating those buffer objects with the corresponding binding points.

2.9.3 Buffer Object State

The state required to support buffer objects consists of binding names for the array
buffer, element buffer, pixel unpack buffer, and pixel pack buffer. Additionally,
each vertex array has an associated binding so there is a buffer object binding for
each of the vertex array, normal array, color array, index array, multiple texture
coordinate arrays, edge flag array, secondary color array, fog coordinate array, and
vertex attribute arrays. The initial values for all buffer object bindings is zero.

Version 2.1 - December 1, 2006

40 CHAPTER 2. OPENGL OPERATION

The state of each buffer object consists of a buffer size in basic machine units,
a usage parameter, an access parameter, a mapped boolean, a pointer to the mapped
buffer (NULL if unmapped), and the sized array of basic machine units for the buffer
data.

2.10 Rectangles

There is a set of GL commands to support efficient specification of rectangles as
two corner vertices.

void Rect{sifd}(TxI, Tyl, Tx2, Ty2);
void Reet{sifd}v(T vI[2], T v2[2]);

Each command takes either four arguments organized as two consecutive pairs of
(x,y) coordinates, or two pointers to arrays each of which contains an x value
followed by a y value. The effect of the Rect command

Rect (X1,Y1,T2,Y2) ;
is exactly the same as the following sequence of commands:

Begin (POLYGON) ;
Vertex2 (x1,v1) ;
Vertex2 (z2,y1) ;
Vertex2 (x2,12) ;
Vertex2 (z1,y2)

End () ;

’

The appropriate Vertex2 command would be invoked depending on which of the
Rect commands is issued.

2.11 Coordinate Transformations

This section and the following discussion through section 2.14 describe the state
values and operations necessary for transforming vertex attributes according to a
fixed-functionality method. An alternate programmable method for transforming
vertex attributes is described in section 2.15.

Vertices, normals, and texture coordinates are transformed before their coordi-
nates are used to produce an image in the framebuffer. We begin with a description
of how vertex coordinates are transformed and how this transformation is con-
trolled.

Version 2.1 - December 1, 2006

2.11. COORDINATE TRANSFORMATIONS 41

Normalized

Object Model-View Eye Projection Device

- Perspective

Division

Coordinates Matrix Coordinates Matrix Coordinates Coordinates

Viewport Window

Transformation Coordinates

Figure 2.6. Vertex transformation sequence.

Figure 2.6 diagrams the sequence of transformations that are applied to ver-
tices. The vertex coordinates that are presented to the GL are termed object co-
ordinates. The model-view matrix is applied to these coordinates to yield eye co-
ordinates. Then another matrix, called the projection matrix, is applied to eye
coordinates to yield clip coordinates. A perspective division is carried out on clip
coordinates to yield normalized device coordinates. A final viewport transforma-
tion is applied to convert these coordinates into window coordinates.

Object coordinates, eye coordinates, and clip coordinates are four-dimensional,
consisting of x, y, 2z, and w coordinates (in that order). The model-view and pro-
jection matrices are thus 4 x 4.

If a vertex in object coordinates is given by and the model-view matrix

is M, then the vertex’s eye coordinates are found as

Te Lo
ye — M yO
Ze Zo
We Wo

Version 2.1 - December 1, 2006

42 CHAPTER 2. OPENGL OPERATION

Similarly, if P is the projection matrix, then the vertex’s clip coordinates are

T Ze
yC — P ye
Zc Ze
We We

The vertex’s normalized device coordinates are then

g Te/we
(yd):<yc/wc>-
2q Ze/We

2.11.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and height in

pixels, p, and p,, respectively, and its center (o, 0y) (also in pixels). The vertex’s
L

window coordinates, (yw) , are given by

Zw

Ty (Pz/2)Ta + 0x
(yw) = ((Py/2)ya + oy) .
Zw [(f =n)/2]zg+ (n+ £)/2

The factor and offset applied to z4 encoded by n and f are set using
void DepthRange(clampdn, clampdf);

Each of n and fare clamped to lie within [0, 1], as are all arguments of type cLampd
or clampf. z, is taken to be represented in fixed-point with at least as many bits
as there are in the depth buffer of the framebuffer. We assume that the fixed-point
representation used represents each value k/(2™ — 1), where k € {0,1,...,2™ —
1}, as k (e.g. 1.0 is represented in binary as a string of all ones).

Viewport transformation parameters are specified using

void Viewport(int x, inty, sizeiw, sizeih);
where x and y give the x and y window coordinates of the viewport’s lower left
corner and w and & give the viewport’s width and height, respectively. The viewport
parameters shown in the above equations are found from these values as 0, =

x+w/2andoy:y+h/2;px:Uhpy:h‘

Version 2.1 - December 1, 2006

2.11. COORDINATE TRANSFORMATIONS 43

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by issuing
an appropriate Get command (see chapter 6). The maximum viewport dimensions
must be greater than or equal to the visible dimensions of the display being ren-
dered to. INVALID_VALUE is generated if either w or / is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values. In the initial state, w and 4 are set to the
width and height, respectively, of the window into which the GL is to do its ren-
dering. o, and o, are set to w/2 and h/2, respectively. n and f are set to 0.0 and
1.0, respectively.

2.11.2 Matrices

The projection matrix and model-view matrix are set and modified with a variety
of commands. The affected matrix is determined by the current matrix mode. The
current matrix mode is set with

void MatrixMode(enum mode);

which takes one of the pre-defined constants TEXTURE, MODELVIEW, COLOR, Or
PROJECTION as the argument value. TEXTURE is described later in section 2.11.2,
and COLOR is described in section 3.6.3. If the current matrix mode is MODELVIEW,
then matrix operations apply to the model-view matrix; if PROJECTION, then they
apply to the projection matrix.

The two basic commands for affecting the current matrix are

void LoadMatrix{fd}(T m[16]);
void MultMatrix{fd}(T m/16]);

LoadMatrix takes a pointer to a 4 X 4 matrix stored in column-major order as 16
consecutive floating-point values, i.e. as

air as ag 413
az ag aip 0ai14
az ary ai; as
as ag a2 a4
(This differs from the standard row-major C ordering for matrix elements. If the
standard ordering is used, all of the subsequent transformation equations are trans-
posed, and the columns representing vectors become rows.)
The specified matrix replaces the current matrix with the one pointed to. Mult-
Matrix takes the same type argument as LoadMatrix, but multiplies the current

Version 2.1 - December 1, 2006

44 CHAPTER 2. OPENGL OPERATION

matrix by the one pointed to and replaces the current matrix with the product. If C'
is the current matrix and M is the matrix pointed to by MultMatrix’s argument,
then the resulting current matrix, C’, is

C'=C- M.
The commands

void LoadTransposeMatrix{fd}(T m[16]);
void MultTransposeMatrix{fd}(T m[16]);

take pointers to 4 x 4 matrices stored in row-major order as 16 consecutive floating-
point values, i.e. as

a1 a2 a3 Qa4

as ag ar as

ag aip a1l a12

aiz a4 ais aie
The effect of

LoadTransposeMatrix[fd] (m) ;
is the same as the effect of

LoadMatrix[fd] (m”) ;

The effect of
MultTransposeMatrix[fd] (m) ;

is the same as the effect of
MultMatrix[fd] (m”) ;
The command
void Loadldentity(void);

effectively calls LoadMatrix with the identity matrix:
1 0 0 O
01 0 0
00 10
0 0 0 1
There are a variety of other commands that manipulate matrices. Rotate,

Translate, Scale, Frustum, and Ortho manipulate the current matrix. Each com-
putes a matrix and then invokes MultMatrix with this matrix. In the case of

Version 2.1 - December 1, 2006

2.11. COORDINATE TRANSFORMATIONS 45

void Rotate{fd}(T 6, Tx, Ty, Tz);
0 gives an angle of rotation in degrees; the coordinates of a vector v are given by
v = (z y 2)T. The computed matrix is a counter-clockwise rotation about the line

through the origin with the specified axis when that axis is pointing up (i.e. the
right-hand rule determines the sense of the rotation angle). The matrix is thus

0
R 0
0
0 0 01

Letu=v/||v|]|= (2’ o 2).1If

0 —Z/ yl
S=1 7 0 —a
-y 2 0

R =uu’ + cos (I — uu’l) +sin 6S.

then

The arguments to
void Translate{fd}(Tx, Ty, Tz);

give the coordinates of a translation vector as (x y z)7. The resulting matrix is a
translation by the specified vector:

oo O
oo = o
O = O O
— N e 8

void Scale{fd}(Tx, Ty, Tz);

produces a general scaling along the x-, y-, and z- axes. The corresponding matrix
is

S O OoOR
o orw O
o n O o
o O O

For

Version 2.1 - December 1, 2006

46 CHAPTER 2. OPENGL OPERATION

void Frustum(doublel, doubler, double b, doublet,
double n, doublef);

the coordinates (I b —n)” and (rt — n)” specify the points on the near clipping
plane that are mapped to the lower left and upper right corners of the window,
respectively (assuming that the eye is located at (0 0 0)7). f gives the distance
from the eye to the far clipping plane. If either n or f is less than or equal to zero,
lis equal to r, b is equal to ¢, or n is equal to f, the error INVALID_VALUE results.
The corresponding matrix is

2 +1

= 20 :Té 0
+

o 0
+n n

0 0 == -7

0o 0 =1 0

void Ortho(doublel, double r, double b, doublet,
double n, double f);
describes a matrix that produces parallel projection. (I b — n)T and (r t —n)T
specify the points on the near clipping plane that are mapped to the lower left and
upper right corners of the window, respectively. f gives the distance from the eye
to the far clipping plane. If [is equal to 7, b is equal to ¢, or n is equal to f, the
error INVALID_VALUE results. The corresponding matrix is

2 +1
= 2 0o - :Té
t+
0 = 0 - };Tb
2 “+n
0 0 -5 -z
0 0 0 1

For each texture coordinate set, a 4 X 4 matrix is applied to the corresponding
texture coordinates. This matrix is applied as

mp ms Mg M3 S
ma Mg Mg Mi4 t
m3 M7 M1l Mis r|’
my Mg Mi2 Mie q

where the left matrix is the current texture matrix. The matrix is applied to the
coordinates resulting from texture coordinate generation (which may simply be the
current texture coordinates), and the resulting transformed coordinates become the
texture coordinates associated with a vertex. Setting the matrix mode to TEXTURE
causes the already described matrix operations to apply to the texture matrix.

The command

Version 2.1 - December 1, 2006

2.11. COORDINATE TRANSFORMATIONS 47

void ActiveTexture(enum texture);

specifies the active texture unit selector, ACTIVE_TEXTURE. Each texture unit con-
tains up to two distinct sub-units: a texture coordinate processing unit (consisting
of a texture matrix stack and texture coordinate generation state) and a texture
image unit (consisting of all the texture state defined in section 3.8). In implemen-
tations with a different number of supported texture coordinate sets and texture
image units, some texture units may consist of only one of the two sub-units.

The active texture unit selector specifies the texture coordinate set accessed
by commands involving texture coordinate processing. Such commands include
those accessing the current matrix stack (if MATRIX MODE is TEXTURE), TexEnv
commands controlling point sprite coordinate replacement (see section 3.3), Tex-
Gen (section 2.11.4), Enable/Disable (if any texture coordinate generation enum
is selected), as well as queries of the current texture coordinates and current raster
texture coordinates. If the texture coordinate set number corresponding to the cur-
rent value of ACTIVE_TEXTURE is greater than or equal to the implementation-
dependent constant MAX_TEXTURE_COORDS, the error INVALID OPERATION is
generated by any such command.

The active texture unit selector also selects the texture image unit accessed
by commands involving texture image processing (section 3.8). Such commands
include all variants of TexEnv (except for those controlling point sprite coordi-
nate replacement), TexParameter, and TexImage commands, BindTexture, En-
able/Disable for any texture target (e.g., TEXTURE_2D), and queries of all such
state. If the texture image unit number corresponding to the current value of
ACTIVE_TEXTURE is greater than or equal to the implementation-dependent con-
stant MAX_COMBINED_TEXTURE_IMAGE_UNITS, the error INVALID_OPERATION is
generated by any such command.

ActiveTexture generates the error INVALID_ENUM if an invalid texture is spec-
ified. texture is a symbolic constant of the form TEXTURE:, indicating that tex-
ture unit ¢ is to be modified. The constants obey TEXTURE; = TEXTUREO + ¢ (¢
is in the range O to &k — 1, where k is the larger of MAX_TEXTURE_COORDS and
MAX_COMBINED_TEXTURE_IMAGE_UNITS).

For backwards compatibility, the implementation-dependent
constant MAX_TEXTURE_UNITS specifies the number of conventional texture units
supported by the implementation. Its value must be no larger than the minimum of
MAX_TEXTURE_COORDS and MAX_COMBINED_-TEXTURE_IMAGE_UNITS.

There is a stack of matrices for each of matrix modes MODELVIEW,
PROJECTION, and COLOR, and for each texture unit. For MODELVIEW mode, the
stack depth is at least 32 (that is, there is a stack of at least 32 model-view ma-
trices). For the other modes, the depth is at least 2. Texture matrix stacks for all

Version 2.1 - December 1, 2006

48 CHAPTER 2. OPENGL OPERATION

texture units have the same depth. The current matrix in any mode is the matrix on
the top of the stack for that mode.

void PushMatrix(void);

pushes the stack down by one, duplicating the current matrix in both the top of the
stack and the entry below it.

void PopMatrix(void);

pops the top entry off of the stack, replacing the current matrix with the matrix
that was the second entry in the stack. The pushing or popping takes place on the
stack corresponding to the current matrix mode. Popping a matrix off a stack with
only one entry generates the error STACK_UNDERF LOW; pushing a matrix onto a full
stack generates STACK_OVERFLOW.

When the current matrix mode iS TEXTURE, the texture matrix stack of the
active texture unit is pushed or popped.

The state required to implement transformations consists of an integer for the
active texture unit selector, a four-valued integer indicating the current matrix
mode, one stack of at least two 4 x 4 matrices for each of COLOR, PROJECTION,
and each texture coordinate set, TEXTURE; and a stack of at least 32 4 x 4 matri-
ces for MODELVIEW. Each matrix stack has an associated stack pointer. Initially,
there is only one matrix on each stack, and all matrices are set to the identity.
The initial active texture unit selector is TEXTUREO, and the initial matrix mode is
MODELVIEW.

2.11.3 Normal Transformation

Finally, we consider how the model-view matrix and transformation state affect
normals. Before use in lighting, normals are transformed to eye coordinates by a
matrix derived from the model-view matrix. Rescaling and normalization opera-
tions are performed on the transformed normals to make them unit length prior to
use in lighting. Rescaling and normalization are controlled by

void Enable(enum farget);
and

void Disable(enum rarget);

Version 2.1 - December 1, 2006

2.11. COORDINATE TRANSFORMATIONS 49

with farget equal to RESCALE _NORMAL or NORMALIZE. This requires two bits of
state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix is M, then the normal is transformed to eye coordi-
nates by:

(ny' ny/ n ¢)=(ny ny n, q)-]\J*1

T
where, if ‘Z are the associated vertex coordinates, then
w
0, w =0,
T
1= ~(na ny nz)|y @D
- z , w#0

Implementations may choose instead to transform (n, n, n.) toeye coor-
dinates using

(ny' ny' n')=(ny ny 7”LZ)'M1f1

where M, is the upper leftmost 3x3 matrix taken from M.

Rescale multiplies the transformed normals by a scale factor

(na:// ny// nzll) — f (na;l ny/ nzl)

If rescaling is disabled, then f = 1. If rescaling is enabled, then f is computed
as (m;; denotes the matrix element in row i and column j of M ~!, numbering the
topmost row of the matrix as row 1 and the leftmost column as column 1)
B 1
Vmz12 + maza? + ma3

2

Note that if the normals sent to GL were unit length and the model-view matrix
uniformly scales space, then rescale makes the transformed normals unit length.
Alternatively, an implementation may choose f as

1
2 2 2
\/nx/ _|_ ny/ _|_ TLZ/

f=

recomputing f for each normal. This makes all non-zero length normals unit length
regardless of their input length and the nature of the model-view matrix.

Version 2.1 - December 1, 2006

50 CHAPTER 2. OPENGL OPERATION

After rescaling, the final transformed normal used in lighting, n, is computed
as

ng=m(n" n,” n,')
If normalization is disabled, then m = 1. Otherwise
1
\/n;v”2 + ny”2 + n,"?

Because we specify neither the floating-point format nor the means for matrix
inversion, we cannot specify behavior in the case of a poorly-conditioned (nearly
singular) model-view matrix M. In case of an exactly singular matrix, the trans-
formed normal is undefined. If the GL implementation determines that the model-
view matrix is uninvertible, then the entries in the inverted matrix are arbitrary. In
any case, neither normal transformation nor use of the transformed normal may
lead to GL interruption or termination.

m =

2.11.4 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the current
texture coordinates or generated according to a function dependent on vertex coor-
dinates. The command

void TexGen{ifd}(enum coord, enum pname, T param);
void TexGen{ifd}v(enum coord, enum pname, T params);

controls texture coordinate generation. coord must be one of the constants S, T,
R, or Q, indicating that the pertinent coordinate is the s, t, 7, or ¢ coordinate, re-
spectively. In the first form of the command, param is a symbolic constant speci-
fying a single-valued texture generation parameter; in the second form, params is
a pointer to an array of values that specify texture generation parameters. pname
must be one of the three symbolic constants TEXTURE_GEN_MODE, OBJECT _PLANE,
or EYE_PLANE. If pname is TEXTURE_GEN_MODE, then either params points to
or param is an integer that is one of the symbolic constants OBJECT_LINEAR,
EYE_LINEAR, SPHERE_MAP, REFLECTION_MAP, Or NORMAL_MAP.

If TEXTURE_GEN_MODE indicates OBJECT_LINEAR, then the generation func-
tion for the coordinate indicated by coord is

g = P1%o + P2Yo + P3Z0 + PaWs.

Zo, Yo, 20, and w, are the object coordinates of the vertex. p1, ..., ps are specified
by calling TexGen with pname set to OBJECT _PLANE in which case params points

Version 2.1 - December 1, 2006

2.11. COORDINATE TRANSFORMATIONS 51

to an array containing pi, ..., ps. There is a distinct group of plane equation co-
efficients for each texture coordinate; coord indicates the coordinate to which the
specified coefficients pertain.

If TEXTURE_GEN_MODE indicates EYE_LINEAR, then the function is

g = PiTe + PhYe + Phze + Phwe

where
(py ph vy ph)=(p1 p2 p3 pa)M?

Te, Ye» Ze, and we are the eye coordinates of the vertex. pp,...,ps are set by
calling TexGen with pname set to EYE_PLANE in correspondence with setting the
coefficients in the OBJECT_PLANE case. M is the model-view matrix in effect
when py, ..., pyg are specified. Computed texture coordinates may be inaccurate or
undefined if M is poorly conditioned or singular.

When used with a suitably constructed texture image, calling TexGen with
TEXTURE_GEN_MODE indicating SPHERE_MAP can simulate the reflected image of
a spherical environment on a polygon. SPHERE_MAP texture coordinates are gen-
erated as follows. Denote the unit vector pointing from the origin to the vertex
(in eye coordinates) by u. Denote the current normal, after transformation to eye
coordinates, by ng. Letr = (v, 1, 7,)T, the reflection vector, be given by

r=u—2n¢’ (ngu),

and let m = 24/r2 + rg + (r: + 1)2. Then the value assigned to an s coordinate

(the first TexGen argument value is S) is s = ry/m + %; the value assignedto a t
coordinate is t = 1 /m + % Calling TexGen with a coord of either R or Q when
pname indicates SPHERE_MAP generates the error INVALID_ENUM.

If TEXTURE_GEN_MODE indicates REFLECTION_MAP, compute the reflection
vector r as described for the SPHERE MAP mode. Then the value assigned to an
s coordinate is s = r,; the value assigned to a ¢ coordinate is t = ry; and the value
assigned to an r coordinate is » = r,. Calling TexGen with a coord of Q when
pname indicates REFLECTION_MAP generates the error INVALID_ENUM.

If TEXTURE_GEN_MODE indicates NORMAL_MAP, compute the normal vector n s
as described in section 2.11.3. Then the value assigned to an s coordinate is s =
ny,.; the value assigned to a ¢ coordinate is t = n fyb and the value assigned to an
r coordinate isr = n s (the values n Far 0y and ny, are the components of ny.)
Calling TexGen with a coord of 0 when pname indicates NORMAL_MAP generates
the error INVALID_ENUM.

A texture coordinate generation function is enabled or disabled using En-
able and Disable with an argument of TEXTURE_GEN_S, TEXTURE_GEN_T,

Version 2.1 - December 1, 2006

52 CHAPTER 2. OPENGL OPERATION

TEXTURE_GEN_R, or TEXTURE_GEN_Q (each indicates the corresponding texture co-
ordinate). When enabled, the specified texture coordinate is computed according
to the current EYE_LINEAR, OBJECT_LINEAR or SPHERE _MAP specification, de-
pending on the current setting of TEXTURE_GEN_MODE for that coordinate. When
disabled, subsequent vertices will take the indicated texture coordinate from the
current texture coordinates.

The state required for texture coordinate generation for each texture unit com-
prises a five-valued integer for each coordinate indicating coordinate generation
mode, and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coefficients are required for the four
coordinates for each of EYE_LINEAR and OBJECT_LINEAR. The initial state has the
texture generation function disabled for all texture coordinates. The initial values
of p; for s are all O except p; which is one; for ¢ all the p; are zero except py, which
is 1. The values of p; for r and ¢ are all 0. These values of p; apply for both the
EYE_LINEAR and OBJECT_LINEAR versions. Initially all texture generation modes
are EYE_LINEAR.

2.12 Clipping

Primitives are clipped to the clip volume. In clip coordinates, the view volume is
defined by

—We < Xe < We

—We < Ye < We

—W¢ S Ze S We-
This view volume may be further restricted by as many as n client-defined clip
planes to generate the clip volume. (n is an implementation dependent maximum
that must be at least 6.) Each client-defined plane specifies a half-space. The clip
volume is the intersection of all such half-spaces with the view volume (if there no
client-defined clip planes are enabled, the clip volume is the view volume).

A client-defined clip plane is specified with

void ClipPlane(enump, double eqn[4]);

The value of the first argument, p, is a symbolic constant, CL.TP_PLANE4, where ¢ is
an integer between 0 and n — 1, indicating one of n client-defined clip planes. egn
is an array of four double-precision floating-point values. These are the coefficients
of a plane equation in object coordinates: pi, p2, p3, and p4 (in that order). The
inverse of the current model-view matrix is applied to these coefficients, at the time
they are specified, yielding

(Py Py Py ph)=(p1 P2 p3 pa)M!

Version 2.1 - December 1, 2006

2.12. CLIPPING 53

(where M is the current model-view matrix; the resulting plane equation is unde-
fined if M is singular and may be inaccurate if M is poorly-conditioned) to obtain
the plane equation coefficients in eye coordinates. All points with eye coordinates
(Te Ye 2e We)T that satisfy

(py py p3 D))

lie in the half-space defined by the plane; points that do not satisfy this condition
do not lie in the half-space.

When a vertex shader is active, the vector (ze Ye 2e wWe)T is no longer
computed. Instead, the value of the g1 _ClipVertex built-in variable is used in its
place. If g1_ClipVertex is not written by the vertex shader, its value is undefined,
which implies that the results of clipping to any client-defined clip planes are also
undefined. The user must ensure that the clip vertex and client-defined clip planes
are defined in the same coordinate space.

Client-defined clip planes are enabled with the generic Enable command and
disabled with the Disable command. The value of the argument to either com-
mand is CLIP_PLANE{ where ¢ is an integer between 0 and n; specifying a value
of ¢ enables or disables the plane equation with index ¢. The constants obey
CLIP_PLANE{ = CLIP_PLANEOQ + 4.

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded. If the prim-
itive is a line segment, then clipping does nothing to it if it lies entirely within the
clip volume and discards it if it lies entirely outside the volume. If part of the line
segment lies in the volume and part lies outside, then the line segment is clipped
and new vertex coordinates are computed for one or both vertices. A clipped line
segment endpoint lies on both the original line segment and the boundary of the
clip volume.

This clipping produces a value, 0 < ¢ < 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates are P
and Po, then ¢ is given by

P=tP; + (1 — t)PQ.

The value of ¢ is used in color, secondary color, texture coordinate, and fog coor-
dinate clipping (section 2.14.8).

If the primitive is a polygon, then it is passed if every one of its edges lies
entirely inside the clip volume and either clipped or discarded otherwise. Polygon

Version 2.1 - December 1, 2006

54 CHAPTER 2. OPENGL OPERATION

clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon. Edge flags are associated with these vertices so that edges
introduced by clipping are flagged as boundary (edge flag TRUE), and so that orig-
inal edges of the polygon that become cut off at these vertices retain their original
flags.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge. This point
must lie in the intersection of the boundary edge and the convex hull of the vertices
of the original polygon. We impose this requirement because the polygon may not
be exactly planar.

Primitives rendered with clip planes must satisfy a complementarity crite-
rion. Suppose a single clip plane with coefficients (pj ph ps p))) (or a num-
ber of similarly specified clip planes) is enabled and a series of primitives are
drawn. Next, suppose that the original clip plane is respecified with coefficients
(=py —-py —p5 —p)) (and correspondingly for any other clip planes) and
the primitives are drawn again (and the GL is otherwise in the same state). In this
case, primitives must not be missing any pixels, nor may any pixels be drawn twice
in regions where those primitives are cut by the clip planes.

The state required for clipping is at least 6 sets of plane equations (each consist-
ing of four double-precision floating-point coefficients) and at least 6 correspond-
ing bits indicating which of these client-defined plane equations are enabled. In the
initial state, all client-defined plane equation coefficients are zero and all planes are
disabled.

2.13 Current Raster Position

The current raster position is used by commands that directly affect pixels in the
framebuffer. These commands, which bypass vertex transformation and primitive
assembly, are described in the next chapter. The current raster position, however,
shares some of the characteristics of a vertex.

The current raster position is set using one of the commands

void RasterPos{234}{sifd}(T coords);
void RasterPos{234}{sifd}v(T coords);

RasterPos4 takes four values indicating x, y, z, and w. RasterPos3 (or Raster-
Pos2) is analogous, but sets only x, ¢, and z with w implicitly set to 1 (or only x
and y with z implicitly set to 0 and w implicitly set to 1).

Version 2.1 - December 1, 2006

2.13. CURRENT RASTER POSITION 55

Gets of CURRENT_RASTER_TEXTURE_COORDS are affected by the setting of the
state ACTIVE_TEXTURE.

The coordinates are treated as if they were specified in a Vertex command. If
a vertex shader is active, this vertex shader is executed using the x, y, 2z, and w
coordinates as the object coordinates of the vertex. Otherwise, the x, vy, z, and
w coordinates are transformed by the current model-view and projection matri-
ces. These coordinates, along with current values, are used to generate primary
and secondary colors and texture coordinates just as is done for a vertex. The col-
ors and texture coordinates so produced replace the colors and texture coordinates
stored in the current raster position’s associated data. If a vertex shader is active
then the current raster distance is set to the value of the shader built in varying
gl _FogFragCoord. Otherwise, if the value of the fog source (see section 3.10)
1S FOG_COORD, then the current raster distance is set to the value of the current
fog coordinate. Otherwise, the current raster distance is set to the distance from
the origin of the eye coordinate system to the vertex as transformed by only the
current model-view matrix. This distance may be approximated as discussed in
section 3.10.

Since vertex shaders may be executed when the raster position is set, any at-
tributes not written by the shader will result in undefined state in the current raster
position. Vertex shaders should output all varying variables that would be used
when rasterizing pixel primitives using the current raster position.

The transformed coordinates are passed to clipping as if they represented a
point. If the “point” is not culled, then the projection to window coordinates is
computed (section 2.11) and saved as the current raster position, and the valid
bit is set. If the “point” is culled, the current raster position and its associated
data become indeterminate and the valid bit is cleared. Figure 2.7 summarizes the
behavior of the current raster position.

Alternately, the current raster position may be set by one of the WindowPos
commands:

void WindowPos{23}{ifds}(T coords);
void WindowPos{23}{ifds}v(const T coords);

WindowPos3 takes three values indicating x, y and z, while WindowPos2
takes two values indicating x and y with z implicitly set to 0. The current raster
position, (Zy, Yuw, 2w, We), is defined by:

Ty =X

Yo =Y

Version 2.1 - December 1, 2006

56

CHAPTER 2. OPENGL OPERATION

[
Rasterpos In — |_> Clip M| Project

Raster
Position

Vertex/Normal

Current Transformation

Normal

i

|

|

|

|

Raster :
Distance >|
|

|

|

|

—

|
il

|

|

|

|

|

|

|

|

Current Lighting |

Color & T >] :

Materials ? |
| Associated

|

|

|

|

|

< . Texture Data
Current ’_:_ Texgen Matrix 0 :
Texture T Al current |
Coord Set 0 Raster |
|
Position |
| e Texture IrvT—————"""— -
Current ° Texgen Matrix 1
Texture T
Coord Set 1
L —___| Texture
Current ’_:\— Texgen Matrix 2
Texture T
Coord Set 2
—\ Texture
Current } Texgen Matrix 3
Texture T
Coord Set 3

Figure 2.7. The current raster position and how it is set. Four texture units are
shown; however, multitexturing may support a different number of units depending
on the implementation.

Version 2.1 - December 1, 2006

2.14. COLORS AND COLORING 57

n, z2<0
zw =< [, z>1
n+z(f —n), otherwise

we =1

where n and f are the values passed to DepthRange (see section 2.11.1).

Lighting, texture coordinate generation and transformation, and clipping are
not performed by the WindowPos functions. Instead, in RGBA mode, the current
raster color and secondary color are obtained by clamping each component of the
current color and secondary color, respectively, to [0, 1]. In color index mode, the
current raster color index is set to the current color index. The current raster texture
coordinates are set to the current texture coordinates, and the valid bit is set.

If the value of the fog source is FOG_COORD_SRC, then the current raster dis-
tance is set to the value of the current fog coordinate. Otherwise, the raster distance
is set to 0.

The current raster position requires six single-precision floating-point values
for its z,, Y, and z,, window coordinates, its w, clip coordinate, its raster distance
(used as the fog coordinate in raster processing), a single valid bit, four floating-
point values to store the current RGBA color, four floating-point values to store the
current RGBA secondary color, one floating-point value to store the current color
index, and 4 floating-point values for texture coordinates for each texture unit. In
the initial state, the coordinates and texture coordinates are all (0, 0,0, 1), the eye
coordinate distance is 0, the fog coordinate is 0, the valid bit is set, the associated
RGBA coloris (1, 1,1, 1), the associated RGBA secondary color is (0, 0,0, 1), and
the associated color index color is 1. In RGBA mode, the associated color index
always has its initial value; in color index mode, the RGBA color and secondary
color always maintain their initial values.

2.14 Colors and Coloring

Figures 2.8 and 2.9 diagram the processing of RGBA colors and color indices be-
fore rasterization. Incoming colors arrive in one of several formats. Table 2.9 sum-
marizes the conversions that take place on R, G, B, and A components depending
on which version of the Color command was invoked to specify the components.
As a result of limited precision, some converted values will not be represented
exactly. In color index mode, a single-valued color index is not mapped.

Version 2.1 - December 1, 2006

CHAPTER 2. OPENGL OPERATION

Convert to

[0.0,1.0] Current prsmmn, 0,
RGBA o] Clamp to

Color m [0.0, 1.0]
[—2k,2k—1] > Convert to _ »o 5

[-1.0,1.0]
] (Co[[¢] S I — 4
Clipping

Convert to _ Flatshade?

fixed—point

[0,2K-1] —]

float

Primitive
v : Clipping

Figure 2.8. Processing of RGBA colors. The heavy dotted lines indicate both pri-
mary and secondary vertex colors, which are processed in the same fashion. See
table 2.9 for the interpretation of k.

[0,2N-1] —p= Convertto | gl ~rrent

float Color Mask to

float = Index Lighting O [0.0, 2N-1]

| Color
Clipping -
Convertto | ______ Flatshade?

fixed-point

! Primitive
v i Clipping

Figure 2.9. Processing of color indices. n is the number of bits in a color index.

Version 2.1 - December 1, 2006

2.14. COLORS AND COLORING 59

GL Type ‘ Conversion ‘
ubyte c/(2% —1)

byte (2c+1)/(2% - 1)
ushort c/(21% —1)
short (2c+1)/(21° - 1)
uint c/(2% - 1)

int (2c+1)/(2% - 1)
float c

double c

Table 2.9: Component conversions. Color, normal, and depth components, (c),
are converted to an internal floating-point representation, (f), using the equations
in this table. All arithmetic is done in the internal floating point format. These
conversions apply to components specified as parameters to GL commands and to
components in pixel data. The equations remain the same even if the implemented
ranges of the GL data types are greater than the minimum required ranges. (Refer
to table 2.2)

Next, lighting, if enabled, produces either a color index or primary and sec-
ondary colors. If lighting is disabled, the current color index or current color
(primary color) and current secondary color are used in further processing. After
lighting, RGBA colors are clamped to the range [0, 1]. A color index is converted
to fixed-point and then its integer portion is masked (see section 2.14.6). After
clamping or masking, a primitive may be flatshaded, indicating that all vertices of
the primitive are to have the same colors. Finally, if a primitive is clipped, then
colors (and texture coordinates) must be computed at the vertices introduced or
modified by clipping.

2.14.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accomplished
by applying an equation defined by a client-specified lighting model to a collection
of parameters that can include the vertex coordinates, the coordinates of one or
more light sources, the current normal, and parameters defining the characteristics
of the light sources and a current material. The following discussion assumes that
the GL is in RGBA mode. (Color index lighting is described in section 2.14.5.)
Lighting is turned on or off using the generic Enable or Disable commands
with the symbolic value LIGHTING. If lighting is off, the current color and current

Version 2.1 - December 1, 2006

60 CHAPTER 2. OPENGL OPERATION

secondary color are assigned to the vertex primary and secondary color, respec-
tively. If lighting is on, colors computed from the current lighting parameters are
assigned to the vertex primary and secondary colors.

Lighting Operation

A lighting parameter is of one of five types: color, position, direction, real, or
boolean. A color parameter consists of four floating-point values, one for each of
R, G, B, and A, in that order. There are no restrictions on the allowable values for
these parameters. A position parameter consists of four floating-point coordinates
(z, y, 2z, and w) that specify a position in object coordinates (w may be zero,
indicating a point at infinity in the direction given by z, y, and z). A direction
parameter consists of three floating-point coordinates (x, y, and 2) that specify a
direction in object coordinates. A real parameter is one floating-point value. The
various values and their types are summarized in table 2.10. The result of a lighting
computation is undefined if a value for a parameter is specified that is outside the
range given for that parameter in the table.

There are n light sources, indexed by ¢ = 0, ..., n— 1. (n is an implementation
dependent maximum that must be at least 8.) Note that the default values for d;
and s; differ for 7 = 0 and 7 > 0.

Before specifying the way that lighting computes colors, we introduce oper-
ators and notation that simplify the expressions involved. If ¢; and cy are col-
ors without alpha where ¢; = (r1,g1,b1) and ca = (72, g2, b2), then define
¢y * cg = (ry17r2, 9192, b1b2). Addition of colors is accomplished by addition of
the components. Multiplication of colors by a scalar means multiplying each com-
ponent by that scalar. If d; and ds are directions, then define

di ©dy = max{d1 -ds, 0}.

(Directions are taken to have three coordinates.) If P; and P> are (homogeneous,
with four coordinates) points then let m be the unit vector that points from P
to P5. Note that if P has a zero w coordinate and P has non-zero w coordinate,
then].:T]?Q) is the unit vector corresponding to the direction specified by the z, y,
and z coordinates of Py; if P has a zero w coordinate and P has a non-zero w
coordinate then];TP; is the unit vector that is the negative of that corresponding
to the direction specified by P;. If both P; and P5 have zero w coordinates, then
m is the unit vector obtained by normalizing the direction corresponding to
Py — Py

If d is an arbitrary direction, then let d be the unit vector in d’s direction. Let
|P1P2]| be the distance between P; and P5. Finally, let V be the point corre-

Version 2.1 - December 1, 2006

2.14. COLORS AND COLORING 61
Parameter H Type ‘ Default Value ‘ Description
Material Parameters
acm, color | (0.2,0.2,0.2,1.0) | ambient color of material
den color (0.8,0.8,0.8,1.0) | diffuse color of material
Sem color (0.0,0.0,0.0,1.0) | specular color of material
€cm color (0.0,0.0,0.0,1.0) | emissive color of material
Srm, real 0.0 specular exponent (range:
[0.0,128.0])
Gm real 0.0 ambient color index
dm, real 1.0 diffuse color index
Sm real 1.0 specular color index
Light Source Parameters
ag; color (0.0,0.0,0.0,1.0) | ambient intensity of light i
dg;i(i =0) color | (1.0,1.0,1.0,1.0) | diffuse intensity of light O
dg;(i > 0) color | (0.0,0.0,0.0,1.0) | diffuse intensity of light
sqi(i = 0) color | (1.0,1.0,1.0,1.0) | specular intensity of light 0
Sei(1 > 0) color | (0.0,0.0,0.0,1.0) | specular intensity of light 4
P position | (0.0,0.0,1.0,0.0) | position of light
Sdli direction | (0.0,0.0,—1.0) | direction of spotlight for light
Syli real 0.0 spotlight exponent for light ¢
(range: 0.0, 128.0])
Crli real 180.0 spotlight cutoff angle for light ¢
(range: [0.0,90.0], 180.0)
koi real 1.0 constant attenuation factor for
light i (range: [0.0, 00))
ki real 0.0 linear attenuation factor for
light i (range: [0.0, c0))
ko; real 0.0 quadratic attenuation factor for
light i (range: [0.0, c0))
Lighting Model Parameters
Acs color | (0.2,0.2,0.2,1.0) | ambient color of scene
Ups boolean FALSE viewer assumed to be at
(0,0,0) in eye -coordinates
(TRUE) or (0,0, 00) (FALSE)
Ces enum SINGLE_COLOR | controls computation of colors
tps boolean FALSE use two-sided lighting mode

Table 2.10: Summary of lighting parameters. The range of individual color com-
ponents is (—o0, +00).

Version 2.1 - December 1, 2006

62 CHAPTER 2. OPENGL OPERATION

sponding to the vertex being lit, and n be the corresponding normal. Let P, be the
eyepoint ((0, 0,0, 1) in eye coordinates).

Lighting produces two colors at a vertex: a primary color c,,; and a secondary
color c,e.. The values of ¢,; and cg.. depend on the light model color control, c.
If ccs = SINGLE_COLOR, then the equations to compute C,; and Cg. are

Cori = €cm
+ acgy * acs
n—1
+ Z (att;)(spot;) [acm * ac;
1=0 + (Il ® Wp}i)dcm * dcli
+ (fl)(n © hi)srmscm * Scli]
Csee = (0,0,0,1)

If c.s = SEPARATE_SPECULAR_COLOR, then

Cpri = €cm
+ Acm * Acs
n—1
+ Z(atti)(spoti) [Acm * Ac
i=0 + (no szi)dcm * dyg]
n—1 “
Csee = Z(atti)(spoti)(fi)(n O 1y)¥ S * Su;
i=0
where
P n© VP, #0, (2.2)
¢ 0, otherwise, .
‘TP)plz‘ + W& Vbs = TRUE,
h - o . (2.3)
VB +(0 0 1)7, = raise,
1 5, i Py’sw #0,
att; = koi + k1l VPl + Fail[VP | 24)
1.0, otherwise.

Version 2.1 - December 1, 2006

2.14. COLORS AND COLORING 63

(PpiV © 8aqi)*1, ey # 180.0, Py V © 8415 > cos(cris),
spot; = 0.0, Crii 180.0,Pplig ® Sai < COS(CT”),(ZS)
1.0, eoi = 180.0.

All computations are carried out in eye coordinates.

The value of A produced by lighting is the alpha value associated with dp,.
A is always associated with the primary color c,,;; the alpha component of ¢ is
always 1.

Results of lighting are undefined if the w, coordinate (w in eye coordinates) of
V is zero.

Lighting may operate in two-sided mode (s = TRUE), in which a front color
is computed with one set of material parameters (the front material) and a back
color is computed with a second set of material parameters (the back material).
This second computation replaces n with —n. If ¢, = FALSE, then the back color
and front color are both assigned the color computed using the front material with
n.

Additionally, vertex shaders can operate in two-sided color mode. When a ver-
tex shader is active, front and back colors can be computed by the vertex shader and
written to the gl_FrontColor, gl_BackColor, gl _FrontSecondaryColor
and gl _BackSecondaryColor outputs. If VERTEX PROGRAM TWO_SIDE is en-
abled, the GL chooses between front and back colors, as described below. Oth-
erwise, the front color output is always selected. Two-sided color mode is
enabled and disabled by calling Enable or Disable with the symbolic value
VERTEX_PROGRAM_TWO_SIDE.

The selection between back and front colors depends on the primitive of which
the vertex being lit is a part. If the primitive is a point or a line segment, the front
color is always selected. If it is a polygon, then the selection is based on the sign of
the (clipped or unclipped) polygon’s signed area computed in window coordinates.
One way to compute this area is

1= o
a=3 Z xlyl St gt Plyl (2.6)
i=0

where xi, and y! are the x and y window coordinates of the ith vertex of the
n-vertex polygon (vertices are numbered starting at zero for purposes of this com-
putation) and ¢ @ 1 is (¢ + 1) mod n. The interpretation of the sign of this value is
controlled with

void FrontFace(enum dir);

Setting dir to cCW (corresponding to counter-clockwise orientation of the projected
polygon in window coordinates) indicates that if a < 0, then the color of each

Version 2.1 - December 1, 2006

64 CHAPTER 2. OPENGL OPERATION

vertex of the polygon becomes the back color computed for that vertex while if
a > 0, then the front color is selected. If dir is Cw, then a is replaced by —a in the
above inequalities. This requires one bit of state; initially, it indicates CCW.

2.14.2 Lighting Parameter Specification

Lighting parameters are divided into three categories: material parameters, light
source parameters, and lighting model parameters (see table 2.10). Sets of lighting
parameters are specified with

void Material{if}(enum face, enum pname, T param);
void Material{if}v(enum face, enum pname, T params);
void Light{if}(enum light, enum pname, T param);
void Light{if}v(enum light, enum pname, T params);
void LightModel{if}(enum pname, T param);

void LightModel{if}v(enum pname, T params);

pname is a symbolic constant indicating which parameter is to be set (see ta-
ble 2.11). In the vector versions of the commands, params is a pointer to a group
of values to which to set the indicated parameter. The number of values pointed to
depends on the parameter being set. In the non-vector versions, param is a value to
which to set a single-valued parameter. (If param corresponds to a multi-valued pa-
rameter, the error INVALID_ENUM results.) For the Material command, face must
be one of FRONT, BACK, or FRONT_AND_BACK, indicating that the property name of
the front or back material, or both, respectively, should be set. In the case of Light,
light is a symbolic constant of the form LIGHT:, indicating that light ¢ is to have
the specified parameter set. The constants obey LIGHTi = LIGHTO + 1.

Table 2.11 gives, for each of the three parameter groups, the correspondence
between the pre-defined constant names and their names in the lighting equations,
along with the number of values that must be specified with each. Color param-
eters specified with Material and Light are converted to floating-point values
(if specified as integers) as indicated in table 2.9 for signed integers. The error
INVALID_VALUE occurs if a specified lighting parameter lies outside the allowable
range given in table 2.10. (The symbol “co” indicates the maximum representable
magnitude for the indicated type.)

Material properties can be changed inside a Begin/End pair by calling Ma-
terial. However, when a vertex shader is active such property changes are not
guaranteed to update material parameters, defined in table 2.11, until the following
End command.

Version 2.1 - December 1, 2006

2.14. COLORS AND COLORING

Parameter Name Number of values
Material Parameters (IMaterial)
aem AMBIENT 4
dem DIFFUSE 4
acm, dem AMBIENT_AND_DIFFUSE 4
Sem SPECULAR 4
€cm EMISSION 4
Srm. SHININESS 1
Ay Ay S COLOR_INDEXES 3
Light Source Parameters (Light)
ag AMBIENT 4
d.; DIFFUSE 4
Scli SPECULAR 4
P POSITION 4
Sdli SPOT_DIRECTION 3
Srli SPOT_EXPONENT 1
Crli SPOT_CUTOFF 1
ko CONSTANT_ATTENUATION 1
k1 LINEAR_ATTENUATION 1
ko QUADRATIC_ATTENUATION 1
Lighting Model Parameters (LightModel)
Acs LIGHT_MODEL_AMBIENT 4
Vbs LIGHT MODEL_LOCAL_VIEWER 1
ths LIGHT _MODEL_TWO_SIDE 1
Ces LIGHT_MODEL_COLOR_CONTROL 1

65

Table 2.11: Correspondence of lighting parameter symbols to names.
AMBIENT_AND_DIFFUSE is used to set a.,, and d,, to the same value.

Version 2.1 - December 1, 2006

66 CHAPTER 2. OPENGL OPERATION

The current model-view matrix is applied to the position parameter indicated
with Light for a particular light source when that position is specified. These
transformed values are the values used in the lighting equation.

The spotlight direction is transformed when it is specified using only the upper
leftmost 3x3 portion of the model-view matrix. That is, if M, is the upper left 3x3
matrix taken from the current model-view matrix M, then the spotlight direction

dy
dy
d,
is transformed to
d., dy
d; =M, | dy
d., d,

An individual light is enabled or disabled by calling Enable or Disable with the
symbolic value LIGHT: (¢ is in the range 0 to n — 1, where n is the implementation-
dependent number of lights). If light ¢ is disabled, the ith term in the lighting
equation is effectively removed from the summation.

2.14.3 ColorMaterial

It is possible to attach one or more material properties to the current color, so

that they continuously track its component values. This behavior is enabled and

disabled by calling Enable or Disable with the symbolic value COLOR_ MATERIAL.
The command that controls which of these modes is selected is

void ColorMaterial(enum face, enum mode);

face is one of FRONT, BACK, or FRONT_AND_BACK, indicating whether the front
material, back material, or both are affected by the current color. mode is one
of EMISSION, AMBIENT, DIFFUSE, SPECULAR, or AMBIENT_AND DIFFUSE and
specifies which material property or properties track the current color. If mode is
EMISSION, AMBIENT, DIFFUSE, or SPECULAR, then the value of e, acm, dem, OF
Sem,» respectively, will track the current color. If mode is AMBIENT _AND DIFFUSE,
both a.,, and d.,, track the current color. The replacements made to material prop-
erties are permanent; the replaced values remain until changed by either sending a
new color or by setting a new material value when ColorMaterial is not currently
enabled to override that particular value. When COLOR_ MATERIAL is enabled, the
indicated parameter or parameters always track the current color. For instance,
calling

Version 2.1 - December 1, 2006

2.14. COLORS AND COLORING

67

Current
Color

Color*() =========* > To subsequent vertex operations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
/ and ColorMaterial is enabled. Down otherwise.

_.Ko—> Front Ambient | To lighting equations

Material*(FRONT,AMBIENT) *=====s==s==sssfecuuas »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
/ and ColorMaterial is enabled. Down otherwise.

’Ko> Front Diffuse fog lighting equations

Material*(FRONT,DIFFUSE) =========z==a=sfesuaas »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
/ enabled. Down otherwise.

.KO’ Front Specular |y To lighting equations

Material*(FRONT,SPECULAR) =============p====== »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
/ enabled. Down otherwise.

’Ko’ Front Emission |y To lighting equations

Material(FRONT,EMISSION) = *=========x=x==x=x2= »0 Color

"""" > State values flow along this path only when a command is issued

== State values flow continuously along this path

Figure 2.10. ColorMaterial operation. Material properties are continuously up-
dated from the current color while ColorMaterial is enabled and has the appro-
priate mode. Only the front material properties are included in this figure. The
back material properties are treated identically, except that face must be BACK or
FRONT_AND_BACK.

Version 2.1 - December 1, 2006

68 CHAPTER 2. OPENGL OPERATION

ColorMaterial (FRONT, AMBIENT)

while COLOR_MATERIAL is enabled sets the front material a.,, to the value of the
current color.

Material properties can be changed inside a Begin/End pair indirectly by en-
abling ColorMaterial mode and making Color calls. However, when a vertex
shader is active such property changes are not guaranteed to update material pa-
rameters, defined in table 2.11, until the following End command.

2.14.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front
and back material parameters, lighting model parameters, and at least 8 sets of
light parameters), a bit indicating whether a back color distinct from the front
color should be computed, at least 8 bits to indicate which lights are enabled,
a five-valued variable indicating the current ColorMaterial mode, a bit indicat-
ing whether or not COLOR_ MATERIAL is enabled, and a single bit to indicate
whether lighting is enabled or disabled. In the initial state, all lighting parame-
ters have their default values. Back color evaluation does not take place, Color-
Material is FRONT_AND_BACK and AMBIENT_AND_DIFFUSE, and both lighting and
COLOR-MATERIAL are disabled.

2.14.5 Color Index Lighting

A simplified lighting computation applies in color index mode that uses many of
the parameters controlling RGBA lighting, but none of the RGBA material param-
eters. First, the RGBA diffuse and specular intensities of light ¢ (d.; and s,
respectively) determine color index diffuse and specular light intensities, dj; and
s1; from

dy = (.30)R(ddi) + (-59)G(dcli) + ('11)B(dcli)

and
Sli = ('30)R(Scli) + ('59)G(Scli) + ('11)B(Scli)'

R(x) indicates the R component of the color x and similarly for G(x) and B(x).
Next, let

n

s =Y _(att;)(spot;)(si;)(f;) (m © hy) ™

i=0
where att; and spot; are given by equations 2.4 and 2.5, respectively, and f; and
h; are given by equations 2.2 and 2.3, respectively. Let s’ = min{s, 1}. Finally,

Version 2.1 - December 1, 2006

2.14. COLORS AND COLORING 69

let

d= i(atti)(spoti)(dli)(n © VPBy).

1=0

Then color index lighting produces a value c, given by
c=am+d(1—5)(dn —an) + 5 (sm — am).

The final color index is
¢ = min{ec, s, }.

The values a,,, d,, and s,,, are material properties described in tables 2.10 and 2.11.
Any ambient light intensities are incorporated into a,,. As with RGBA lighting,
disabled lights cause the corresponding terms from the summations to be omitted.
The interpretation of ;s and the calculation of front and back colors is carried out
as has already been described for RGBA lighting.

The values a,,, d,,, and s, are set with Material using a pname of
COLOR_INDEXES. Their initial values are 0, 1, and 1, respectively. The additional
state consists of three floating-point values. These values have no effect on RGBA
lighting.

2.14.6 Clamping or Masking

After lighting (whether enabled or not), all components of both primary and sec-
ondary colors are clamped to the range [0, 1].

For a color index, the index is first converted to fixed-point with an unspecified
number of bits to the right of the binary point; the nearest fixed-point value is
selected. Then, the bits to the right of the binary point are left alone while the
integer portion is masked (bitwise ANDed) with 2" — 1, where n is the number of
bits in a color in the color index buffer (buffers are discussed in chapter 4).

2.14.7 Flatshading

A primitive may be flatshaded, meaning that all vertices of the primitive are as-
signed the same color index or the same primary and secondary colors. These
colors are the colors of the vertex that spawned the primitive. For a point, these
are the colors associated with the point. For a line segment, they are the colors of
the second (final) vertex of the segment. For a polygon, they come from a selected
vertex depending on how the polygon was generated. Table 2.12 summarizes the
possibilities.
Flatshading is controlled by

Version 2.1 - December 1, 2006

70 CHAPTER 2. OPENGL OPERATION

Primitive type of polygon 7 ‘ Vertex ‘
single polygon (7 = 1) 1
triangle strip 142
triangle fan 1+ 2
independent triangle 3i
quad strip 21+ 2
independent quad 41

Table 2.12: Polygon flatshading color selection. The colors used for flatshading
the ith polygon generated by the indicated Begin/End type are derived from the
current color (if lighting is disabled) in effect when the indicated vertex is specified.
If lighting is enabled, the colors are produced by lighting the indicated vertex.
Vertices are numbered 1 through n, where n is the number of vertices between the
Begin/End pair.

void ShadeModel(enum mode);

mode value must be either of the symbolic constants SMOOTH or FLAT. If mode is
SMOOTH (the initial state), vertex colors are treated individually. If mode is FLAT,
flatshading is turned on. ShadeModel thus requires one bit of state.

2.14.8 Color and Associated Data Clipping

After lighting, clamping or masking and possible flatshading, colors are clipped.
Those colors associated with a vertex that lies within the clip volume are unaffected
by clipping. If a primitive is clipped, however, the colors assigned to vertices
produced by clipping are clipped colors.

Let the colors assigned to the two vertices P and P5 of an unclipped edge be
c1 and co. The value of ¢ (section 2.12) for a clipped point P is used to obtain the
color associated with P as

c=tc+ (1 —t)co.

(For a color index color, multiplying a color by a scalar means multiplying the
index by the scalar. For an RGBA color, it means multiplying each of R, G, B, and
A by the scalar. Both primary and secondary colors are treated in the same fashion.)
Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one plane of the clip volume’s boundary at a time. Color clipping

Version 2.1 - December 1, 2006

2.15. VERTEX SHADERS 71

is done in the same way, so that clipped points always occur at the intersection of
polygon edges (possibly already clipped) with the clip volume’s boundary.
Texture and fog coordinates, vertex shader varying variables (section 2.15.3),
and point sizes computed on a per vertex basis must also be clipped when a primi-
tive is clipped. The method is exactly analogous to that used for color clipping.

2.14.9 Final Color Processing

For an RGBA color, each color component (which lies in [0, 1]) is converted
(by rounding to nearest) to a fixed-point value with m bits. We assume that
the fixed-point representation used represents each value k/(2™ — 1), where
ke {0,1,...,2™ — 1}, as k (e.g. 1.0 is represented in binary as a string of
all ones). m must be at least as large as the number of bits in the corresponding
component of the framebuffer. m must be at least 2 for A if the framebuffer does
not contain an A component, or if there is only 1 bit of A in the framebuffer. A
color index is converted (by rounding to nearest) to a fixed-point value with at least
as many bits as there are in the color index portion of the framebuffer.

Because a number of the form %k/(2™ — 1) may not be represented exactly as
a limited-precision floating-point quantity, we place a further requirement on the
fixed-point conversion of RGBA components. Suppose that lighting is disabled, the
color associated with a vertex has not been clipped, and one of Colorub, Colorus,
or Colorui was used to specify that color. When these conditions are satisfied, an
RGBA component must convert to a value that matches the component as specified
in the Color command: if m is less than the number of bits b with which the
component was specified, then the converted value must equal the most significant
m bits of the specified value; otherwise, the most significant b bits of the converted
value must equal the specified value.

2.15 Vertex Shaders

The sequence of operations described in sections 2.11 through 2.14 is a fixed-
function method for processing vertex data. Applications can more generally de-
scribe the operations that occur on vertex values and their associated data by using
a vertex shader.

A vertex shader is an array of strings containing source code for the operations
that are meant to occur on each vertex that is processed. The language used for
vertex shaders is described in the OpenGL Shading Language Specification.

To use a vertex shader, shader source code is first loaded into a shader object
and then compiled. One or more vertex shader objects are then attached to a pro-

Version 2.1 - December 1, 2006

72 CHAPTER 2. OPENGL OPERATION

gram object. A program object is then linked, which generates executable code
from all the compiled shader objects attached to the program. When a linked
program object is used as the current program object, the executable code for the
vertex shaders it contains is used to process vertices.

In addition to vertex shaders, fragment shaders can be created, compiled, and
linked into program objects. Fragment shaders affect the processing of fragments
during rasterization, and are described in section 3.11. A single program object
can contain both vertex and fragment shaders.

When the program object currently in use includes a vertex shader, its vertex
shader is considered active and is used to process vertices. If the program object
has no vertex shader, or no program object is currently in use, the fixed-function
method for processing vertices is used instead.

2.15.1 Shader Objects

The source code that makes up a program that gets executed by one of the pro-
grammable stages is encapsulated in one or more shader objects.

The name space for shader objects is the unsigned integers, with zero re-
served for the GL. This name space is shared with program objects. The following
sections define commands that operate on shader and program objects by name.
Commands that accept shader or program object names will generate the error
INVALID_VALUE if the provided name is not the name of either a shader or pro-
gram object and INVALID_OPERATION if the provided name identifies an object
that is not the expected type.

To create a shader object, use the command

uint CreateShader(enum type);

The shader object is empty when it is created. The fype argument specifies the type
of shader object to be created. For vertex shaders, fype must be VERTEX_SHADER.
A non-zero name that can be used to reference the shader object is returned. If an
error occurs, zero will be returned.

The command

void ShaderSource(uint shader, sizei count, const
char **string, const int *length);

loads source code into the shader object named shader. string is an array of count

pointers to optionally null-terminated character strings that make up the source
code. The length argument is an array with the number of chars in each string (the

Version 2.1 - December 1, 2006

2.15. VERTEX SHADERS 73

string length). If an element in length is negative, its accompanying string is null-
terminated. If length is NULL, all strings in the string argument are considered null-
terminated. The ShaderSource command sets the source code for the shader to
the text strings in the string array. If shader previously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.

The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL Shading Language Specification.

Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader(uint shader);

Each shader object has a boolean status, COMPILE_STATUS, that is modified as
a result of compilation. This status can be queried with GetShaderiv (see sec-
tion 6.1.14). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log can be queried with Get-
ShaderInfoL.og to obtain more information about the compilation attempt (see
section 6.1.14).

Shader objects can be deleted with the command

void DeleteShader(uint shader);

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE_STATUS is set to true. The value of DELETE_STATUS can be
queried with GetShaderiv (see section 6.1.14). DeleteShader will silently ignore
the value zero.

2.15.2 Program Objects

The shader objects that are to be used by the programmable stages of the GL are
collected together to form a program object. The programs that are executed by

Version 2.1 - December 1, 2006

74 CHAPTER 2. OPENGL OPERATION

these programmable stages are called executables. All information necessary for
defining an executable is encapsulated in a program object. A program object is
created with the command

uint CreateProgram(void);

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, 0 will be
returned.

To attach a shader object to a program object, use the command

void AttachShader(uint program, uint shader);

The error INVALID_OPERATION is generated if shader is already attached to pro-
gram.

Shader objects may be attached to program objects before source code has
been loaded into the shader object, or before the shader object has been compiled.
Multiple shader objects of the same type may be attached to a single program
object, and a single shader object may be attached to more than one program object.

To detach a shader object from a program object, use the command

void DetachShader(uint program, uint shader);

The error INVALID_OPERATION is generated if shader is not attached to program.
If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

void LinkProgram(uint program);

will link the program object named program. Each program object has a boolean
status, LINK_STATUS, that is modified as a result of linking. This status can be
queried with GetProgramiv (see section 6.1.14). This status will be set to TRUE if
a valid executable is created, and FALSE otherwise. Linking can fail for a variety
of reasons as specified in the OpenGL Shading Language Specification. Linking
will also fail if one or more of the shader objects, attached to program are not
compiled successfully, or if more active uniform or active sampler variables are
used in program than allowed (see section 2.15.3). If LinkProgram failed, any
information about a previous link of that program object is lost. Thus, a failed link
does not restore the old state of program.

Version 2.1 - December 1, 2006

2.15. VERTEX SHADERS 75

Each program object has an information log that is overwritten as a result of a
link operation. This information log can be queried with GetProgramInfoLog to
obtain more information about the link operation or the validation information (see
section 6.1.14).

If a valid executable is created, it can be made part of the current rendering
state with the command

void UseProgram(uint program);

This command will install the executable code as part of current rendering state if
the program object program contains valid executable code, i.e. has been linked
successfully. If UseProgram is called with program set to 0, it is as if the GL
had no programmable stages and the fixed-function paths will be used instead.
If program has not been successfully linked, the error INVALID_OPERATION is
generated and the current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

If the program object that is in use is re-linked successfully, the LinkProgram
command will install the generated executable code as part of the current rendering
state if the specified program object was already in use as a result of a previous call
to UseProgram.

If that program object that is in use is re-linked unsuccessfully, the link status
will be set to FALSE, but existing executable and associated state will remain part
of the current rendering state until a subsequent call to UseProgram removes it
from use. After such a program is removed from use, it can not be made part of the
current rendering state until it is successfully re-linked.

Program objects can be deleted with the command

void DeleteProgram(uint program);

If program is not the current program for any GL context, it is deleted immediately.
Otherwise, program is flagged for deletion and will be deleted when it is no longer
the current program for any context. When a program object is deleted, all shader
objects attached to it are detached. DeleteProgram will silently ignore the value
Zero.

2.15.3 Shader Variables

A vertex shader can reference a number of variables as it executes. Vertex attributes
are the per-vertex values specified in section 2.7. Uniforms are per-program vari-

Version 2.1 - December 1, 2006

76 CHAPTER 2. OPENGL OPERATION

ables that are constant during program execution. Samplers are a special form of
uniform used for texturing (section 3.8). Varying variables hold the results of ver-
tex shader execution that are used later in the pipeline. The following sections
describe each of these variable types.

Vertex Attributes

Vertex shaders can access built-in vertex attribute variables corresponding to the
per-vertex state set by commands such as Vertex, Normal, Color. Vertex shaders
can also define named attribute variables, which are bound to the generic vertex
attributes that are set by VertexAttrib*. This binding can be specified by the ap-
plication before the program is linked, or automatically assigned by the GL when
the program is linked.

When an attribute variable declared as a f1oat, vec2, vec3 or vec4 is bound
to a generic attribute index 4, its value(s) are taken from the z, (z,y), (z,y, z), or
(x,y, z, w) components, respectively, of the generic attribute <. When an attribute
variable is declared as a mat2, mat3x2 or mat4x2, its matrix columns are taken
from the (x, y) components of generic attributes ¢ and i + 1 (mat2), from attributes
¢ through ¢ + 2 (mat3x2), or from attributes ¢ through ¢ + 3 (mat4x2). When an
attribute variable is declared as a mat2x3, mat3 or mat4x3, its matrix columns
are taken from the (z, y, z) components of generic attributes i and 7 + 1 (mat2x3),
from attributes ¢ through 7 4+ 2 (mat 3), or from attributes ¢ through 7 + 3 (mat 4x3).
When an attribute variable is declared as a mat2x4, mat3x4 or mat4, its matrix
columns are taken from the (z, y, z, w) components of generic attributes ¢ and i + 1
(mat2x4), from attributes ¢ through ¢ + 2 (mat3x4), or from attributes ¢ through
1+ 3 (mat4).

An attribute variable (either conventional or generic) is considered active if it is
determined by the compiler and linker that the attribute may be accessed when the
shader is executed. Attribute variables that are declared in a vertex shader but never
used will not count against the limit. In cases where the compiler and linker cannot
make a conclusive determination, an attribute will be considered active. A program
object will fail to link if the sum of the active generic and active conventional
attributes exceeds MAX_VERTEX_ATTRIBS.

To determine the set of active vertex attributes used by a program, and to de-
termine their types, use the command:

void GetActiveAttrib(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

Version 2.1 - December 1, 2006

2.15. VERTEX SHADERS 77

This command provides information about the attribute selected by index. An in-
dex of 0 selects the first active attribute, and an index of ACTIVE_ATTRIBUTES — 1
selects the last active attribute. The value of ACTIVE_ATTRIBUTES can be queried
with GetProgramiv (see section 6.1.14). If index is greater than or equal to
ACTIVE_ATTRIBUTES, the error INVALID VALUE is generated. Note that index
simply identifies a member in a list of active attributes, and has no relation to the
generic attribute that the corresponding variable is bound to.

The parameter program is the name of a program object for which the com-
mand LinkProgram has been issued in the past. It is not necessary for program to
have been linked successfully. The link could have failed because the number of
active attributes exceeded the limit.

The name of the selected attribute is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null termi-
nator, is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null terminator,
is specified by bufSize. The returned attribute name can be the name of a generic
attribute or a conventional attribute (which begin with the prefix "gl_", see the
OpenGL Shading Language specification for a complete list). The length of the
longest attribute name in program is given by ACTIVE_ATTRIBUTE MAX_LENGTH,
which can be queried with GetProgramiv (see section 6.1.14).

For the selected attribute, the type of the attribute is returned into fype.
The size of the attribute is returned into size. The value in size is in
units of the type returned in fype. The type returned can be any of
FLOAT, FLOAT_VEC2, FLOAT VEC3, FLOAT_VEC4, FLOAT MAT2, FLOAT MAT3,
FLOAT_MAT4, FLOAT MAT2x3, FLOAT MAT2x4, FLOAT_MAT3x2, FLOAT_MAT3x4,
FLOAT MAT4x2, or FLOAT MAT4x3.

If an error occurred, the return parameters length, size, type and name will be
unmodified.

This command will return as much information about active attributes as pos-
sible. If no information is available, length will be set to zero and name will be an
empty string. This situation could arise if GetActiveAttrib is issued after a failed
link.

After a program object has been linked successfully, the bindings of attribute
variable names to indices can be queried. The command

int GetAttribLocation(uint program, const char *name);
returns the generic attribute index that the attribute variable named name was bound

to when the program object named program was last linked. name must be a null-
terminated string. If name is active and is an attribute matrix, GetAttribLocation

Version 2.1 - December 1, 2006

78 CHAPTER 2. OPENGL OPERATION

returns the index of the first column of that matrix. If program has not been suc-
cessfully linked, the error INVALID_OPERATION is generated. If name is not an
active attribute, if name is a conventional attribute, or if an error occurs, -1 will be
returned.

The binding of an attribute variable to a generic attribute index can also be
specified explicitly. The command

void BindAttribLocation(uint program, uint index, const
char *name);

specifies that the attribute variable named name in program program should be
bound to generic vertex attribute index when the program is next linked. If name
was bound previously, its assigned binding is replaced with index. name must be a
null terminated string. The error INVALID_VALUE is generated if index is equal or
greater than MAX_VERTEX_ATTRIBS. BindAttribLocation has no effect until the
program is linked. In particular, it doesn’t modify the bindings of active attribute
variables in a program that has already been linked.

Built-in attribute variables are automatically bound to conventional attributes,
and can not have an assigned binding. The error INVALID_OPERATION is gener-
ated if name starts with the reserved "gl_" prefix.

When a program is linked, any active attributes without a binding specified
through BindAttribLocation will be automatically be bound to vertex attributes
by the GL. Such bindings can be queried using the command GetAttribLocation.
LinkProgram will fail if the assigned binding of an active attribute variable would
cause the GL to reference a non-existant generic attribute (one greater than or equal
to MAX_VERTEX_ATTRIBS). LinkProgram will fail if the attribute bindings as-
signed by BindAttribLocation do not leave not enough space to assign a location
for an active matrix attribute, which requires multiple contiguous generic attributes.
LinkProgram will also fail if the vertex shaders used in the program object contain
assignments (not removed during pre-processing) to an attribute variable bound to
generic attribute zero and to the conventional vertex position (gl_Vertex).

BindAttribLocation may be issued before any vertex shader objects are at-
tached to a program object. Hence it is allowed to bind any name (except a name
starting with "g1_") to an index, including a name that is never used as an attribute
in any vertex shader object. Assigned bindings for attribute variables that do not
exist or are not active are ignored.

The values of generic attributes sent to generic attribute index ¢ are part of
current state, just like the conventional attributes. If a new program object has
been made active, then these values will be tracked by the GL in such a way that
the same values will be observed by attributes in the new program object that are
also bound to index i.

Version 2.1 - December 1, 2006

2.15. VERTEX SHADERS 79

It is possible for an application to bind more than one attribute name to the
same location. This is referred to as aliasing. This will only work if only one of
the aliased attributes is active in the executable program, or if no path through the
shader consumes more than one attribute of a set of attributes aliased to the same
location. A link error can occur if the linker determines that every path through the
shader consumes multiple aliased attributes, but implementations are not required
to generate an error in this case. The compiler and linker are allowed to assume that
no aliasing is done, and may employ optimizations that work only in the absence
of aliasing. It is not possible to alias generic attributes with conventional ones.

Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL Shading
Language Specification. Values for these uniforms are constant over a primitive,
and typically they are constant across many primitives. Uniforms are program
object-specific state. They retain their values once loaded, and their values are
restored whenever a program object is used, as long as the program object has not
been re-linked. A uniform is considered active if it is determined by the compiler
and linker that the uniform will actually be accessed when the executable code
is executed. In cases where the compiler and linker cannot make a conclusive
determination, the uniform will be considered active.

The amount of storage available for uniform variables accessed by
a vertex shader is specified by the implementation dependent constant
MAX_VERTEX_UNIFORM_COMPONENTS. This value represents the number of indi-
vidual floating-point, integer, or boolean values that can be held in uniform variable
storage for a vertex shader. A link error will be generated if an attempt is made to
utilize more than the space available for vertex shader uniform variables.

When a program is successfully linked, all active uniforms belonging to the
program object are initialized to zero (FALSE for booleans). A successful link will
also generate a location for each active uniform. The values of active uniforms can
be changed using this location and the appropriate Uniform* command (see be-
low). These locations are invalidated and new ones assigned after each successful
re-link.

To find the location of an active uniform variable within a program object, use
the command

int GetUniformLocation(uint program, const
char *name);

This command will return the location of uniform variable name. name must be a
null terminated string, without white space. The value -1 will be returned if name

Version 2.1 - December 1, 2006

80 CHAPTER 2. OPENGL OPERATION

does not correspond to an active uniform variable name in program or if name starts
with the reserved prefix "gl_". If program has not been successfully linked, the
error INVALID_OPERATION is generated. After a program is linked, the location
of a uniform variable will not change, unless the program is re-linked.

A valid name cannot be a structure, an array of structures, or any portion of
a single vector or a matrix. In order to identify a valid name, the " ." (dot) and
" [1" operators can be used in name to specify a member of a structure or element
of an array.

The first element of a uniform array is identified using the name of the uniform
array appended with " [0]". Except if the last part of the string name indicates a
uniform array, then the location of the first element of that array can be retrieved
by either using the name of the uniform array, or the name of the uniform array
appended with " [0] ".

To determine the set of active uniform attributes used by a program, and to
determine their sizes and types, use the command:

void GetActiveUniform(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

This command provides information about the uniform selected by index. An in-
dex of 0 selects the first active uniform, and an index of ACTIVE_UNIFORMS — 1
selects the last active uniform. The value of ACTIVE_UNIFORMS can be queried
with GetProgramiv (see section 6.1.14). If index is greater than or equal to
ACTIVE_UNIFORMS, the error INVALID_VALUE is generated. Note that index sim-
ply identifies a member in a list of active uniforms, and has no relation to the
location assigned to the corresponding uniform variable.

The parameter program is a name of a program object for which the command
LinkProgram has been issued in the past. It is not necessary for program to have
been linked successfully. The link could have failed because the number of active
uniforms exceeded the limit.

If an error occurred, the return parameters length, size, type and name will be
unmodified.

For the selected uniform, the uniform name is returned into name. The string
name will be null terminated. The actual number of characters written into name,
excluding the null terminator, is returned in length. If length is NULL, no length is
returned. The maximum number of characters that may be written into name, in-
cluding the null terminator, is specified by bufSize. The returned uniform name
can be the name of built-in uniform state as well. The complete list of built-
in uniform state is described in section 7.5 of the OpenGL Shading Language

Version 2.1 - December 1, 2006

2.15. VERTEX SHADERS 81

specification. The length of the longest uniform name in program is given by
ACTIVE_UNIFORM MAX_LENGTH, which can be queried with GetProgramiv (see
section 6.1.14).

Each uniform variable, declared in a shader, is broken down into one or more
strings using the " . " (dot) and " [] " operators, if necessary, to the point that it
is legal to pass each string back into GetUniformLocation. Each of these strings
constitutes one active uniform, and each string is assigned an index.

For the selected uniform, the type of the uniform is returned into
type. The size of the uniform is returned into size. The value in
size is in units of the type returned in fype. The type returned can be
any of FLOAT, FLOAT VEC2, FLOAT_VEC3, FLOAT_VEC4, INT, INT_VEC2,
INT_VEC3, INT_VEC4, BOOL, BOOL_VEC2, BOOL_VEC3, BOOL_VEC4, FLOAT_MAT2,
FLOAT MAT3, FLOAT MAT4, FLOAT MAT2x3, FLOAT MAT2x4, FLOAT MAT3x2,
FLOAT MAT3x4, FLOAT MAT4x2, FLOAT MAT4x3, SAMPLER_1D, SAMPLER_2D,
SAMPLER_3D, SAMPLER_CUBE, SAMPLER_1D_SHADOW, Oor SAMPLER_2D_SHADOW.

If one or more elements of an array are active, GetActiveUniform will return
the name of the array in name, subject to the restrictions listed above. The type of
the array is returned in type. The size parameter contains the highest array element
index used, plus one. The compiler or linker determines the highest index used.
There will be only one active uniform reported by the GL per uniform array.

GetActiveUniform will return as much information about active uniforms as
possible. If no information is available, length will be set to zero and name will be
an empty string. This situation could arise if GetActiveUniform is issued after a
failed link.

To load values into the uniform variables of the program object that is currently
in use, use the commands

void Uniform{1234}{if}(int location, T value);

void Uniform{1234}{if}v(int location, sizei count,
T value);

void UniformMatrix{234}fv(int location, sizei count,
boolean transpose, const float *value);

void UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 } fv(
int location, sizei count, boolean transpose, const
float *value);

The given values are loaded into the uniform variable location identified by loca-
tion.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform location defined as a float, a floating-point vector, an array of
floats, or an array of floating-point vectors.

Version 2.1 - December 1, 2006

82 CHAPTER 2. OPENGL OPERATION

The Uniform*i{v} commands will load count sets of one to four integer val-
ues into a uniform location defined as a sampler, an integer, an integer vector, an
array of samplers, an array of integers, or an array of integer vectors. Only the
Uniform1i{v} commands can be used to load sampler values (see below).

The UniformMatrix{234 }fv commands will load count 2 x 2,3 x 3, or 4 x 4
matrices (corresponding to 2, 3, or 4 in the command name) of floating-point values
into a uniform location defined as a matrix or an array of matrices. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

The UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 }fv commands will load count
2x3,3%x2,2x4,4x2,3x4, or 4x 3 matrices (corresponding to the numbers in the
command name) of floating-point values into a uniform location defined as a matrix
or an array of matrices. The first number in the command name is the number of
columns; the second is the number of rows. For example, UniformMatrix2x4fv
is used to load a matrix consisting of two columns and four rows. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

When loading values for a uniform declared as a boolean, a boolean vector,
an array of booleans, or an array of boolean vectors, both the Uniform*i{v} and
Uniform*f{v} set of commands can be used to load boolean values. Type con-
version is done by the GL. The uniform is set to FALSE if the input value is 0 or
0.0f, and set to TRUE otherwise. The Uniform* command used must match the
size of the uniform, as declared in the shader. For example, to load a uniform
declared as a bvec2, either Uniform2i{v} or Uniform2f{v} can be used. An
INVALID_OPERATION error will be generated if an attempt is made to use a non-
matching Uniform* command. In this example using Uniform1iv would generate
an error.

For all other uniform types the Uniform* command used must match the size
and type of the uniform, as declared in the shader. No type conversions are done.
For example, to load a uniform declared as a vec4, Uniform4f{v} must be used.
To load a 3x3 matrix, UniformMatrix3fv must be used. An INVALID_OPERATION
error will be generated if an attempt is made to use a non-matching Uniform®*
command. In this example, using Uniformd4i{v} would generate an error.

When loading N elements starting at an arbitrary position & in a uniform de-
clared as an array, elements k through £ + N — 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

If any of the following conditions occur, an INVALID_OPERATION error is gen-

Version 2.1 - December 1, 2006

2.15. VERTEX SHADERS 83

erated by the Uniform* commands, and no uniform values are changed:

e if the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

e if the uniform declared in the shader is not of type boolean and the type
indicated in the name of the Uniform* command used does not match the
type of the uniform,

e if count is greater than one, and the uniform declared in the shader is not an
array variable,

e if no variable with a location of location exists in the program object cur-
rently in use and location is not -1, or

e if there is no program object currently in use.

Samplers

Samplers are special uniforms used in the OpenGL Shading Language to identify
the texture object used for each texture lookup. The value of a sampler indicates
the texture image unit being accessed. Setting a sampler’s value to ¢ selects texture
image unit number ¢. The values of ¢ range from zero to the implementation-
dependent maximum supported number of texture image units.

The type of the sampler identifies the target on the texture image unit. The
texture object bound to that texture image unit’s target is then used for the texture
lookup. For example, a variable of type sampler2D selects target TEXTURE_2D on
its texture image unit. Binding of texture objects to targets is done as usual with
BindTexture. Selecting the texture image unit to bind to is done as usual with
ActiveTexture.

The location of a sampler needs to be queried with GetUniformLocation, just
like any uniform variable. Sampler values need to be set by calling Uniform1i{v}.
Loading samplers with any of the other Uniform* entry points is not allowed and
will result in an INVALID_OPERATION error.

It is not allowed to have variables of different sampler types pointing to the
same texture image unit within a program object. This situation can only be de-
tected at the next rendering command issued, and an INVALID OPERATION error
will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-
gram command will attempt to determine if the active samplers in the shader(s)

Version 2.1 - December 1, 2006

84 CHAPTER 2. OPENGL OPERATION

contained in the program object exceed the maximum allowable limits. If it de-
termines that the count of active samplers exceeds the allowable limits, then the
link fails (these limits can be different for different types of shaders). Each active
sampler variable counts against the limit, even if multiple samplers refer to the
same texture image unit. If this cannot be determined at link time, for example if
the program object only contains a vertex shader, then it will be determined at the
next rendering command issued, and an INVALID_OPERATION error will then be
generated.

Varying Variables

A vertex shader may define one or more varying variables (see the OpenGL Shad-
ing Language specification). These values are expected to be interpolated across
the primitive being rendered. The OpenGL Shading Language specification defines
a set of built-in varying variables for vertex shaders that correspond to the values
required for the fixed-function processing that occurs after vertex processing.

The number of interpolators available for processing varying variables is given
by the implementation-dependent constant MAX_VARYING_FLOATS. This value rep-
resents the number of individual floating-point values that can be interpolated;
varying variables declared as vectors, matrices, and arrays will all consume multi-
ple interpolators. When a program is linked, all components of any varying vari-
able written by a vertex shader, or read by a fragment shader, will count against
this limit. The transformed vertex position (g1 _Position) is not a varying vari-
able and does not count against this limit. A program whose shaders access more
than MAX_VARYING_FLOATS components worth of varying variables may fail to
link, unless device-dependent optimizations are able to make the program fit within
available hardware resources.

2.15.4 Shader Execution

If a successfully linked program object that contains a vertex shader is made current
by calling UseProgram, the executable version of the vertex shader is used to
process incoming vertex values rather than the fixed-function vertex processing
described in sections 2.11 through 2.14. In particular,

e The model-view and projection matrices are not applied to vertex coordi-
nates (section 2.11).

e The texture matrices are not applied to texture coordinates (section 2.11.2).
e Normals are not transformed to eye coordinates, and are not rescaled or nor-

malized (section 2.11.3).

Version 2.1 - December 1, 2006

2.15.

VERTEX SHADERS 85

Normalization of AUTO_NORMAL evaluated normals is not performed. (sec-
tion 5.1).

Texture coordinates are not generated automatically (section 2.11.4).
Per vertex lighting is not performed (section 2.14.1).

Color material computations are not performed (section 2.14.3).
Color index lighting is not performed (section 2.14.5).

All of the above applies when setting the current raster position (sec-
tion 2.13).

The following operations are applied to vertex values that are the result of
executing the vertex shader:

Color clamping or masking (section 2.14.6).

Perspective division on clip coordinates (section 2.11).

Viewport mapping, including depth range scaling (section 2.11.1).
Clipping, including client-defined clip planes (section 2.12).
Front face determination (section 2.14.1).

Flat-shading (section 2.14.7).

Color, texture coordinate, fog, point-size and generic attribute clipping (sec-
tion 2.14.8).

Final color processing (section 2.14.9.

There are several special considerations for vertex shader execution described
in the following sections.

Texture Access

Vertex shaders have the ability to do a lookup into a texture map, if sup-
ported by the GL implementation. The maximum number of texture image units
available to a vertex shader is MAX_VERTEX_TEXTURE_IMAGE_UNITS; a maxi-
mum number of zero indicates that the GL implemenation does not support
texture accesses in vertex shaders. The maximum number of texture image
units available to the fragment stage of the GL is MAX_TEXTURE_IMAGE UNITS.

Version 2.1 - December 1, 2006

86 CHAPTER 2. OPENGL OPERATION

Both the vertex shader and fragment processing combined cannot use more
than MAX_COMBINED_TEXTURE_IMAGE_UNITS texture image units. If both
the vertex shader and the fragment processing stage access the same texture
image unit, then that counts as using two texture image units against the
MAX_COMBINED_TEXTURE_IMAGE_UNITS limit.

When a texture lookup is performed in a vertex shader, the filtered texture value
7 is computed in the manner described in sections 3.8.8 and 3.8.9, and converted
it to a texture source color Cs according to table 3.20 (section 3.8.13). A four-
component vector (R, G5, Bs, As) is returned to the vertex shader.

In a vertex shader, it is not possible to perform automatic level-of-detail calcu-
lations using partial derivatives of the texture coordinates with respect to window
coordinates as described in section 3.8.8. Hence, there is no automatic selection of
an image array level. Minification or magnification of a texture map is controlled
by a level-of-detail value optionally passed as an argument in the texture lookup
functions. If the texture lookup function supplies an explicit level-of-detail value [,
then the pre-bias level-of-detail value A\pqsc(z, y) = [(replacing equation 3.18). If
the texture lookup function does not supply an explicit level-of-detail value, then
Mpase(2,y) = 0. The scale factor p(x,y) and its approximation function f(x,y)
(see equation 3.21) are ignored.

Texture lookups involving textures with depth component data can either re-
turn the depth data directly or return the results of a comparison with the r tex-
ture coordinate used to perform the lookup, as described in section 3.8.14. The
comparison operation is requested in the shader by using the shadow sampler
types (samplerlDShadow or sampler2DShadow) and in the texture using the
TEXTURE_COMPARE_MODE parameter. These requests must be consistent; the re-
sults of a texture lookup are undefined if:

e The sampler used in a texture lookup function is of type samplerlD or
sampler2D, and the texture object’s internal format is DEPTH_COMPONENT,
and the TEXTURE_COMPARE_MODE i8 not NONE.

e The sampler used in a texture lookup function is of type sampler1DShadow
or sampler2DShadow, and the texture object’s internal format is
DEPTH_COMPONENT, and the TEXTURE_COMPARE _MODE is NONE.

e The sampler used in a texture lookup function is of type sampler1DShadow
or sampler2DShadow, and the texture object’s internal format is not
DEPTH_COMPONENT.

If a vertex shader uses a sampler where the associated texture object is not com-
plete, as defined in section 3.8.10, the texture image unit will return (R, G, B, A)
=(0,0,0,1).

Version 2.1 - December 1, 2006

2.15. VERTEX SHADERS 87

Position Invariance

If a vertex shader uses the built-in function ft ransform to generate a vertex posi-
tion, then this generally guarantees that the transformed position will be the same
whether using this vertex shader or the fixed-function pipeline. This allows for cor-
rect multi-pass rendering algorithms, where some passes use fixed-function vertex
transformation and other passes use a vertex shader. If a vertex shader does not use
ftransform to generate a position, transformed positions are not guaranteed to
match, even if the sequence of instructions used to compute the position match the
sequence of transformations described in section 2.11.

Validation

It is not always possible to determine at link time if a program object actually
will execute. Therefore validation is done when the first rendering command is
issued, to determine if the currently active program object can be executed. If
it cannot be executed then no fragments will be rendered, and Begin, Raster-
Pos, or any command that performs an implicit Begin will generate the error
INVALID_OPERATION.

This error is generated by Begin, RasterPos, or any command that performs
an implicit Begin if:

e any two active samplers in the current program object are of different types,
but refer to the same texture image unit,

e any active sampler in the current program object refers to a texture image
unit where fixed-function fragment processing accesses a texture target that
does not match the sampler type, or

o the sum of the number of active samplers in the program and the number of
texture image units enabled for fixed-function fragment processing exceeds
the combined limit on the total number of texture image units allowed.

Fixed-function fragment processing operations will be performed if the pro-
gram object in use has no fragment shader.

The INVALID_OPERATION error reported by these rendering commands may
not provide enough information to find out why the currently active program object
would not execute. No information at all is available about a program object that
would still execute, but is inefficient or suboptimal given the current GL state. As
a development aid, use the command

void ValidateProgram(uint program);

Version 2.1 - December 1, 2006

88 CHAPTER 2. OPENGL OPERATION

to validate the program object program against the current GL state. Each program
object has a boolean status, VALIDATE_STATUS, that is modified as a result of
validation. This status can be queried with GetProgramiv (see section 6.1.14).
If validation succeeded this status will be set to TRUE, otherwise it will be set to
FALSE. If validation succeeded the program object is guaranteed to execute, given
the current GL state. If validation failed, the program object is guaranteed to not
execute, given the current GL state.

ValidateProgram will check for all the conditions that could lead to an
INVALID_OPERATION error when rendering commands are issued, and may check
for other conditions as well. For example, it could give a hint on how to optimize
some piece of shader code. The information log of program is overwritten with
information on the results of the validation, which could be an empty string. The
results written to the information log are typically only useful during application
development; an application should not expect different GL implementations to
produce identical information.

A shader should not fail to compile, and a program object should not fail to
link due to lack of instruction space or lack of temporary variables. Implementa-
tions should ensure that all valid shaders and program objects may be successfully
compiled, linked and executed.

Undefined Behavior

When using array or matrix variables in a shader, it is possible to access a vari-
able with an index computed at run time that is outside the declared extent of the
variable. Such out-of-bounds reads will return undefined values; out-of-bounds
writes will have undefined results and could corrupt other variables used by shader
or the GL. The level of protection provided against such errors in the shader is
implementation-dependent.

2.15.5 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.
The state required per shader object consists of:

e An unsigned integer specifying the shader object name.
e An integer holding the value of SHADER_TYPE.
e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last compile, initially FALSE.

Version 2.1 - December 1, 2006

2.15.

VERTEX SHADERS 89

An array of type char containing the information log, initially empty.
An integer holding the length of the information log.

An array of type char containing the concatenated shader string, initially
empty.

An integer holding the length of the concatenated shader string.

The state required per program object consists of:

An unsigned integer indicating the program object object name.

A boolean holding the delete status, initially FALSE.

A boolean holding the status of the last link attempt, initially FALSE.

A boolean holding the status of the last validation attempt, initally FALSE.
An integer holding the number of attached shader objects.

A list of unsigned integers to keep track of the names of the shader objects
attached.

An array of type char containing the information log, initially empty.
An integer holding the length of the information log.
An integer holding the number of active uniforms.

For each active uniform, three integers, holding its location, size, and type,
and an array of type char holding its name.

An array of words that hold the values of each active uniform.
An integer holding the number of active attributes.

For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

Additional state required to support vertex shaders consists of:

A bit indicating whether or not vertex program two-sided color mode is en-
abled, initially disabled.

A bit indicating whether or not vertex program point size mode (sec-
tion 3.3.1) is enabled, initially disabled.

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object, if any.

Version 2.1 - December 1, 2006

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive. The
second is assigning a depth value and one or more color values to each such square.
The results of this process are passed on to the next stage of the GL (per-fragment
operations), which uses the information to update the appropriate locations in the
framebuffer. Figure 3.1 diagrams the rasterization process. The color values as-
signed to a fragment are initially determined by the rasterization operations (sec-
tions 3.3 through 3.7) and modified by either the execution of the texturing, color
sum, and fog operations defined in sections 3.8, 3.9, and 3.10, or by a fragment
shader as defined in section 3.11. The final depth value is initially determined by
the rasterization operations and may be modified or replaced by a fragment shader.
The results from rasterizing a point, line, polygon, pixel rectangle or bitmap can be
routed through a fragment shader.

A grid square along with its parameters of assigned colors, z (depth), fog coor-
dinate, and texture coordinates is called a fragment; the parameters are collectively
dubbed the fragment’s associated data. A fragment is located by its lower left cor-
ner, which lies on integer grid coordinates. Rasterization operations also refer to a
fragment’s center, which is offset by (1/2,1/2) from its lower left corner (and so
lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

90

91

FRAGMENT PROGRAM enable

Point
Rasterization <)\~
Pffq;p Line
rimitive Rasterization [~
Fragment
Assembly Texturing Proggmm
Polygon
Rasterization [~ A 2
Color Sum
Pixel
DrawPixelS ————p| Rectangle |—
Rasterization
A
\/
Bitma, Bitmap Fog >
P e Rasterization [T Fragments

Figure 3.1. Rasterization.

Version 2.1 - December 1, 2006

92 CHAPTER 3. RASTERIZATION

Several factors affect rasterization. Lines and polygons may be stippled. Points
may be given differing diameters and line segments differing widths. A point, line
segment, or polygon may be antialiased.

3.1 Invariance

Consider a primitive p’ obtained by translating a primitive p through an offset (x, y)
in window coordinates, where x and y are integers. As long as neither p’ nor p is
clipped, it must be the case that each fragment f’ produced from p/ is identical to
a corresponding fragment f from p except that the center of f’ is offset by (z,)
from the center of f.

3.2 Antialiasing

Antialiasing of a point, line, or polygon is effected in one of two ways depending
on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are left
unaffected, but the A value is multiplied by a floating-point value in the range
[0, 1] that describes a fragment’s screen pixel coverage. The per-fragment stage of
the GL can be set up to use the A value to blend the incoming fragment with the
corresponding pixel already present in the framebuffer.

In color index mode, the least significant b bits (to the left of the binary point)
of the color index are used for antialiasing; b = min{4, m}, where m is the number
of bits in the color index portion of the framebuffer. The antialiasing process sets
these b bits based on the fragment’s coverage value: the bits are set to zero for no
coverage and to all ones for complete coverage.

The details of how antialiased fragment coverage values are computed are dif-
ficult to specify in general. The reason is that high-quality antialiasing may take
into account perceptual issues as well as characteristics of the monitor on which
the contents of the framebuffer are displayed. Such details cannot be addressed
within the scope of this document. Further, the coverage value computed for a
fragment of some primitive may depend on the primitive’s relationship to a num-
ber of grid squares neighboring the one corresponding to the fragment, and not just
on the fragment’s grid square. Another consideration is that accurate calculation
of coverage values may be computationally expensive; consequently we allow a
given GL implementation to approximate true coverage values by using a fast but
not entirely accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact an-
tialiasing in the prototypical case that each displayed pixel is a perfect square of

Version 2.1 - December 1, 2006

3.2. ANTIALIASING 93

uniform intensity. The square is called a fragment square and has lower left corner
(x,y) and upper right corner (z+ 1, y+1). We recognize that this simple box filter
may not produce the most favorable antialiasing results, but it provides a simple,
well-defined model.

A GL implementation may use other methods to perform antialiasing, subject
to the following conditions:

1. If fi and f, are two fragments, and the portion of f; covered by some prim-
itive is a subset of the corresponding portion of fs covered by the primitive,
then the coverage computed for f; must be less than or equal to that com-
puted for fo.

2. The coverage computation for a fragment f must be local: it may depend
only on f’s relationship to the boundary of the primitive being rasterized. It
may not depend on f’s x and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasterizing a
particular primitive must be constant, independent of any rigid motions in
window coordinates, as long as none of those fragments lies along window
edges.

In some implementations, varying degrees of antialiasing quality may be obtained
by providing GL hints (section 5.6), allowing a user to make an image quality
versus speed tradeoff.

3.2.1 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, poly-
gons, bitmaps, and images. The technique is to sample all primitives multiple times
at each pixel. The color sample values are resolved to a single, displayable color
each time a pixel is updated, so the antialiasing appears to be automatic at the
application level. Because each sample includes color, depth, and stencil informa-
tion, the color (including texture operation), depth, and stencil functions perform
equivalently to the single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. Samples contain separate color values for each fragment color. When
the framebuffer includes a multisample buffer, it does not include depth or sten-
cil buffers, even if the multisample buffer does not store depth or stencil values.

Version 2.1 - December 1, 2006

94 CHAPTER 3. RASTERIZATION

Color buffers (left, right, front, back, and aux) do coexist with the multisample
buffer, however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adjacent
polygons, object silhouettes, and even intersecting polygons. If only points or
lines are being rendered, the “smooth™ antialiasing mechanism provided by the
base GL may result in a higher quality image. This mechanism is designed to
allow multisample and smooth antialiasing techniques to be alternated during the
rendering of a single scene.

If the value of SAMPLE _BUFFERS is one, the rasterization of all primi-
tives is changed, and is referred to as multisample rasterization. Otherwise,
primitive rasterization is referred to as single-sample rasterization. The value
of SAMPLE BUFFERS is queried by calling GetIntegerv with pname set to
SAMPLE_BUFFERS.

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value with SAMPLES bits.
The value of SAMPLES is an implementation-dependent constant, and is queried by
calling GetIntegerv with pname set to SAMPLES.

Second, each fragment includes SAMPLES depth values, color values, and sets
of texture coordinates, instead of the single depth value, color value, and set of
texture coordinates that is maintained in single-sample rendering mode. An imple-
mentation may choose to assign the same color value and the same set of texture
coordinates to more than one sample. The location for evaluating the color value
and the set of texture coordinates can be anywhere within the pixel including the
fragment center or any of the sample locations. The color value and the set of tex-
ture coordinates need not be evaluated at the same location. Each pixel fragment
thus consists of integer x and y grid coordinates, SAMPLES color and depth values,
SAMPLES sets of texture coordinates, and a coverage value with a maximum of
SAMPLES bits.

Multisample rasterization is enabled or disabled by calling Enable or Disable
with the symbolic constant MULTISAMPLE.

If muLTISAMPLE is disabled, multisample rasterization of all primitives is
equivalent to single-sample (fragment-center) rasterization, except that the frag-
ment coverage value is set to full coverage. The color and depth values and the
sets of texture coordinates may all be set to the values that would have been as-
signed by single-sample rasterization, or they may be assigned as described below
for multisample rasterization.

If MULTISAMPLE is enabled, multisample rasterization of all primitives differs
substantially from single-sample rasterization. It is understood that each pixel in
the framebuffer has SAMPLES locations associated with it. These locations are

Version 2.1 - December 1, 2006

3.3. POINTS 95

exact positions, rather than regions or areas, and each is referred to as a sample
point. The sample points associated with a pixel may be located inside or outside
of the unit square that is considered to bound the pixel. Furthermore, the relative
locations of sample points may be identical for each pixel in the framebuffer, or
they may differ.

If the sample locations differ per pixel, they should be aligned to window, not
screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section 3.1 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

It is not possible to query the actual sample locations of a pixel.

3.3 Points

If a vertex shader is not active, then the rasterization of points is controlled with
void PointSize(float size);

size specifies the requested size of a point. The default value is 1.0. A value less
than or equal to zero results in the error INVALID_VALUE.

The requested point size is multiplied with a distance attenuation factor,
clamped to a specified point size range, and further clamped to the implementation-
dependent point size range to produce the derived point size:

1
derived_size = clamp (size * \/(a +bxd4cx d2>>

where d is the eye-coordinate distance from the eye, (0,0, 0, 1) in eye coordinates,
to the vertex, and a, b, and ¢ are distance attenuation function coefficients.

If multisampling is not enabled, the derived size is passed on to rasterization as
the point width.

If a vertex shader is active and vertex program point size mode is enabled,
then the derived point size is taken from the (potentially clipped) shader builtin
gl_PointsSize and clamped to the implementation-dependent point size range. If
the value written to g1 _PointSize is less than or equal to zero, results are unde-
fined. If a vertex shader is active and vertex program point size mode is disabled,
then the derived point size is taken from the point size state as specified by the
PointSize command. In this case no distance attenuation is performed. Vertex pro-
gram point size mode is enabled and disabled by calling Enable or Disable with
the symbolic value VERTEX_PROGRAM _POINT_SIZE.

Version 2.1 - December 1, 2006

96 CHAPTER 3. RASTERIZATION

If multisampling is enabled, an implementation may optionally fade the point
alpha (see section 3.13) instead of allowing the point width to go below a given
threshold. In this case, the width of the rasterized point is

. derived_size derived_size > threshold
width = { threshold otherwise 3.1
and the fade factor is computed as follows:
1 derived_size > threshold
de = . N2 3.2
fade (7:1%2;;:5%;2;@) otherwise 3-2)

The distance attenuation function coefficients a, b, and ¢, the bounds of the first
point size range clamp, and the point fade threshold, are specified with

void PointParameter{if}(enum pname, T param);
void PointParameter{if}v(enumpname, const T params);

If pname is POINT_SIZEMIN or POINT_SIZE MAX, then param speci-
fies, or params points to the lower or upper bound respectively to which
the derived point size is clamped. If the lower bound is greater than
the upper bound, the point size after clamping is undefined. If pname is
POINT_DISTANCE_ATTENUATION, then params points to the coefficients a, b,
and c. If pname is POINT_FADE_THRESHOLD_SIZE, then param specifies,
or params points to the point fade threshold. Values of POINT_SIZE_MIN,
POINT_SIZE_MAX, or POINT_FADE_THRESHOLD_SIZE less than zero result in the
error INVALID_VALUE.

Point antialiasing is enabled or disabled by calling Enable or Disable with the
symbolic constant POINT_SMOOTH. The default state is for point antialiasing to be
disabled.

Point sprites are enabled or disabled by calling Enable or Disable with the
symbolic constant POINT_SPRITE. The default state is for point sprites to be dis-
abled. When point sprites are enabled, the state of the point antialiasing enable is
ignored.

The point sprite texture coordinate replacement mode is set with one of the Tex-
Env* commands described in section 3.8.13, where target is POINT_SPRITE and
pname is COORD_REPLACE. The possible values for param are FALSE and TRUE.
The default value for each texture coordinate set is for point sprite texture coordi-
nate replacement to be disabled.

The point sprite texture coordinate origin is set with the PointParame-
ter* commands where pname is POINT_SPRITE_COORD_ORIGIN and param is
LOWER_LEFT or UPPER_LEFT. The default value is UPPER_LEFT.

Version 2.1 - December 1, 2006

3.3. POINTS 97

3.3.1 Basic Point Rasterization

In the default state, a point is rasterized by truncating its x,, and y,, coordinates
(recall that the subscripts indicate that these are z and y window coordinates) to
integers. This (z,y) address, along with data derived from the data associated
with the vertex corresponding to the point, is sent as a single fragment to the per-
fragment stage of the GL.

The effect of a point width other than 1.0 depends on the state of point antialias-
ing and point sprites. If antialiasing and point sprites are disabled, the actual width
is determined by rounding the supplied width to the nearest integer, then clamp-
ing it to the implementation-dependent maximum non-antialiased point width.
This implementation-dependent value must be no less than the implementation-
dependent maximum antialiased point width, rounded to the nearest integer value,
and in any event no less than 1. If rounding the specified width results in the value
0, then it is as if the value were 1. If the resulting width is odd, then the point

1 1
is computed from the vertex’s x,, and y,,, and a square grid of the odd width cen-
tered at (x, y) defines the centers of the rasterized fragments (recall that fragment
centers lie at half-integer window coordinate values). If the width is even, then the

center point is
1

(:9) = (L + 51 Lyw + 510

the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered on (z,y). See figure 3.2.

Version 2.1 - December 1, 2006

98

CHAPTER 3. RASTERIZATION

| | | | |
-—=-L oL -L_o—-_L_-o—_-L---

| | | | | |
55 -—=-L - L -L-o—-_-L-—--L_-—-_-L-

Lo s]
0.I5 1.I5 2.I5 3.I5 4.I5 5I.5 05 15 25 35 45 55
Odd Width Even Width

Figure 3.2. Rasterization of non-antialiased wide points. The crosses show fragment
centers produced by rasterization for any point that lies within the shaded region.
The dotted grid lines lie on half-integer coordinates.

Version 2.1 - December 1, 2006

3.3. POINTS

99

6.0

5.0

4.0

3.0

2.0

1.0

.......

.......

.......

.......

.......

.......

.......

.......

J
i
i
,
f

A

x

P>

5

%

.......

.......

.......

v

.......

.......

.......

..x...

.......

.......

.......

Figure 3.3. Rasterization of antialiased wide points. The black dot indicates the
point to be rasterized. The shaded region has the specified width. The X marks
indicate those fragment centers produced by rasterization. A fragment’s computed
coverage value is based on the portion of the shaded region that covers the corre-
sponding fragment square. Solid lines lie on integer coordinates.

Version 2.1 - December 1, 2006

100 CHAPTER 3. RASTERIZATION

All fragments produced in rasterizing a non-antialiased point are assigned the
same associated data, which are those of the vertex corresponding to the point.

If antialiasing is enabled and point sprites are disabled, then point rasterization
produces a fragment for each fragment square that intersects the region lying within
the circle having diameter equal to the current point width and centered at the
point’s (z, Y) (figure 3.3). The coverage value for each fragment is the window
coordinate area of the intersection of the circular region with the corresponding
fragment square (but see section 3.2). This value is saved and used in the final
step of rasterization (section 3.12). The data associated with each fragment are
otherwise the data associated with the point being rasterized.

Not all widths need be supported when point antialiasing is on, but the width
1.0 must be provided. If an unsupported width is requested, the nearest supported
width is used instead. The range of supported widths and the width of evenly-
spaced gradations within that range are implementation dependent. The range and
gradations may be obtained using the query mechanism described in chapter 6. If,
for instance, the width range is from 0.1 to 2.0 and the gradation width is 0.1, then
the widths 0.1,0.2,...,1.9,2.0 are supported.

If point sprites are enabled, then point rasterization produces a fragment for
each framebuffer pixel whose center lies inside a square centered at the point’s
(Zw, Yw), With side length equal to the current point size.

All fragments produced in rasterizing a point sprite are assigned the same as-
sociated data, which are those of the vertex corresponding to the point. How-
ever, for each texture coordinate set where COORD_REPLACE is TRUE, these
texture coordinates are replaced with point sprite texture coordinates. The s
coordinate varies from O to 1 across the point horizontally left-to-right. If
POINT_SPRITE_COORD_ORIGIN iS LOWER_LEFT, the ¢ coordinate varies from 0
to 1 vertically bottom-to-top. Otherwise if the point sprite texture coordinate ori-
gin is UPPER_LEFT, the ¢ coordinate varies from 0 to 1 vertically top-to-bottom.
The r and ¢ coordinates are replaced with the constants 0 and 1, respectively.

The following formula is used to evaluate the s and ¢ coordinates:

1 (xf—k%—:cw)

s=—+ . (3.3)
2 size
1 (yr+3—vw)
_ 5+ #, POINT_SPRITE_COORD_ORIGIN = LOWER_LEFT
S 1 (rtawe) Loir pRITE COORD.ORIGIN = UPPER LEFT
2 size ’ - - - - .
3.4)

where size is the point’s size, x; and y are the (integral) window coordinates of

Version 2.1 - December 1, 2006

3.4. LINE SEGMENTS 101

the fragment, and x,, and y,, are the exact, unrounded window coordinates of the
vertex for the point.

The widths supported for point sprites must be a superset of those supported
for antialiased points. There is no requirement that these widths must be equally
spaced. If an unsupported width is requested, the nearest supported width is used
instead.

3.3.2 Point Rasterization State

The state required to control point rasterization consists of the floating-point point
width, three floating-point values specifying the minimum and maximum point size
and the point fade threshold size, three floating-point values specifying the distance
attenuation coefficients, a bit indicating whether or not antialiasing is enabled, a bit
for the point sprite texture coordinate replacement mode for each texture coordinate
set, and a bit for the point sprite texture coordinate origin.

3.3.3 Point Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then points
are rasterized using the following algorithm, regardless of whether point antialias-
ing (POINT_SMOOTH) is enabled or disabled. Point rasterization produces a frag-
ment for each framebuffer pixel with one or more sample points that intersect a
region centered at the point’s (xy, ¥). This region is a circle having diameter
equal to the current point width if POINT_SPRITE is disabled, or a square with
side equal to the current point width if POINT_SPRITE is enabled. Coverage bits
that correspond to sample points that intersect the region are 1, other coverage bits
are 0. All data associated with each sample for the fragment are the data associ-
ated with the point being rasterized, with the exception of texture coordinates when
POINT_SPRITE is enabled; these texture coordinates are computed as described in
section 3.3.

Point size range and number of gradations are equivalent to those supported
for antialiased points when POINT_SPRITE is disabled. The set of point sizes
supported is equivalent to those for point sprites without multisample when
POINT_SPRITE is enabled.

3.4 Line Segments
A line segment results from a line strip Begin/End object, a line loop, or a se-

ries of separate line segments. Line segment rasterization is controlled by several
variables. Line width, which may be set by calling

Version 2.1 - December 1, 2006

102 CHAPTER 3. RASTERIZATION

void LineWidth(float width);

with an appropriate positive floating-point width, controls the width of rasterized
line segments. The default width is 1.0. Values less than or equal to 0.0 generate
the error INVALID _VALUE. Antialiasing is controlled with Enable and Disable
using the symbolic constant LINE_SMOOTH. Finally, line segments may be stippled.
Stippling is controlled by a GL command that sets a stipple pattern (see below).

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either x-major
or y-major. x-major line segments have slope in the closed interval [—1,1]; all
other line segments are y-major (slope is determined by the segment’s endpoints).
We shall specify rasterization only for z-major segments except in cases where the
modifications for y-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragment f with center at win-
dow coordinates x and y, define a diamond-shaped region that is the intersection
of four half planes:

Ry ={(z,y) ||z —zp| + |y —ys| <1/2.}

Essentially, a line segment starting at p, and ending at p; produces those frag-
ments f for which the segment intersects ¢, except if py is contained in Ry. See
figure 3.4.

To avoid difficulties when an endpoint lies on a boundary of R we (in princi-
ple) perturb the supplied endpoints by a tiny amount. Let p, and p; have window
coordinates (z4, y,) and (z, yp), respectively. Obtain the perturbed endpoints p/,
given by (z4,%a) — (€, €?) and pj, given by (xp, y») — (€, €2). Rasterizing the line
segment starting at p, and ending at p; produces those fragments f for which the
segment starting at p/, and ending on pj, intersects R, except if pj, is contained in
Ry. €is chosen to be so small that rasterizing the line segment produces the same
fragments when ¢ is substituted for € for any 0 < ¢ < e.

When p, and p; lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (corresponding to pp)
is not drawn. This means that when rasterizing a series of connected line segments,
shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult
to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

Version 2.1 - December 1, 2006

3.4. LINE SEGMENTS 103

Figure 3.4. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

1. The coordinates of a fragment produced by the algorithm may not deviate by
more than one unit in either x or y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

3. For an z-major line, no two fragments may be produced that lie in the same
window-coordinate column (for a y-major line, no two fragments may ap-
pear in the same row).

4. If two line segments share a common endpoint, and both segments are either
z-major (both left-to-right or both right-to-left) or y-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce
duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given

by pr = (24,¥4) and let p, = (T4, ya) and pp = (2, ys). Set

Version 2.1 - December 1, 2006

104 CHAPTER 3. RASTERIZATION

(Pr — Pa) - (P» — Pa)
P> — Pal|?

(Note that t = 0 at p, and ¢ = 1 at py.) The value of an associated datum f for
the fragment, whether it be primary or secondary R, G, B, or A (in RGBA mode)
or a color index (in color index mode), the fog coordinate, an s, ¢, r, or g texture
coordinate, or the clip w coordinate, is found as

t =

(3.5)

(1 - t)fa/wa + tfb/wb
(1 —1t)/wq + t/wy

where f, and f; are the data associated with the starting and ending endpoints of
the segment, respectively; w, and wy are the clip w coordinates of the starting and
ending endpoints of the segments, respectively. However, depth values for lines
must be interpolated by

f=

(3.6)

z2=(1—1)zq +tzp (3.7)

where z, and z; are the depth values of the starting and ending endpoints of the
segment, respectively.

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments of width
one using the default line stipple of F'F'F'F'g. We now describe the rasterization
of line segments for general values of the line segment rasterization parameters.

Line Stipple

The command
void LineStipple(int factor, ushort pattern);

defines a line stipple. pattern is an unsigned short integer. The line stipple is taken
from the lowest order 16 bits of pattern. It determines those fragments that are
to be drawn when the line is rasterized. factor is a count that is used to modify
the effective line stipple by causing each bit in line stipple to be used factor times.
factor is clamped to the range [1, 256]. Line stippling may be enabled or disabled
using Enable or Disable with the constant LINE_STIPPLE. When disabled, it is as
if the line stipple has its default value.

Line stippling masks certain fragments that are produced by rasterization so
that they are not sent to the per-fragment stage of the GL. The masking is achieved

Version 2.1 - December 1, 2006

3.4. LINE SEGMENTS 105

using three parameters: the 16-bit line stipple p, the line repeat count r, and an
integer stipple counter s. Let

b= |s/r| mod 16,

Then a fragment is produced if the bth bit of p is 1, and not produced otherwise.
The bits of p are numbered with 0 being the least significant and 15 being the
most significant. The initial value of s is zero; s is incremented after production
of each fragment of a line segment (fragments are produced in order, beginning at
the starting point and working towards the ending point). s is reset to 0 whenever
a Begin occurs, and before every line segment in a group of independent segments
(as specified when Begin is invoked with LINES).

If the line segment has been clipped, then the value of s at the beginning of the
line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the supplied
width to the nearest integer, then clamping it to the implementation-dependent
maximum non-antialiased line width. This implementation-dependent value must
be no less than the implementation-dependent maximum antialiased line width,
rounded to the nearest integer value, and in any event no less than 1. If rounding
the specified width results in the value 0, then it is as if the value were 1.

Non-antialiased line segments of width other than one are rasterized by off-
setting them in the minor direction (for an z-major line, the minor direction is
y, and for a y-major line, the minor direction is) and replicating fragments in
the minor direction (see figure 3.5). Let w be the width rounded to the nearest
integer (if w = 0, then it is as if w = 1). If the line segment has endpoints
given by (xo,yo) and (z1,y;) in window coordinates, the segment with endpoints
(xo,yo — (w—1)/2) and (x1,y; — (w —1)/2) is rasterized, but instead of a single
fragment, a column of fragments of height w (a row of fragments of length w for
a y-major segment) is produced at each = (y for y-major) location. The lowest
fragment of this column is the fragment that would be produced by rasterizing the
segment of width 1 with the modified coordinates. The whole column is not pro-
duced if the stipple bit for the column’s x location is zero; otherwise, the whole
column is produced.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment squares
intersect a rectangle centered on the line segment. Two of the edges are parallel to

Version 2.1 - December 1, 2006

106 CHAPTER 3. RASTERIZATION

width =2 width =3

Figure 3.5. Rasterization of non-antialiased wide lines. x-major line segments are
shown. The heavy line segment is the one specified to be rasterized; the light seg-
ment is the offset segment used for rasterization. x marks indicate the fragment
centers produced by rasterization.

the specified line segment; each is at a distance of one-half the current width from
that segment: one above the segment and one below it. The other two edges pass
through the line endpoints and are perpendicular to the direction of the specified
line segment. Coverage values are computed for each fragment by computing the
area of the intersection of the rectangle with the fragment square (see figure 3.6;
see also section 3.2). Equation 3.6 is used to compute associated data values just as
with non-antialiased lines; equation 3.5 is used to find the value of ¢ for each frag-
ment whose square is intersected by the line segment’s rectangle. Not all widths
need be supported for line segment antialiasing, but width 1.0 antialiased segments
must be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

For purposes of antialiasing, a stippled line is considered to be a sequence of
contiguous rectangles centered on the line segment. Each rectangle has width equal
to the current line width and length equal to 1 pixel (except the last, which may be
shorter). These rectangles are numbered from 0 to n, starting with the rectangle
incident on the starting endpoint of the segment. Each of these rectangles is ei-
ther eliminated or produced according to the procedure given under Line Stipple,
above, where “fragment” is replaced with “rectangle.” Each rectangle so produced

Version 2.1 - December 1, 2006

3.4. LINE SEGMENTS 107

Figure 3.6. The region used in rasterizing and finding corresponding coverage val-
ues for an antialiased line segment (an x-major line segment is shown).

is rasterized as if it were an antialiased polygon, described below (but culling, non-
default settings of PolygonMode, and polygon stippling are not applied).

3.4.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line width, a
16-bit line stipple, the line stipple repeat count, a bit indicating whether stippling
is enabled or disabled, and a bit indicating whether line antialiasing is on or off.
In addition, during rasterization, an integer stipple counter must be maintained to
implement line stippling. The initial value of the line width is 1.0. The initial value
of the line stipple is F'F'F'Fig (a stipple of all ones). The initial value of the line
stipple repeat count is one. The initial state of line stippling is disabled. The initial
state of line segment antialiasing is disabled.

3.4.4 Line Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then lines
are rasterized using the following algorithm, regardless of whether line antialiasing
(LINE_SMOOTH) is enabled or disabled. Line rasterization produces a fragment for
each framebuffer pixel with one or more sample points that intersect the rectangular
region that is described in the Antialiasing portion of section 3.4.2 (Other Line
Segment Features). If line stippling is enabled, the rectangular region is subdivided

Version 2.1 - December 1, 2006

108 CHAPTER 3. RASTERIZATION

into adjacent unit-length rectangles, with some rectangles eliminated according to
the procedure given in section 3.4.2, where “fragment” is replaced by “rectangle”.

Coverage bits that correspond to sample points that intersect a retained rectan-
gle are 1, other coverage bits are 0. Each color, depth, and set of texture coordinates
is produced by substituting the corresponding sample location into equation 3.5,
then using the result to evaluate equation 3.7. An implementation may choose to
assign the same color value and the same set of texture coordinates to more than
one sample by evaluating equation 3.5 at any location within the pixel including
the fragment center or any one of the sample locations, then substituting into equa-
tion 3.6. The color value and the set of texture coordinates need not be evaluated
at the same location.

Line width range and number of gradations are equivalent to those supported
for antialiased lines.

3.5 Polygons

A polygon results from a polygon Begin/End object, a triangle resulting from a
triangle strip, triangle fan, or series of separate triangles, or a quadrilateral arising
from a quadrilateral strip, series of separate quadrilaterals, or a Rect command.
Like points and line segments, polygon rasterization is controlled by several vari-
ables. Polygon antialiasing is controlled with Enable and Disable with the sym-
bolic constant POLYGON_SMOOTH. The analog to line segment stippling for poly-
gons is polygon stippling, described below.

3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon is back facing
or front facing. This determination is made by examining the sign of the area com-
puted by equation 2.6 of section 2.14.1 (including the possible reversal of this sign
as indicated by the last call to FrontFace). If this sign is positive, the polygon is
frontfacing; otherwise, it is back facing. This determination is used in conjunction
with the CullFace enable bit and mode value to decide whether or not a particular
polygon is rasterized. The CullFace mode is set by calling

void CullFace(enum mode);
mode is a symbolic constant: one of FRONT, BACK or FRONT_AND_BACK. Culling

is enabled or disabled with Enable or Disable using the symbolic constant
CULL_FACE. Front facing polygons are rasterized if either culling is disabled or

Version 2.1 - December 1, 2006

3.5. POLYGONS 109

the CullFace mode is BACK while back facing polygons are rasterized only if ei-
ther culling is disabled or the CullFace mode is FRONT. The initial setting of the
CullFace mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon rasteriza-
tion is called point sampling. The two-dimensional projection obtained by taking
the x and y window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon boundary edge. In
such a case we require that if two polygons lie on either side of a common edge
(with identical endpoints) on which a fragment center lies, then exactly one of the
polygons results in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Define barycentric coordinates for a triangle. Barycentric coordinates are
a set of three numbers, a, b, and ¢, each in the range [0, 1], witha + b+ ¢ = 1.
These coordinates uniquely specify any point p within the triangle or on the trian-
gle’s boundary as

p = apq + bpy + cpe,

where p,, py, and p. are the vertices of the triangle. a, b, and ¢ can be found as

_ A(ppvpe) - A(ppape) . A(ppaps)

A(papbpe)’ A(papbpe)’ A(pappe)’

where A (Imn) denotes the area in window coordinates of the triangle with vertices
{, m, and n.

Denote an associated datum at p,, pp, Or p. as fq, f, or fe, respectively. Then
the value f of a datum at a fragment produced by rasterizing a triangle is given by

afa/wa + bfb/wb +Cfc/wc
a/wg + b/wy 4+ ¢/we

where w,, wp and w, are the clip w coordinates of p,, py, and p., respectively.
a, b, and c are the barycentric coordinates of the fragment for which the data are
produced. a, b, and ¢ must correspond precisely to the exact coordinates of the
center of the fragment. Another way of saying this is that the data associated with
a fragment must be sampled at the fragment’s center. However, depth values for
polygons must be interpolated by

f= (3.8)

zZ = azq + bzp + cze,

where z,, 23, and z. are the depth values of p,, py, and p., respectively.

Version 2.1 - December 1, 2006

110 CHAPTER 3. RASTERIZATION

For a polygon with more than three edges, we require only that a convex com-
bination of the values of the datum at the polygon’s vertices can be used to obtain
the value assigned to each fragment produced by the rasterization algorithm. That
is, it must be the case that at every fragment

f=>aifi
=1

where 7 is the number of vertices in the polygon, f; is the value of the f at vertex
i; foreachi 0 < a; < land) ' ; a; = 1. The values of the a; may differ from
fragment to fragment, but at vertex 4, a; = 0,j # i and a; = 1.

One algorithm that achieves the required behavior is to triangulate a polygon
(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge
and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case, the numerator and denominator of equa-
tion 3.8 should be iterated independently and a division performed for each frag-
ment).

3.5.2 Stippling

Polygon stippling works much the same way as line stippling, masking out certain
fragments produced by rasterization so that they are not sent to the next stage of
the GL. This is the case regardless of the state of polygon antialiasing. Stippling is
controlled with

void PolygonStipple(ubyte *pattern);

pattern is a pointer to memory into which a 32 x 32 pattern is packed. The pattern
is unpacked from memory according to the procedure given in section 3.6.4 for
DrawPixels; it is as if the height and width passed to that command were both equal
to 32, the type were BITMAP, and the format were COLOR_INDEX. The unpacked
values (before any conversion or arithmetic would have been performed) form a
stipple pattern of zeros and ones.

If z,, and y,, are the window coordinates of a rasterized polygon fragment,
then that fragment is sent to the next stage of the GL if and only if the bit of the
pattern (z,, mod 32, y,, mod 32) is 1.

Polygon stippling may be enabled or disabled with Enable or Disable using
the constant POLYGON_STIPPLE. When disabled, it is as if the stipple pattern were
all ones.

Version 2.1 - December 1, 2006

3.5. POLYGONS 111

3.5.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever the
interior of the polygon intersects that fragment’s square. A coverage value is com-
puted at each such fragment, and this value is saved to be applied as described
in section 3.12. An associated datum is assigned to a fragment by integrating the
datum’s value over the region of the intersection of the fragment square with the
polygon’s interior and dividing this integrated value by the area of the intersection.
For a fragment square lying entirely within the polygon, the value of a datum at the
fragment’s center may be used instead of integrating the value across the fragment.

Polygon stippling operates in the same way whether polygon antialiasing is
enabled or not. The polygon point sampling rule defined in section 3.5.1, however,
is not enforced for antialiased polygons.

3.5.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using

void PolygonMode(enum face, enum mode);

face is one of FRONT, BACK, or FRONT_AND_BACK, indicating that the rasterizing
method described by mode replaces the rasterizing method for front facing poly-
gons, back facing polygons, or both front and back facing polygons, respectively.
mode is one of the symbolic constants POINT, LINE, or FILL. Calling Polygon-
Mode with POINT causes certain vertices of a polygon to be treated, for rasteriza-
tion purposes, just as if they were enclosed within a Begin(POINT) and End pair.
The vertices selected for this treatment are those that have been tagged as having a
polygon boundary edge beginning on them (see section 2.6.2). LINE causes edges
that are tagged as boundary to be rasterized as line segments. (The line stipple
counter is reset at the beginning of the first rasterized edge of the polygon, but
not for subsequent edges.) FILL is the default mode of polygon rasterization, cor-
responding to the description in sections 3.5.1, 3.5.2, and 3.5.3. Note that these
modes affect only the final rasterization of polygons: in particular, a polygon’s ver-
tices are lit, and the polygon is clipped and possibly culled before these modes are
applied.

Polygon antialiasing applies only to the FILL state of PolygonMode. For
POINT or LINE, point antialiasing or line segment antialiasing, respectively, ap-

ply.

Version 2.1 - December 1, 2006

112 CHAPTER 3. RASTERIZATION

3.5.5 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffset(float factor, float units);

factor scales the maximum depth slope of the polygon, and units scales an im-
plementation dependent constant that relates to the usable resolution of the depth
buffer. The resulting values are summed to produce the polygon offset value. Both
factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

m= \/ (2;0)2 + (gyz)z (3.9)

where (., Yw, 2w) is a point on the triangle. m may be approximated as

Q| |0z
02w | | OYw

)

m = max{ } . (3.10)
If the polygon has more than three vertices, one or more values of m may be used
during rasterization. Each may take any value in the range [min,max], where min
and max are the smallest and largest values obtained by evaluating equation 3.9 or
equation 3.10 for the triangles formed by all three-vertex combinations.

The minimum resolvable difference r is an implementation constant. It is the
smallest difference in window coordinate z values that is guaranteed to remain
distinct throughout polygon rasterization and in the depth buffer. All pairs of frag-
ments generated by the rasterization of two polygons with otherwise identical ver-
tices, but z,, values that differ by r, will have distinct depth values.

The offset value o for a polygon is

o =mx factor + r * units. (3.11)

m is computed as described above, as a function of depth values in the range [0,1],
and o is applied to depth values in the same range.

Boolean state values POLYGON_OFFSET_POINT, POLYGON_OFFSET_LINE, and
POLYGON_OFFSET_FILL determine whether o is applied during the rasterization
of polygons in POINT, LINE, and FILL modes. These boolean state values are
enabled and disabled as argument values to the commands Enable and Disable. If
POLYGON_OFFSET_POINT is enabled, o is added to the depth value of each frag-
ment produced by the rasterization of a polygon in POINT mode. Likewise, if

Version 2.1 - December 1, 2006

3.5. POLYGONS 113

POLYGON_OFFSET_LINE or POLYGON_OFFSET_FILL is enabled, o is added to the
depth value of each fragment produced by the rasterization of a polygon in LINE
or FILL modes, respectively.

Fragment depth values are always limited to the range [0,1], either by clamping
after offset addition is performed (preferred), or by clamping the vertex values used
in the rasterization of the polygon.

3.5.6 Polygon Multisample Rasterization

If MULTISAMPLE is enabled and the value of SAMPLE_BUFFERS is one, then poly-
gons are rasterized using the following algorithm, regardless of whether polygon
antialiasing (POLYGON_SMOOTH) is enabled or disabled. Polygon rasterization pro-
duces a fragment for each framebuffer pixel with one or more sample points that
satisfy the point sampling criteria described in section 3.5.1, including the special
treatment for sample points that lie on a polygon boundary edge. If a polygon is
culled, based on its orientation and the CullFace mode, then no fragments are pro-
duced during rasterization. Fragments are culled by the polygon stipple just as they
are for aliased and antialiased polygons.

Coverage bits that correspond to sample points that satisfy the point sampling
criteria are 1, other coverage bits are 0. Each color, depth, and set of texture co-
ordinates is produced by substituting the corresponding sample location into the
barycentric equations described in section 3.5.1, using the approximation to equa-
tion 3.8 that omits w components. An implementation may choose to assign the
same color value and the same set of texture coordinates to more than one sample
by barycentric evaluation using any location with the pixel including the fragment
center or one of the sample locations. The color value and the set of texture coor-
dinates need not be evaluated at the same location.

The rasterization described above applies only to the FILL state of Polygon-
Mode. For POINT and LINE, the rasterizations described in sections 3.3.3 (Point
Multisample Rasterization) and 3.4.4 (Line Multisample Rasterization) apply.

3.5.7 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pattern,
whether stippling is enabled or disabled, the current state of polygon antialiasing
(enabled or disabled), the current values of the PolygonMode setting for each of
front and back facing polygons, whether point, line, and fill mode polygon offsets
are enabled or disabled, and the factor and bias values of the polygon offset equa-
tion. The initial stipple pattern is all ones; initially stippling is disabled. The initial
setting of polygon antialiasing is disabled. The initial state for PolygonMode is

Version 2.1 - December 1, 2006

114 CHAPTER 3. RASTERIZATION

FILL for both front and back facing polygons. The initial polygon offset factor
and bias values are both 0; initially polygon offset is disabled for all modes.

3.6 Pixel Rectangles

Rectangles of color, depth, and certain other values may be converted to fragments
using the DrawPixels command (described in section 3.6.4). Some of the param-
eters and operations governing the operation of DrawPixels are shared by Read-
Pixels (used to obtain pixel values from the framebuffer) and CopyPixels (used to
copy pixels from one framebuffer location to another); the discussion of ReadPix-
els and CopyPixels, however, is deferred until chapter 4 after the framebuffer has
been discussed in detail. Nevertheless, we note in this section when parameters
and state pertaining to DrawPixels also pertain to ReadPixels or CopyPixels.

A number of parameters control the encoding of pixels in buffer object or
client memory (for reading and writing) and how pixels are processed before being
placed in or after being read from the framebuffer (for reading, writing, and copy-
ing). These parameters are set with three commands: PixelStore, PixelTransfer,
and PixelMap.

3.6.1 Pixel Storage Modes and Pixel Buffer Objects

Pixel storage modes affect the operation of DrawPixels and ReadPixels (as well as
other commands; see sections 3.5.2, 3.7, and 3.8) when one of these commands is
issued. This may differ from the time that the command is executed if the command
is placed in a display list (see section 5.4). Pixel storage modes are set with

void PixelStore{if}(enum pname, T param);

pname is a symbolic constant indicating a parameter to be set, and param is the
value to set it to. Table 3.1 summarizes the pixel storage parameters, their types,
their initial values, and their allowable ranges. Setting a parameter to a value out-
side the given range results in the error INVALID_VALUE.

The version of PixelStore that takes a floating-point value may be used to
set any type of parameter; if the parameter is boolean, then it is set to FALSE if
the passed value is 0.0 and TRUE otherwise, while if the parameter is an integer,
then the passed value is rounded to the nearest integer. The integer version of
the command may also be used to set any type of parameter; if the parameter is
boolean, then it is set to FALSE if the passed value is 0 and TRUE otherwise, while
if the parameter is a floating-point value, then the passed value is converted to
floating-point.

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES 115

Parameter Name Type Initial Value ‘ Valid Range ‘
UNPACK_SWAP _BYTES boolean FALSE TRUE/FALSE
UNPACK_LSB_FIRST boolean FALSE TRUE/FALSE
UNPACK_ROW_LENGTH integer 0 [0, 00)
UNPACK_SKIP_ROWS integer 0 [0, 00)
UNPACK_SKIP_PIXELS integer 0 [0, 00)
UNPACK_ALIGNMENT integer 4 1,2,4,8
UNPACK_IMAGE_HEIGHT | integer 0 [0, 00)
UNPACK_SKIP_IMAGES | integer 0 [0, 00)

Table 3.1: PixelStore parameters pertaining to one or more of DrawPixels, Col-
orTable, ColorSubTable, ConvolutionFilter1D, ConvolutionFilter2D, Separa-
bleFilter2D, PolygonStipple, TexImagelD, TexImage2D, TexImage3D, Tex-
SubImagelD, TexSubImage2D, and TexSubImage3D.

In addition to storing pixel data in client memory, pixel data may also
be stored in buffer objects (described in section 2.9). The current pixel un-
pack and pack buffer objects are designated by the PIXEL_UNPACK_BUFFER and
PIXEL_PACK_BUFFER targets respectively.

Initially, zero is bound for the P IXEL_UNPACK_BUFFER, indicating that image
specification commands such as DrawPixels source their pixels from client mem-
ory pointer parameters. However, if a non-zero buffer object is bound as the current
pixel unpack buffer, then the pointer parameter is treated as an offset into the des-
ignated buffer object.

3.6.2 The Imaging Subset

Some pixel transfer and per-fragment operations are only made available in GL
implementations which incorporate the optional imaging subset. The imaging
subset includes both new commands, and new enumerants allowed as parame-
ters to existing commands. If the subset is supported, all of these calls and enu-
merants must be implemented as described later in the GL specification. If the
subset is not supported, calling any unsupported command generates the error
INVALID_OPERATION, and using any of the new enumerants generates the error
INVALID_ENUM.

The individual operations available only in the imaging subset are described in
section 3.6.3. Imaging subset operations include:

1. Color tables, including all commands and enumerants described in sub-

Version 2.1 - December 1, 2006

116 CHAPTER 3. RASTERIZATION

sections Color Table Specification, Alternate Color Table Specification
Commands, Color Table State and Proxy State, Color Table Lookup,
Post Convolution Color Table Lookup, and Post Color Matrix Color Ta-
ble Lookup, as well as the query commands described in section 6.1.7.

2. Convolution, including all commands and enumerants described in sub-
sections Convolution Filter Specification, Alternate Convolution Filter
Specification Commands, and Convolution, as well as the query com-
mands described in section 6.1.8.

3. Color matrix, including all commands and enumerants described in subsec-
tions Color Matrix Specification and Color Matrix Transformation, as
well as the simple query commands described in section 6.1.6.

4. Histogram and minmax, including all commands and enumerants described
in subsections Histogram Table Specification, Histogram State and
Proxy State, Histogram, Minmax Table Specification, and Minmax, as
well as the query commands described in section 6.1.9 and section 6.1.10.

The imaging subset is supported only if the EXTENSIONS string includes
the substring "GL_ARB_imaging". Querying EXTENSIONS is described in sec-
tion 6.1.11.

If the imaging subset is not supported, the related pixel transfer operations are
not performed; pixels are passed unchanged to the next operation.

3.6.3 Pixel Transfer Modes

Pixel transfer modes affect the operation of DrawPixels (section 3.6.4), ReadPix-
els (section 4.3.2), and CopyPixels (section 4.3.3) at the time when one of these
commands is executed (which may differ from the time the command is issued).
Some pixel transfer modes are set with

void PixelTransfer{if}(enum param, T value);

param is a symbolic constant indicating a parameter to be set, and value is the value
to set it to. Table 3.2 summarizes the pixel transfer parameters that are set with
PixelTransfer, their types, their initial values, and their allowable ranges. Setting
a parameter to a value outside the given range results in the error INVALID VALUE.
The same versions of the command exist as for PixelStore, and the same rules
apply to accepting and converting passed values to set parameters.

The pixel map lookup tables are set with

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES 117

Parameter Name Type Initial Value ‘ Valid Range ‘
MAP_COLOR boolean FALSE TRUE/FALSE
MAP_STENCIL boolean FALSE TRUE/FALSE
INDEX_SHIFT integer 0 (—00, 00)
INDEX_OFFSET integer 0 (—00,00)
T_SCALE float 1.0 (—00, 00)
DEPTH_SCALE float 1.0 (—00, 00)
T BIAS float 0.0 (—00, 00)
DEPTH_BIAS float 0.0 (—00, 00)
POST_CONVOLUTION.z_SCALE float 1.0 (—00, 00)
POST_CONVOLUTION z_BIAS float 0.0 (—00, 00)
POST_COLOR MATRIX z_SCALE | float 1.0 (—00, 00)
POST_COLORMATRIX_r_BIAS float 0.0 (—00,00)

Table 3.2: PixelTransfer parameters. x is RED, GREEN, BLUE, or ALPHA.

void PixelMap{ui us f}v(enum map, sizei size, T values);

map is a symbolic map name, indicating the map to set, size indicates the size of
the map, and values refers to an array of size map values

The entries of a table may be specified using one of three types: single-
precision floating-point, unsigned short integer, or unsigned integer, depending on
which of the three versions of PixelMap is called. A table entry is converted
to the appropriate type when it is specified. An entry giving a color component
value is converted according to table 2.9. An entry giving a color index value
is converted from an unsigned short integer or unsigned integer to floating-point.
An entry giving a stencil index is converted from single-precision floating-point
to an integer by rounding to nearest. The various tables and their initial sizes
and entries are summarized in table 3.3. A table that takes an index as an ad-
dress must have size = 2" or the error INVALID_VALUE results. The maximum
allowable size of each table is specified by the implementation dependent value
MAX_PIXEL_MAP_TABLE, but must be at least 32 (a single maximum applies to all
tables). The error INVALID_VALUE is generated if a size larger than the imple-
mented maximum, or less than one, is given to PixelMap.

If a pixel unpack buffer is bound (as indicated by a non-zero value of
PIXEL_.UNPACK_BUFFER.BINDING), values is an offset into the pixel unpack
buffer; otherwise, values is a pointer to client memory. All pixel storage and pixel
transfer modes are ignored when specifying a pixel map. n machine units are read
where n is the size of the pixel map times the size of a f1oat, uint, or ushort

Version 2.1 - December 1, 2006

118 CHAPTER 3. RASTERIZATION

Map Name H Address Value Init. Size | Init. Value
PIXEL_MAP_I_TO_I color idx color idx 1 0.0
PIXEL_MAP_S_TO.S || stencil idx | stencil idx 1 0
PIXEL_MAP_I_TOR || coloridx R 1 0.0
PIXEL_MAP_I_TO_G color idx G 1 0.0
PIXEL_MAP_I_TOB || coloridx B 1 0.0
PIXEL_MAP_I_TOA || coloridx A 1 0.0
PIXEL_MAP R_TO_R R R 1 0.0
PIXEL_MAP G_.TOG G G 1 0.0
PIXEL_MAP_B_TO_B B B 1 0.0
PIXEL_MAP_A_TO_A A A 1 0.0

Table 3.3: PixelMap parameters.

datum in basic machine units, depending on the respective PixelMap version. If
a pixel unpack buffer object is bound and data + n is greater than the size of the
pixel buffer, an INVALID_OPERATION error results. If a pixel unpack buffer object
is bound and values is not evenly divisible by the number of basic machine units
needed to store in memory a float, uint, or ushort datum depending on their
respective PixelMap version, an INVALID_OPERATION error results.

Color Table Specification

Color lookup tables are specified with

void ColorTable(enum farget, enum internalformat,
sizei width, enum format, enum type, void *data);

target must be one of the regular color table names listed in table 3.4 to define
the table. A proxy table name is a special case discussed later in this section.
width, format, type, and data specify an image in memory with the same mean-
ing and allowed values as the corresponding arguments to DrawPixels (see sec-
tion 3.6.4), with height taken to be 1. The maximum allowable width of a table
is implementation-dependent, but must be at least 32. The formats COLOR_INDEX,
DEPTH_COMPONENT, and STENCIL_INDEX and the type BITMAP are not allowed.
The specified image is taken from memory and processed just as if DrawPixels
were called, stopping after the final expansion to RGBA. The R, G, B, and A com-
ponents of each pixel are then scaled by the four COLOR_TABLE_SCALE parameters,

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES 119

Table Name H Type

COLOR-TABLE regular
POST_CONVOLUTION_COLOR-TABLE
POST_COLOR_MATRIX_COLOR.TABLE
PROXY_COLOR_TABLE proxy
PROXY_POST_CONVOLUTION_COLOR.-TABLE
PROXY_POST_COLOR.MATRIX_COLOR_TABLE

Table 3.4: Color table names. Regular tables have associated image data. Proxy
tables have no image data, and are used only to determine if an image can be loaded
into the corresponding regular table.

biased by the four COLOR_TABLE_BIAS parameters, and clamped to [0, 1]. These
parameters are set by calling ColorTableParameterfv as described below.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with the base internal format specified by (or derived from) inter-
nalformat, in the same manner as for textures (section 3.8.1). internalformat must
be one of the formats in table 3.15 or table 3.16, other than the DEPTH formats in
those tables.

The color lookup table is redefined to have width entries, each with the speci-
fied internal format. The table is formed with indices 0 through width — 1. Table
location ¢ is specified by the ¢th image pixel, counting from zero.

The error INVALID_VALUE is generated if width is not zero or a non-negative
power of two. The error TABLE_TOO_LARGE is generated if the specified color
lookup table is too large for the implementation.

The scale and bias parameters for a table are specified by calling

void ColorTableParameter{if}v(enum target, enum pname,
T params);

target must be a regular color table name. pname is one of COLOR_TABLE_SCALE
or COLOR-TABLE_BIAS. params points to an array of four values: red, green, blue,
and alpha, in that order.

A GL implementation may vary its allocation of internal component resolution
based on any ColorTable parameter, but the allocation must not be a function of
any other factor, and cannot be changed once it is established. Allocations must
be invariant; the same allocation must be made each time a color table is specified
with the same parameter values. These allocation rules also apply to proxy color
tables, which are described later in this section.

Version 2.1 - December 1, 2006

120 CHAPTER 3. RASTERIZATION

Alternate Color Table Specification Commands

Color tables may also be specified using image data taken directly from the frame-
buffer, and portions of existing tables may be respecified.
The command

void CopyColorTable(enum target, enum internalformat,
int x, inty, sizei width);

defines a color table in exactly the manner of ColorTable, except that table data
are taken from the framebuffer, rather than from client memory. farget must be a
regular color table name. x, y, and width correspond precisely to the corresponding
arguments of CopyPixels (refer to section 4.3.3); they specify the image’s width
and the lower left (z,y) coordinates of the framebuffer region to be copied. The
image is taken from the framebuffer exactly as if these arguments were passed to
CopyPixels with argument type set to COLOR and height set to 1, stopping after the
final expansion to RGBA.

Subsequent processing is identical to that described for ColorTable, beginning
with scaling by COLOR_TABLE_SCALE. Parameters target, internalformat and width
are specified using the same values, with the same meanings, as the equivalent
arguments of ColorTable. format is taken to be RGBA.

Two additional commands,

void ColorSubTable(enum target, sizei start, sizei count,
enum format, enum type, void *data);

void CopyColorSubTable(enum target, sizei start, int x,
inty, sizei count);

respecify only a portion of an existing color table. No change is made to the inter-
nalformat or width parameters of the specified color table, nor is any change made
to table entries outside the specified portion. target must be a regular color table
name.

ColorSubTable arguments format, type, and data match the corresponding ar-
guments to ColorTable, meaning that they are specified using the same values,
and have the same meanings. Likewise, CopyColorSubTable arguments x, y, and
count match the x, y, and width arguments of CopyColorTable. Both of the Color-
SubTable commands interpret and process pixel groups in exactly the manner of
their ColorTable counterparts, except that the assignment of R, G, B, and A pixel
group values to the color table components is controlled by the internalformat of
the table, not by an argument to the command.

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES 121

Arguments start and count of ColorSubTable and CopyColorSubTable spec-
ify a subregion of the color table starting at index start and ending at index
start + count — 1. Counting from zero, the nth pixel group is assigned to the
table entry with index count + n. The error INVALID_VALUE is generated if
start + count > width.

Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For each
of the three tables, there is an array of values. Each array has associated with it
a width, an integer describing the internal format of the table, six integer values
describing the resolutions of each of the red, green, blue, alpha, luminance, and
intensity components of the table, and two groups of four floating-point numbers to
store the table scale and bias. Each initial array is null (zero width, internal format
RGBA, with zero-sized components). The initial value of the scale parameters is
(1,1,1,1) and the initial value of the bias parameters is (0,0,0,0).

In addition to the color lookup tables, partially instantiated proxy color lookup
tables are maintained. Each proxy table includes width and internal format state
values, as well as state for the red, green, blue, alpha, luminance, and intensity
component resolutions. Proxy tables do not include image data, nor do they in-
clude scale and bias parameters. When ColorTable is executed with target speci-
fied as one of the proxy color table names listed in table 3.4, the proxy state values
of the table are recomputed and updated. If the table is too large, no error is gener-
ated, but the proxy format, width and component resolutions are set to zero. If the
color table would be accommodated by ColorTable called with farget set to the
corresponding regular table name (COLOR_TABLE is the regular name correspond-
ing to PROXY_COLOR-TABLE, for example), the proxy state values are set exactly
as though the regular table were being specified. Calling ColorTable with a proxy
target has no effect on the image or state of any actual color table.

There is no image associated with any of the proxy targets. They cannot be
used as color tables, and they must never be queried using GetColorTable. The
error INVALID_ENUM is generated if this is attempted.

Convolution Filter Specification

A two-dimensional convolution filter image is specified by calling
void ConvolutionFilter2D(enum farget, enum internalformat,
sizei width, sizei height, enum format, enum type,

void *data);

Version 2.1 - December 1, 2006

122 CHAPTER 3. RASTERIZATION

target must be CONVOLUTION_2D. width, height, format, type, and data specify an
image in memory with the same meaning and allowed values as the corresponding
parameters to DrawPixels. The formats COLOR_INDEX, DEPTH_COMPONENT, and
STENCIL_INDEX and the fype BITMAP are not allowed.

The specified image is extracted from memory and processed just as if
DrawPixels were called, stopping after the final expansion to RGBA. The
R, G, B, and A components of each pixel are then scaled by the four two-
dimensional CONVOLUTION_FILTER_SCALE parameters and biased by the four
two-dimensional CONVOLUTION_FILTER BIAS parameters. These parameters are
set by calling ConvolutionParameterfv as described below. No clamping takes
place at any time during this process.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with the base internal format specified by (or derived from) inter-
nalformat, in the same manner as for textures (section 3.8.1). internalformat must
be one of the formats in table 3.15 or table 3.16, other than the DEPTH formats in
those tables.

The red, green, blue, alpha, luminance, and/or intensity components of the
pixels are stored in floating point, rather than integer format. They form a two-
dimensional image indexed with coordinates 7, j such that ¢ increases from left to
right, starting at zero, and j increases from bottom to top, also starting at zero.
Image location i, j is specified by the Nth pixel, counting from zero, where

N =14 j xwidth

The error INVALID.VALUE is generated if width or height is greater
than the maximum supported value. These values are queried with Get-
ConvolutionParameteriv, setting farget to CONVOLUTION_2D and pname to
MAX_CONVOLUTION_WIDTH or MAX_CONVOLUTION_HEIGHT, respectively.

The scale and bias parameters for a two-dimensional filter are specified by
calling

void ConvolutionParameter{if}v(enum farget, enum pname,
T params);

with target CONVOLUTION_2D. pname is one of CONVOLUTION_FILTER_SCALE
or CONVOLUTION_FILTER._BIAS. params points to an array of four values: red,
green, blue, and alpha, in that order.

A one-dimensional convolution filter is defined using

void ConvolutionFilter1D(enum target, enum internalformat,
sizei width, enumn format, enum type, void *data);

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES 123

target must be CONVOLUTION_1D. internalformat, width, format, and type have
identical semantics and accept the same values as do their two-dimensional coun-
terparts. data must point to a one-dimensional image, however.

The image is extracted from memory and processed as if ConvolutionFilter2D
were called with a height of 1, except that it is scaled and biased by the one-
dimensional CONVOLUTION.FILTER.SCALE and CONVOLUTION.FILTER.-BIAS
parameters. These parameters are specified exactly as the two-dimensional
parameters, except that ConvolutionParameterfv is called with target
CONVOLUTION_1D.

The image is formed with coordinates 4 such that ¢ increases from left to right,
starting at zero. Image location : is specified by the ith pixel, counting from zero.

The error INVALID_VALUE is generated if width is greater than the maximum
supported value. This value is queried using GetConvolutionParameteriv, setting
target to CONVOLUTION_1D and pname to MAX_CONVOLUTION_WIDTH.

Special facilities are provided for the definition of two-dimensional sepa-
rable filters — filters whose image can be represented as the product of two
one-dimensional images, rather than as full two-dimensional images. A two-
dimensional separable convolution filter is specified with

void SeparableFilter2D(enum target, enum internalformat,
sizei width, sizei height, enum format, enum type,
void *row, void *column);

target must be SEPARABLE_2D. internalformat specifies the formats of the table
entries of the two one-dimensional images that will be retained. row points to a
width pixel wide image of the specified format and type. column points to a height
pixel high image, also of the specified format and type.

The two images are extracted from memory and processed as if Convolu-
tionFilter1D were called separately for each, except that each image is scaled
and biased by the two-dimensional separable CONVOLUTION_FILTER_SCALE and
CONVOLUTION.FILTER_BIAS parameters. These parameters are specified exactly
as the one-dimensional and two-dimensional parameters, except that Convolution-
Parameteriv is called with target SEPARABLE_2D.

Alternate Convolution Filter Specification Commands

One and two-dimensional filters may also be specified using image data taken di-
rectly from the framebuffer.
The command

Version 2.1 - December 1, 2006

124 CHAPTER 3. RASTERIZATION

void CopyConvolutionFilter2D(enum target,
enum internalformat, int x, inty, sizei width,
sizei height);

defines a two-dimensional filter in exactly the manner of ConvolutionFilter2D,
except that image data are taken from the framebuffer, rather than from client mem-
ory. target must be CONVOLUTION_2D. x, y, width, and height correspond precisely
to the corresponding arguments of CopyPixels (refer to section 4.3.3); they specify
the image’s width and height, and the lower left (x,y) coordinates of the frame-
buffer region to be copied. The image is taken from the framebuffer exactly as
if these arguments were passed to CopyPixels with argument fype set to COLOR,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that described for ConvolutionFilter2D,
beginning with scaling by CONVOLUTION_FILTER_SCALE. Parameters target, in-
ternalformat, width, and height are specified using the same values, with the same
meanings, as the equivalent arguments of ConvolutionFilter2D. format is taken to
be RGBA.

The command

void CopyConvolutionFilter1D(enum target,
enum infernalformat, int x, inty, sizei width);

defines a one-dimensional filter in exactly the manner of ConvolutionFilter1D,
except that image data are taken from the framebuffer, rather than from client mem-
ory. target must be CONVOLUTION_1D. x, y, and width correspond precisely to the
corresponding arguments of CopyPixels (refer to section 4.3.3); they specify the
image’s width and the lower left (x,y) coordinates of the framebuffer region to
be copied. The image is taken from the framebuffer exactly as if these arguments
were passed to CopyPixels with argument fype set to COLOR and height set to 1,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that described for ConvolutionFilter1D,
beginning with scaling by CONVOLUTION_FILTER_SCALE. Parameters farget, in-
ternalformat, and width are specified using the same values, with the same mean-
ings, as the equivalent arguments of ConvolutionFilter2D. format is taken to be
RGBA.

Convolution Filter State

The required state for convolution filters includes a one-dimensional image array,
two one-dimensional image arrays for the separable filter, and a two-dimensional
image array. Each filter has associated with it a width and height (two-dimensional

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES 125

and separable only), an integer describing the internal format of the filter, and two
groups of four floating-point numbers to store the filter scale and bias.

Each initial convolution filter is null (zero width and height, internal format
RGBA, with zero-sized components). The initial value of all scale parameters is
(1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

Color Matrix Specification

Setting the matrix mode to COLOR causes the matrix operations described in sec-
tion 2.11.2 to apply to the top matrix on the color matrix stack. All matrix opera-
tions have the same effect on the color matrix as they do on the other matrices.

Histogram Table Specification

The histogram table is specified with

void Histogram(enum target, sizei width,
enumn internalformat, boolean sink);

target must be HISTOGRAM if a histogram table is to be specified. target value
PROXY_HISTOGRAM is a special case discussed later in this section. width speci-
fies the number of entries in the histogram table, and internalformat specifies the
format of each table entry. The maximum allowable width of the histogram table
is implementation-dependent, but must be at least 32. sink specifies whether pixel
groups will be consumed by the histogram operation (TRUE) or passed on to the
minmax operation (FALSE).

If no error results from the execution of Histogram, the specified histogram
table is redefined to have width entries, each with the specified internal format.
The entries are indexed O through width — 1. Each component in each entry is set
to zero. The values in the previous histogram table, if any, are lost.

The error INVALID_VALUE is generated if width is not zero or a non-negative
power of two. The error TABLE_TOO_LARGE is generated if the specified histogram
table is too large for the implementation. The error INVALID_ENUM is generated if
internalformat is not one of the formats in table 3.15 or table 3.16, oris 1, 2, 3, 4,
or any of the DEPTH or INTENSITY formats in those tables.

A GL implementation may vary its allocation of internal component resolution
based on any Histogram parameter, but the allocation must not be a function of any
other factor, and cannot be changed once it is established. In particular, allocations
must be invariant; the same allocation must be made each time a histogram is
specified with the same parameter values. These allocation rules also apply to the
proxy histogram, which is described later in this section.

Version 2.1 - December 1, 2006

126 CHAPTER 3. RASTERIZATION

Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which is
associated a width, an integer describing the internal format of the histogram, five
integer values describing the resolutions of each of the red, green, blue, alpha,
and luminance components of the table, and a flag indicating whether or not pixel
groups are consumed by the operation. The initial array is null (zero width, internal
format RGBA, with zero-sized components). The initial value of the flag is false.

In addition to the histogram table, a partially instantiated proxy histogram table
is maintained. It includes width, internal format, and red, green, blue, alpha, and
luminance component resolutions. The proxy table does not include image data or
the flag. When Histogram is executed with farget set to PROXY_HISTOGRAM, the
proxy state values are recomputed and updated. If the histogram array is too large,
no error is generated, but the proxy format, width, and component resolutions are
set to zero. If the histogram table would be accomodated by Histogram called
with target set to HISTOGRAM, the proxy state values are set exactly as though
the actual histogram table were being specified. Calling Histogram with target
PROXY_HISTOGRAM has no effect on the actual histogram table.

There is no image associated with PROXY_HISTOGRAM. It cannot be used as
a histogram, and its image must never queried using GetHistogram. The error
INVALID_ENUM results if this is attempted.

Minmax Table Specification

The minmax table is specified with

void Minmax(enum target, enum internalformat,
boolean sink);

target must be MINMAX. internalformat specifies the format of the table entries.
sink specifies whether pixel groups will be consumed by the minmax operation
(TRUE) or passed on to final conversion (FALSE).

The error INVALID_ENUM is generated if internalformat is not one of the for-
mats in table 3.15 or table 3.16, oris 1, 2, 3, 4, or any of the DEPTH or INTENSITY
formats in those tables. The resulting table always has 2 entries, each with values
corresponding only to the components of the internal format.

The state necessary for minmax operation is a table containing two elements
(the first element stores the minimum values, the second stores the maximum val-
ues), an integer describing the internal format of the table, and a flag indicating
whether or not pixel groups are consumed by the operation. The initial state is
a minimum table entry set to the maximum representable value and a maximum

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES 127

table entry set to the minimum representable value. Internal format is set to RGBA
and the initial value of the flag is false.

3.6.4 Rasterization of Pixel Rectangles

The process of drawing pixels encoded in buffer object or client memory is dia-
grammed in figure 3.7. We describe the stages of this process in the order in which
they occur.

Pixels are drawn using

void DrawPixels(sizei width, sizei height, enum format,
enum type, void *data);

format is a symbolic constant indicating what the values in memory represent.
width and height are the width and height, respectively, of the pixel rectangle to
be drawn. data refers to the data to be drawn. The correspondence between
the twenty fype token values and the GL data types they indicate is given in ta-
ble 3.5. If the GL is in color index mode and format is not one of COLOR_INDEX,
STENCIL_INDEX, or DEPTH_COMPONENT, then the error INVALID_OPERATION OC-
curs. If type is BITMAP and format is not COLOR_INDEX or STENCIL_INDEX then
the error INVALID_ENUM occurs. Some additional constraints on the combinations
of format and type values that are accepted are discussed below.

Unpacking

Data are taken from the currently bound pixel unpack buffer or client memory as a
sequence of signed or unsigned bytes (GL data types byte and ubyte), signed or
unsigned short integers (GL data types short and ushort), signed or unsigned
integers (GL data types int and uint), or floating point values (GL data type
float). These elements are grouped into sets of one, two, three, or four values,
depending on the format, to form a group. Table 3.6 summarizes the format of
groups obtained from memory; it also indicates those formats that yield indices
and those that yield components.

If a pixel unpack buffer is bound (as indicated by a non-zero value of
PIXEL_UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer
and the pixels are unpacked from the buffer relative to this offset; otherwise, data is
a pointer to client memory and the pixels are unpacked from client memory relative
to the pointer. If a pixel unpack buffer object is bound and unpacking the pixel data
according to the process described below would access memory beyond the size of
the pixel unpack buffer’s memory size, an INVALID_OPERATION error results. If a
pixel unpack buffer object is bound and data is not evenly divisible by the number

Version 2.1 - December 1, 2006

128 CHAPTER 3. RASTERIZATION

byte, short, int, o r float pixel
data stream (index or component)

convert
to float

convert
L to RGB

shift
and offset

color table
looku

convolution color table
scale and bias lookup

post color table histogram
convolution lookup

color matrix minmax
scale and bias

clamp final mask to
to [0,1] conversion @"-1)
RGBA pixel |—> color index pixel |—>
data out data out

Figure 3.7. Operation of DrawPixels. Output is RGBA pixels if the GL is in RGBA
mode, color index pixels otherwise. Operations in dashed boxes may be enabled

or disabled. RGBA and yeteiondey piBdaathbeard sho@e; depth and stencil pixel
paths are not shown.

3.6. PIXEL RECTANGLES 129

type Parameter Corresponding Special
Token Name GL Data Type | Interpretation
UNSIGNED_BYTE ubyte No
BITMAP ubyte Yes
BYTE byte No
UNSIGNED_SHORT ushort No
SHORT short No
UNSIGNED_INT uint No
INT int No
FLOAT float No
UNSIGNED_BYTE_3_3.2 ubyte Yes
UNSIGNED_BYTE_2_3_3_REV ubyte Yes
UNSIGNED_SHORT_5.6_5 ushort Yes
UNSIGNED_SHORT_5_6_5_REV ushort Yes
UNSIGNED_SHORT_4_4_4_4 ushort Yes
UNSIGNED_SHORT_4_4_4_4 REV ushort Yes
UNSIGNED_SHORT_5.5.5_1 ushort Yes
UNSIGNED_SHORT_1_5_5_5_REV ushort Yes
UNSIGNED_INT_8.8.8_8 uint Yes
UNSIGNED_INT_8_8_8_8_REV uint Yes
UNSIGNED_INT_10.10.10.2 uint Yes
UNSIGNED_INT_2_10_10_10_REV uint Yes

Table 3.5: DrawPixels and ReadPixels type parameter values and the correspond-
ing GL data types. Refer to table 2.2 for definitions of GL data types. Special
interpretations are described near the end of section 3.6.4.

Version 2.1 - December 1, 2006

130

CHAPTER 3. RASTERIZATION

Format Name

H Element Meaning and Order | Target Buffer

COLOR_INDEX Color Index Color
STENCIL_INDEX Stencil Index Stencil
DEPTH_COMPONENT Depth Depth
RED R Color
GREEN G Color
BLUE B Color
ALPHA A Color
RGB R,G,B Color
RGBA R,G,B, A Color
BGR B,G,R Color
BGRA B,G,R, A Color
LUMINANCE Luminance Color
LUMINANCE_ALPHA Luminance, A Color

Table 3.6: DrawPixels and ReadPixels formats. The second column gives a de-
scription of and the number and order of elements in a group. Unless specified as
an index, formats yield components.

of basic machine units needed to store in memory the corresponding GL data type
from table 3.5 for the fype parameter, an INVALID_OPERATION error results.

By default the values of each GL data type are interpreted as they would be
specified in the language of the client’s GL binding. If UNPACK_SWAP_BYTES is
enabled, however, then the values are interpreted with the bit orderings modified
as per table 3.7. The modified bit orderings are defined only if the GL data type
ubyte has eight bits, and then for each specific GL data type only if that type is
represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This

Element Size | Default Bit Ordering | Modified Bit Ordering

8 bit [7..0] [7..0]

16 bit [15..0] [7..0][15..8]

32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 3.7: Bit ordering modification of elements when UNPACK_SWAP_BYTES is
enabled. These reorderings are defined only when GL data type ubyte has 8 bits,
and then only for GL data types with 8, 16, or 32 bits. Bit 0 is the least significant.

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES 131

rectangle consists of a series of rows, with the first element of the first group
of the first row pointed to by the pointer passed to DrawPixels. If the value of
UNPACK_ROW_LENGTH is not positive, then the number of groups in a row is width;
otherwise the number of groups is UNPACK_ROW_LENGTH. If p indicates the loca-
tion in memory of the first element of the first row, then the first element of the Nth
row is indicated by

p—+ Nk (3.12)

where IV is the row number (counting from zero) and k is defined as

k:{"l 52, (3.13)
a/s[snl/a] s<a

where n is the number of elements in a group, ! is the number of groups in
the row, a is the value of UNPACK_ALIGNMENT, and s is the size, in units of GL
ubytes, of an element. If the number of bits per element is not 1, 2, 4, or 8 times
the number of bits in a GL ubyte, then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS, and UNPACK_SKIP_PIXELS. Before
obtaining the first group from memory, the pointer supplied to DrawPixels is effec-
tively advanced by (UNPACK_SKIP PIXELS)n+ (UNPACK_SKIP_ROWS)k elements.
Then width groups are obtained from contiguous elements in memory (without ad-
vancing the pointer), after which the pointer is advanced by k elements. height sets
of width groups of values are obtained this way. See figure 3.8.

Calling DrawPixels with a fype of UNSIGNED_BYTE_3.3.2,

UNSIGNED_BYTE_2_3_3_REV, UNSIGNED_SHORT_5_.6.5,
UNSIGNED_SHORT_5_6_5_REV, UNSIGNED_SHORT_4_4_4_4,
UNSIGNED_SHORT_4_4_4_4 _REV, UNSIGNED_SHORT_5.5.5_1,
UNSIGNED_SHORT_1_5_5_5_REV, UNSIGNED_INT_8_.8_.8_8,
UNSIGNED_INT_8_8_8_8_REV, UNSIGNED_INT_10.10.10_2, or

UNSIGNED_INT_2_10_.10_10_REV is a special case in which all the compo-
nents of each group are packed into a single unsigned byte, unsigned short, or
unsigned int, depending on the type. The number of components per packed pixel
is fixed by the type, and must match the number of components per group indicated
by the format parameter, as listed in table 3.8. The error INVALID_OPERATION is
generated if a mismatch occurs. This constraint also holds for all other functions
that accept or return pixel data using type and format parameters to define the type
and format of that data.

Version 2.1 - December 1, 2006

132 CHAPTER 3. RASTERIZATION

ROW LENGTH

SKI P_PI XELS

SKI P_ROAB

Figure 3.8. Selecting a subimage from an image. The indicated parameter names
are prefixed by UNPACK_ for DrawPixels and by PACK_ for ReadPixels.

type Parameter GL Data | Number of Matching
Token Name Type Components | Pixel Formats
UNSIGNED_BYTE_3_3.2 ubyte 3 RGB
UNSIGNED_BYTE_2_3_3_REV ubyte 3 RGB
UNSIGNED_SHORT_5_6_5 ushort 3 RGB
UNSIGNED_SHORT._5_6_5_REV ushort 3 RGB
UNSIGNED_SHORT_4_4_4_4 ushort 4 RGBA,BGRA
UNSIGNED_SHORT_4_4_4_4 _REV ushort 4 RGBA,BGRA
UNSIGNED_SHORT_5_5_5_1 ushort 4 RGBA,BGRA
UNSIGNED_SHORT_1_5_5_5_REV ushort 4 RGBA,BGRA
UNSIGNED_INT_8.8_8_8 uint 4 RGBA,BGRA
UNSIGNED_INT_8_8_8_8 REV uint 4 RGBA,BGRA
UNSIGNED_INT_10.10.10_2 uint 4 RGBA,BGRA
UNSIGNED_INT_2_10_10_10_REV uint 4 RGBA,BGRA

Table 3.8: Packed pixel formats.

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES 133

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in tables 3.9, 3.10, and 3.11. Each bitfield is
interpreted as an unsigned integer value. If the base GL type is supported with
more than the minimum precision (e.g. a 9-bit byte) the packed components are
right-justified in the pixel.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive component occupying progressively less
significant locations. Types whose token names end with _REV reverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.

UNSIGNED_BYTE_3_3_2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED_BYTE_2_3_3_REV:

7 6 5 4 3 2 1 0

’ 3rd ‘ 2nd 1st Component

Table 3.9: UNSIGNED_BYTE formats. Bit numbers are indicated for each compo-
nent.

Version 2.1 - December 1, 2006

134 CHAPTER 3. RASTERIZATION

UNSIGNED_SHORT_5_6_5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED_SHORT_5_6_5_REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNED_SHORT_4_4_4_4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED_SHORT_4_4_4_4 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED_SHORT_5.5_5_1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd ‘ 4th ‘

UNSIGNED_SHORT_1_5_5_5_REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

’ 4th ‘ 3rd 2nd 1st Component

Table 3.10: UNSIGNED_SHORT formats

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES

UNSIGNED_INT_8_8_8_8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18

17 16 15 14 13

135

1st Component

UNSIGNED_INT_8_8_8_8_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18

17 16 15 14 13

4th

1st Component

UNSIGNED_INT_10.10.10_2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18

17 16 15 14 13

1st Component

UNSIGNED_INT_2_10_10_10_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18

17 16 15 14 13

’ 4th ‘ 3rd

1st Component

Table 3.11: UNSIGNED_INT formats

Version 2.1 - December 1, 2006

136

CHAPTER 3. RASTERIZATION

Format First Second Third Fourth
Component | Component | Component | Component

RGB red green blue

RGBA red green blue alpha

BGRA blue green red alpha

Table 3.12: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table 3.12.

Byte swapping, if enabled, is performed before the component are extracted
from each pixel. The above discussions of row length and image extraction are
valid for packed pixels, if “group” is substituted for “component” and the number
of components per group is understood to be one.

Calling DrawPixels with a rype of BITMAP is a special case in which the data
are a series of GL ubyte values. Each ubyte value specifies 8 1-bit elements
with its 8 least-significant bits. The 8 single-bit elements are ordered from most
significant to least significant if the value of UNPACK_LSB_FIRST is FALSE; other-
wise, the ordering is from least significant to most significant. The values of bits
other than the 8 least significant in each ubyte are not significant.

The first element of the first row is the first bit (as defined above) of the ubyte
pointed to by the pointer passed to DrawPixels. The first element of the second
row is the first bit (again as defined above) of the ubyte at location p + k, where

k is computed as
-
8a

There is a mechanism for selecting a sub-rectangle of elements from a BITMAP
image as well. Before obtaining the first element from memory, the pointer sup-
plied to DrawPixels is effectively advanced by UNPACK_SKIP_ROWS * k ubytes.
Then UNPACK_SKIP_PIXELS 1-bit elements are ignored, and the subsequent width
1-bit elements are obtained, without advancing the ubyte pointer, after which the
pointer is advanced by k ubytes. height sets of width elements are obtained this
way.

(3.14)

Conversion to floating-point

This step applies only to groups of components. It is not performed on indices.
Each element in a group is converted to a floating-point value according to the ap-

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES 137

propriate formula in table 2.9 (section 2.14). For packed pixel types, each element
in the group is converted by computing ¢ / (2 — 1), where c is the unsigned inte-
ger value of the bitfield containing the element and N is the number of bits in the
bitfield.

Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE ALPHA. If the
format is LUMINANCE, then each group of one element is converted to a group of
R, G, and B (three) elements by copying the original single element into each of
the three new elements. If the format is LUMINANCE_ALPHA, then each group of
two elements is converted to a group of R, G, B, and A (four) elements by copying
the first original element into each of the first three new elements and copying the
second original element to the A (fourth) new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A element,
then A is added and set to 1.0. If any of R, G, or B is missing from the group, each
missing element is added and assigned a value of 0.0.

Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer operations
are performed equivalently during the drawing, copying, and reading of pixels,
and during the specification of texture images (either from memory or from the
framebuffer), they are described separately in section 3.6.5. After the processing
described in that section is completed, groups are processed as described in the
following sections.

Final Conversion

For a color index, final conversion consists of masking the bits of the index to the
left of the binary point by 2" — 1, where n is the number of bits in an index buffer.
For RGBA components, each element is clamped to [0, 1]. The resulting values are
converted to fixed-point according to the rules given in section 2.14.9 (Final Color
Processing).

For a depth component, an element is first clamped to [0, 1] and then converted
to fixed-point as if it were a window z value (see section 2.11.1, Controlling the
Viewport).

Version 2.1 - December 1, 2006

138 CHAPTER 3. RASTERIZATION

Stencil indices are masked by 2" — 1, where n is the number of bits in the
stencil buffer.

Conversion to Fragments

The conversion of a group to fragments is controlled with
void PixelZoom(float 2,, float zy,);

Let (z,p,yrp) be the current raster position (section 2.13). (If the current raster
position is invalid, then DrawPixels is ignored; pixel transfer operations do not
update the histogram or minmax tables, and no fragments are generated. However,
the histogram and minmax tables are updated even if the corresponding fragments
are later rejected by the pixel ownership (section 4.1.1) or scissor (section 4.1.2)
tests.) If a particular group (index or components) is the nth in a row and belongs to
the mth row, consider the region in window coordinates bounded by the rectangle
with corners

(Xrp + 22N, Yrp + 2ym) and (rp + 22(n 4+ 1), yrp + 2y(m + 1))

(either z, or z, may be negative). A fragment representing group (n,m) is pro-
duced for each framebuffer pixel inside, or on the bottom or left boundary, of this
rectangle

A fragment arising from a group consisting of color data takes on the color
index or color components of the group and the current raster position’s associated
depth value, while a fragment arising from a depth component takes that compo-
nent’s depth value and the current raster position’s associated color index or color
components. In both cases, the fog coordinate is taken from the current raster posi-
tion’s associated raster distance, the secondary color is taken from the current raster
position’s associated secondary color, and texture coordinates are taken from the
current raster position’s associated texture coordinates. Groups arising from Draw-
Pixels with a format of STENCIL_INDEX are treated specially and are described in
section 4.3.1.

3.6.5 Pixel Transfer Operations

The GL defines four kinds of pixel groups:

1. RGBA component: Each group comprises four color components: red, green,
blue, and alpha.

2. Depth component: Each group comprises a single depth component.

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES 139

3. Color index: Each group comprises a single color index.
4. Stencil index: Each group comprises a single stencil index.

Each operation described in this section is applied sequentially to each pixel group
in an image. Many operations are applied only to pixel groups of certain kinds; if
an operation is not applicable to a given group, it is skipped.

Arithmetic on Components

This step applies only to RGBA component and depth component groups. Each
component is multiplied by an appropriate signed scale factor: RED_SCALE for an
R component, GREEN_SCALE for a G component, BLUE_SCALE for a B component,
and ALPHA_SCALE for an A component, or DEPTH_SCALE for a depth component.
Then the result is added to the appropriate signed bias: RED_BIAS, GREEN_BIAS,
BLUE_BIAS, ALPHA_BIAS, or DEPTH_BIAS.

Arithmetic on Indices

This step applies only to color index and stencil index groups. If the index is a
floating-point value, it is converted to fixed-point, with an unspecified number of
bits to the right of the binary point and at least [logy(MAX_PIXEL_MAP_TABLE)]
bits to the left of the binary point. Indices that are already integers remain so; any
fraction bits in the resulting fixed-point value are zero.

The fixed-point index is then shifted by |INDEX_SHIFT| bits, left if
INDEX_SHIFT > (and right otherwise. In either case the shift is zero-filled. Then,
the signed integer offset INDEX_OFFSET is added to the index.

RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skipped if MAP_COLOR is
FALSE. First, each component is clamped to the range [0, 1]. There is a table associ-
ated with each of the R, G, B, and A component elements: PIXEL MAP R_TO_R for
R, PIXEL.MAP_G.TOG for G, PIXEL_MAP_B_TO_B for B, and PIXEL_MAP_A_TO_A
for A. Each element is multiplied by an integer one less than the size of the corre-
sponding table, and, for each element, an address is found by rounding this value
to the nearest integer. For each element, the addressed value in the corresponding
table replaces the element.

Version 2.1 - December 1, 2006

140 CHAPTER 3. RASTERIZATION

Color Index Lookup

This step applies only to color index groups. If the GL command that invokes the
pixel transfer operation requires that RGBA component pixel groups be generated,
then a conversion is performed at this step. RGBA component pixel groups are
required if

1. The groups will be rasterized, and the GL is in RGBA mode, or
2. The groups will be loaded as an image into texture memory, or

3. The groups will be returned to client memory with a format other than
COLOR_INDEX.

If RGBA component groups are required, then the integer part of the in-
dex is used to reference 4 tables of color components: PIXEL.MAP_I_TO.R,
PIXEL MAP_I_TO.G, PIXEL MAP_I_TO.B, and PIXEL MAP_I_TO_A. Each of these
tables must have 2" entries for some integer value of n (n may be different for
each table). For each table, the index is first rounded to the nearest integer; the
result is ANDed with 2" — 1, and the resulting value used as an address into the
table. The indexed value becomes an R, G, B, or A value, as appropriate. The
group of four elements so obtained replaces the index, changing the group’s type
to RGBA component.

If RGBA component groups are not required, and if MAP_COLOR is enabled,
then the index is looked up in the PIXEL_MAP_I_TO_I table (otherwise, the index
is not looked up). Again, the table must have 2" entries for some integer n. The
index is first rounded to the nearest integer; the result is ANDed with 2" — 1, and
the resulting value used as an address into the table. The value in the table replaces
the index. The floating-point table value is first rounded to a fixed-point value with
unspecified precision. The group’s type remains color index.

Stencil Index Lookup

This step applies only to stencil index groups. If MAP_STENCIL is enabled, then
the index is looked up in the PIXEL_MAP_S_TO_S table (otherwise, the index is not
looked up). The table must have 2™ entries for some integer n. The integer index
is ANDed with 2" — 1, and the resulting value used as an address into the table.
The integer value in the table replaces the index.

Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is only
done if COLOR_TABLE is enabled. If a zero-width table is enabled, no lookup is

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES 141

Base Internal Forrnat‘ R ‘ G ‘ B ‘ A ‘

ALPHA A
LUMINANCE Ly | Ly | Ly
LUMINANCEALPHA | Ly | Ly | Ly | As
INTENSITY L | I | It | I
RGB R: | G | By
RGBA R: | Gt | By | Ay

Table 3.13: Color table lookup. Ry, Gy, By, Ay, Ly, and I, are color table values
that are assigned to pixel components R, G, B, and A depending on the table
format. When there is no assignment, the component value is left unchanged by
lookup.

performed.

The internal format of the table determines which components of the group
will be replaced (see table 3.13). The components to be replaced are converted
to indices by clamping to [0, 1], multiplying by an integer one less than the width
of the table, and rounding to the nearest integer. Components are replaced by the
table entry at the index.

The required state is one bit indicating whether color table lookup is enabled
or disabled. In the initial state, lookup is disabled.

Convolution

This step applies only to RGBA component groups. If CONVOLUTION_1D
is enabled, the one-dimensional convolution filter is applied only to the one-
dimensional texture images passed to TexImagelD, TexSubIlmagelD, Copy-
TexImagelD, and CopyTexSubIlmagelD. If CONVOLUTION_2D is enabled, the
two-dimensional convolution filter is applied only to the two-dimensional im-
ages passed to DrawPixels, CopyPixels, ReadPixels, TexImage2D, TexSubIm-
age2D, CopyTexImage2D, CopyTexSublmage2D, and CopyTexSubImage3D.
If SEPARABLE_2D is enabled, and CONVOLUTION_2D is disabled, the separable
two-dimensional convolution filter is instead applied these images.

The convolution operation is a sum of products of source image pixels and
convolution filter pixels. Source image pixels always have four components: red,
green, blue, and alpha, denoted in the equations below as R,, Gy, Bs, and As.
Filter pixels may be stored in one of five formats, with 1, 2, 3, or 4 components.
These components are denoted as Ry, G, By, A f» Ly, and I in the equations
below. The result of the convolution operation is the 4-tuple R,G,B,A. Depending

Version 2.1 - December 1, 2006

142 CHAPTER 3. RASTERIZATION

Base Filter Format R ‘ G ‘ B ‘ A ‘
ALPHA R, G By Agx Ay
LUMINANCE Ryx Ly | Ggx Ly | By Ly | A
LUMINANCE ALPHA | Ry Ly | Gox Ly | Bgx Ly | Agx Ay
INTENSITY RoxIy | GoxIy | Boxlp | Asx Iy
RGB Rsx Ry | Gs* Gy | Bo* By | Ay

RGBA Rsx Ry | Gsx Gy | Bs* By | As* Ay

Table 3.14: Computation of filtered color components depending on filter image
format. C' x F' indicates the convolution of image component C' with filter F'.

on the internal format of the filter, individual color components of each source
image pixel are convolved with one filter component, or are passed unmodified.
The rules for this are defined in table 3.14.

The convolution operation is defined differently for each of the three convolu-
tion filters. The variables W, and H refer to the dimensions of the convolution
filter. The variables W and H refer to the dimensions of the source pixel image.

The convolution equations are defined as follows, where C' refers to the filtered
result, Cy refers to the one- or two-dimensional convolution filter, and C,,,, and
Ceolumn refer to the two one-dimensional filters comprising the two-dimensional
separable filter. C. depends on the source image color C and the convolution bor-
der mode as described below. C., the filtered output image, depends on all of these
variables and is described separately for each border mode. The pixel indexing
nomenclature is decribed in the Convolution Filter Specification subsection of
section 3.6.3.

One-dimensional filter:

We—1
Cli'| = Y Cii" +n]*Cyn]
n=0
Two-dimensional filter:
Wp—1Hp—1
Cli',j'] = Z Z Cili" +n,j" +m] x C¢[n,m]
n=0 m=0

Two-dimensional separable filter:

Wp—1Hy—1
Cli',j'] = Z Z CL +n, "+ m] * Crow[n] * Cropumn|m]

n=0 m=0

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES 143

If Wy of a one-dimensional filter is zero, then C] is always set to zero. Like-
wise, if either W or H of a two-dimensional filter is zero, then C[4, j] is always
set to zero.

The convolution border mode for a specific convolution filter is specified by
calling

void ConvolutionParameter{if}(enum rarget, enum pname,
T param);

where farget is the name of the filter, pname is CONVOLUTION_BORDER_MODE, and
param is one of REDUCE, CONSTANT_BORDER or REPLTCATE _BORDER.

Border Mode REDUCE

The width and height of source images convolved with border mode REDUCE are
reduced by Wy — 1 and Hy — 1, respectively. If this reduction would generate
a resulting image with zero or negative width and/or height, the output is simply
null, with no error generated. The coordinates of the image that results from a con-
volution with border mode REDUCE are zero through Wy — W, in width, and zero
through H, — H in height. In cases where errors can result from the specification
of invalid image dimensions, it is these resulting dimensions that are tested, not
the dimensions of the source image. (A specific example is TexImagelD and Tex-
Image2D, which specify constraints for image dimensions. Even if TexImagelD
or TexImage2D is called with a null pixel pointer, the dimensions of the result-
ing texture image are those that would result from the convolution of the specified
image).

When the border mode is REDUCE, C', equals the source image color Cs and
C, equals the filtered result C.

For the remaining border modes, define C,, = |W;/2] and C}, = |Hy/2].
The coordinates (C,,, C},) define the center of the convolution filter.

Border Mode CONSTANT_BORDER

If the convolution border mode is CONSTANT_BORDER, the output image has the
same dimensions as the source image. The result of the convolution is the same
as if the source image were surrounded by pixels with the same color as the
current convolution border color. Whenever the convolution filter extends be-
yond one of the edges of the source image, the constant-color border pixels are
used as input to the filter. The current convolution border color is set by call-
ing ConvolutionParameterfv or ConvolutionParameteriv with pname set to
CONVOLUTION_BORDER_COLOR and params containing four values that comprise

Version 2.1 - December 1, 2006

144 CHAPTER 3. RASTERIZATION

the RGBA color to be used as the image border. Integer color components are
interpreted linearly such that the most positive integer maps to 1.0, and the most
negative integer maps to -1.0. Floating point color components are not clamped
when they are specified.

For a one-dimensional filter, the result color is defined by

Cr[z] = C[Z - Cw]

where C[i] is computed using the following equation for C%[i']:

y y
O] :{ Csli'], 0<i < Wi

Ce, otherwise

and C is the convolution border color.
For a two-dimensional or two-dimensional separable filter, the result color is
defined by

CT[Z7]] = O[Z - C’ll)?j - Ch]

where C[¢, j'] is computed using the following equation for C[¢', j']:

Ir:0 1 Cs[ilvj/L OSi,<W870§j/<HS
Clihil= { C., otherwise

Border Mode REPLICATE_BORDER

The convolution border mode REPLICATE_BORDER also produces an output im-
age with the same dimensions as the source image. The behavior of this mode is
identical to that of the CONSTANT_BORDER mode except for the treatment of pixel
locations where the convolution filter extends beyond the edge of the source im-
age. For these locations, it is as if the outermost one-pixel border of the source
image was replicated. Conceptually, each pixel in the leftmost one-pixel column
of the source image is replicated C,, times to provide additional image data along
the left edge, each pixel in the rightmost one-pixel column is replicated C, times
to provide additional image data along the right edge, and each pixel value in the
top and bottom one-pixel rows is replicated to create C}, rows of image data along
the top and bottom edges. The pixel value at each corner is also replicated in order
to provide data for the convolution operation at each corner of the source image.
For a one-dimensional filter, the result color is defined by

C,[i] = Cli — Cy)

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES 145

where C[¢'] is computed using the following equation for C'.[¢']:

C’; [i'] = Cs[clamp(i’, W;)]

and the clamping function clamp(val, max) is defined as

0, val < 0
clamp(val, max) = { wal, 0 <wal < mazx
max — 1, wval > mazx

For a two-dimensional or two-dimensional separable filter, the result color is
defined by

CT[Zhy] = C[Z - Cwaj - Ch]

where C[i’, j'] is computed using the following equation for C’[¢’, j']:

CLli', 7' = Cs[clamp(i’, W), clamp(j’, Hy)]

If a convolution operation is performed, each component of
the resulting image is scaled by the corresponding PixelTrans-
fer parameters: POST_CONVOLUTIONRED_SCALE for an R com-
ponent, POST_CONVOLUTION_GREEN_SCALE for a G compo-
nent, POST_CONVOLUTION BLUE_SCALE for a B component, and
POST_CONVOLUTION ALPHA_SCALE for an A component. The result
is added to the corresponding bias: POST_CONVOLUTION_RED_BIAS,
POST_CONVOLUTION_GREEN_BIAS, POST_CONVOLUTION_BLUE_BIAS, or
POST_CONVOLUTION_ALPHA BIAS.

The required state is three bits indicating whether each of one-dimensional,
two-dimensional, or separable two-dimensional convolution is enabled or disabled,
an integer describing the current convolution border mode, and four floating-point
values specifying the convolution border color. In the initial state, all convolu-
tion operations are disabled, the border mode is REDUCE, and the border color is
(0,0,0,0).

Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution color
table lookup is enabled or disabled by calling Enable or Disable with
the symbolic constant POST_CONVOLUTION.COLOR.-TABLE. The post convo-
Iution table is defined by calling ColorTable with a farget argument of

Version 2.1 - December 1, 2006

146 CHAPTER 3. RASTERIZATION

POST_CONVOLUTION_COLOR_TABLE. In all other respects, operation is identical
to color table lookup, as defined earlier in section 3.6.5.

The required state is one bit indicating whether post convolution table lookup
is enabled or disabled. In the initial state, lookup is disabled.

Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multiplied
by an appropriate signed scale factor: POST_COLOR.MATRIX_RED_SCALE
for an R component, POST_COLORMATRIX GREEN_SCALE for a G
component, POST_COLORMATRIX BLUE_SCALE for a B component,
and POST_COLOR.MATRIX_ALPHA_SCALE for an A component. The
result is added to a signed bias: POST_.COLOR.MATRIX_RED_BIAS,
POST_COLOR MATRIX_GREEN_BIAS, POST_COLORMATRIX BLUE BIAS, oOr
POST_COLOR.MATRIX.ALPHA BIAS. The resulting components replace each
component of the original group.

That is, if M. is the color matrix, a subscript of s represents the scale term for
a component, and a subscript of b represents the bias term, then the components

R

G

B

A

are transformed to

R Ry, O 0 0 R Ry
ey _ 0 Gs O 0 G Gy
Bl=lo o B o|M|B|T|B
A 0 0 0 A A Ay

Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix
color table lookup is enabled or disabled by calling Enable or Disable
with the symbolic constant POST_COLOR.MATRIX_COLOR_TABLE. The post color
matrix table is defined by calling ColorTable with a rarget argument of
POST_COLOR.MATRIX_COLOR.TABLE. In all other respects, operation is identical
to color table lookup, as defined in section 3.6.5.

The required state is one bit indicating whether post color matrix lookup is
enabled or disabled. In the initial state, lookup is disabled.

Version 2.1 - December 1, 2006

3.6. PIXEL RECTANGLES 147

Histogram

This step applies only to RGBA component groups. Histogram operation is
enabled or disabled by calling Enable or Disable with the symbolic constant
HISTOGRAM.

If the width of the table is non-zero, then indices R;, GG;, B;, and A; are de-
rived from the red, green, blue, and alpha components of each pixel group (without
modifying these components) by clamping each component to [0, 1] , multiplying
by one less than the width of the histogram table, and rounding to the nearest in-
teger. If the format of the HISTOGRAM table includes red or luminance, the red or
luminance component of histogram entry R; is incremented by one. If the format
of the HISTOGRAM table includes green, the green component of histogram entry
G; is incremented by one. The blue and alpha components of histogram entries
B; and A; are incremented in the same way. If a histogram entry component is
incremented beyond its maximum value, its value becomes undefined; this is not
an error.

If the Histogram sink parameter is FALSE, histogram operation has no effect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel groups
are discarded immediately after the histogram operation is completed. Because
histogram precedes minmax, no minmax operation is performed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

Minmax

This step applies only to RGBA component groups. Minmax operation is enabled
or disabled by calling Enable or Disable with the symbolic constant MINMAX.

If the format of the minmax table includes red or luminance, the red compo-
nent value replaces the red or luminance value in the minimum table element if
and only if it is less than that component. Likewise, if the format includes red or
Iuminance and the red component of the group is greater than the red or luminance
value in the maximum element, the red group component replaces the red or lumi-
nance maximum component. If the format of the table includes green, the green
group component conditionally replaces the green minimum and/or maximum if
it is smaller or larger, respectively. The blue and alpha group components are
similarly tested and replaced, if the table format includes blue and/or alpha. The
internal type of the minimum and maximum component values is floating point,
with at least the same representable range as a floating point number used to rep-
resent colors (section 2.1.1). There are no semantics defined for the treatment of

Version 2.1 - December 1, 2006

148 CHAPTER 3. RASTERIZATION

group component values that are outside the representable range.

If the Minmax sink parameter is FALSE, minmax operation has no effect on
the stream of pixel groups being processed. Otherwise, all RGBA pixel groups are
discarded immediately after the minmax operation is completed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

3.6.6 Pixel Rectangle Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE _BUFFERS is one, then pixel
rectangles are rasterized using the following algorithm. Let (X,,, Y;,,) be the cur-
rent raster position. (If the current raster position is invalid, then DrawPixels is
ignored.) If a particular group (index or components) is the nth in a row and be-
longs to the mth row, consider the region in window coordinates bounded by the
rectangle with corners

(Xop + Zz %1, Yy + Zy m)

and
(Xop+ Zp*x(n+1),Yop+ Zyx (m+1))

where Z, and Z,, are the pixel zoom factors specified by PixelZoom, and may each
be either positive or negative. A fragment representing group (n,m) is produced
for each framebuffer pixel with one or more sample points that lie inside, or on
the bottom or left boundary, of this rectangle. Each fragment so produced takes its
associated data from the group and from the current raster position, in a manner
consistent with the discussion in the Conversion to Fragments subsection of sec-
tion 3.6.4. All depth and color sample values are assigned the same value, taken
either from their group (for depth and color component groups) or from the cur-
rent raster position (if they are not). All sample values are assigned the same fog
coordinate and the same set of texture coordinates, taken from the current raster
position.

A single pixel rectangle will generate multiple, perhaps very many fragments
for the same framebuffer pixel, depending on the pixel zoom factors.

3.7 Bitmaps
Bitmaps are rectangles of zeros and ones specifying a particular pattern of frag-

ments to be produced. Each of these fragments has the same associated data. These
data are those associated with the current raster position.

Version 2.1 - December 1, 2006

3.7. BITMAPS 149

DUy

%%%

\j

Figure 3.9. A bitmap and its associated parameters. x; and yp; are not shown.

Bitmaps are sent using

void Bitmap(sizei w, sizei h, float xp,, £loat Yuo,
float xy;, float yy, ubyte *data);

w and h comprise the integer width and height of the rectangular bitmap, respec-
tively. (xpo, Ypo) gives the floating-point x and y values of the bitmap’s origin.
(bi, yp;) gives the floating-point = and y increments that are added to the raster
position after the bitmap is rasterized. data is a pointer to a bitmap.

Like a polygon pattern, a bitmap is unpacked from memory according to the
procedure given in section 3.6.4 for DrawPixels; it is as if the width and height
passed to that command were equal to w and h, respectively, the rype were BITMAP,
and the format were COLOR_INDEX. The unpacked values (before any conversion
or arithmetic would have been performed) form a stipple pattern of zeros and ones.
See figure 3.9.

A bitmap sent using Bitmap is rasterized as follows. First, if the current raster
position is invalid (the valid bit is reset), the bitmap is ignored. Otherwise, a rect-
angular array of fragments is constructed, with lower left corner at

(s yu) = ([Zrp — Tools [Yrp — Ybo))

Version 2.1 - December 1, 2006

150 CHAPTER 3. RASTERIZATION

and upper right corner at (z;;-+w, yy;+h) where w and h are the width and height of
the bitmap, respectively. Fragments in the array are produced if the corresponding
bit in the bitmap is 1 and not produced otherwise. The associated data for each
fragment are those associated with the current raster position. Once the fragments
have been produced, the current raster position is updated:

(:L'rpa yrp) — (l'rp + Tpi, Yrp + ybi)-

The z and w values of the current raster position remain unchanged.

Bitmap Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then
bitmaps are rasterized using the following algorithm. If the current raster position
is invalid, the bitmap is ignored. Otherwise, a screen-aligned array of pixel-size
rectangles is constructed, with its lower left corner at (X, Y;,), and its upper
right corner at (X,, + w,Y,, + h), where w and h are the width and height of
the bitmap. Rectangles in this array are eliminated if the corresponding bit in the
bitmap is 0, and are retained otherwise. Bitmap rasterization produces a fragment
for each framebuffer pixel with one or more sample points either inside or on the
bottom or left edge of a retained rectangle.

Coverage bits that correspond to sample points either inside or on the bottom
or left edge of a retained rectangle are 1, other coverage bits are 0. The associated
data for each sample are those associated with the current raster position. Once the
fragments have been produced, the current raster position is updated exactly as it
is in the single-sample rasterization case.

3.8 Texturing

Texturing maps a portion of one or more specified images onto each primitive for
which texturing is enabled. This mapping is accomplished by using the color of an
image at the location indicated by a texture coordinate set’s (s, ¢, , ¢) cordinates.

Implementations must support texturing using at least two images at a time.
Each fragment or vertex carries multiple sets of texture coordinates (s,t,7,q)
which are used to index separate images to produce color values which are collec-
tively used to modify the resulting transformed vertex or fragment color. Texturing
is specified only for RGBA mode; its use in color index mode is undefined. The
following subsections (up to and including section 3.8.8) specify the GL operation
with a single texture and section 3.8.16 specifies the details of how multiple texture
units interact.

Version 2.1 - December 1, 2006

3.8. TEXTURING 151

The GL provides two ways to specify the details of how texturing of a prim-
itive is effected. The first is referred to as fixed-functionality, and is described in
this section. The second is referred to as a fragment shader, and is described in
section 3.11. The specification of the image to be texture mapped and the means
by which the image is filtered when applied to the primitive are common to both
methods and are discussed in this section. The fixed functionality method for de-
termining what RGBA value is produced is also described in this section. If a
fragment shader is active, the method for determining the RGBA value is specified
by an application-supplied fragment shader as described in the OpenGL Shading
Language Specification.

When no fragment shader is active, the coordinates used for texturing are
(s/q,t/q,7/q), derived from the original texture coordinates (s,t,r,q). If the ¢
texture coordinate is less than or equal to zero, the coordinates used for texturing
are undefined. When a fragment shader is active, the (s,t,r,q) coordinates are
available to the fragment shader. The coordinates used for texturing in a fragment
shader are defined by the OpenGL Shading Language Specification.

3.8.1 Texture Image Specification

The command

void TexImage3D(enum target, int level, int internalformat,
sizei width, sizei height, sizei depth, int border,
enum format, enum type, void *data);

is used to specify a three-dimensional texture image. target must be ei-
ther TEXTURE_3D, or PROXY_TEXTURE_3D in the special case discussed in sec-
tion 3.8.11. format, type, and data match the corresponding arguments to Draw-
Pixels (refer to section 3.6.4); they specify the format of the image data, the type of
those data, and a reference to the image data in the currently bound pixel unpack
buffer or client memory. The format STENCIL_INDEX is not allowed.

The groups in memory are treated as being arranged in a sequence of ad-
jacent rectangles. Each rectangle is a two-dimensional image, whose size and
organization are specified by the width and height parameters to TexImage3D.
The values of UNPACK_ROW_LENGTH and UNPACK_ALIGNMENT control the row-to-
row spacing in these images in the same manner as DrawPixels. If the value of
the integer parameter UNPACK_IMAGE_HEIGHT is not positive, then the number
of rows in each two-dimensional image is height; otherwise the number of rows
is UNPACK_IMAGE_HEIGHT. Each two-dimensional image comprises an integral
number of rows, and is exactly adjacent to its neighbor images.

Version 2.1 - December 1, 2006

152 CHAPTER 3. RASTERIZATION

Base Internal Format | RGBA and Depth Values ‘ Internal Components

ALPHA A A
DEPTH_COMPONENT | Depth D
LUMINANCE R L
LUMINANCE_ALPHA | RA LA
INTENSITY R I

RGB R,G,B R,G,B
RGBA R,G,B,A R,G,B,A

Table 3.15: Conversion from RGBA and depth pixel components to internal tex-
ture, table, or filter components. See section 3.8.13 for a description of the texture
components R, G, B, A, L, I, and D.

The mechanism for selecting a sub-volume of a three-dimensional image re-
lies on the integer parameter UNPACK_SKIP_IMAGES. If UNPACK_SKIP_IMAGES
is positive, the pointer is advanced by UNPACK_SKIP_IMAGES times the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Then depth two-dimensional images are processed, each having a subimage
extracted in the same manner as DrawPixels.

The selected groups are processed exactly as for DrawPixels, stopping just
before final conversion. Each R, G, B, A, or depth value so generated is clamped
to [0, 1].

Components are then selected from the resulting R, G, B, A, or depth values
to obtain a texture with the base internal format specified by (or derived from)
internalformat. Table 3.15 summarizes the mapping of R, G, B, A, and depth val-
ues to texture components, as a function of the base internal format of the texture
image. internalformat may be specified as one of the seven internal format sym-
bolic constants listed in table 3.15, as one of the sized internal format symbolic
constants listed in table 3.16, as one of the six generic compressed internal format
symbolic constants listed in table 3.17, or as one of the specific compressed in-
ternal format symbolic constants (if listed in table 3.17). internalformat may (for
backwards compatibility with the 1.0 version of the GL) also take on the integer
values 1, 2, 3, and 4, which are equivalent to symbolic constants LUMINANCE,
LUMINANCE_ALPHA, RGB, and RGBA respectively. Specifying a value for internal-
format that is not one of the above values generates the error INVALID_VALUE.

Textures with a base internal format of DEPTH_COMPONENT are supported by
texture image specification commands only if farget is TEXTURE_1D, TEXTURE_2D,
PROXY_TEXTURE_1D or PROXY_TEXTURE_2D. Using this format in conjunction

Version 2.1 - December 1, 2006

3.8. TEXTURING 153

with any other target will result in an INVALID_OPERATION error.

Textures with a base internal format of DEP TH_.COMPONENT require depth com-
ponent data; textures with other base internal formats require RGBA component
data. The error INVALID_OPERATION is generated if the base internal format is
DEPTH_COMPONENT and format is not DEPTH_COMPONENT, or if the base internal
format is not DEPTH_COMPONENT and format is DEPTH_COMPONENT.

The GL provides no specific compressed internal formats but does provide a
mechanism to obtain token values for such formats provided by extensions. The
number of specific compressed internal formats supported by the renderer can
be obtained by querying the value of NUM_COMPRESSED_TEXTURE_FORMATS. The
set of specific compressed internal formats supported by the renderer can be ob-
tained by querying the value of COMPRESSED_TEXTURE_FORMATS. The only val-
ues returned by this query are those corresponding to formats suitable for general-
purpose usage. The renderer will not enumerate formats with restrictions that need
to be specifically understood prior to use.

Generic compressed internal formats are never used directly as the internal for-
mats of texture images. If internalformat is one of the six generic compressed
internal formats, its value is replaced by the symbolic constant for a specific com-
pressed internal format of the GL’s choosing with the same base internal format.
If no specific compressed format is available, internalformat is instead replaced by
the corresponding base internal format. If internalformat is given as or mapped
to a specific compressed internal format, but the GL can not support images com-
pressed in the chosen internal format for any reason (e.g., the compression format
might not support 3D textures or borders), internalformat is replaced by the corre-
sponding base internal format and the texture image will not be compressed by the
GL.

The internal component resolution is the number of bits allocated to each value
in a texture image. If internalformat is specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing. If a sized internal format is specified, the mapping of the R, G, B, A, and
depth values to texture components is equivalent to the mapping of the correspond-
ing base internal format’s components, as specified in table 3.15, and the memory
allocation per texture component is assigned by the GL to match the allocations
listed in table 3.16 as closely as possible. (The definition of closely is left up to the
implementation. However, a non-zero number of bits must be allocated for each
component whose desired allocation in table 3.16 is non-zero, and zero bits must
be allocated for all other components). Implementations are required to support at
least one allocation of internal component resolution for each base internal format.

Version 2.1 - December 1, 2006

154 CHAPTER 3. RASTERIZATION

Sized Base R G B A L I D
Internal Format Internal Format bits | bits | bits | bits | bits | bits | bits
ALPHA4 ALPHA 4
ALPHAS ALPHA 8
ALPHA12 ALPHA 12
ALPHALG ALPHA 16
DEPTH_COMPONENT16 DEPTH_COMPONENT 16
DEPTH_COMPONENT24 DEPTH_COMPONENT 24
DEPTH_COMPONENT32 DEPTH_COMPONENT 32
LUMINANCE4 LUMINANCE 4
LUMINANCES LUMINANCE 8
LUMINANCE12 LUMINANCE 12
LUMINANCE16 LUMINANCE 16
LUMINANCE4_ALPHA4 LUMINANCE_ALPHA 4 4
LUMINANCEG6_ALPHA2 LUMINANCE_ALPHA 2 6
LUMINANCES_ALPHAS LUMINANCE_ALPHA 8 8
LUMINANCE12 ALPHA4 LUMINANCE_ALPHA 4 12
LUMINANCE12_ALPHA12 | LUMINANCE_ALPHA 12 12
LUMINANCE16_ALPHA16 | LUMINANCE_ALPHA 16 16
INTENSITY4 INTENSITY 4
INTENSITYS INTENSITY 8
INTENSITY12 INTENSITY 12
INTENSITY16 INTENSITY 16
R3_G3.B2 RGB 3 3 2
RGB4 RGB 4 4 4
RGB5 RGB 5 5 5
RGBS RGB 8 8 8
RGB10 RGB 10 | 10 | 10
RGB12 RGB 12 12 12
RGB16 RGB 16 | 16 | 16
RGBA2 RGBA 2 2 2 2
RGBA4 RGBA 4 4 4 4
RGB5_A1 RGBA 5 5 5 1
RGBAS RGBA 8 8 8 8
RGB10_A2 RGBA 10 10 10 2
RGBA12 RGBA 12 12 12 12
RGBAL6 RGBA 16 | 16 | 16 | 16

Sized internal formats continued on next page

Version 2.1 - December 1, 2006

3.8. TEXTURING 155

Sized internal formats continued from previous page
Sized Base R G B A L I D
Internal Format Internal Format bits | bits | bits | bits | bits | bits | bits
SRGB8 RGB 8 8 8
SRGB8_ALPHAS RGBA 8 8 8 8
SLUMINANCE LUMINANCE 8
SLUMINANCE_ALPHAS8 LUMINANCE_ALPHA 8 8

Table 3.16: Correspondence of sized internal formats to base in-
ternal formats, and desired component resolutions for each sized
internal format.

Compressed Internal Format Base Internal Format | Type

COMPRESSED_ALPHA ALPHA Generic
COMPRESSED_LUMINANCE LUMINANCE Generic
COMPRESSED_LUMINANCE _ALPHA | LUMINANCE_ALPHA | Generic
COMPRESSED_INTENSITY INTENSITY Generic
COMPRESSED_RGB RGB Generic
COMPRESSED_RGBA RGBA Generic
COMPRESSED_SRGB RGB Generic
COMPRESSED_SRGB_ALPHA RGBA Generic
COMPRESSED_SLUMINANCE LUMINANCE Generic
COMPRESSED_SLUMINANCE_ALPHA | LUMINANCE_ALPHA | Generic

Table 3.17: Generic and specific compressed internal formats. No specific formats
are defined by OpenGL 2.1; however, several specific specific compression types
are defined in GL extensions.

If a compressed internal format is specified, the mapping of the R, G, B, and
A values to texture components is equivalent to the mapping of the corresponding
base internal format’s components, as specified in table 3.15. The specified image
is compressed using a (possibly lossy) compression algorithm chosen by the GL.

A GL implementation may vary its allocation of internal component resolution
or compressed internal format based on any TexImage3D, TexImage2D (see be-
low), or TexImagelD (see below) parameter (except target), but the allocation and
chosen compressed image format must not be a function of any other state and can-
not be changed once they are established. In addition, the choice of a compressed

Version 2.1 - December 1, 2006

156 CHAPTER 3. RASTERIZATION

image format may not be affected by the data parameter. Allocations must be in-
variant; the same allocation and compressed image format must be chosen each
time a texture image is specified with the same parameter values. These allocation
rules also apply to proxy textures, which are described in section 3.8.11.

The image itself (referred to by data) is a sequence of groups of values. The
first group is the lower left back corner of the texture image. Subsequent groups
fill out rows of width width from left to right; height rows are stacked from bottom
to top forming a single two-dimensional image slice; and depth slices are stacked
from back to front. When the final R, G, B, and A components have been computed
for a group, they are assigned to components of a fexel as described by table 3.15.
Counting from zero, each resulting Nth texel is assigned internal integer coordi-
nates (4, j, k), where

i = (N mod width) — bs

j= QwidthJ mod height) — bs

Ny —

width X height
and b, is the specified border width. Thus the last two-dimensional image slice of
the three-dimensional image is indexed with the highest value of k.

Each color component is converted (by rounding to nearest) to a fixed-point
value with n bits, where n is the number of bits of storage allocated to that com-
ponent in the image array. We assume that the fixed-point representation used
represents each value k/(2" — 1), where k € {0,1,...,2" — 1}, as k (e.g. 1.0 is
represented in binary as a string of all ones).

The level argument to TexImage3D is an integer level-of-detail number. Levels
of detail are discussed below, under Mipmapping. The main texture image has a
level of detail number of 0. If a level-of-detail less than zero is specified, the error
INVALID_VALUE is generated.

The border argument to TexImage3D is a border width. The significance of
borders is described below. The border width affects the dimensions of the texture
image: let

| mod depth) — by

ws = wy + 2bg (3.15)
hs = h; + 2b, (3.16)
ds = di + 2bs (3.17)

Version 2.1 - December 1, 2006

3.8. TEXTURING 157

where ws, hs, and dg are the specified image width, depth, and depth, and wy,
h¢, and d; are the dimensions of the texture image internal to the border. If wy, hy,
or d; are less than zero, then the error INVALID_VALUE is generated.

An image with zero width, height, or depth indicates the null texture. If
the null texture is specified for the level-of-detail specified by texture parameter
TEXTURE_BASE_LEVEL (see section 3.8.4), it is as if texturing were disabled.

Currently, the maximum border width b; is 1. If by is less than zero, or greater
than by, then the error INVALID_VALUE is generated.

The maximum allowable width, height, or depth of a three-dimensional texture
image is an implementation dependent function of the level-of-detail and internal
format of the resulting image array. It must be at least 2¥~/°? 4-2b, for image arrays
of level-of-detail 0 through k, where k is the log base 2 of MAX_3D_TEXTURE_SIZE,
lod is the level-of-detail of the image array, and b; is the maximum border width.
It may be zero for image arrays of any level-of-detail greater than k. The error
INVALID_VALUE is generated if the specified image is too large to be stored under
any conditions.

If a pixel unpack buffer object is bound and storing texture data would access
memory beyond the end of the pixel unpack buffer, an INVALID_OPERATION error
results.

In a similar fashion, the maximum allowable width of a one- or two-
dimensional texture image, and the maximum allowable height of a two-
dimensional texture image, must be at least 2¥~!°? - 2b, for image arrays of level
0 through k, where k is the log base 2 of MAX_TEXTURE_SIZE. The maximum al-
lowable width and height of a cube map texture must be the same, and must be at
least 2¢~t°@ 4 20, for image arrays level O through %, where is the log base 2 of
MAX_CUBE_MAP_TEXTURE_SIZE.

An implementation may allow an image array of level O to be created only if
that single image array can be supported. Additional constraints on the creation of
image arrays of level 1 or greater are described in more detail in section 3.8.10.

The command

void TexImage2D(enum target, int level,
int internalformat, sizei width, sizei height,
int border, enum format, enum type, void *data);

is used to specify a two-dimensional texture image. target must
be one of TEXTURE_2D for a two-dimensional texture, or one of
TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE X,
TEXTURE_CUBE_MAP_POSITIVE.Y, TEXTURE_CUBE_MAP _NEGATIVE_Y,

TEXTURE_CUBE_MAP_POSITIVE_Z, oOr TEXTURE_CUBE_MAP NEGATIVE_Z for

Version 2.1 - December 1, 2006

158 CHAPTER 3. RASTERIZATION

a cube map texture. Additionally, farget may be either PROXY_TEXTURE_2D for
a two-dimensional proxy texture or PROXY_TEXTURE_CUBE_MAP for a cube map
proxy texture in the special case discussed in section 3.8.11. The other parameters
match the corresponding parameters of TexImage3D.

For the purposes of decoding the texture image, TexImage2D is equivalent to
calling TexImage3D with corresponding arguments and depth of 1, except that

e The depth of the image is always 1 regardless of the value of border.

e Convolution will be performed on the image (possibly changing its width
and height) if SEPARABLE_2D or CONVOLUTION_2D is enabled.

e UNPACK_SKIP_IMAGES is ignored.

A two-dimensional texture consists of a single two-dimensional texture image.
A cube map texture is a set of six two-dimensional texture images. The six cube
map texture targets form a single cube map texture though each target names a
distinct face of the cube map. The TEXTURE_CUBE_MAP _* targets listed above up-
date their appropriate cube map face 2D texture image. Note that the six cube map
two-dimensional image tokens such as TEXTURE_CUBE_MAP_POSITIVE_X are used
when specifying, updating, or querying one of a cube map’s six two-dimensional
images, but when enabling cube map texturing or binding to a cube map texture
object (that is when the cube map is accessed as a whole as opposed to a particular
two-dimensional image), the TEXTURE_CUBE_MAP target is specified.

When the target parameter to TexImage2D is one of the six cube map two-
dimensional image targets, the error INVALID_VALUE is generated if the width and
height parameters are not equal.

Finally, the command

void TexImagelD(enum target, int level,
int internalformat, sizei width, int border,
enum format, enum type, void *data);

is used to specify a one-dimensional texture image. target must be either
TEXTURE_1D, or PROXY_TEXTURE_1D in the special case discussed in sec-
tion 3.8.11.)

For the purposes of decoding the texture image, TexImagelD is equivalent to
calling TexImage2D with corresponding arguments and height of 1, except that

e The height of the image is always 1 regardless of the value of border.

Version 2.1 - December 1, 2006

3.8. TEXTURING

e Convolution will be performed on the image (possibly changing its width)
only if CONVOLUTION_1D is enabled.

The image indicated to the GL by the image pointer is decoded and copied into
the GL’s internal memory. This copying effectively places the decoded image in-
side a border of the maximum allowable width b; whether or not a border has been
specified (see figure 3.10) I, If no border or a border smaller than the maximum
allowable width has been specified, then the image is still stored as if it were sur-
rounded by a border of the maximum possible width. Any excess border (which
surrounds the specified image, including any border) is assigned unspecified val-
ues. A two-dimensional texture has a border only at its left, right, top, and bottom
ends, and a one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image as the fexture
array. A three-dimensional texture array has width, height, and depth wg, hs, and
ds as defined respectively in equations 3.15, 3.16, and 3.17. A two-dimensional
texture array has depth ds; = 1, with height h, and width w, as above, and a one-
dimensional texture array has depth ds; = 1, height Ay = 1, and width w; as above.

An element (i, j, k) of the texture array is called a rexel (for a two-dimensional
texture, k is irrelevant; for a one-dimensional texture, j and k are both irrelevant).
The texture value used in texturing a fragment is determined by that fragment’s
associated (s, t,r) coordinates, but may not correspond to any actual texel. See
figure 3.10.

If the data argument of TexImagelD, TexImage2D, or TexImage3D is a null
pointer (a zero-valued pointer in the C implementation), and the pixel unpack
buffer object is zero, a one-, two-, or three-dimensional texture array is created
with the specified target, level, internalformat, border, width, height, and depth,
but with unspecified image contents. In this case no pixel values are accessed
in client memory, and no pixel processing is performed. Errors are generated,
however, exactly as though the data pointer were valid. Otherwise if the pixel
unpack buffer object is non-zero, the data argument is treatedly normally to refer
to the beginning of the pixel unpack buffer object’s data.

3.8.2 Alternate Texture Image Specification Commands

Two-dimensional and one-dimensional texture images may also be specified us-
ing image data taken directly from the framebuffer, and rectangular subregions of
existing texture images may be respecified.

The command

! Figure 3.10 needs to show a three-dimensional texture image.

Version 2.1 - December 1, 2006

159

160

CHAPTER 3. RASTERIZATION

1.0

0.0

5.0

-1.0

.......

u 9.0

0.0

S 1.0

Figure 3.10. A texture image and the coordinates used to access it. This is a two-
dimensional texture with n = 3 and m = 2. A one-dimensional texture would
consist of a single horizontal strip. « and /3, values used in blending adjacent texels
to obtain a texture value, are also shown.

Version 2.1 - December 1, 2006

3.8. TEXTURING 161

void CopyTexImage2D(enum farget, int level,
enum internalformat, int x, inty, sizei width,
sizei height, int border);

defines a two-dimensional texture array in exactly the manner of TexIm-
age2D, except that the image data are taken from the framebuffer rather
than from client memory. Currently, farget must be one of TEXTURE_2D,
TEXTURE_CUBE_MAP _POSITIVE. X, TEXTURE_CUBE_MAP NEGATIVE X,
TEXTURE_CUBE_MAP POSITIVE.Y, TEXTURE_CUBE _MAP NEGATIVE.Y,
TEXTURE_CUBE_MAP POSITIVE_Z, or TEXTURE_CUBE_MAP NEGATIVE.Z. X, Y,
width, and height correspond precisely to the corresponding arguments to CopyP-
ixels (refer to section 4.3.3); they specify the image’s width and height, and the
lower left (z,y) coordinates of the framebuffer region to be copied. The im-
age is taken from the framebuffer exactly as if these arguments were passed to
CopyPixels with argument rype set to COLOR or DEPTH, depending on internal-
Sformat, stopping after pixel transfer processing is complete. RGBA data is taken
from the current color buffer while depth component data is taken from the depth
buffer. If depth component data is required and no depth buffer is present, the
error INVALID_OPERATION is generated. Subsequent processing is identical to
that described for TexImage2D, beginning with clamping of the R, G, B, A, or
depth values from the resulting pixel groups. Parameters level, internalformat, and
border are specified using the same values, with the same meanings, as the equiv-
alent arguments of TexImage2D, except that internalformat may not be specified
as 1, 2, 3, or 4. An invalid value specified for internalformat generates the error
INVALID_ENUM. The constraints on width, height, and border are exactly those for
the equivalent arguments of TexImage2D.

When the target parameter to CopyTexImage2D is one of the six cube map
two-dimensional image targets, the error INVALID_VALUE is generated if the width
and height parameters are not equal.

The command

void CopyTexImagelD(enum farget, int level,
enumn internalformat, int x, inty, sizei width,
int border);

defines a one-dimensional texture array in exactly the manner of TexImagelD,
except that the image data are taken from the framebuffer, rather than from client
memory. Currently, farget must be TEXTURE_1D. For the purposes of decoding
the texture image, CopyTexImagelD is equivalent to calling CopyTexImage2D
with corresponding arguments and height of 1, except that the height of the image

Version 2.1 - December 1, 2006

162 CHAPTER 3. RASTERIZATION

is always 1, regardless of the value of border. level, internalformat, and border
are specified using the same values, with the same meanings, as the equivalent
arguments of TexImagelD, except that infernalformat may not be specified as 1,
2, 3, or 4. The constraints on width and border are exactly those of the equivalent
arguments of TexImagelD.

Six additional commands,

void TexSubImage3D(enum target, int level, int xoffset,
int yoffset, int zoffset, sizei width, sizei height,
sizei depth, enum format, enum type, void *data);

void TexSubIlmage2D(enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum type, void *data);

void TexSublmagelD(enum target, int level, int xoffset,
sizei width, enum format, enum type, void *data);

void CopyTexSubIlmage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, int x, inty,
sizei width, sizei height);

void CopyTexSublmage2D(enum farget, int level,
int xoffset, int yoffset, int x, inty, sizei width,
sizei height);

void CopyTexSublmagelD(enum farget, int level,
int xoffset, int x, inty, sizei width);

respecify only a rectangular subregion of an existing texture array. No change
is made to the internalformat, width, height, depth, or border parameters
of the specified texture array, nor is any change made to texel values out-
side the specified subregion. Currently the farget arguments of TexSubIm-
agelD and CopyTexSublmagelD must be TEXTURE_1D, the target arguments
of TexSubImage2D and CopyTexSubImage2D must be one of TEXTURE_2D,
TEXTURE_CUBE_MAP_POSITIVE.X, TEXTURE_CUBE_MAP_NEGATIVE_X,
TEXTURE_CUBE_MAP POSITIVE.Y, TEXTURE_CUBE_MAP NEGATIVE.Y,
TEXTURE_CUBE_MAP_POSITIVE.Z, of TEXTURE_.CUBE_MAP_NEGATIVE_Z, and the
target arguments of TexSubImage3D and CopyTexSublmage3D must be
TEXTURE_3D. The level parameter of each command specifies the level of the tex-
ture array that is modified. If level is less than zero or greater than the base 2 log-
arithm of the maximum texture width, height, or depth, the error INVALID_VALUE
is generated.

TexSubImage3D arguments width, height, depth, format, type, and data match
the corresponding arguments to TexImage3D, meaning that they are specified us-
ing the same values, and have the same meanings. Likewise, TexSubImage2D

Version 2.1 - December 1, 2006

3.8. TEXTURING 163

arguments width, height, format, type, and data match the corresponding argu-
ments to TexImage2D, and TexSubImagelD arguments width, format, type, and
data match the corresponding arguments to TexImagelD.

CopyTexSublmage3D and CopyTexSublmage2D arguments x, y, width,
and height match the corresponding arguments to CopyTexImage2D”. CopyTex-
SubImagelD arguments x, y, and width match the corresponding arguments to
CopyTexImagelD. Each of the TexSubImage commands interprets and processes
pixel groups in exactly the manner of its TexImage counterpart, except that the as-
signment of R, G, B, A, and depth pixel group values to the texture components
is controlled by the internalformat of the texture array, not by an argument to the
command. The same constraints and errors apply to the TexSubImage commands’
argument format and the internalformat of the texture array being respecified as
apply to the format and internalformat arguments of its TexImage counterparts.

Arguments xoffset, yoffset, and zoffset of TexSublmage3D and CopyTex-
SubImage3D specify the lower left texel coordinates of a width-wide by height-
high by depth-deep rectangular subregion of the texture array. The depth argument
associated with CopyTexSubImage3D is always 1, because framebuffer memory
is two-dimensional - only a portion of a single s, slice of a three-dimensional
texture is replaced by CopyTexSubImage3D.

Negative values of xoffset, yoffset, and zoffset correspond to the coordinates
of border texels, addressed as in figure 3.10. Taking ws, hs, ds, and bs to be the
specified width, height, depth, and border width of the texture array, and taking z,
Y, 2, w, h, and d to be the xoffset, yoffset, zoffset, width, height, and depth argument
values, any of the following relationships generates the error INVALID_VALUE:

T < —by
T+ w > ws — by
y < —bs
y+h>hs— b
z < —bg
z+4+d > ds — bs
Counting from zero, the nth pixel group is assigned to the texel with internal integer

coordinates [i, j, k], where

i =x+ (n mod w)

% Because the framebuffer is inherently two-dimensional, there is no CopyTexImage3D com-
mand.

Version 2.1 - December 1, 2006

164 CHAPTER 3. RASTERIZATION

n
j = — dh
j=y+ (L] modh)
_.n
width * height

Arguments xoffset and yoffset of TexSubImage2D and CopyTexSubImage2D
specify the lower left texel coordinates of a width-wide by height-high rectangular
subregion of the texture array. Negative values of xoffset and yoffset correspond to
the coordinates of border texels, addressed as in figure 3.10. Taking ws, hs, and b
to be the specified width, height, and border width of the texture array, and taking
x, y, w, and h to be the xoffset, yoffset, width, and height argument values, any of
the following relationships generates the error INVALID_VALUE:

k=z+(] | mod d

T < —by
T+ w > ws — by
y < —bs
y+h>hs—bs

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j], where

i =+ (n mod w)
j=y+ (5] mod b)
w
The xoffset argument of TexSubImagelD and CopyTexSubImagelD speci-
fies the left texel coordinate of a width-wide subregion of the texture array. Neg-
ative values of xoffset correspond to the coordinates of border texels. Taking wy
and b, to be the specified width and border width of the texture array, and x and

w to be the xoffset and width argument values, either of the following relationships
generates the error INVALID_VALUE:

r < —by
T+ w > ws — by
Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i], where
i =2+ (n mod w)

Texture images with compressed internal formats may be stored in such a way
that it is not possible to modify an image with subimage commands without having

Version 2.1 - December 1, 2006

3.8. TEXTURING 165

to decompress and recompress the texture image. Even if the image were modi-
fied in this manner, it may not be possible to preserve the contents of some of
the texels outside the region being modified. To avoid these complications, the
GL does not support arbitrary modifications to texture images with compressed
internal formats. Calling TexSubImage3D, CopyTexSubImage3D, TexSubIm-
age2D, CopyTexSubIlmage2D, TexSubImagelD, or CopyTexSubImagelD will
result in an INVALID_OPERATION error if xoffset, yoffset, or zoffset is not equal to
—bs (border width). In addition, the contents of any texel outside the region mod-
ified by such a call are undefined. These restrictions may be relaxed for specific
compressed internal formats whose images are easily modified.

3.8.3 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format. The GL currently defines no such formats,
but provides mechanisms for GL extensions that do.

The commands

void CompressedTexImagelD(enum target, int level,
enum internalformat, sizei width, int border,
sizei imageSize, void *data);
void CompressedTexImage2D(enum target, int level,
enum internalformat, sizei width, sizei height,
int border, sizei imageSize, void *data);
void CompressedTexImage3D(enum farget, int level,
enum internalformat, sizei width, sizei height,
sizei depth, int border, sizei imageSize, void *data);

define one-, two-, and three-dimensional texture images, respectively, with incom-
ing data stored in a specific compressed image format. The target, level, inter-
nalformat, width, height, depth, and border parameters have the same meaning
as in TexImagelD, TexImage2D, and TexImage3D. data refers to compressed
image data stored in the compressed image format corresponding to internal-
format. If a pixel unpack buffer is bound (as indicated by a non-zero value of
PIXEL_UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer
and the compressed data is read from the buffer relative to this offset; otherwise,
data is a pointer to client memory and the compressed data is read from client
memory relative to the pointer. Since the GL provides no specific image formats,
using any of the six generic compressed internal formats as internalformat will
result in an INVALID_ENUM error.

Version 2.1 - December 1, 2006

166 CHAPTER 3. RASTERIZATION

For all other compressed internal formats, the compressed image will be de-
coded according to the specification defining the internalformat token. Com-
pressed texture images are treated as an array of imageSize ubytes relative to
data. If a pixel unpack buffer object is bound and data + imageSize is greater
than the size of the pixel buffer, an INVALID_OPERATION error results. All pixel
storage and pixel transfer modes are ignored when decoding a compressed texture
image. If the imageSize parameter is not consistent with the format, dimensions,
and contents of the compressed image, an INVALID_VALUE error results. If the
compressed image is not encoded according to the defined image format, the re-
sults of the call are undefined.

Specific compressed internal formats may impose format-specific restrictions
on the use of the compressed image specification calls or parameters. For example,
the compressed image format might be supported only for 2D textures, or might
not allow non-zero border values. Any such restrictions will be documented in the
extension specification defining the compressed internal format; violating these
restrictions will result in an INVALID_OPERATION error.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in
compressed form, providing the same image to CompressedTexImagelD,
CompressedTexImage2D, or CompressedTexImage3D will not result in an
INVALID_OPERATION error if the following restrictions are satisfied:

e data points to a compressed texture image returned by GetCompressedTex-
Image (section 6.1.4).

o target, level, and internalformat match the target, level and format parame-
ters provided to the GetCompressedTexImage call returning data.

o width, height, depth, border, internalformat, and image-
Size match the values of TEXTUREWIDTH, TEXTURE_HEIGHT,
TEXTURE DEPTH, TEXTURE_BORDER, TEXTURE_INTERNAL_FORMAT,
and TEXTURE_COMPRESSED_IMAGE_SIZE for image level level in effect at
the time of the GetCompressedTexImage call returning data.

This guarantee applies not just to images returned by GetCompressed TexImage,
but also to any other properly encoded compressed texture image of the same size
and format.

The commands

void CompressedTexSublmagelD(enum farget, int level,
int xoffset, sizei width, enum format, sizei imageSize,
void *data);

Version 2.1 - December 1, 2006

3.8. TEXTURING 167

void CompressedTexSublmage2D(enum farget, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, sizei imageSize, void *data);

void CompressedTexSublmage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, void *data);

respecify only a rectangular region of an existing texture array, with incoming data
stored in a known compressed image format. The target, level, xoffset, yoffset, zoff-
set, width, height, and depth parameters have the same meaning as in TexSubIm-
agelD, TexSubImage2D, and TexSubImage3D. data points to compressed im-
age data stored in the compressed image format corresponding to format. Since
the core GL provides no specific image formats, using any of these six generic
compressed internal formats as format will result in an INVALID_ENUM error.

The image pointed to by data and the imageSize parameter are interpreted
as though they were provided to CompressedTexImagelD, CompressedTexIm-
age2D, and CompressedTexImage3D. These commands do not provide for im-
age format conversion, so an INVALID_OPERATION error results if format does
not match the internal format of the texture image being modified. If the image-
Size parameter is not consistent with the format, dimensions, and contents of the
compressed image (too little or too much data), an INVALID_VALUE error results.

As with CompressedTexImage calls, compressed internal formats may have
additional restrictions on the use of the compressed image specification calls or
parameters. Any such restrictions will be documented in the specification defin-
ing the compressed internal format; violating these restrictions will result in an
INVALID_OPERATION error.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in com-
pressed form, providing the same image to CompressedTexSubImagelD, Com-
pressedTexSubIlmage2D, CompressedTexSublmage3D will not result in an
INVALID_OPERATION error if the following restrictions are satisfied:

e data points to a compressed texture image returned by GetCompressedTex-
Image (section 6.1.4).

o target, level, and format match the farget, level and format parameters pro-
vided to the GetCompressedTexImage call returning data.

o width, height, depth, format, and imageSize match the val-
ues of TEXTUREWIDTH, TEXTUREHEIGHT, TEXTURE_DEPTH,

Version 2.1 - December 1, 2006

168 CHAPTER 3. RASTERIZATION

TEXTURE_INTERNAL _FORMAT, and TEXTURE_COMPRESSED_IMAGE_SIZE
for image level level in effect at the time of the GetCompressed TexImage
call returning data.

o width, height, depth, format match the values of TEXTURE_WIDTH,
TEXTURE_HEIGHT, TEXTURE_DEPTH, and TEXTURE_INTERNAL_FORMAT
currently in effect for image level level.

o xoffset, yoffset, and zoffset are all —b, where b is the value of
TEXTURE_BORDER currently in effect for image level level.

This guarantee applies not just to images returned by GetCompressedTexIm-
age, but also to any other properly encoded compressed texture image of the same
size.

Calling CompressedTexSubImage3D, CompressedTexSublmage2D, or
CompressedTexSubImagelD will result in an INVALID_OPERATION error if xoff-
set, yoffset, or zoffset is not equal to —bs (border width), or if width, height,
and depth do not match the values of TEXTURE_WIDTH, TEXTURE_HEIGHT, or
TEXTURE_DEPTH, respectively. The contents of any texel outside the region modi-
fied by the call are undefined. These restrictions may be relaxed for specific com-
pressed internal formats whose images are easily modified.

3.8.4 Texture Parameters

Various parameters control how the texture array is treated when specified or
changed, and when applied to a fragment. Each parameter is set by calling

void TexParameter{if}(enum target, enum pname, T param);
void TexParameter{if}v(enum target, enum pname,
T params);

target is the target, either TEXTURE_1D, TEXTURE.2D, TEXTURE_3D, oOr
TEXTURE_CUBE_MAP. pname is a symbolic constant indicating the parameter to
be set; the possible constants and corresponding parameters are summarized in ta-
ble 3.18. In the first form of the command, param is a value to which to set a
single-valued parameter; in the second form of the command, params is an array
of parameters whose type depends on the parameter being set. If the values for
TEXTURE_BORDER_COLOR, or the value for TEXTURE_PRIORITY are specified as
integers, the conversion for signed integers from table 2.9 is applied to convert
these values to floating-point, followed by clamping each value to lie in [0, 1].

In the remainder of section 3.8, denote by lodmin, [0dmaz, levelpgse,
and level;,q, the values of the texture parameters TEXTURE_MIN_LOD,

Version 2.1 - December 1, 2006

3.8. TEXTURING 169

Name Type | Legal Values

TEXTURE_WRAP_S enum | CLAMP, CLAMP_TO_EDGE, REPEAT,
CLAMP_TO_BORDER,
MIRRORED_REPEAT
TEXTURE_WRAP_T enum | CLAMP, CLAMP_TO_EDGE, REPEAT,
CLAMP_TO_BORDER,
MIRRORED_REPEAT
TEXTURE_WRAP_R enum | CLAMP, CLAMP_TO_EDGE, REPEAT,
CLAMP_TO_BORDER,
MIRRORED_REPEAT
TEXTURE_MIN_FILTER enum | NEAREST,

LINEAR,

NEAREST_MIPMAP _NEAREST,
NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST,
LINEAR_MIPMAP_LINEAR,

TEXTURE_MAG_FILTER enum | NEAREST,

LINEAR
TEXTURE_BORDER_COLOR | 4 floats | any 4 values in [0, 1]
TEXTURE_PRIORITY float | any value in [0, 1]
TEXTURE_MIN_LOD float any value
TEXTURE_MAX_LOD float any value
TEXTURE_BASE_LEVEL integer | any non-negative integer
TEXTURE_MAX_LEVEL integer | any non-negative integer
TEXTURE_LOD_BIAS float any value
DEPTH_TEXTURE_MODE enum | LUMINANCE, INTENSITY, ALPHA

TEXTURE_COMPARE_MODE | enum | NONE, COMPARE_R_TO_TEXTURE
TEXTURE_COMPARE_FUNC | enum | LEQUAL, GEQUAL

LESS, GREATER,

EQUAL, NOTEQUAL,

ALWAYS, NEVER
GENERATE_MIPMAP boolean | TRUE or FALSE

Table 3.18: Texture parameters and their values.

Version 2.1 - December 1, 2006

170 CHAPTER 3. RASTERIZATION

Major Axis Direction | Target \ Se¢ \ te \ Mg \
+ry TEXTURE_CUBE_MAP POSITIVEX | —T, | —Ty | Tz
—Ty TEXTURE_CUBE_MAP NEGATIVE X | 7, —Ty | Ty
+ry TEXTURE_CUBE_MAP POSITIVE.Y | 7y Tz Ty
—Ty TEXTURE_CUBE_MAP_NEGATIVE.Y | 7y -, | Ty
+7, TEXTURE_CUBE_MAP_POSITIVE_Z | 7y —ry | T2
-7, TEXTURE_CUBE.MAP NEGATIVE.Z | =Ty | —Ty | 72

Table 3.19: Selection of cube map images based on major axis direction of texture
coordinates.

TEXTURE_MAX_LOD, TEXTURE_BASE_LEVEL, and TEXTURE_MAX_LEVEL respec-
tively.

Texture parameters for a cube map texture apply to the cube map as a whole;
the six distinct two-dimensional texture images use the texture parameters of the
cube map itself.

If the value of texture parameter GENERATE MIPMAP is TRUE, specifying or
changing texture arrays may have side effects, which are discussed in the Auto-
matic Mipmap Generation discussion of section 3.8.8.

3.8.5 Depth Component Textures

Depth textures can be treated as LUMINANCE, INTENSITY or ALPHA textures dur-
ing texture filtering and application (see section 3.8.14). The initial state for depth
textures treats them as LUMINANCE textures.

3.8.6 Cube Map Texture Selection

When cube map texturing is enabled, the (s ¢) texture coordinates are treated
as a direction vector (r, 7, r,) emanating from the center of a cube (the ¢
coordinate can be ignored, since it merely scales the vector without affecting the
direction.) At texture application time, the interpolated per-fragment direction vec-
tor selects one of the cube map face’s two-dimensional images based on the largest
magnitude coordinate direction (the major axis direction). If two or more coor-
dinates have the identical magnitude, the implementation may define the rule to
disambiguate this situation. The rule must be deterministic and depend only on
(ry 1y 7). The target column in table 3.19 explains how the major axis direc-
tion maps to the two-dimensional image of a particular cube map target.

Version 2.1 - December 1, 2006

3.8. TEXTURING 171

Using the s, t., and m, determined by the major axis direction as specified in
table 3.19, an updated (s ¢) is calculated as follows:

This new (s t) is used to find a texture value in the determined face’s two-
dimensional texture image using the rules given in sections 3.8.7 through 3.8.9.

3.8.7 Texture Wrap Modes

Wrap modes defined by the values of TEXTURE_WRAP_S, TEXTURE_WRAP_T, Or
TEXTURE_WRAP R respectively affect the interpretation of s, ¢, and r texture co-
ordinates. The effect of each mode is described below.

Wrap Mode REPEAT

Wrap mode REPEAT ignores the integer part of texture coordinates, using only the
fractional part. (For a number f, the fractional part is f — | f], regardless of the
sign of f; recall that the | | function truncates towards —oc.)

REPEAT is the default behavior for all texture coordinates.

Wrap Mode Cc1.AMP

Wrap mode CLAMP clamps texture coordinates to range [0, 1].

Wrap Mode CLAMP_TO_EDGE

Wrap mode CLAMP_TO_EDGE clamps texture coordinates at all mipmap levels such
that the texture filter never samples a border texel. The color returned when clamp-
ing is derived only from texels at the edge of the texture image.

Texture coordinates are clamped to the range [min, max|. The minimum value
is defined as

min = —

2N

where NV is the size of the one-, two-, or three-dimensional texture image in the
direction of clamping. The maximum value is defined as

Version 2.1 - December 1, 2006

172 CHAPTER 3. RASTERIZATION

maxr =1 — min

so that clamping is always symmetric about the [0, 1] mapped range of a texture
coordinate.

Wrap Mode C1.AMP_TO_BORDER

Wrap mode CLAMP_TO_BORDER clamps texture coordinates at all mipmaps such
that the texture filter always samples border texels for fragments whose correspond-
ing texture coordinate is sufficiently far outside the range [0, 1]. The color returned
when clamping is derived only from the border texels of the texture image, or from
the constant border color if the texture image does not have a border.

Texture coordinates are clamped to the range [min, max]. The minimum value
is defined as

—1

2N

where N is the size (not including borders) of the one-, two-, or three-dimensional
texture image in the direction of clamping. The maximum value is defined as

min =

maxr =1 —min
so that clamping is always symmetric about the [0, 1] mapped range of a texture
coordinate.
Wrap Mode MIRRORED_REPEAT

Wrap mode MIRRORED_REPEAT first mirrors the texture coordinate, where mirror-
ing a value f computes

. i |] is even
mirror(f) = { 1—(f=Lf]), |f]isodd

The mirrored coordinate is then clamped as described above for wrap mode
CLAMP_TO_EDGE.

3.8.8 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the

Version 2.1 - December 1, 2006

3.8. TEXTURING 173

mapping to framebuffer space, then a filtering, followed finally by a resampling
of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemed to magnify or minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factor p(x,y) and the level-of-detail parameter
Az, y), defined as

)\bzzse(:lja y) = 10g2 [p(xv y)] (3.13)

/\,(377 y) = Apase (.CE, y) + czamp(biastea:obj + biasiezunit + biasshader) (3.19)

lOdmax, N> lodmaz
)‘/7 lOdmin < N < lOdmax
A= lodin, N < lodmin (3.20)

undefined, lodpyin > lodpmas

biasieqop; 1s the value of TEXTURE_LOD_BIAS for the bound texture object (as de-
scribed in section 3.8.4). biaSiezunit 18 the value of TEXTURE_LOD_BIAS for the
current texture unit (as described in section 3.8.13). biaSspader 1S the value of
the optional bias parameter in the texture lookup functions available to fragment
shaders. If the texture access is performed in a fragment shader without a provided
bias, or outside a fragment shader, then biasgpqqer 18 zero. The sum of these values
is clamped to the range [—biasmaz, biaSmas| Where biasy,q, is the value of the
implementation defined constant MAX_TEXTURE_LOD_BIAS.

If A\(z,y) is less than or equal to the constant ¢ (described below in sec-
tion 3.8.9) the texture is said to be magnified; if it is greater, the texture is minified.

The initial values of lod,,;, and lod,,., are chosen so as to never clamp the
normal range of A\. They may be respecified for a specific texture by calling Tex-
Parameter[if] with pname set to TEXTURE_MIN_LOD or TEXTURE_MAX_LOD re-
spectively.

Let s(z,y) be the function that associates an s texture coordinate with each
set of window coordinates (z,y) that lie within a primitive; define ¢(x,y) and
r(z,y) analogously. Let u(z,y) = w; x s(z,y), v(z,y) = hy X t(x,y), and
w(z,y) = dy xr(z,y), where wy, hy, and d; are as defined by equations 3.15, 3.16,
and 3.17 with ws, hs, and ds equal to the width, height, and depth of the image

Version 2.1 - December 1, 2006

174 CHAPTER 3. RASTERIZATION

array whose level is levelpqse. For a one-dimensional texture, define v(z,y)
0 and w(z,y) = 0; for a two-dimensional texture, define w(z,y) = 0. For
polygon, p is given at a fragment with window coordinates (x,y) by

ou\? ov\? ow\ 2 ou\? o\ 2 ow\ 2

o= (50 (3 GG+ G+ (o))
(3.21)
where Ju/Ox indicates the derivative of u with respect to window z, and similarly

for the other derivatives.
For a line, the formula is

o |l

ou ou 2 v ov 2 ow ow 2
(3.22)

where Az = x9 — x1 and Ay = yo — y1 with (z1,y1) and (z2,y2) being the
segment’s window coordinate endpoints and [= /Az?2 + Ay?2. For a point, pixel
rectangle, or bitmap, p = 1.

While it is generally agreed that equations 3.21 and 3.22 give the best results
when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the ideal p with a function f(x,y) subject to these
conditions:

1. f(z,y) is continuous and monotonically increasing in each of |Ou/0z|,

|Ou/0y|, |0v/dx|, |0v/dy|, |0w/dx|, and |Ow/Dy|
2. Let

-

u = A B | oy
s {22221

My = max |5, 9y
m —max{aw aw}
v ox| |0y |)~

Then max{m,, my,, my} < f(x,y) < my + my + my,.

When X indicates minification, the value assigned to TEXTURE_MIN_FILTER
is used to determine how the texture value for a fragment is selected. When

Version 2.1 - December 1, 2006

3.8. TEXTURING 175

TEXTURE_MIN_FILTER is NEAREST, the texel in the image array of level levelp,ge
that is nearest (in Manhattan distance) to that specified by (s, t,) is obtained. This
means the texel at location (i, 7, k) becomes the texture value, with i given by

j=d lul, s <d (3.23)
wy—1, s=1

(Recall that if TEXTURE _WRAP_S is REPEAT, then 0 < s < 1.) Similarly, 5 is found
as

. v, t<1
J_{ h—1, t=1 (3.24)
and k is found as
_) w], <l
k:—{ 41 r=1 (3.25)

For a one-dimensional texture, j and k are irrelevant; the texel at location ¢ be-
comes the texture value. For a two-dimensional texture, & is irrelevant; the texel at
location (4, j) becomes the texture value.

When TEXTURE_MIN_FILTER is LINEAR, a 2 X 2 X 2 cube of texels in the
image array of level levely,s. is selected. This cube is obtained by first wrapping
texture coordinates as described in section 3.8.7, then computing

i |u—1/2] mod w;, TEXTURE WRAP_S iS REPEAT
O7 N |lu—1/2], otherwise

j { |v —1/2] mod hy, TEXTURE_WRAP_T iS REPEAT
0 =

lv—1/2], otherwise
and
ko = { |w —1/2] mod dy, TEXTUR-E,WRAP,R iS REPEAT
lw—1/2], otherwise
Then

~J (ip+1) mod wy, TEXTURE_WRAP_S iS REPEAT
] dg+1, otherwise

- | (jo+1)mod hy, TEXTURE WRAP_T is REPEAT
= Jo+1, otherwise

Version 2.1 - December 1, 2006

176 CHAPTER 3. RASTERIZATION

and

(ko + 1) mod d;, TEXTURE_WRAP R i$ REPEAT
k1= .
ko + 1, otherwise

Let
a = frac(u — 1/2)

8 = frac(v — 1/2)
v = frac(w — 1/2)

where frac(z) denotes the fractional part of x.
For a three-dimensional texture, the texture value 7 is found as

T = (1 - a)(l - B)(l - V)Tiojoko + a(l - ﬁ)(l - ’Y)Tiljoko
+ (1 = @)B(L =) Tigjrke + B =)Ty j1ko
+ (1 = a)(1 = B)YTigjoks + (1 = B)VTiyjok
+ (1 — @) By Tigjiky + BV Tirjike

where 7;;y, is the texel at location (4, j, k) in the three-dimensional texture image.
For a two-dimensional texture,

T= (1 - a)(l - B>Ti0j0 + a(l - ﬂ)Tile + (1 - a)ﬂTiojl + 04,37',‘1]'1 (3.26)

where 7;; is the texel at location (z, j) in the two-dimensional texture image.
And for a one-dimensional texture,

T=(1-a)n,+am,

where 7; is the texel at location ¢ in the one-dimensional texture.

If any of the selected 7;;x, 7;;, or 7; in the above equations refer to a border
texel with ¢ < —bs, j < —bs, k < —bs,© > wg — bs, j > hg — bs,0r j > dg — by,
then the border values defined by TEXTURE_BORDER_COLOR are used instead of the
unspecified value or values. If the texture contains color components, the values of
TEXTURE_BORDER-COLOR are interpreted as an RGBA color to match the texture’s
internal format in a manner consistent with table 3.15. If the texture contains depth
components, the first component of TEXTURE_BORDER_-COLOR is interpreted as a
depth value.

Version 2.1 - December 1, 2006

3.8. TEXTURING 177

Mipmapping
TEXTURE_MIN_FILTER values NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR, LINEAR MIPMAP NEAREST,

and LINEAR MIPMAP_LINEAR each require the use of a mipmap. A mipmap is
an ordered set of arrays representing the same image; each array has a resolution
lower than the previous one. If the image array of level levelp,s., excluding its
border, has dimensions wj, X hy, X dp, then there are |log,(max(wy, hy, dp)) | + 1
image arrays in the mipmap. Numbering the levels such that level levelp,s. is the
Oth level, the ith array has dimensions

max(1, L%J) x max(1, L%J) x max(1, L%j)
until the last array is reached with dimension 1 x 1 x 1.

Each array in a mipmap is defined using TexImage3D, TexImage2D, Copy-
TexImage2D, TexImagelD, or CopyTexImagelD; the array being set is indicated
with the level-of-detail argument level. Level-of-detail numbers proceed from
levelpqse for the original texture array through p = |logy(max(wp, by, dp))] +
levelpqse With each unit increase indicating an array of half the dimensions of the
previous one (rounded down to the next integer if fractional) as already described.
All arrays from levely,s. through ¢ = min{p, level,,q, } must be defined, as dis-
cussed in section 3.8.10.

The values of levelp,s. and level,,q, may be respecified for a specific tex-
ture by calling TexParameter[if] with pname set to TEXTURE_BASE_LEVEL oOr
TEXTURE_MAX_LEVEL respectively.

The error INVALID_VALUE is generated if either value is negative.

The mipmap is used in conjunction with the level of detail to approximate the
application of an appropriately filtered texture to a fragment. Let c be the value
of A at which the transition from minification to magnification occurs (since this
discussion pertains to minification, we are concerned only with values of A where
A> o).

For mipmap filters NEAREST MIPMAP NEAREST and
LINEAR MIPMAP NEAREST, the dth mipmap array is selected, where

levelbasey A < %
d=7< [levelpgse + A+ %1 -1, A> %, levelpgse + A < g+ % (3.27)
q, A > i,levelba56+)\>q+%

The rules for NEAREST or LINEAR filtering are then applied to the selected
array.

Version 2.1 - December 1, 2006

178 CHAPTER 3. RASTERIZATION

For mipmap filters NEAREST MIPMAP_LINEAR and LINEAR MIPMAP _LINEAR,
the level d; and do mipmap arrays are selected, where

_J) @ levelpgse + A > ¢
i = { Llevelbase +)\J, otherwise (3.28)
_) ¢ levelpgse + A > q
d = { di +1, otherwise (3.29)

The rules for NEAREST or LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture values 71 and 7». The final
texture value is then found as

T = [1 — frac(\)]m + frac(A) 7.

Automatic Mipmap Generation

If the value of texture parameter GENERATE_MIPMAP is TRUE, making any change
to the interior or border texels of the levely,s. array of a mipmap will also compute
a complete set of mipmap arrays (as defined in section 3.8.10) derived from the
modified levelp,se array. Array levels levelp,se + 1 through p are replaced with
the derived arrays, regardless of their previous contents. All other mipmap arrays,
including the levely,se array, are left unchanged by this computation.

The internal formats and border widths of the derived mipmap arrays all match
those of the levely,se array, and the dimensions of the derived arrays follow the
requirements described in section 3.8.10.

The contents of the derived arrays are computed by repeated, filtered reduction
of the levelp,s. array. No particular filter algorithm is required, though a box filter
is recommended as the default filter. In some implementations, filter quality may
be affected by hints (section 5.6).

Automatic mipmap generation is available only for non-proxy texture image
targets.

3.8.9 Texture Magnification

When A indicates magnification, the value assigned to TEXTURE MAG FILTER
determines how the texture value is obtained. There are two possible values
for TEXTURE_.MAG_FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE MIN_FILTER (equations 3.23, 3.24, and 3.25 are used);
LINEAR behaves exactly as LINEAR for TEXTURE_MIN_FILTER (equation 3.26 is
used). The level-of-detail levely, s texture array is always used for magnification.

Version 2.1 - December 1, 2006

3.8. TEXTURING 179

Finally, there is the choice of ¢, the minification vs. magnification switch-
over point. If the magnification filter is given by LINEAR and the minification
filter is given by NEAREST_MIPMAP _NEAREST or NEAREST_MIPMAP_LINEAR, then
¢ = 0.5. This is done to ensure that a minified texture does not appear “sharper”
than a magnified texture. Otherwise ¢ = 0.

3.8.10 Texture Completeness

A texture is said to be complete if all the image arrays and texture parameters
required to utilize the texture for texture application are consistently defined. The
definition of completeness varies depending on the texture dimensionality.

For one-, two-, or three-dimensional textures, a texture is complete if the fol-
lowing conditions all hold true:

e The set of mipmap arrays levelp,s. through g (where ¢ is defined in the
Mipmapping discussion of section 3.8.8) were each specified with the same
internal format.

e The border widths of each array are the same.

e The dimensions of the arrays follow the sequence described in the Mipmap-
ping discussion of section 3.8.8.

o levelpyse < levelmar

e Each dimension of the levely, . array is positive.

Array levels k where k < levelp,se Or k > g are insignificant to the definition of
completeness.

For cube map textures, a texture is cube complete if the following conditions
all hold true:

e The levely,s. arrays of each of the six texture images making up the cube
map have identical, positive, and square dimensions.

o The levely,se arrays were each specified with the same internal format.

e The levely,se arrays each have the same border width.

Finally, a cube map texture is mipmap cube complete if, in addition to being
cube complete, each of the six texture images considered individually is complete.

Version 2.1 - December 1, 2006

180 CHAPTER 3. RASTERIZATION

Effects of Completeness on Texture Application

If one-, two-, or three-dimensional texturing (but not cube map textur-
ing) is enabled for a texture unit at the time a primitive is rasterized, if
TEXTURE_MIN_FILTER is one that requires a mipmap, and if the texture image
bound to the enabled texture target is not complete, then it is as if texture mapping
were disabled for that texture unit.

If cube map texturing is enabled for a texture unit at the time a primitive
is rasterized, and if the bound cube map texture is not cube complete, then it
is as if texture mapping were disabled for that texture unit. Additionally, if
TEXTURE MIN_FILTER is one that requires a mipmap, and if the texture is not
mipmap cube complete, then it is as if texture mapping were disabled for that tex-
ture unit.

Effects of Completeness on Texture Image Specification

An implementation may allow a texture image array of level 1 or greater to be cre-
ated only if a mipmap complete set of image arrays consistent with the requested
array can be supported. A mipmap complete set of arrays is equivalent to a com-
plete set of arrays where levely,se = 0 and level,,q, = 1000, and where, excluding
borders, the dimensions of the image array being created are understood to be half
the corresponding dimensions of the next lower numbered array (rounded down to
the next integer if fractional).

3.8.11 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First, there are
the nine sets of mipmap arrays (one each for the one-, two-, and three-dimensional
texture targets and six for the cube map texture targets) and their number. Each ar-
ray has associated with it a width, height (two- and three-dimensional and cube
map only), and depth (three-dimensional only), a border width, an integer de-
scribing the internal format of the image, six integer values describing the res-
olutions of each of the red, green, blue, alpha, luminance, and intensity com-
ponents of the image, a boolean describing whether the image is compressed or
not, and an integer size of a compressed image. Each initial texture array is
null (zero width, height, and depth, zero border width, internal format 1, with
the compressed flag set to FALSE, a zero compressed size, and zero-sized com-
ponents). Next, there are the two sets of texture properties; each consists of
the selected minification and magnification filters, the wrap modes for s, t (two-
and three-dimensional and cube map only), and r (three-dimensional only), the
TEXTURE_BORDER_COLOR, two integers describing the minimum and maximum

Version 2.1 - December 1, 2006

3.8. TEXTURING 181

level of detail, two integers describing the base and maximum mipmap array,
a boolean flag indicating whether the texture is resident, a boolean indicating
whether automatic mipmap generation should be performed, three integers de-
scribing the depth texture mode, compare mode, and compare function, and the
priority associated with each set of properties. The value of the resident flag is
determined by the GL and may change as a result of other GL operations. The flag
may only be queried, not set, by applications (see section 3.8.12). In the initial
state, the value assigned to TEXTURE MIN_FILTER is NEAREST MIPMAP_LINEAR,
and the value for TEXTURE MAG_FILTER iS LINEAR. s, ¢, and r wrap modes
are all set to REPEAT. The values of TEXTURE_MIN.LOD and TEXTURE_MAX_LOD
are -1000 and 1000 respectively. The values of TEXTURE_BASE_LEVEL and
TEXTURE.MAX_LEVEL are 0 and 1000 respectively. TEXTURE_PRIORITY is 1.0,
and TEXTURE_BORDER_COLOR is (0,0,0,0). The value of GENERATE_MIPMAP
is false. The values of DEPTH_TEXTURE_MODE, TEXTURE_COMPARE_MODE, and
TEXTURE_COMPARE_FUNC are LUMINANCE, NONE, and LEQUAL respectively. The
initial value of TEXTURE_RESIDENT is determined by the GL.

In addition to the one-, two-, and three-dimensional and the six cube map sets
of image arrays, the partially instantiated one-, two-, and three-dimensional and
one cube map set of proxy image arrays are maintained. Each proxy array includes
width, height (two- and three-dimensional arrays only), depth (three-dimensional
arrays only), border width, and internal format state values, as well as state for
the red, green, blue, alpha, luminance, and intensity component resolutions. Proxy
arrays do not include image data, nor do they include texture properties. When
TexImage3D is executed with farget specified as PROXY_TEXTURE_3D, the three-
dimensional proxy state values of the specified level-of-detail are recomputed and
updated. If the image array would not be supported by TexImage3D called with
target set to TEXTURE_3D, no error is generated, but the proxy width, height, depth,
border width, and component resolutions are set to zero. If the image array would
be supported by such a call to TexImage3D, the proxy state values are set exactly
as though the actual image array were being specified. No pixel data are transferred
or processed in either case.

One- and two-dimensional proxy arrays are operated on in the same way when
TexImagelD is executed with farget specified as PROXY_TEXTURE_1D, or TexIm-
age2D is executed with rarget specified as PROXY_TEXTURE_2D.

The cube map proxy arrays are operated on in the same manner when TexIm-
age2D is executed with the trarget field specified as PROXY_TEXTURE_CUBE_MAP,
with the addition that determining that a given cube map texture is supported with
PROXY_TEXTURE_CUBE_MAP indicates that all six of the cube map 2D images are
supported. Likewise, if the specified PROXY_TEXTURE_CUBE_MAP is not supported,
none of the six cube map 2D images are supported.

Version 2.1 - December 1, 2006

182 CHAPTER 3. RASTERIZATION

There is no image associated with any of the proxy textures. There-
fore PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, and PROXY_TEXTURE_3D, and
PROXY_TEXTURE_CUBE_MAP cannot be used as textures, and their images must
never be queried using GetTexImage. The error INVALID_ENUM is generated if
this is attempted. Likewise, there is no non level-related state associated with a
proxy texture, and GetTexParameteriv or GetTexParameterfv may not be called
with a proxy texture target. The error INVALID_ENUM is generated if this is at-
tempted.

3.8.12 Texture Objects

In addition to the default textures TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, and
TEXTURE_CUBE_MAP, named one-, two-, and three-dimensional and cube map tex-
ture objects can be created and operated upon. The name space for texture objects
is the unsigned integers, with zero reserved by the GL.

A texture object is created by binding an unused name to TEXTURE_1D,
TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP. The binding is effected by
calling

void BindTexture(enum farget, uint texture);

with target set to the desired texture target and fexture set to the unused name.
The resulting texture object is a new state vector, comprising all the state values
listed in section 3.8.11, set to the same initial values. If the new texture object is
bound to TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP, it is
and remains a one-, two-, three-dimensional, or cube map texture respectively until
it is deleted.

BindTexture may also be used to bind an existing texture object to ei-
ther TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP. The error
INVALID_OPERATION is generated if an attempt is made to bind a texture object
of a different target than the specified farget. If the bind is successful no change is
made to the state of the bound texture object, and any previous binding to farget is
broken.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object. If texture mapping of the dimensionality of the target
to which a texture object is bound is enabled, the state of the bound texture object
directs the texturing operation.

In the 1initial state, TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,
and TEXTURE_CUBE_MAP have one-, two-, three-dimensional, and cube map tex-
ture state vectors respectively associated with them. In order that access to these

Version 2.1 - December 1, 2006

3.8. TEXTURING

initial textures not be lost, they are treated as texture objects all of whose names

are 0. The initial one-, two-, three-dimensional, and cube map texture is therefore

operated upon, queried, and applied as TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,

or TEXTURE_CUBE_MAP respectively while 0 is bound to the corresponding targets.
Texture objects are deleted by calling

void DeleteTextures(sizei n, uint *textures);

textures contains n names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to one of the targets TEXTURE_1D, TEXTURE_2D,
TEXTURE_3D, or TEXTURE_CUBE_MAP is deleted, it is as though BindTexture had
been executed with the same target and texture zero. Unused names in textures are
silently ignored, as is the value zero.

The command

void GenTextures(sizei n, uint *fextures);

returns n previously unused texture object names in fextures. These names are
marked as used, for the purposes of GenTextures only, but they acquire texture
state and a dimensionality only when they are first bound, just as if they were
unused.

An implementation may choose to establish a working set of texture objects on
which binding operations are performed with higher performance. A texture object
that is currently part of the working set is said to be resident. The command

boolean AreTexturesResident(sizei n, uint *fextures,
boolean *residences);

returns TRUE if all of the n texture objects named in textures are resident, or if the
implementation does not distinguish a working set. If at least one of the texture
objects named in textures is not resident, then FALSE is returned, and the residence
of each texture object is returned in residences. Otherwise the contents of resi-
dences are not changed. If any of the names in fextures are unused or are zero,
FALSE is returned, the error INVALID_VALUE is generated, and the contents of res-
idences are indeterminate. The residence status of a single bound texture object
can also be queried by calling GetTexParameteriv or GetTexParameterfv with
target set to the target to which the texture object is bound, and pname set to
TEXTURE_RESIDENT.

AreTexturesResident indicates only whether a texture object is currently resi-
dent, not whether it could not be made resident. An implementation may choose to

Version 2.1 - December 1, 2006

183

184 CHAPTER 3. RASTERIZATION

make a texture object resident only on first use, for example. The client may guide
the GL implementation in determining which texture objects should be resident by
specifying a priority for each texture object. The command

void PrioritizeTextures(sizei n, uint *textures,
clampf *priorities);

sets the priorities of the n texture objects named in textures to the values in priori-
ties. Each priority value is clamped to the range [0,1] before it is assigned. Zero in-
dicates the lowest priority, with the least likelihood of being resident. One indicates
the highest priority, with the greatest likelihood of being resident. The priority of a
single bound texture object may also be changed by calling TexParameteri, Tex-
Parameterf, TexParameteriv, or TexParameterfv with target set to the target to
which the texture object is bound, pname set to TEXTURE_PRIORITY, and param
or params specifying the new priority value (which is clamped to the range [0,1]
before being assigned). PrioritizeTextures silently ignores attempts to prioritize
unused texture object names or zero (default textures).

The texture object name space, including the initial one-, two-, and three-
dimensional texture objects, is shared among all texture units. A texture object
may be bound to more than one texture unit simultaneously. After a texture object
is bound, any GL operations on that target object affect any other texture units to
which the same texture object is bound.

Texture binding is affected by the setting of the state ACTIVE_TEXTURE.

If a texture object is deleted, it as if all texture units which are bound to that
texture object are rebound to texture object zero.

3.8.13 Texture Environments and Texture Functions

The command

void TexEnv{if}(enum target, enum pname, T param);
void TexEnv{if}v(enum target, enum pname, T params);

sets parameters of the fexture environment that specifies how texture values are
interpreted when texturing a fragment, or sets per-texture-unit filtering parameters.

target must be one of POINT_SPRITE, TEXTUREENV or
TEXTURE_FILTER_CONTROL. pname is a symbolic constant indicating the
parameter to be set. In the first form of the command, param is a value to which to
set a single-valued parameter; in the second form, params is a pointer to an array
of parameters: either a single symbolic constant or a value or group of values to
which the parameter should be set.

Version 2.1 - December 1, 2006

3.8. TEXTURING 185

When farget is POINT_SPRITE, point sprite rasterization behavior is affected
as described in section 3.3.

When rtarget is TEXTURE_FILTER.CONTROL, pname must be
TEXTURE_LOD_BIAS. In this case the parameter is a single signed floating
point value, biaSiezunit, that biases the level of detail parameter \ as described in
section 3.8.8.

When target is TEXTURE_ENV, the possible environment parameters are
TEXTURE_ENV_MODE, TEXTURE_ENV_COLOR, COMBINE RGB, COMBINE_ALPHA,
RGB_SCALE, ALPHA_SCALE, SRCn.RGB, SRCn ALPHA, OPERANDn._RGB, and
OPERANDn_ALPHA, where n =0, 1, or 2. TEXTURE_ENV_MODE may be set to one of
REPLACE, MODULATE, DECAL, BLEND, ADD, Or COMBINE. TEXTURE_ENV_COLOR is
set to an RGBA color by providing four single-precision floating-point values in
the range [0, 1] (values outside this range are clamped to it). If integers are provided
for TEXTURE_ENV_COLOR, then they are converted to floating-point as specified in
table 2.9 for signed integers.

The value of TEXTURE_ENV_MODE specifies a fexture function. The result of
this function depends on the fragment and the texture array value. The precise
form of the function depends on the base internal formats of the texture arrays that
were last specified.

Cyand A f3 are the primary color components of the incoming fragment; C
and A; are the components of the texture source color, derived from the filtered
texture values R;, Gy, B;, Ay, Ly, and I; as shown in table 3.20; C. and A, are
the components of the texture environment color; C, and A,, are the components
resulting from the previous texture environment (for texture environment 0, C, and
A, are identical to C'y and Ay, respectively); and C, and A, are the primary color
components computed by the texture function.

All of these color values are in the range [0, 1]. The texture functions are spec-
ified in tables 3.21, 3.22, and 3.23.

If the value of TEXTURE_ENV_MODE is COMBINE, the form of the texture func-
tion depends on the values of COMBINE _RGB and COMBINE_ALPHA, according to
table 3.23. The RGB and ALPHA results of the texture function are then multi-
plied by the values of RGB_SCALE and ALPHA_SCALE, respectively. The results are
clamped to [0, 1].

The arguments Arg0, Argl, and Arg2 are determined by the values of
SRCn_RGB, SRCn_ALPHA, OPERANDn_RGB and OPERANDn_ALPHA, where n = 0,
1, or 2, as shown in tables 3.24 and 3.25. C,"™ and A" denote the texture source

3In the remainder of section 3.8.13, the notation C, is used to denote each of the three components
Ry, G4, and B, of a color specified by . Operations on C;, are performed independently for each
color component. The A component of colors is usually operated on in a different fashion, and is
therefore denoted separately by A,.

Version 2.1 - December 1, 2006

186

CHAPTER 3. RASTERIZATION

Texture Base Texture source color
Internal Format Cs Ag
ALPHA (0,0,0) Ay
LUMINANCE (L, Ly, Ly) 1
LUMINANCE_ALPHA | (Ly, Ly, Ly) A,
INTENSITY (I, Iy, Iy) I
RGB (Rt, Gt, Bt) 1
RGBA (Rt, Gt, Bt) At

Table 3.20: Correspondence of filtered texture components to texture source com-

ponents.

Texture Base REPLACE | MODULATE DECAL
Internal Format Function | Function Function
ALPHA Co=Cp | Cp=0Cp undefined
Ay =A; | Ay = A)A;
LUMINANCE Cy,=0Cs | Cy =CyCs | undefined
(or 1) Ay, =4, | Ay =4,
LUMINANCE ALPHA | C, = Cs | Cy = CpCs | undefined
(or2) Ay =A; | Ay = A, A
INTENSITY Cy,=0Cs | Cy =CyCs | undefined
Ay =As | Ay = ApA;
RGB Co,=0Cs | C,=0CpC5 | Cp =
(or 3) Ay =4, | Ay =4, A, =4,
RGBA Cy=Cs | C, =CpCs | Cy =Cp(1 — Ay) + Cs A
(or 4) Ay=As | Ay =A4,A, | A, = A,

Table 3.21: Texture functions REPLACE, MODULATE, and DECAL.

Version 2.1 - December 1, 2006

3.8. TEXTURING 187

Texture Base BLEND ADD
Internal Format Function Function
ALPHA Cy, =C)p Cy, =Cp

A, = ApA, A, = ApA;
LUMINANCE Cy,=C,(1-C5)+CCs | Cpy=Cp+Cs
(or 1) Ay, =4, Ay =4,
LUMINANCE ALPHA | Cp = Cp(1 = Cy) + C.Cs | Cy =Cp+ Cs
(or2) Ay = A A Ay = A, A
INTENSITY C,=C(1-C5)+CCs | Cp, =Cp+Cs

Ay =A,(1 - A+ AcAs | Ay =Ap + A
RGB Cy,=0C,(1-C5)+CCs | Cpy=Cp+Cs
(or 3) A, = A, A, = A,
RGBA Cy=Cp(1-Cs)+C.Cy | Cy =Cp+ C
(or4) Ay, = ApA, A, = ApA,

Table 3.22: Texture functions BLEND and ADD.

color and alpha from the texture image bound to texture unit n

The state required for the current texture environment, for each texture unit,
consists of a six-valued integer indicating the texture function, an eight-valued in-
teger indicating the RGB combiner function and a six-valued integer indicating the
ALPHA combiner function, six four-valued integers indicating the combiner RGB
and ALPHA source arguments, three four-valued integers indicating the combiner
RGB operands, three two-valued integers indicating the combiner ALPHA operands,
and four floating-point environment color values. In the initial state, the texture
and combiner functions are each MODULATE, the combiner RGB and ALPHA sources
are each TEXTURE, PREVIOUS, and CONSTANT for sources 0, 1, and 2 respectively,
the combiner RGB operands for sources 0 and 1 are each SRC_COLOR, the combiner
RGB operand for source 2, as well as for the combiner ALPHA operands, are each
SRC_ALPHA, and the environment color is (0, 0,0, 0).

The state required for the texture filtering parameters, for each texture unit,
consists of a single floating-point level of detail bias. The initial value of the bias
is 0.0.

3.8.14 Texture Comparison Modes

Texture values can also be computed according to a specified comparison func-
tion. Texture parameter TEXTURE._COMPARE_MODE specifies the comparison
operands, and parameter TEXTURE_COMPARE_FUNC specifies the comparison func-

Version 2.1 - December 1, 2006

188

CHAPTER 3. RASTERIZATION

COMBINE_RGB

Texture Function

REPLACE Arg0
MODULATE Arg0 = Argl
ADD Arg0 + Argl
ADD_SIGNED Arg0+ Argl — 0.5
INTERPOLATE | Arg0* Arg2 + Argl x (1 — Arg2)
SUBTRACT Arg0 — Argl
DOT3_RGB X ((Arg0, —0.5) * (Argl, — 0.5)+
(Arg0y — 0.5) * (Argly — 0.5)+
(Arg0p — 0.5) x (Argly — 0.5))
DOT3_RGBA X ((Arg0, —0.5) * (Argl, — 0.5)+
(Arg04 — 0. 5) (Argly — 0. 5)—i—
(Arg0y — 0.5) * (Argly — 0.5))

COMBINE_ALPHA \ Texture Function

REPLACE Arg0

MODULATE Arg0 x Argl

ADD Arg0 + Argl

ADD_SIGNED Arg0+ Argl — 0.5

INTERPOLATE Arg0* Arg2 4+ Argl « (1 — Arg2)
SUBTRACT Arg0 — Argl

Table 3.23:

for DOT3_RGBA.

COMBINE texture functions. The scalar expression computed for the
DOT3_RGB and DOT3_RGBA functions is placed into each of the 3 (RGB) or 4 (RGBA)
components of the output. The result generated from COMBINE_ALPHA is ignored

Version 2.1 - December 1, 2006

3.8. TEXTURING

SRCn_RGB OPERANDn_RGB | Argument |
TEXTURE SRC_COLOR Cs
ONE_MINUS_SRC_COLOR | 1 — C|
SRC_ALPHA A,
ONE_MINUS_SRC_ALPHA | 1 — Aq
TEXTUREN SRC_COLOR c,"
ONE_MINUS_SRC_COLOR | 1 — C,"
SRC_ALPHA A"
ONE_MINUS_SRC_ALPHA | 1 — A"
CONSTANT SRC_COLOR C.
ONE_MINUS_SRC_COLOR | 1 — C,
SRC_ALPHA Ac
ONE_MINUS_SRC_ALPHA | 1 — A,
PRIMARY_COLOR | SRC_COLOR Cy
ONE_MINUS_SRC_COLOR | 1 —Cf
SRC_ALPHA A
ONE_MINUS_SRC_ALPHA | 1 — Af
PREVIOUS SRC_COLOR Cp
ONE_MINUS_SRC_COLOR | 1 —C),
SRC_ALPHA Ap
ONE_MINUS_SRC_ALPHA | 1 — A,

Table 3.24: Arguments for COMBINE_RGB functions.

SRCn_ALPHA OPERANDn_ALPHA | Argument |
TEXTURE SRC_ALPHA A
ONE_MINUS_SRC_ALPHA | 1 — Aj
TEXTURER SRC_ALPHA A"
ONE_MINUS_SRC_ALPHA | 1 — A"
CONSTANT SRC_ALPHA A,
ONE_MINUS_SRC_ALPHA | 1 — A,
PRIMARY_COLOR | SRC_ALPHA Asf
ONE_MINUS_SRC_ALPHA | 1 — Ay
PREVIOUS SRC_ALPHA Ap
ONE_MINUS_SRC_ALPHA | 1 — A,

Table 3.25: Arguments for COMBINE_ALPHA functions.

Version 2.1 - December 1, 2006

189

190 CHAPTER 3. RASTERIZATION

tion. The format of the resulting texture sample is determined by the value of
DEPTH_TEXTURE_MODE.

Depth Texture Comparison Mode

If the currently bound texture’s base internal format is DEPTH_COMPONENT, then
TEXTURE_COMPARE_MODE, TEXTURE_COMPARE_FUNC and DEPTH_TEXTURE_MODE
control the output of the texture unit as described below. Otherwise, the texture
unit operates in the normal manner and texture comparison is bypassed.

Let D; be the depth texture value, in the range [0, 1], and R be the interpolated
texture coordinate clamped to the range [0, 1]. Then the effective texture value Ly,
I;, or Ay is computed as follows:

If the value of TEXTURE_COMPARE_MODE is NONE, then

T:Dt

If the value of TEXTURE_COMPARE_MODE iS COMPARE_R_TO_TEXTURE, then r
depends on the texture comparison function as shown in table 3.26.

Texture Comparison Function \ Computed result r

LEQUAL AR
© =1 00, R>D;
GEQUAL _J L0 R=2D
© "=9 00, R<D,
LESS ;= 1.0, R< Dy
~) 00, R>D
GREATER _) L0 R>D,
"1 00, R<D
EQUAL r= 10, =D,
—) 00, R+#D
NOTEQUAL r= 10, R# Dy
] 0.0, R=Dy
ALWAYS r=1.0
NEVER r=20.0

Table 3.26: Depth texture comparison functions.

The resulting r is assigned to IL;, I, or A; if the value of
DEPTH_TEXTURE_MODE is respectively LUMINANCE, INTENSITY, or ALPHA.

Version 2.1 - December 1, 2006

3.8. TEXTURING 191

If the value of TEXTUREMAG.FILTER iS not NEAREST, or the value of
TEXTURE MIN_FILTER is not NEAREST or NEAREST MIPMAP NEAREST, then r
may be computed by comparing more than one depth texture value to the texture
R coordinate. The details of this are implementation-dependent, but should be a
value in the range [0, 1] which is proportional to the number of comparison passes
or failures.

3.8.15 sRGB Texture Color Conversion

If the currently bound texture’s internal format is one of SRGB, SRGBS,
SRGB_ALPHA, SRGB8_ALPHA8, SLUMINANCE ALPHA, SLUMINANCES ALPHAS,
SLUMINANCE, SLUMINANCES, COMPRESSED_SRGB, COMPRESSED_SRGB_ALPHA,
COMPRESSED_SLUMINANCE, or COMPRESSED_SLUMINANCE ALPHA, the red,
green, and blue components are converted from an sRGB color space to a lin-
ear color space as part of filtering described in sections 3.8.8 and 3.8.9. Any alpha
component is left unchanged. Ideally, implementations should perform this color
conversion on each sample prior to filtering but implementations are allowed to
perform this conversion after filtering (though this post-filtering approach is infe-
rior to converting from sRGB prior to filtering).

The conversion from an SRGB encoded component, c,, to a linear component,
¢, 1s as follows.

200" ¢s < 0.04045 -
a= .+0.055) %4 (3.30)
(52955) ™", ¢, > 0.04045

Assume c; is the SRGB component in the range [0, 1].

3.8.16 Texture Application

Texturing is enabled or disabled using the generic Enable and Disable com-
mands, respectively, with the symbolic constants TEXTURE_1D, TEXTURE_2D,
TEXTURE_3D, or TEXTURE_CUBE_MAP to enable the one-, two, three-dimensional,
or cube map texture, respectively. If both two- and one-dimensional textures are
enabled, the two-dimensional texture is used. If the three-dimensional and either
of the two- or one-dimensional textures is enabled, the three-dimensional texture
is used. If the cube map texture and any of the three-, two-, or one-dimensional
textures is enabled, then cube map texturing is used. If all texturing is disabled, a
rasterized fragment is passed on unaltered to the next stage of the GL (although its
texture coordinates may be discarded). Otherwise, a texture value is found accord-
ing to the parameter values of the currently bound texture image of the appropriate

Version 2.1 - December 1, 2006

192 CHAPTER 3. RASTERIZATION

dimensionality using the rules given in sections 3.8.6 through 3.8.9. This texture
value is used along with the incoming fragment in computing the texture function
indicated by the currently bound texture environment. The result of this function
replaces the incoming fragment’s primary R, G, B, and A values. These are the
color values passed to subsequent operations. Other data associated with the in-
coming fragment remain unchanged, except that the texture coordinates may be
discarded.

Each texture unit is enabled and bound to texture objects independently from
the other texture units. Each texture unit follows the precedence rules for one-, two-
, three-dimensional, and cube map textures. Thus texture units can be performing
texture mapping of different dimensionalities simultaneously. Each unit has its
own enable and binding states.

Each texture unit is paired with an environment function, as shown in fig-
ure 3.11. The second texture function is computed using the texture value from
the second texture, the fragment resulting from the first texture function computa-
tion and the second texture unit’s environment function. If there is a third texture,
the fragment resulting from the second texture function is combined with the third
texture value using the third texture unit’s environment function and so on. The tex-
ture unit selected by ActiveTexture determines which texture unit’s environment
is modified by TexEnv calls.

If the value of TEXTURE_ENV_MODE is COMBINE, the texture function associated
with a given texture unit is computed using the values specified by SRCn_RGB,
SRCn_ALPHA, OPERANDn_RGB and OPERANDn_ALPHA. If TEXTURER is specified as
SRCn_RGB or SRCn_ALPHA, the texture value from texture unit » will be used in
computing the texture function for this texture unit.

Texturing is enabled and disabled individually for each texture unit. If texturing
is disabled for one of the units, then the fragment resulting from the previous unit
is passed unaltered to the following unit. Individual texture units beyond those
specified by MAX_TEXTURE_UNITS are always treated as disabled.

If a texture unit is disabled or has an invalid or incomplete texture (as defined
in section 3.8.10) bound to it, then blending is disabled for that texture unit. If the
texture environment for a given enabled texture unit references a disabled texture
unit, or an invalid or incomplete texture that is bound to another unit, then the
results of texture blending are undefined.

The required state, per texture unit, is four bits indicating whether each of one-,
two-, three-dimensional, or cube map texturing is enabled or disabled. In the intial
state, all texturing is disabled for all texture units.

Version 2.1 - December 1, 2006

3.8. TEXTURING 193

TE, |—
CTo— TE, |
CTy - TE, |—®
CT, - TE, |—®=C
cT, >

C; =fragment primary color input to texturing

C'; =fragment color output from texturing
CT, =texture color from texture lookup i

TE; =texture environment i

Figure 3.11. Multitexture pipeline. Four texture units are shown; however, multi-
texturing may support a different number of units depending on the implementation.
The input fragment color is successively combined with each texture according to
the state of the corresponding texture environment, and the resulting fragment color
passed as input to the next texture unit in the pipeline.

Version 2.1 - December 1, 2006

194 CHAPTER 3. RASTERIZATION

3.9 Color Sum

At the beginning of color sum, a fragment has two RGBA colors: a primary color
cpri (Which texturing, if enabled, may have modified) and a secondary color Cge.

If color sum is enabled, the R, G, and B components of these two colors are
summed to produce a single post-texturing RGBA color c. The A component of ¢
is taken from the A component of c,;; the A component of cg.. is unused. The
components of ¢ are then clamped to the range [0, 1]. If color sum is disabled, then
Cpri 18 assigned to c.

Color sum is enabled or disabled using the generic Enable and Disable com-
mands, respectively, with the symbolic constant COLOR_SUM. If lighting is enabled
and if a vertex shader is not active, the color sum stage is always applied, ignoring
the value of COLOR_SUM.

The state required is a single bit indicating whether color sum is enabled or
disabled. In the initial state, color sum is disabled.

Color sum has no effect in color index mode, or if a fragment shader is active.

3.10 Fog

If enabled, fog blends a fog color with a rasterized fragment’s post-texturing color
using a blending factor f. Fog is enabled and disabled with the Enable and Disable
commands using the symbolic constant FOG.

This factor f is computed according to one of three equations:

f=exp(—d-c), (3.31)
f=exp(—(d-c)?),or (3.32)
f==C (3.33)

e — S

If a vertex shader is active, or if the fog source, as defined below, is FOG_COORD,
then c is the interpolated value of the fog coordinate for this fragment. Otherwise,
if the fog source is FRAGMENT_DEPTH, then c is the eye-coordinate distance from
the eye, (0,0, 0, 1) in eye coordinates, to the fragment center. The equation and the
fog source, along with either d or e and s, is specified with

void Fog{if}(enum pname, T param);
void Fog{if}v(enum pname, T params);

Version 2.1 - December 1, 2006

3.10. FOG 195

If pname is FOG_MODE, then param must be, or params must point to an inte-
ger that is one of the symbolic constants EXP, EXP2, or LINEAR, in which case
equation 3.31, 3.32, or 3.33, respectively, is selected for the fog calculation (if,
when 3.33 is selected, e = s, results are undefined). If pname is FOG_COORD_SRC,
then param must be, or params must point to an integer that is one of the sym-
bolic constants FRAGMENT_DEPTH or FOG_COORD. If pname is FOG_DENSITY,
FOG_START, or FOG_END, then param is or params points to a value that is d, s,
or e, respectively. If d is specified less than zero, the error INVALID_VALUE re-
sults.

An implementation may choose to approximate the eye-coordinate distance
from the eye to each fragment center by |z.|. Further, f need not be computed at
each fragment, but may be computed at each vertex and interpolated as other data
are.

No matter which equation and approximation is used to compute f, the result
is clamped to [0, 1] to obtain the final f.

f is used differently depending on whether the GL is in RGBA or color index
mode. In RGBA mode, if C) represents a rasterized fragment’s R, G, or B value,
then the corresponding value produced by fog is

C = fC.+(1— f)Cy.

(The rasterized fragment’s A value is not changed by fog blending.) The R, G, B,
and A values of C are specified by calling Fog with pname equal to FOG_COLOR;
in this case params points to four values comprising C'y. If these are not floating-
point values, then they are converted to floating-point using the conversion given
in table 2.9 for signed integers. Each component of C is clamped to [0, 1] when
specified.

In color index mode, the formula for fog blending is

I =i, + (1= f)if

where 4, is the rasterized fragment’s color index and ¢y is a single-precision
floating-point value. (1 — f)iy is rounded to the nearest fixed-point value with
the same number of bits to the right of the binary point as %,, and the integer por-
tion of I is masked (bitwise ANDed) with 2" — 1, where n is the number of bits in
a color in the color index buffer (buffers are discussed in chapter 4). The value of
if is set by calling Fog with pname set to FOG_INDEX and param being or params
pointing to a single value for the fog index. The integer part of iy is masked with
2" —1.

The state required for fog consists of a three valued integer to select the fog
equation, three floating-point values d, e, and s, an RGBA fog color and a fog

Version 2.1 - December 1, 2006

196 CHAPTER 3. RASTERIZATION

color index, a two-valued integer to select the fog coordinate source, and a single
bit to indicate whether or not fog is enabled. In the initial state, fog is disabled,
FOG_COORD_SRC is FRAGMENT_DEPTH, FOG_MODE is ExP, d = 1.0, e = 1.0, and
5 =0.0;C¢ = (0,0,0,0) and iy = 0.

Fog has no effect if a fragment shader is active.

3.11 Fragment Shaders

The sequence of operations that are applied to fragments that result from raster-
izing a point, line segment, polygon, pixel rectangle or bitmap as described in
sections 3.8 through 3.10 is a fixed functionality method for processing such frag-
ments. Applications can more generally describe the operations that occur on such
fragments by using a fragment shader.

A fragment shader is an array of strings containing source code for the opera-
tions that are meant to occur on each fragment that results from rasterizing a point,
line segment, polygon, pixel rectangle or bitmap. The language used for fragment
shaders is described in the OpenGL Shading Language Specification.

A fragment shader only applies when the GL is in RGBA mode. Its operation
in color index mode is undefined.

Fragment shaders are created as described in section 2.15.1 using a type pa-
rameter of FRAGMENT_SHADER. They are attached to and used in program objects
as described in section 2.15.2.

When the program object currently in use includes a fragment shader, its frag-
ment shader is considered active, and is used to process fragments. If the program
object has no fragment shader, or no program object is currently in use, the fixed-
function fragment processing operations described in previous sections are used.

3.11.1 Shader Variables

Fragment shaders can access uniforms belonging to the current shader object. The
amount of storage available for fragment shader uniform variables is specified by
the implementation dependent constant MAX_FRAGMENT_UNIFORM_COMPONENTS.
This value represents the number of individual floating-point, integer, or boolean
values that can be held in uniform variable storage for a fragment shader. A link
error will be generated if an attempt is made to utilize more than the space available
for fragment shader uniform variables.

Fragment shaders can read varying variables that correspond to the attributes
of the fragments produced by rasterization. The OpenGL Shading Language Spec-
ification defines a set of built-in varying variables that can be be accessed by a

Version 2.1 - December 1, 2006

3.11. FRAGMENT SHADERS 197

fragment shader. These built-in varying variables include the data associated with
a fragment that are used for fixed-function fragment processing, such as the frag-
ment’s position, color, secondary color, texture coordinates, fog coordinate, and
eye z coordinate.

Additionally, when a vertex shader is active, it may define one or more varying
variables (see section 2.15.3 and the OpenGL Shading Language Specification).
These values are interpolated across the primitive being rendered. The results of
these interpolations are available when varying variables of the same name are
defined in the fragment shader.

User-defined varying variables are not saved in the current raster position.
When processing fragments generated by the rasterization of a pixel rectangle or
bitmap, that values of user-defined varying variables are undefined. Built-in vary-
ing variables have well-defined values.

3.11.2 Shader Execution

If a fragment shader is active, the executable version of the fragment shader is used
to process incoming fragment values that are the result of point, line segment, poly-
gon, pixel rectangle or bitmap rasterization rather than the fixed-function fragment
processing described in sections 3.8 through 3.10. In particular,

e The texture environments and texture functions described in section 3.8.13
are not applied.

e Texture application as described in section 3.8.16 is not applied.
e Color sum as described in section 3.9 is not applied.

e Fog as described in section 3.10 is not applied.

Texture Access

When a texture lookup is performed in a fragment shader, the GL computes the
filtered texture value 7 in the manner described in sections 3.8.8 and 3.8.9, and
converts it to a texture source color C according to table 3.20 (section 3.8.13).
The GL returns a four-component vector (Rg, Gs, B, As) to the fragment shader.

.) i du du dv dv dw
For the purposes of level-of-detail calculations, the derivates d° dy’ dz* dy’ dr

and %’ may be approximated by a differencing algorithm as detailed in section 8.8
of the OpenGL Shading Language specification.

Version 2.1 - December 1, 2006

198 CHAPTER 3. RASTERIZATION

Texture lookups involving textures with depth component data can either re-
turn the depth data directly or return the results of a comparison with the r tex-
ture coordinate used to perform the lookup. The comparison operation is re-
quested in the shader by using the shadow sampler types (samplerlDShadow
or sampler2DShadow) and in the texture using the TEXTURE_COMPARE_MODE pa-
rameter. These requests must be consistent; the results of a texture lookup are
undefined if:

e The sampler used in a texture lookup function is of type samplerlD or
sampler2D, and the texture object’s internal format is DEPTH_COMPONENT,
and the TEXTURE_COMPARE_MODE i8 not NONE.

e The sampler used in a texture lookup function is of type sampler1DShadow
or sampler2DShadow, and the texture object’s internal format is
DEPTH_COMPONENT, and the TEXTURE_COMPARE _MODE is NONE.

e The sampler used in a texture lookup function is of type sampler1DShadow
or sampler2DShadow, and the texture object’s internal format is not
DEPTH_COMPONENT.

If a fragment shader uses a sampler whose associated texture object is not com-
plete, as defined in section 3.8.10, the texture image unit will return (R, G, B, A)
=(0,0,0,1).

The number of separate texture units that can be accessed from within a
fragment shader during the rendering of a single primitive is specified by the
implementation- dependent constant MAX_TEXTURE_IMAGE_UNITS.

Shader Inputs

The OpenGL Shading Language specification describes the values that are avail-
able as inputs to the fragment shader.

The built-in variable g1 _FragCoord holds the window coordinates x, vy, 2,
and % for the fragment. The z component of gl _FragCoord undergoes an im-
plied conversion to floating-point. This conversion must leave the values 0 and
1 invariant. Note that this z component already has a polygon offset added in, if
enabled (see section 3.5.5. The % value is computed from the w, coordinate (see
section 2.11), which is the result of the product of the projection matrix and the
vertex’s eye coordinates.

The built-in variables g1 _Color and gl_SecondaryColor hold the R, G, B,
and A components, respectively, of the fragment color and secondary color. Each

Version 2.1 - December 1, 2006

3.11. FRAGMENT SHADERS 199

fixed-point color component undergoes an implied conversion to floating-point.
This conversion must leave the values 0 and 1 invariant.

The built-in variable g1 _FrontFacing is set to TRUE if the fragment is gener-
ated from a front facing primitive, and FALSE otherwise. For fragments generated
from polygon, triangle, or quadrilateral primitives (including ones resulting from
polygons rendered as points or lines), the determination is made by examining the
sign of the area computed by equation 2.6 of section 2.14.1 (including the possible
reversal of this sign controlled by FrontFace). If the sign is positive, fragments
generated by the primitive are front facing; otherwise, they are back facing. All
other fragments are considered front facing.

Shader Outputs

The OpenGL Shading Language specification describes the values that may be
output by a fragment shader. These are g1 FragColor, gl FragDatal[n], and
gl_FragDepth. The final fragment color values or the final fragment data values
written by a fragment shader are clamped to the range [0, 1] and then converted to
fixed-point as described in section 2.14.9. The final fragment depth written by a
fragment shader is first clamped to [0, 1] and then converted to fixed-point as if it
were a window z value (see section 2.11.1). Note that the depth range computation
is not applied here, only the conversion to fixed-point.

Writing to gl FragColor specifies the fragment color (color number
zero) that will be used by subsequent stages of the pipeline. Writing to
gl _FragData[n] specifies the value of fragment color number n. Any colors,
or color components, associated with a fragment that are not written by the frag-
ment shader are undefined. A fragment shader may not statically assign values to
both gl _FragColor and gl _FragData. In this case, a compile or link error will
result. A shader statically assigns a value to a variable if, after pre-processing, it
contains a statement that would write to the variable, whether or not run-time flow
of control will cause that statement to be executed.

Writing to gl _FragDepth specifies the depth value for the fragment being
processed. If the active fragment shader does not statically assign a value to
gl_FragDepth, then the depth value generated during rasterization is used by sub-
sequent stages of the pipeline. Otherwise, the value assigned to g1 _FragDepth is
used, and is undefined for any fragments where statements assigning a value to
gl_FragDepth are not executed. Thus, if a shader statically assigns a value to
gl_FragDepth, then it is responsible for always writing it.

Version 2.1 - December 1, 2006

200 CHAPTER 3. RASTERIZATION

3.12 Antialiasing Application

If antialiasing is enabled for the primitive from which a rasterized fragment was
produced, then the computed coverage value is applied to the fragment. In RGBA
mode, the value is multiplied by the fragment’s alpha (A) value to yield a final
alpha value. In color index mode, the value is used to set the low order bits of
the color index value as described in section 3.2. The coverage value is applied
separately to each fragment color.

3.13 Multisample Point Fade

Finally, if multisampling is enabled and the rasterized fragment results from a point
primitive, then the computed fade factor from equation 3.2 is applied to the frag-
ment. In RGBA mode, the fade factor is multiplied by the fragment’s alpha value
to yield a final alpha value. In color index mode, the fade factor has no effect. The
fade factor is applied separately to each fragment color.

Version 2.1 - December 1, 2006

Chapter 4

Per-Fragment Operations and the
Framebuffer

The framebuffer consists of a set of pixels arranged as a two-dimensional array.
The height and width of this array may vary from one GL implementation to an-
other. For purposes of this discussion, each pixel in the framebuffer is simply a set
of some number of bits. The number of bits per pixel may also vary depending on
the particular GL implementation or context.

Corresponding bits from each pixel in the framebuffer are grouped together
into a bitplane; each bitplane contains a single bit from each pixel. These bitplanes
are grouped into several logical buffers. These are the color, depth, stencil, and
accumulation buffers. The color buffer actually consists of a number of buffers:
the front left buffer, the front right buffer, the back left buffer, the back right buffer,
and some number of auxiliary buffers. Typically the contents of the front buffers
are displayed on a color monitor while the contents of the back buffers are invisi-
ble. (Monoscopic contexts display only the front left buffer; stereoscopic contexts
display both the front left and the front right buffers.) The contents of the aux-
iliary buffers are never visible. All color buffers must have the same number of
bitplanes, although an implementation or context may choose not to provide right
buffers, back buffers, or auxiliary buffers at all. Further, an implementation or
context may not provide depth, stencil, or accumulation buffers.

Color buffers consist of either unsigned integer color indices or R, G, B, and,
optionally, A unsigned integer values. The number of bitplanes in each of the color
buffers, the depth buffer, the stencil buffer, and the accumulation buffer is fixed and
window dependent. If an accumulation buffer is provided, it must have at least as
many bitplanes per R, G, and B color component as do the color buffers.

The initial state of all provided bitplanes is undefined.

201

202 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

Fragment Pixel) Alpha
> Scissor
+ Ownership > — Test
Associated Test Test (RGBA Only)
Data

Depth buffer < Stencil o ————————
Test Test

Framebuffer J Framebuffer J

pp-| Blending | gy Dithering [~ Logicop [—= o
(RGBA Only) Framebuffer

Il Il

Framebuffer Framebuffer

Figure 4.1. Per-fragment operations.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinates of (2, y,,) mod-
ifies the pixel in the framebuffer at that location based on a number of parame-
ters and conditions. We describe these modifications and tests, diagrammed in
figure 4.1, in the order in which they are performed. Figure 4.1 diagrams these
modifications and tests.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location (x4, ¥,) in the framebuffer
is currently owned by the GL (more precisely, by this GL context). If it is not,
the window system decides the fate the incoming fragment. Possible results are
that the fragment is discarded or that some subset of the subsequent per-fragment
operations are applied to the fragment. This test allows the window system to
control the GL’s behavior, for instance, when a GL window is obscured.

Version 2.1 - December 1, 2006

4.1. PER-FRAGMENT OPERATIONS 203

4.1.2 Scissor Test

The scissor test determines if (z,, ¥,,) lies within the scissor rectangle defined by
four values. These values are set with

void Scissor(int left, int bottom, sizei width,
sizeil height);

If left < xy, < left + width and bottom < y,, < bottom + height, then the scissor
test passes. Otherwise, the test fails and the fragment is discarded. The test is
enabled or disabled using Enable or Disable using the constant SCISSOR_TEST.
When disabled, it is as if the scissor test always passes. If either width or height
is less than zero, then the error INVALID_VALUE is generated. The state required
consists of four integer values and a bit indicating whether the test is enabled or
disabled. In the initial state le ft = bottom = 0; width and height are determined
by the size of the GL window. Initially, the scissor test is disabled.

4.1.3 Multisample Fragment Operations

This step modifies fragment alpha and coverage values based on the values
of SAMPLE ALPHA TO_COVERAGE, SAMPLE_ALPHA TO_ONE, SAMPLE_COVERAGE,
SAMPLE_COVERAGE_VALUE, and SAMPLE_COVERAGE_INVERT. No changes to the
fragment alpha or coverage values are made at this step if MULTISAMPLE is dis-
abled, or if the value of SAMPLE_BUFFERS is not one.

SAMPLE_ALPHA _TO_COVERAGE, SAMPLE_ALPHA TO_ONE, and
SAMPLE_COVERAGE are enabled and disabled by calling Enable and Disable
with cap specified as one of the three token values. All three values are
queried by calling IsEnabled with cap set to the desired token value. If
SAMPLE_ALPHA_TO_COVERAGE is enabled, a temporary coverage value is gen-
erated where each bit is determined by the alpha value at the corresponding
sample location. The temporary coverage value is then ANDed with the fragment
coverage value. Otherwise the fragment coverage value is unchanged at this point.
If multiple colors are written by a fragment shader, the alpha value of fragment
color zero is used to determine the temporary coverage value.

No specific algorithm is required for converting the sample alpha values to a
temporary coverage value. It is intended that the number of 1’s in the temporary
coverage be proportional to the set of alpha values for the fragment, with all 1’s
corresponding to the maximum of all alpha values, and all 0’s corresponding to
all alpha values being 0. It is also intended that the algorithm be pseudo-random
in nature, to avoid image artifacts due to regular coverage sample locations. The
algorithm can and probably should be different at different pixel locations. If it

Version 2.1 - December 1, 2006

204 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

does differ, it should be defined relative to window, not screen, coordinates, so that
rendering results are invariant with respect to window position.

Next, if SAMPLE_ALPHA_TO_ONE is enabled, each alpha value is replaced by the
maximum representable alpha value. Otherwise, the alpha values are not changed.

Finally, if SAMPLE_COVERAGE is enabled, the fragment coverage is ANDed
with another temporary coverage. This temporary coverage is generated
in the same manner as the one described above, but as a function of
the value of SAMPLE_COVERAGE_VALUE. The function need not be identical,
but it must have the same properties of proportionality and invariance. If
SAMPLE_COVERAGE_INVERT is TRUE, the temporary coverage is inverted (all bit
values are inverted) before it is ANDed with the fragment coverage.

The values of SAMPLE_COVERAGE_VALUE and SAMPLE_COVERAGE_INVERT
are specified by calling

void SampleCoverage(clampf value, boolean invert);

with value set to the desired coverage value, and invert set to TRUE or FALSE.
value is clamped to [0,1] before being stored as SAMPLE_COVERAGE_VALUE.
SAMPLE_COVERAGE_VALUE is queried by calling GetFloatv with pname set to
SAMPLE_COVERAGE_VALUE. SAMPLE_COVERAGE_INVERT is queried by calling
GetBooleanv with pname set to SAMPLE_COVERAGE_INVERT.

4.1.4 Alpha Test

This step applies only in RGBA mode. In color index mode, proceed to the next
operation. The alpha test discards a fragment conditional on the outcome of a
comparison between the incoming fragment’s alpha value and a constant value. If
multiple colors are written by a fragment shader, the alpha value of fragment color
zero is used to determine the result of the alpha test. The comparison is enabled
or disabled with the generic Enable and Disable commands using the symbolic
constant ALPHA_TEST. When disabled, it is as if the comparison always passes.
The test is controlled with

void AlphaFunc(enum func, clampf ref);

func is a symbolic constant indicating the alpha test function; ref is a reference
value. ref is clamped to lie in [0, 1], and then converted to a fixed-point value ac-
cording to the rules given for an A component in section 2.14.9. For purposes
of the alpha test, the fragment’s alpha value is also rounded to the nearest inte-
ger. The possible constants specifying the test function are NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL, meaning pass the fragment

Version 2.1 - December 1, 2006

4.1. PER-FRAGMENT OPERATIONS 205

never, always, if the fragment’s alpha value is less than, less than or equal to, equal
to, greater than or equal to, greater than, or not equal to the reference value, respec-
tively.

The required state consists of the floating-point reference value, an eight-
valued integer indicating the comparison function, and a bit indicating if the com-
parison is enabled or disabled. The initial state is for the reference value to be 0
and the function to be ALWAYS. Initially, the alpha test is disabled.

4.1.5 Stencil Test

The stencil test conditionally discards a fragment based on the outcome of a com-
parison between the value in the stencil buffer at location (z,,, y,,) and a reference
value. The test is enabled or disabled with the Enable and Disable commands,
using the symbolic constant STENCIL_TEST. When disabled, the stencil test and
associated modifications are not made, and the fragment is always passed.

The stencil test is controlled with

void StencilFunc(enum func, int ref, uint mask);

void StencilFuncSeparate(enum face, enum func, int ref,
uint mask);

void StencilOp(enum sfail, enum dpfail, enum dppass);

void StencilOpSeparate(enum face, enum sfail, enum dpfail,
enum dppass);

There are two sets of stencil-related state, the front stencil state set and the back
stencil state set. Stencil tests and writes use the front set of stencil state when pro-
cessing fragments rasterized from non-polygon primitives (points, lines, bitmaps,
image rectangles) and front-facing polygon primitives while the back set of stencil
state is used when processing fragments rasterized from back-facing polygon prim-
itives. For the purposes of stencil testing, a primitive is still considered a polygon
even if the polygon is to be rasterized as points or lines due to the current poly-
gon mode. Whether a polygon is front- or back-facing is determined in the same
manner used for two-sided lighting and face culling (see sections 2.14.1 and 3.5.1).

StencilFuncSeparate and StencilOpSeparate take a face argument which can
be FRONT, BACK, or FRONT_AND_BACK and indicates which set of state is affected.
StencilFunc and StencilOp set front and back stencil state to identical values.

StencilFunc and StencilFuncSeparate take three arguments that control
whether the stencil test passes or fails. ref is an integer reference value that is
used in the unsigned stencil comparison. It is clamped to the range [0,2° — 1],
where s is the number of bits in the stencil buffer. The s least significant bits of

Version 2.1 - December 1, 2006

206 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

mask are bitwise ANDed with both the reference and the stored stencil value, and
the resulting masked values are those that participate in the comparison controlled
by func. func is a symbolic constant that determines the stencil comparison func-
tion; the eight symbolic constants are NEVER, ALWAYS, LESS, LEQUAL, EQUAL,
GEQUAL, GREATER, or NOTEQUAL. Accordingly, the stencil test passes never, al-
ways, and if the masked reference value is less than, less than or equal to, equal to,
greater than or equal to, greater than, or not equal to the masked stored value in the
stencil buffer.

StencilOp and StencilOpSeparate take three arguments that indicate what
happens to the stored stencil value if this or certain subsequent tests fail or pass.
sfail indicates what action is taken if the stencil test fails. The symbolic constants
are KEEP, ZERO, REPLACE, INCR, DECR, INVERT, INCR_WRAP, and DECR_WRAP.
These correspond to keeping the current value, setting to zero, replacing with the
reference value, incrementing with saturation, decrementing with saturation, bit-
wise inverting it, incrementing without saturation, and decrementing without satu-
ration.

For purposes of increment and decrement, the stencil bits are considered as an
unsigned integer. Incrementing or decrementing with saturation clamps the stencil
value at 0 and the maximum representable value. Incrementing or decrementing
without saturation will wrap such that incrementing the maximum representable
value results in 0, and decrementing O results in the maximum representable value.

The same symbolic values are given to indicate the stencil action if the depth
buffer test (see section 4.1.6) fails (dpfail), or if it passes (dppass).

If the stencil test fails, the incoming fragment is discarded. The state required
consists of the most recent values passed to StencilFunc or StencilFuncSeparate
and to StencilOp or StencilOpSeparate, and a bit indicating whether stencil test-
ing is enabled or disabled. In the initial state, stenciling is disabled, the front and
back stencil reference value are both zero, the front and back stencil comparison
functions are both ALWAYS, and the front and back stencil mask are both all ones.
Initially, all three front and back stencil operations are KEEP.

If there is no stencil buffer, no stencil modification can occur, and it is as if the
stencil tests always pass, regardless of any calls to StencilFunc.

4.1.6 Depth Buffer Test

The depth buffer test discards the incoming fragment if a depth comparison fails.
The comparison is enabled or disabled with the generic Enable and Disable com-
mands using the symbolic constant DEPTH_TEST. When disabled, the depth com-
parison and subsequent possible updates to the depth buffer value are bypassed and
the fragment is passed to the next operation. The stencil value, however, is modi-

Version 2.1 - December 1, 2006

4.1. PER-FRAGMENT OPERATIONS 207

fied as indicated below as if the depth buffer test passed. If enabled, the comparison
takes place and the depth buffer and stencil value may subsequently be modified.
The comparison is specified with

void DepthFunc(enum func);

This command takes a single symbolic constant: one of NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth buffer
test passes never, always, if the incoming fragment’s z,, value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal to
the depth value stored at the location given by the incoming fragment’s (., ¥)
coordinates.

If the depth buffer test fails, the incoming fragment is discarded. The stencil
value at the fragment’s (z,,, ¥y,) coordinates is updated according to the function
currently in effect for depth buffer test failure. Otherwise, the fragment continues
to the next operation and the value of the depth buffer at the fragment’s (2, yu)
location is set to the fragment’s z,, value. In this case the stencil value is updated
according to the function currently in effect for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the function
is LESS and the test is disabled.

If there is no depth buffer, it is as if the depth buffer test always passes.

4.1.7 Occlusion Queries

Occlusion queries can be used to track the number of fragments or samples that
pass the depth test.

Occlusion queries are associated with query objects.

An occlusion query can be started and finished by calling

void BeginQuery(enum target, uint id);
void EndQuery(enum target);

where rarget is SAMPLES _PASSED. If BeginQuery is called with an unused id, that
name is marked as used and associated with a new query object.

BeginQuery with a target of SAMPLES _PASSED resets the current samples-
passed count to zero and sets the query active state to TRUE and the active query
id to id. EndQuery with a target of SAMPLES_PASSED initializes a copy of the
current samples-passed count into the active occlusion query object’s results value,
sets the active occlusion query object’s result available to FALSE, sets the query
active state to FALSE, and the active query id to 0.

Version 2.1 - December 1, 2006

208 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

If BeginQuery is called with an id of zero, while another query is already in
progress with the same target, or where id is the name of a query currently in
progress, an INVALID_OPERATION error is generated.

If EndQuery is called while no query with the same target is in progress, an
INVALID_OPERATION error is generated.

When an occlusion query is active, the samples-passed count increases by
a certain quantity for each fragment that passes the depth test. If the value of
SAMPLE BUFFERS is 0, then the samples-passed count increases by 1 for each
fragment. If the value of SAMPLE BUFFERS is 1, then the samples-passed count
increases by the number of samples whose coverage bit is set. However, imple-
mentations, at their discretion, are allowed to instead increase the samples-passed
count by the value of SAMPLES if any sample in the fragment is covered.

If the samples-passed count overflows, i.e., exceeds the value 2" — 1 (where n
is the number of bits in the samples-passed count), its value becomes undefined. It
is recommended, but not required, that implementations handle this overflow case
by saturating at 2" — 1 and incrementing no further.

The command

void GenQueries(sizei n, uint *ids);

returns n previously unused query object names in ids. These names are marked
as used, but no object is associated with them until the first time they are used by
BeginQuery. Query objects contain one piece of state, an integer result value. This
result value is initialized to zero when the object is created. Any positive integer
except for zero (which is reserved for the GL) is a valid query object name.

Query objects are deleted by calling

void DeleteQueries(sizei n, const uint *ids);

ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. Unused names in ids are silently ignored.

Calling either GenQueries or DeleteQueries while any query of any target is
active causes an INVALID_OPERATION error to be generated.

The necessary state is a single bit indicating whether an occlusion query is
active, the identifier of the currently active occlusion query, and a counter keeping
track of the number of samples that have passed.

4.1.8 Blending

Blending combines the incoming source fragment’s R, G, B, and A values with
the destination R, G, B, and A values stored in the framebuffer at the fragment’s
(Zw, Y) location.

Version 2.1 - December 1, 2006

4.1. PER-FRAGMENT OPERATIONS 209

Source and destination values are combined according to the blend equation,
quadruplets of source and destination weighting factors determined by the blend
functions, and a constant blend color to obtain a new set of R, G, B, and A values,
as described below. Each of these floating-point values is clamped to [0, 1] and
converted back to a fixed-point value in the manner described in section 2.14.9.
The resulting four values are sent to the next operation.

Blending is dependent on the incoming fragment’s alpha value and that of the
corresponding currently stored pixel. Blending applies only in RGBA mode; in
color index mode it is bypassed. Blending is enabled or disabled using Enable or
Disable with the symbolic constant BLEND. If it is disabled, or if logical operation
on color values is enabled (section 4.1.10), proceed to the next operation.

If multiple fragment colors are being written to multiple buffers (see sec-
tion 4.2.1), blending is computed and applied separately for each fragment color
and the corresponding buffer.

Blend Equation

Blending is controlled by the blend equations, defined by the commands

void BlendEquation(enum mode);
void BlendEquationSeparate(enum modeRGB,
enum modeAlpha);

BlendEquationSeparate argument modeRGB determines the RGB blend func-
tion while modeAlpha determines the alpha blend equation. BlendEqua-
tion argument mode determines both the RGB and alpha blend equations.
modeRGB and modeAlpha must each be one of FUNC_ADD, FUNC_SUBTRACT,
FUNC_REVERSE_SUBTRACT, MIN, Or MAX.

Destination (framebuffer) components are taken to be fixed-point values rep-
resented according to the scheme in section 2.14.9 (Final Color Processing), as
are source (fragment) components. Constant color components are taken to be
floating-point values.

Prior to blending, each fixed-point color component undergoes an implied con-
version to floating-point. This conversion must leave the values 0 and 1 invariant.
Blending components are treated as if carried out in floating-point.

Table 4.1 provides the corresponding per-component blend equations for each
mode, whether acting on RGB components for modeRGB or the alpha component
for modeAlpha.

In the table, the s subscript on a color component abbreviation (R, G, B, or
A) refers to the source color component for an incoming fragment, the d subscript

Version 2.1 - December 1, 2006

210 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

Mode RGB Components Alpha Component

FUNC_ADD R=RsxS,+RyxD, | A=A,* S, + Ag* D,
G=Gs*Sy+GqxD,
B =B %Sy, + By x Dy

FUNC_SUBTRACT R=RsxS, —RgxD, | A=A,% S, — Ag* D,
G=Gs*xSy—Ggx* D,y
B =DBs*xS,— Bgx Dy

FUNC_REVERSE_SUBTRACT | R=Ry* D, — Rg* S, | A=Ay;+x D, — As* S,
G=GgxDyg—Gs*S,
B:Bd*Db—Bs*Sb

MIN R = min(Rs, Ry) A = min(4s, Ag)
G = min(Gs, Gy)
B = min(Bg, By)

MAX R = max(Rs, Ry A = max(As, Ag)

()
G = max(Gg, Gq)
B = max(Bs, By)

Table 4.1: RGB and alpha blend equations.

on a color component abbreviation refers to the destination color component at
the corresponding framebuffer location, and the ¢ subscript on a color component
abbreviation refers to the constant blend color component. A color component ab-
breviation without a subscript refers to the new color component resulting from
blending. Additionally, S, Sy, Sp, and S, are the red, green, blue, and alpha com-
ponents of the source weighting factors determined by the source blend function,
and D,, Dy, Dy, and D, are the red, green, blue, and alpha components of the
destination weighting factors determined by the destination blend function. Blend
functions are described below.

Blend Functions

The weighting factors used by the blend equation are determined by the blend
functions. Blend functions are specified with the commands

void BlendFuncSeparate(enum srcRGB, enum dstRGB,
enum srcAlpha, enum dstAlpha);
void BlendFunc(enum src, enumdst);

Version 2.1 - December 1, 2006

4.1. PER-FRAGMENT OPERATIONS 211

Function RGB Blend Factors Alpha Blend Factor
(Sr,Sg,8p) or (D, Dy, Dy) | Sqor Dy
ZERO (0,0,0) 0
ONE (1,1,1) 1
SRC_COLOR (Rs,Gs, Bs) Ay
ONE_MINUS_SRC_COLOR (1,1,1) — (Rs, G5, Bs) 1— A
DST_COLOR (Rd, Gy, Bd) Ay
ONE_MINUS_DST_COLOR (1,1,1) — (Rg4, G4, By) 1— Ay
SRC_ALPHA (As, As, Ay) A,
ONE_MINUS_SRC_ALPHA (1,1,1) — (As, As, As) 1— A,
DST_ALPHA (Ag, Ag, Ag) Ay
ONE_MINUS_DST_ALPHA (1,1,1) — (Aq, Ag, Ag) 1— Ay
CONSTANT_COLOR (R, Ge, Be) A,
ONE_MINUS_CONSTANT_COLOR | (1,1,1) — (R, G¢, Be) 1- A,
CONSTANT_ALPHA (Ac, Ac, Ae) A,
ONE_MINUS_CONSTANT ALPHA | (1,1,1) — (A4, A, Ac) 1— A,
SRC_ALPHA_SATURATE! (f, £,)? 1

Table 4.2: RGB and ALPHA source and destination blending functions and the
corresponding blend factors. Addition and subtraction of triplets is performed
component-wise.

! SRC_ALPHA_SATURATE is valid only for source RGB and alpha blending func-
tions.

2 f =min(4,,1 — Ay).

BlendFuncSeparate arguments srcRGB and dstRGB determine the source and
destination RGB blend functions, respectively, while srcAlpha and dstAlpha deter-
mine the source and destination alpha blend functions. BlendFunc argument src
determines both RGB and alpha source functions, while dst determines both RGB
and alpha destination functions.

The possible source and destination blend functions and their corresponding
computed blend factors are summarized in table 4.2.

Blend Color

The constant color C., to be used in blending is specified with the command

void BlendColor(clampf red, clampf green, clampf blue,
clampf alpha);

Version 2.1 - December 1, 2006

212 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

The four parameters are clamped to the range [0, 1] before being stored. The
constant color can be used in both the source and destination blending functions

Blending State

The state required for blending is two integers for the RGB and alpha blend equa-
tions, four integers indicating the source and destination RGB and alpha blending
functions, four floating-point values to store the RGBA constant blend color, and a
bit indicating whether blending is enabled or disabled. The initial blend equations
for RGB and alpha are both FuNC_ADD. The initial blending functions are ONE for
the source RGB and alpha functions and zERO for the destination RGB and alpha
functions. The initial constant blend color is (R, G, B, A) = (0,0,0,0). Initially,
blending is disabled.

Blending occurs once for each color buffer currently enabled for writing (sec-
tion 4.2.1) using each buffer’s color for C'y. If a color buffer has no A value, then
A, is taken to be 1.

4.1.9 Dithering

Dithering selects between two color values or indices. In RGBA mode, consider
the value of any of the color components as a fixed-point value with m bits to the
left of the binary point, where m is the number of bits allocated to that component
in the framebuffer; call each such value c. For each ¢, dithering selects a value
¢1 such that ¢; € {max{0, [¢] — 1}, [¢]} (after this selection, treat c; as a fixed
point value in [0,1] with m bits). This selection may depend on the x,, and ¥,
coordinates of the pixel. In color index mode, the same rule applies with c being a
single color index. ¢ must not be larger than the maximum value representable in
the framebuffer for either the component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered value produced by any
algorithm must depend only the incoming value and the fragment’s x and y window
coordinates. If dithering is disabled, then each color component is truncated to a
fixed-point value with as many bits as there are in the corresponding component in
the framebuffer; a color index is rounded to the nearest integer representable in the
color index portion of the framebuffer.

Dithering is enabled with Enable and disabled with Disable using the symbolic
constant DITHER. The state required is thus a single bit. Initially, dithering is
enabled.

Version 2.1 - December 1, 2006

4.1. PER-FRAGMENT OPERATIONS 213

4.1.10 Logical Operation

Finally, a logical operation is applied between the incoming fragment’s color or
index values and the color or index values stored at the corresponding location in
the framebuffer. The result replaces the values in the framebuffer at the fragment’s
(Zw, yw) coordinates. The logical operation on color indices is enabled or dis-
abled with Enable or Disable using the symbolic constant INDEX_1LOGIC_OP. (For
compatibility with GL version 1.0, the symbolic constant LOGIC_OP may also be
used.) The logical operation on color values is enabled or disabled with Enable or
Disable using the symbolic constant COLOR_LOGIC-OP. If the logical operation is
enabled for color values, it is as if blending were disabled, regardless of the value
of BLEND. If multiple fragment colors are being written to multiple buffers (see
section 4.2.1), the logical operation is computed and applied separately for each
fragment color and the corresponding buffer.
The logical operation is selected by

void LogicOp(enumop);

op is a symbolic constant; the possible constants and corresponding operations are
enumerated in table 4.3. In this table, s is the value of the incoming fragment and d
is the value stored in the framebuffer. The numeric values assigned to the symbolic
constants are the same as those assigned to the corresponding symbolic values in
the X window system.

Logical operations are performed independently for each color index buffer
that is selected for writing, or for each red, green, blue, and alpha value of each
color buffer that is selected for writing. The required state is an integer indicating
the logical operation, and two bits indicating whether the logical operation is en-
abled or disabled. The initial state is for the logic operation to be given by COPY,
and to be disabled.

4.1.11 Additional Multisample Fragment Operations

If the DrawBuffer mode is NONE, no change is made to any multisample or color
buffer. Otherwise, fragment processing is as described below.

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, the
alpha test, stencil test, depth test, blending, and dithering operations are performed
for each pixel sample, rather than just once for each fragment. Failure of the alpha,
stencil, or depth test results in termination of the processing of that sample, rather
than discarding of the fragment. All operations are performed on the color, depth,
and stencil values stored in the multisample buffer (to be described in a following
section). The contents of the color buffers are not modified at this point.

Version 2.1 - December 1, 2006

214

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

Argument value | Operation
CLEAR 0

AND sAd
AND_REVERSE s A\ —d
COPY S
AND_INVERTED s Ad
NOOP d

XOR s xor d
OR sVd
NOR —(sVd)
EQUIV —(s xor d)
INVERT -d
OR_REVERSE sV —d
COPY_INVERTED | —§
OR_INVERTED —sVd
NAND (s Ad)
SET all 1’s

Table 4.3: Arguments to LogicOp and their corresponding operations.

Stencil, depth, blending, and dithering operations are performed for a pixel
sample only if that sample’s fragment coverage bit is a value of 1. If the corre-
sponding coverage bit is 0, no operations are performed for that sample.

If MULTISAMPLE is disabled, and the value of SAMPLE_BUFFERS is one, the
fragment may be treated exactly as described above, with optimization possible
because the fragment coverage must be set to full coverage. Further optimization is
allowed, however. An implementation may choose to identify a centermost sample,
and to perform alpha, stencil, and depth tests on only that sample. Regardless of
the outcome of the stencil test, all multisample buffer stencil sample values are set
to the appropriate new stencil value. If the depth test passes, all multisample buffer
depth sample values are set to the depth of the fragment’s centermost sample’s
depth value, and all multisample buffer color sample values are set to the color
value of the incoming fragment. Otherwise, no change is made to any multisample
buffer color or depth value.

After all operations have been completed on the multisample buffer, the sample
values for each color in the multisample buffer are combined to produce a single
color value, and that value is written into the corresponding color buffers selected
by DrawBuffer or DrawBuffers. An implementation may defer the writing of the
color buffers until a later time, but the state of the framebuffer must behave as if

Version 2.1 - December 1, 2006

4.2. WHOLE FRAMEBUFFER OPERATIONS 215

the color buffers were updated as each fragment was processed. The method of
combination is not specified, though a simple average computed independently for
each color component is recommended.

4.2 Whole Framebuffer Operations

The preceding sections described the operations that occur as individual fragments
are sent to the framebuffer. This section describes operations that control or affect
the whole framebuffer.

4.2.1 Selecting a Buffer for Writing

The first such operation is controlling the color buffers into which each of the frag-
ment colors are written. This is accomplished with either DrawBuffer or Draw-
Buffers.

The command
void DrawBuffer(enum buf);

defines the set of color buffers to which fragment color zero is written. buf is a
symbolic constant specifying zero, one, two, or four buffers for writing. The con-
stants are NONE, FRONT_LEFT, FRONT_RIGHT, BACK_LEFT, BACK_-RIGHT, FRONT,
BACK, LEFT, RIGHT, FRONT_AND_BACK, and AUXO0 through AUXm, where m + 1 is
the number of available auxiliary buffers.

The constants refer to the four potentially visible buffers front_left, front_right,
back_left, and back_right, and to the auxiliary buffers. Arguments other than AUX:
that omit reference to LEFT or RIGHT refer to both left and right buffers. Argu-
ments other than AUX: that omit reference to FRONT or BACK refer to both front and
back buffers. AUX: enables drawing only to auxiliary buffer . Each AUxi adheres
to AUX: = AUXO0 + ¢. The constants and the buffers they indicate are summarized
in table 4.4. If DrawBuffer is is supplied with a constant (other than NONE) that
does not indicate any of the color buffers allocated to the GL context, the error
INVALID_OPERATION results.

DrawBuffer will set the draw buffer for fragment colors other than zero to
NONE.

The command

void DrawBuffers(sizein, const enum *bufs);

Version 2.1 - December 1, 2006

216 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

symbolic front | front | back | back | aux
constant left | right | left | right | <
NONE

FRONT_LEFT °

FRONT_RIGHT .

BACK_LEFT °

BACK_RIGHT .
FRONT ° °

BACK ° .

LEFT °

RIGHT

FRONT_AND_BACK ° ° °

AUX1 °

Table 4.4: Arguments to DrawBuffer and the buffers that they indicate.

defines the draw buffers to which all fragment colors are written. n specifies the
number of buffers in bufs. bufs is a pointer to an array of symbolic constants
specifying the buffer to which each fragment color is written. The constants may be
NONE, FRONT_LEFT, FRONT_RIGHT, BACK_LEFT, BACK-RIGHT, and AUX0 through
AUXm, where m + 1 is the number of available auxiliary buffers. The draw buffers
being defined correspond in order to the respective fragment colors. The draw
buffer for fragment colors beyond # is set to NONE.

Except for NONE, a buffer may not appear more then once in the array
pointed to by bufs. Specifying a buffer more then once will result in the error
INVALID_OPERATION.

If fixed-function fragment shading is being performed, DrawBuffers specifies
a set of draw buffers into which the fragment color is written.

If a fragment shader writes to gl_FragColor, DrawBuffers specifies a set
of draw buffers into which the single fragment color defined by g1_FragColor
is written. If a fragment shader writes to g1 _FragData, DrawBuffers specifies
a set of draw buffers into which each of the multiple fragment colors defined
by gl FragData are separately written. If a fragment shader writes to neither
gl_FragColor nor gl _FragData, the values of the fragment colors following
shader execution are undefined, and may differ for each fragment color.

The maximum number of draw buffers is implementation dependent and must
be at least 1. The number of draw buffers supported can be queried by calling
GetlIntegerv with the symbolic constant MAX_DRAW_BUFFERS.

The constants FRONT, BACK, LEFT, RIGHT, and FRONT_AND_BACK are not

Version 2.1 - December 1, 2006

4.2. WHOLE FRAMEBUFFER OPERATIONS 217

valid in the bufs array passed to DrawBuffers, and will result in the error
INVALID_OPERATION. This restriction is because these constants may themselves
refer to multiple buffers, as shown in table 4.4.

If DrawBuffers is supplied with a constant (other than NONE) that does
not indicate any of the color buffers allocated to the GL context, the error
INVALID.OPERATION will be generated. If n is greater than the value of
MAX_DRAW_BUFFERS, the error INVALID _VALUE will be generated.

Indicating a buffer or buffers using DrawBuffer or DrawBuffers causes sub-
sequent pixel color value writes to affect the indicated buffers.

Specifying NONE as the draw buffer for an fragment color will inhibit that frag-
ment color from being written to any buffer.

Monoscopic contexts include only left buffers, while stereoscopic contexts in-
clude both left and right buffers. Likewise, single buffered contexts include only
front buffers, while double buffered contexts include both front and back buffers.
The type of context is selected at GL initialization.

The state required to handle color buffer selection is an integer for each sup-
ported fragment color. In the initial state, the draw buffer for fragment color zero
is FRONT if there are no back buffers; otherwise it is BACK. The initial state of draw
buffers for fragment colors other then zero is NONE.

4.2.2 Fine Control of Buffer Updates

Four commands are used to mask the writing of bits to each of the logical frame-
buffers after all per-fragment operations have been performed. The commands

void IndexMask(uint mask);
void ColorMask(boolean r, boolean g, booleanb,
booleana);

control the color buffer or buffers (depending on which buffers are currently indi-
cated for writing). The least significant n bits of mask, where n is the number of
bits in a color index buffer, specify a mask. Where a 1 appears in this mask, the
corresponding bit in the color index buffer (or buffers) is written; where a 0 ap-
pears, the bit is not written. This mask applies only in color index mode. In RGBA
mode, ColorMask is used to mask the writing of R, G, B and A values to the color
buffer or buffers. r, g, b, and a indicate whether R, G, B, or A values, respectively,
are written or not (a value of TRUE means that the corresponding value is written).
In the initial state, all bits (in color index mode) and all color values (in RGBA
mode) are enabled for writing.
The depth buffer can be enabled or disabled for writing z,, values using

Version 2.1 - December 1, 2006

218 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

void DepthMask(boolean mask);

If mask is non-zero, the depth buffer is enabled for writing; otherwise, it is disabled.
In the initial state, the depth buffer is enabled for writing.
The commands

void StencilMask(uint mask);
void StencilMaskSeparate(enum face, uint mask);

control the writing of particular bits into the stencil planes.

The least significant s bits of mask comprise an integer mask (s is the number
of bits in the stencil buffer), just as for IndexMask. The face parameter of Stencil-
MaskSeparate can be FRONT, BACK, or FRONT_AND_BACK and indicates whether
the front or back stencil mask state is affected. StencilMask sets both front and
back stencil mask state to identical values.

Fragments generated by front facing primitives use the front mask and frag-
ments generated by back facing primitives use the back mask (see section 4.1.5).
The clear operation always uses the front stencil write mask when clearing the
stencil buffer.

The state required for the various masking operations is three integers and a
bit: an integer for color indices, an integer for the front and back stencil values,
and a bit for depth values. A set of four bits is also required indicating which color
components of an RGBA value should be written. In the initial state, the integer
masks are all ones, as are the bits controlling depth value and RGBA component
writing.

Fine Control of Multisample Buffer Updates

When the value of SAMPLE _BUFFERS is one, ColorMask, DepthMask, and Sten-
cilMask or StencilMaskSeparate control the modification of values in the multi-
sample buffer. The color mask has no effect on modifications to the color buffers.
If the color mask is entirely disabled, the color sample values must still be com-
bined (as described above) and the result used to replace the color values of the
buffers enabled by DrawBuffer.

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular buffer
to the same value. The argument to

void Clear(bitfield buf);

Version 2.1 - December 1, 2006

4.2. WHOLE FRAMEBUFFER OPERATIONS 219

is the bitwise OR of a number of values indicating which buffers are
to be cleared. The values are COLOR.BUFFER_BIT, DEPTH_BUFFER_BIT,
STENCIL_BUFFER BIT, and ACCUM BUFFER_BIT, indicating the buffers currently
enabled for color writing, the depth buffer, the stencil buffer, and the accumulation
buffer (see below), respectively. The value to which each buffer is cleared depends
on the setting of the clear value for that buffer. If the mask is not a bitwise OR of
the specified values, then the error INVALID_VALUE is generated.

void ClearColor(clampf r, clampf g, clampf b,
clampfa);

sets the clear value for the color buffers in RGBA mode. Each of the specified
components is clamped to [0, 1] and converted to fixed-point according to the rules
of section 2.14.9.

void ClearIndex(float index);

sets the clear color index. index is converted to a fixed-point value with unspecified
precision to the left of the binary point; the integer part of this value is then masked
with 2™ — 1, where m is the number of bits in a color index value stored in the
framebuffer.

void ClearDepth(clampdd);

takes a floating-point value that is clamped to the range [0, 1] and converted to
fixed-point according to the rules for a window z value given in section 2.11.1.
Similarly,

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil buffer.
s is masked to the number of bitplanes in the stencil buffer.

void ClearAccum(float r, float g, float b, float a);

takes four floating-point arguments that are the values, in order, to which to set the
R, G, B, and A values of the accumulation buffer (see the next section). These
values are clamped to the range [—1, 1] when they are specified.

When Clear is called, the only per-fragment operations that are applied (if
enabled) are the pixel ownership test, the scissor test, and dithering. The masking
operations described in the last section (4.2.2) are also effective. If a buffer is not
present, then a Clear directed at that buffer has no effect.

Version 2.1 - December 1, 2006

220 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

The state required for clearing is a clear value for each of the color buffer, the
depth buffer, the stencil buffer, and the accumulation buffer. Initially, the RGBA
color clear value is (0,0,0,0), the clear color index is 0, and the stencil buffer and
accumulation buffer clear values are all 0. The depth buffer clear value is initially
1.0.

Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared when one or more color
buffers are cleared, as specified by the Clear mask bit COLOR_ BUFFER_BIT and
the DrawBuffer mode. If the DrawBuffer mode is NONE, the color samples of the
multisample buffer cannot be cleared.

If the Clear mask bits DEPTH_BUFFER BIT or STENCIL BUFFER_BIT are set,
then the corresponding depth or stencil samples, respectively, are cleared.

4.2.4 The Accumulation Buffer

Each portion of a pixel in the accumulation buffer consists of four values: one for
each of R, G, B, and A. The accumulation buffer is controlled exclusively through
the use of

void Accum(enumop, float value);

(except for clearing it). op is a symbolic constant indicating an accumulation buffer
operation, and value is a floating-point value to be used in that operation. The
possible operations are ACCUM, LOAD, RETURN, MULT, and ADD.

When the scissor test is enabled (section 4.1.2), then only those pixels within
the current scissor box are updated by any Accum operation; otherwise, all pixels
in the window are updated. The accumulation buffer operations apply identically
to every affected pixel, so we describe the effect of each operation on an individ-
ual pixel. Accumulation buffer values are taken to be signed values in the range
[—1,1]. Using accuM obtains R, G, B, and A components from the buffer currently
selected for reading (section 4.3.2). Each component, considered as a fixed-point
value in [0, 1]. (see section 2.14.9), is converted to floating-point. Each result is
then multiplied by value. The results of this multiplication are then added to the
corresponding color component currently in the accumulation buffer, and the re-
sulting color value replaces the current accumulation buffer color value.

The LOAD operation has the same effect as Accun, but the computed values
replace the corresponding accumulation buffer components rather than being added
to them.

Version 2.1 - December 1, 2006

4.3. DRAWING, READING, AND COPYING PIXELS 221

The RETURN operation takes each color value from the accumulation buffer,
multiplies each of the R, G, B, and A components by value, and clamps the re-
sults to the range [0, 1] The resulting color value is placed in the buffers currently
enabled for color writing as if it were a fragment produced from rasterization, ex-
cept that the only per-fragment operations that are applied (if enabled) are the pixel
ownership test, the scissor test (section 4.1.2), and dithering (section 4.1.9). Color
masking (section 4.2.2) is also applied.

The MULT operation multiplies each R, G, B, and A in the accumulation buffer
by value and then returns the scaled color components to their corresponding ac-
cumulation buffer locations. ADD is the same as MULT except that value is added to
each of the color components.

The color components operated on by Accum must be clamped only if the
operation is RETURN. In this case, a value sent to the enabled color buffers is first
clamped to [0, 1]. Otherwise, results are undefined if the result of an operation on
a color component is out of the range [—1, 1].

If there is no accumulation buffer, or if the GL is in color index mode, Accum
generates the error INVALID_OPERATION.

No state (beyond the accumulation buffer itself) is required for accumulation
buffering.

4.3 Drawing, Reading, and Copying Pixels

Pixels may be written to and read from the framebuffer using the DrawPixels and
ReadPixels commands. CopyPixels can be used to copy a block of pixels from
one portion of the framebuffer to another.

4.3.1 Writing to the Stencil Buffer

The operation of DrawPixels was described in section 3.6.4, except if the format
argument was STENCIL_INDEX. In this case, all operations described for Draw-
Pixels take place, but window (z,y) coordinates, each with the corresponding
stencil index, are produced in lieu of fragments. Each coordinate-stencil index pair
is sent directly to the per-fragment operations, bypassing the texture, fog, and an-
tialiasing application stages of rasterization. Each pair is then treated as a fragment
for purposes of the pixel ownership and scissor tests; all other per-fragment opera-
tions are bypassed. Finally, each stencil index is written to its indicated location in
the framebuffer, subject to the current front stencil mask (set with StencilMask or
StencilMaskSeparate). If a depth component is present, and the setting of Depth-
Mask is not FALSE, is also written to the framebuffer; the setting of DepthTest is

Version 2.1 - December 1, 2006

222 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

ignored.
The error INVALID_OPERATION results if there is no stencil buffer.

4.3.2 Reading Pixels

The method for reading pixels from the framebuffer and placing them in pixel
pack buffer or client memory is diagrammed in figure 4.2. We describe the stages
of the pixel reading process in the order in which they occur.

Initially, zero is bound for the PIXEL_PACK_BUFFER, indicating that image
read and query commands such as ReadPixels return pixels results into client
memory pointer parameters. However, if a non-zero buffer object is bound as the
current pixel pack buffer, then the pointer parameter is treated as an offset into the
designated buffer object.

Pixels are read using

void ReadPixels(int x, int y, sizei width, sizei height,
enum format, enum type, void *data);

The arguments after x and y to ReadPixels correspond to those of DrawPixels.
The pixel storage modes that apply to ReadPixels and other commands that query
images (see section 6.1) are summarized in table 4.5.

Obtaining Pixels from the Framebuffer

If the format is DEPTH_COMPONENT, then values are obtained from the depth buffer.
If there is no depth buffer, the error INVALID_OPERATION occurs.

If there is a multisample buffer (the value of SAMPLE_BUFFERS is one), then
values are obtained from the depth samples in this buffer. It is recommended that
the depth value of the centermost sample be used, though implementations may
choose any function of the depth sample values at each pixel.

If the format is STENCIL_INDEX, then values are taken from the stencil buffer;
again, if there is no stencil buffer, the error INVALID_OPERATION Occurs.

If there is a multisample buffer, then values are obtained from the stencil sam-
ples in this buffer. It is recommended that the stencil value of the centermost sam-
ple be used, though implementations may choose any function of the stencil sample
values at each pixel.

For all other formats, the buffer from which values are obtained is one of the
color buffers; the selection of color buffer is controlled with ReadBuffer.

The command

void ReadBuffer(enum src);

Version 2.1 - December 1, 2006

4.3. DRAWING, READING, AND COPYING PIXELS

223

RGBA pixel color index pixel
data in data in
convert
to float
scale
and bias
index to RGBA
looku p
LR RS 8
color table
lookup
post color table] histogram
convolution lookup i

color matrix
scale and bias

: convert
» RGBtolL

byte, short, int, o r float pixel
data stream (index or component)

shown; depth and stencil pixel paths are not shown.

Figure 4.2. Operation of ReadPixels. Operations in dashed boxes may be enabled
or disabled, except in the case of “convert RGB to L”, which is only applied when
reading color data in luminosity formats. RGBA and color index pixel paths are

shift
and offset

index to index
look up

mask to
@"-1)

Version 2.1 - December 1, 2006

224 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

Parameter Name Type Initial Value ‘ Valid Range ‘
PACK_SWAP_BYTES boolean FALSE TRUE/FALSE
PACK_LSB_FIRST boolean FALSE TRUE/FALSE
PACK_ROW_LENGTH integer 0 [0, 00)
PACK_SKIP_ROWS integer 0 [0, 00)
PACK_-SKIP_PIXELS integer 0 [0, 00)
PACK_ALIGNMENT integer 4 1,2,4,8
PACK_-IMAGE_HEIGHT | integer 0 [0, 00)
PACK_SKIP_IMAGES | integer 0 [0, 00)

Table 4.5: PixelStore parameters pertaining to ReadPixels, GetColorTable, Get-
ConvolutionFilter, GetSeparableFilter, GetHistogram, GetMinmax, GetPoly-
gonStipple, and GetTexImage.

takes a symbolic constant as argument. The possible values are FRONT_LEFT,
FRONT_RIGHT, BACK_LEFT, BACK_RIGHT, FRONT, BACK, LEFT, RIGHT, and AUX0
through AUXn. FRONT and LEFT refer to the front left buffer, BACK refers to the
back left buffer, and RIGHT refers to the front right buffer. The other constants cor-
respond directly to the buffers that they name. If the requested buffer is missing,
then the error INVALID_OPERATION is generated. The initial setting for Read-
Buffer is FRONT if there is no back buffer and BACK otherwise.

ReadPixels obtains values from the selected buffer from each pixel with lower
left hand corner at (z + 4,y + j) for 0 < i < width and 0 < j < height; this pixel
is said to be the ith pixel in the jth row. If any of these pixels lies outside of the
window allocated to the current GL context, the values obtained for those pixels
are undefined. Results are also undefined for individual pixels that are not owned
by the current context. Otherwise, ReadPixels obtains values from the selected
buffer, regardless of how those values were placed there.

If the GL is in RGBA mode, and format is one of RED, GREEN, BLUE, ALPHA,
RGB, RGBA, BGR, BGRA, LUMINANCE, or LUMINANCE_ALPHA, then red, green, blue,
and alpha values are obtained from the selected buffer at each pixel location.
If the framebuffer does not support alpha values then the A that is obtained is
1.0. If format is COLOR_.INDEX and the GL is in RGBA mode then the error
INVALID_OPERATION occurs. If the GL is in color index mode, and format is
not DEPTH_.COMPONENT or STENCIL_INDEX, then the color index is obtained at
each pixel location.

Version 2.1 - December 1, 2006

4.3. DRAWING, READING, AND COPYING PIXELS 225

Conversion of RGBA values

This step applies only if the GL is in RGBA mode, and then only if format is
neither STENCIL_INDEX nor DEPTH_.COMPONENT. The R, G, B, and A values form
a group of elements. Each element is taken to be a fixed-point value in [0, 1] with
m bits, where m is the number of bits in the corresponding color component of the
selected buffer (see section 2.14.9).

Conversion of Depth values

This step applies only if format is DEPTH_.COMPONENT. An element is taken to be a
fixed-point value in [0,1] with m bits, where m is the number of bits in the depth
buffer (see section 2.11.1).

Pixel Transfer Operations

This step is actually the sequence of steps that was described separately in sec-
tion 3.6.5. After the processing described in that section is completed, groups are
processed as described in the following sections.

Conversion to L

This step applies only to RGBA component groups, and only if the format is either
LUMINANCE or LUMINANCE_ALPHA. A value L is computed as

L=R+G+B

where R, GG, and B are the values of the R, G, and B components. The single
computed L. component replaces the R, G, and B components in the group.

Final Conversion

For an index, if the fype is not FLOAT, final conversion consists of masking the
index with the value given in table 4.6; if the type is FLOAT, then the integer index
is converted to a GL float data value.

For an RGBA color, each component is first clamped to [0,1]. Then the
appropriate conversion formula from table 4.7 is applied to the component.

Placement in Pixel Pack Buffer or Client Memory

If a pixel pack buffer is bound (as indicated by a non-zero value of
PIXEL_PACK BUFFER_BINDING), data is an offset into the pixel pack buffer and

Version 2.1 - December 1, 2006

226 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

’ type Parameter Index Mask
UNSIGNED BYTE |28 —1
BITMAP 1
BYTE 2T -1
UNSIGNED_SHORT | 216 — 1
SHORT 2 1
UNSIGNED_INT 232 _ 1
INT 231 1

Table 4.6: Index masks used by ReadPixels. Floating point data are not masked.

the pixels are packed into the buffer relative to this offset; otherwise, data is a
pointer to a block client memory and the pixels are packed into the client memory
relative to the pointer. If a pixel pack buffer object is bound and packing the pixel
data according to the pixel pack storage state would access memory beyond the size
of the pixel pack buffer’s memory size, an INVALID_OPERATION error results. If
a pixel pack buffer object is bound and data is not evenly divisible by the number
of basic machine units needed to store in memory the corresponding GL data type
from table 3.5 for the fype parameter, an INVALID_OPERATION error results.

Groups of elements are placed in memory just as they are taken from mem-
ory for DrawPixels. That is, the ith group of the jth row (corresponding to the
ith pixel in the jth row) is placed in memory just where the ith group of the jth
row would be taken from for DrawPixels. See Unpacking under section 3.6.4.
The only difference is that the storage mode parameters whose names begin with
PACK_ are used instead of those whose names begin with UNPACK_. If the format
is RED, GREEN, BLUE, ALPHA, or LUMINANCE, only the corresponding single ele-
ment is written. Likewise if the format is LUMINANCE_ALPHA, RGB, or BGR, only
the corresponding two or three elements are written. Otherwise all the elements of
each group are written.

4.3.3 Copying Pixels

CopyPixels transfers a rectangle of pixel values from one region of the framebuffer
to another. Pixel copying is diagrammed in figure 4.3.

void CopyPixels(int x, int y, sizei width, sizei height,
enum type);

type is a symbolic constant that must be one of COLOR, STENCIL, or DEPTH, indi-
cating that the values to be transferred are colors, stencil values, or depth values,

Version 2.1 - December 1, 2006

4.3. DRAWING, READING, AND COPYING PIXELS 227

type Parameter GL Data Type | Component
Conversion Formula
UNSIGNED_BYTE ubyte c=28-1)f
BYTE byte c=[2-1)f -1]/2
UNSIGNED_SHORT ushort c=02% —1)f
SHORT short c=[2% -1)f —1]/2
UNSIGNED_INT uint c=(22-1)f
INT int c=[2%-1)f -1]/2
FLOAT float c=f
UNSIGNED_BYTE 3.3.2 ubyte c=02N-1)f
UNSIGNED_BYTE_2_3_3_REV ubyte c=02N -1)f
UNSIGNED_SHORT_5_6.5 ushort c=02N-1)f
UNSIGNED_SHORT_5_6_5_REV ushort c=02N -1)f
UNSIGNED_SHORT_4_4_4_4 ushort c=02N -1)f
UNSIGNED_SHORT_4_4_4_4_REV ushort c=02N - 1)f
UNSTGNED_SHORT_5_5_5_1 ushort c=02N -1)f
UNSIGNED_SHORT_1_5_5_5 REV ushort c=02N -1)f
UNSIGNED_TINT_8.8_8_8 uint c=02N -1)f
UNSIGNED_INT_8_8_8_8_REV uint c=02N-1)f
UNSIGNED_INT_10.10.10.2 uint c=02N -1)f
UNSIGNED_INT_2_10.10_.10_REV uint c=02N-1)f

Table 4.7: Reversed component conversions, used when component data are being
returned to client memory. Color, normal, and depth components are converted
from the internal floating-point representation (f) to a datum of the specified GL
data type (c) using the specified equation. All arithmetic is done in the internal
floating point format. These conversions apply to component data returned by GL
query commands and to components of pixel data returned to client memory. The
equations remain the same even if the implemented ranges of the GL data types are
greater than the minimum required ranges. (See table 2.2.) Equations with IV as
the exponent are performed for each bitfield of the packed data type, with N set to
the number of bits in the bitfield.

Version 2.1 - December 1, 2006

228 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

RGBA pixel color index pixel
data from framebuff er } data from framebuff er
convert
to float

scale shift
and bias and offset

index to RGBA
looku p

color table

convolution ¥ color table
scale and bias lookup

post color table histogram
convolution lookup

color matrix minmax
scale and bias

clamp final mask to
to [0,1] conversion (2” -1
RGBA pixel |—> color index pixel |—>
data out data out

Figure 4.3. Operation of CopyPixels. Operations in dashed boxes may be enabled
or disabled. Index-to-RGBA lookup is currently never performed. RGBA and color
index pixel paths are shown; depth and stencil pixel paths are not shown.

Version 2.1 - December 1, 2006

4.3. DRAWING, READING, AND COPYING PIXELS 229

respectively. The first four arguments have the same interpretation as the corre-
sponding arguments to ReadPixels.

Values are obtained from the framebuffer, converted (if appropriate), then sub-
jected to the pixel transfer operations described in section 3.6.5, just as if Read-
Pixels were called with the corresponding arguments. If the type is STENCIL
or DEPTH, then it is as if the format for ReadPixels were STENCIL_INDEX or
DEPTH_COMPONENT, respectively. If the fype is COLOR, then if the GL is in RGBA
mode, it is as if the format were RGBA, while if the GL is in color index mode, it is
as if the format were COLOR_INDEX.

The groups of elements so obtained are then written to the framebuffer just as
if DrawPixels had been given width and height, beginning with final conversion
of elements. The effective format is the same as that already described.

4.3.4 Pixel Draw/Read State

The state required for pixel operations consists of the parameters that are set with
PixelStore, PixelTransfer, and PixelMap. This state has been summarized in
tables 3.1, 3.2, and 3.3. The current setting of ReadBuffer, an integer, is also
required, along with the current raster position (section 2.13). State set with Pixel-
Store is GL client state.

Version 2.1 - December 1, 2006

Chapter 5

Special Functions

This chapter describes additional GL functionality that does not fit easily into any
of the preceding chapters. This functionality consists of evaluators (used to model
curves and surfaces), selection (used to locate rendered primitives on the screen),
feedback (which returns GL results before rasterization), display lists (used to des-
ignate a group of GL commands for later execution by the GL), flushing and fin-
ishing (used to synchronize the GL command stream), and hints.

5.1 Evaluators

Evaluators provide a means to use a polynomial or rational polynomial mapping
to produce vertex, normal, and texture coordinates, and colors. The values so pro-
duced are sent on to further stages of the GL as if they had been provided directly
by the client. Transformations, lighting, primitive assembly, rasterization, and per-
pixel operations are not affected by the use of evaluators.

Consider the R¥-valued polynomial p(u) defined by

p(u) =Y _ Bl'(u)R; (5.1)
=0
with R; € R and

7

Bj'(u) = <n> u'(1—u)",

the ith Bernstein polynomial of degree n (recall that 0° = 1 and (8) = 1). Each
R; is a control point. The relevant command is

void Mapl{fd}(enum target, T ui, T ug, int stride,
int order, T points);

230

5.1. EVALUATORS 231

target ‘ k ‘ Values

MAP1_VERTEX_3 3 | x,y, z vertex coordinates
MAP1_VERTEX_4 4 | x,y, z, w vertex coordinates
MAP1_INDEX 1 | color index

MAP1_COLOR_4 4| R,G,B, A

MAP1_NORMAL 3 | x, y, z normal coordinates
MAP1_TEXTURE_COORD.1 | 1 | s texture coordinate
MAP1_TEXTURE_COORD.2 | 2 | s, t texture coordinates
MAP1_TEXTURE_COORD_3 | 3 | s, t, r texture coordinates
MAP1_TEXTURE_COORD_4 | 4 | s, t, r, q texture coordinates

Table 5.1: Values specified by the target to Map1l. Values are given in the order in
which they are taken.

target is a symbolic constant indicating the range of the defined polynomial. Its
possible values, along with the evaluations that each indicates, are given in ta-
ble 5.1. order is equal to n + 1; The error INVALID_VALUE is generated if order
is less than one or greater than MAX _EVAL_ORDER. points is a pointer to a set of
n + 1 blocks of storage. Each block begins with & single-precision floating-point
or double-precision floating-point values, respectively. The rest of the block may
be filled with arbitrary data. Table 5.1 indicates how &k depends on farget and what
the k values represent in each case.

stride is the number of single- or double-precision values (as appropriate) in
each block of storage. The error INVALID _VALUE results if stride is less than
k. The order of the polynomial, order, is also the number of blocks of storage
containing control points.

uy and ug give two floating-point values that define the endpoints of the pre-
image of the map. When a value v’ is presented for evaluation, the formula used

is
/
IV u — uy
u') =p(——).
p/(u) = p(—t
The error INVALID_VALUE results if u; = us.
Map?2 is analogous to Map1, except that it describes bivariate polynomials of

the form
n m

p(u,v) =Y Y B (u)B]*(v)Ry;.

i=0 j=0

The form of the Map2 command is

Version 2.1 - December 1, 2006

232 CHAPTER 5. SPECIAL FUNCTIONS

Integers Reals
Vertices
EvalMesh -k [ug.uo] [0,1] Normals
EvalPoint [e [0,1] 28R, Texture Coordinates
[vyvol Colors
MapGrid Map
EvalCoord

Figure 5.1. Map Evaluation.

void Map2{fd}(enum target, T ui, T uz, int ustride,
int wuorder, T vy, T vo, int vstride, int vorder, T points);

target is a range type selected from the same group as is used for Mapl, ex-
cept that the string MAP1 is replaced with MAP2. points is a pointer to (n +
1)(m + 1) blocks of storage (uorder = n + 1 and vorder = m + 1; the er-
ror INVALID_VALUE is generated if either worder or vorder is less than one or
greater than MAX_EVAL_ORDER). The values comprising R;; are located

(ustride)i + (vstride)j

values (either single- or double-precision floating-point, as appropriate) past the
first value pointed to by points. u1, us, v1, and vo define the pre-image rectangle
of the map; a domain point (u/, v') is evaluated as

v —u v —u

Pl v) =p ug —uy vy — v

The evaluation of a defined map is enabled or disabled with Enable and
Disable using the constant corresponding to the map as described above. The
evaluator map generates only coordinates for texture unit TEXTUREO. The error
INVALID_VALUE results if either ustride or vstride is less than k, or if u; is equal
to u2, or if v; is equal to vy. If the value of ACTIVE_TEXTURE is not TEXTUREO,
calling Map{12} generates the error INVALID_OPERATION.

Figure 5.1 describes map evaluation schematically; an evaluation of enabled
maps is effected in one of two ways. The first way is to use

void EvalCoord{12}{fd}(T arg);
void EvalCoord{12}{fd}v(T arg);

Version 2.1 - December 1, 2006

5.1. EVALUATORS

EvalCoord1 causes evaluation of the enabled one-dimensional maps. The argu-
ment is the value (or a pointer to the value) that is the domain coordinate, u’. Eval-
Coord2 causes evaluation of the enabled two-dimensional maps. The two values
specify the two domain coordinates, v’ and v/, in that order.

When one of the EvalCoord commands is issued, all currently enabled maps
of the indicated dimension are evaluated. Then, for each enabled map, it is as if a
corresponding GL command were issued with the resulting coordinates, with one
important difference. The difference is that when an evaluation is performed, the
GL uses evaluated values instead of current values for those evaluations that are
enabled (otherwise, the current values are used). The order of the effective com-
mands is immaterial, except that Vertex (for vertex coordinate evaluation) must be
issued last. Use of evaluators has no effect on the current color, normal, or texture
coordinates. If ColorMaterial is enabled, evaluated color values affect the result
of the lighting equation as if the current color was being modified, but no change
is made to the tracking lighting parameters or to the current color.

No command is effectively issued if the corresponding map (of the indicated
dimension) is not enabled. If more than one evaluation is enabled for a particu-
lar dimension (e.g. MAP1_TEXTURE_COORD_1 and MAP1_TEXTURE_COORD.2), then
only the result of the evaluation of the map with the highest number of coordinates
is used.

Finally, if either MAP2 VERTEX_3 or MAP2_VERTEX_4 is enabled, then the nor-
mal to the surface is computed. Analytic computation, which sometimes yields
normals of length zero, is one method which may be used. If automatic normal
generation is enabled, then this computed normal is used as the normal associated
with a generated vertex. Automatic normal generation is controlled with Enable
and Disable with the symbolic constant AUTO_NORMAL. If automatic normal gener-
ation is disabled, then a corresponding normal map, if enabled, is used to produce
a normal. If neither automatic normal generation nor a normal map are enabled,
then no normal is sent with a vertex resulting from an evaluation (the effect is that
the current normal is used).

For MAP_VERTEX_3, let ¢ = p. For MAP VERTEX 4, let q = (z/w,y/w, z/w),
where (z,y, z,w) = p. Then let

04 0

ou " v’
Then the generated analytic normal, n, is given by n = m if a vertex shader is
active, or else by n = H—QH

The second way to carry out evaluations is to use a set of commands that pro-
vide for efficient specification of a series of evenly spaced values to be mapped.
This method proceeds in two steps. The first step is to define a grid in the domain.

Version 2.1 - December 1, 2006

233

234 CHAPTER 5. SPECIAL FUNCTIONS

This is done using
void MapGridl{fd}(int n, Tu}, T uh);
for a one-dimensional map or

void MapGrid2{fd}(int n,, Tu}, T uh, intn,, T},
T vh);

for a two-dimensional map. In the case of MapGridl «) and u/, describe an
interval, while n describes the number of partitions of the interval. The error
INVALID_VALUE results if n < 0. For MapGrid2, (u),v]) specifies one two-
dimensional point and (ub, v5) specifies another. n,, gives the number of partitions
between v} and u, and n,, gives the number of partitions between v} and v4. If
either n,, < 0 or n,, < 0, then the error INVALID_VALUE Occurs.

Once a grid is defined, an evaluation on a rectangular subset of that grid may
be carried out by calling

void EvalMeshl(enum mode, int py, int p2);

mode is either POINT or LINE. The effect is the same as performing the following
code fragment, with Au' = (uf, — u})/n:

Begin (type) ;
for : = p; to po step 1.0
EvalCoordl (i ~ Au' + u));
End () ;

where EvalCoord1f or EvalCoordld is substituted for EvalCoordl as appro-
priate. If mode is POINT, then type is POINTS; if mode is LINE, then type is
LINE_STRIP. The one requirement is that if either © = 0 or ¢ = n, then the value
computed from ¢ x Au' + u] is precisely u} or u, respectively.

The corresponding commands for two-dimensional maps are

void EvalMesh2(enum mode, int pi, int ps, int qi,
int q2);

mode must be FILL, LINE, or POINT. When mode is FILL, then these commands
are equivalent to the following, with Au’ = (u}, — u})/n and Av' = (v, —v})/m:

Version 2.1 - December 1, 2006

5.1. EVALUATORS 235

for i =¢q; toga — 1step 1.0
Begin (QUAD_STRIP) ;
for j = p; to po step 1.0
EvalCoord2 (j » Au' + u}) , i » Av + v));
EvalCoord2 (; » Au' + uj , (i+1) = AV + o]);
End () ;

If mode is LINE, then a call to EvalMesh2 is equivalent to

for i = ¢1 to g2 step 1.0
Begin (LINE_STRIP) ;
for j = p; to py step 1.0
EvalCoord2 (j ~ Au' + u} , i » AV + v]);
End () ;;
for ¢ = p; to py step 1.0
Begin (LINE_STRIP) ;
for j = g1 togastep 1.0
EvalCoord2 (i + Au + u) , j » AV + v]);
End () ;

If mode is POINT, then a call to EvalMesh2 is equivalent to

Begin (POINTS) ;
for : = g1 to g9 step 1.0
for j = p; to pa step 1.0
EvalCoord2 (j « Au' + u} , i » AV + v]);
End () ;

Again, in all three cases, there is the requirement that 0« Au’ 4+ v} = v}, nx Au'+
u) = ub, 0% Av' + v = o], and m * Av' + v] = vl
An evaluation of a single point on the grid may also be carried out:

void EvalPointl(int p);

Calling it is equivalent to the command
EvalCoord1 (p * Au' +u}) ;

with Au’ and v} defined as above.
void EvalPoint2(int p, int q);

is equivalent to the command

Version 2.1 - December 1, 2006

236 CHAPTER 5. SPECIAL FUNCTIONS

EvalCoord2 (p ~ Au' + u}) , ¢ AV + v));

The state required for evaluators potentially consists of 9 one-dimensional map
specifications and 9 two-dimensional map specifications, as well as corresponding
flags for each specification indicating which are enabled. Each map specification
consists of one or two orders, an appropriately sized array of control points, and a
set of two values (for a one-dimensional map) or four values (for a two-dimensional
map) to describe the domain. The maximum possible order, for either u or v, is
implementation dependent (one maximum applies to both u and v), but must be at
least 8. Each control point consists of between one and four floating-point values
(depending on the type of the map). Initially, all maps have order 1 (making them
constant maps). All vertex coordinate maps produce the coordinates (0,0,0, 1)
(or the appropriate subset); all normal coordinate maps produce (0,0, 1); RGBA
maps produce (1, 1,1, 1); color index maps produce 1.0; and texture coordinate
maps produce (0,0,0,1). In the initial state, all maps are disabled. A flag indi-
cates whether or not automatic normal generation is enabled for two-dimensional
maps. In the initial state, automatic normal generation is disabled. Also required
are two floating-point values and an integer number of grid divisions for the one-
dimensional grid specification and four floating-point values and two integer grid
divisions for the two-dimensional grid specification. In the initial state, the bounds
of the domain interval for 1-D is 0 and 1.0, respectively; for 2-D, they are (0,0)
and (1.0,1.0), respectively. The number of grid divisions is 1 for 1-D and 1 in
both directions for 2-D. If any evaluation command is issued when no vertex map
is enabled for the map dimension being evaluated, nothing happens.

5.2 Selection

Selection is used to determine which primitives are drawn into some region of a
window. The region is defined by the current model-view and perspective matrices.

Selection works by returning an array of integer-valued names. This array
represents the current contents of the name stack. This stack is controlled with the
commands

void InitNames(void);
void PopName(void);
void PushName(uint name);
void LoadName(uint name);

InitNames empties (clears) the name stack. PopName pops one name off the top
of the name stack. PushName causes name to be pushed onto the name stack.

Version 2.1 - December 1, 2006

5.2. SELECTION 237

LoadName replaces the value on the top of the stack with name. Loading a name
onto an empty stack generates the error INVALID_OPERATION. Popping a name off
of an empty stack generates STACK_UNDERFLOW; pushing a name onto a full stack
generates STACK_OVERFLOW. The maximum allowable depth of the name stack is
implementation dependent but must be at least 64.

In selection mode, framebuffer updates as described in chapter 4 are not per-
formed. The GL is placed in selection mode with

int RenderMode(enum mode);

mode is a symbolic constant: one of RENDER, SELECT, or FEEDBACK. RENDER is
the default, corresponding to rendering as described until now. SELECT specifies
selection mode, and FEEDBACK specifies feedback mode (described below). Use
of any of the name stack manipulation commands while the GL is not in selection
mode has no effect.

Selection is controlled using

void SelectBuffer(sizei n, uint *buffer);

buffer is a pointer to an array of unsigned integers (called the selection array) to be
potentially filled with names, and » is an integer indicating the maximum number
of values that can be stored in that array. Placing the GL in selection mode before
SelectBuffer has been called results in an error of INVALID_OPERATION as does
calling SelectBuffer while in selection mode.

In selection mode, if a point, line, polygon, or the valid coordinates produced
by a RasterPos command intersects the clip volume (section 2.12) then this prim-
itive (or RasterPos command) causes a selection hziz. WindowPos commands al-
ways generate a selection hit, since the resulting raster position is always valid.
In the case of polygons, no hit occurs if the polygon would have been culled, but
selection is based on the polygon itself, regardless of the setting of PolygonMode.
When in selection mode, whenever a name stack manipulation command is exe-
cuted or RenderMode is called and there has been a hit since the last time the stack
was manipulated or RenderMode was called, then a hit record is written into the
selection array.

A hit record consists of the following items in order: a non-negative integer
giving the number of elements on the name stack at the time of the hit, a minimum
depth value, a maximum depth value, and the name stack with the bottommost el-
ement first. The minimum and maximum depth values are the minimum and max-
imum taken over all the window coordinate z values of each (post-clipping) vertex
of each primitive that intersects the clipping volume since the last hit record was

Version 2.1 - December 1, 2006

238 CHAPTER 5. SPECIAL FUNCTIONS

written. The minimum and maximum (each of which lies in the range [0, 1]) are
each multiplied by 232 — 1 and rounded to the nearest unsigned integer to obtain the
values that are placed in the hit record. No depth offset arithmetic (section 3.5.5)
is performed on these values.

Hit records are placed in the selection array by maintaining a pointer into that
array. When selection mode is entered, the pointer is initialized to the beginning
of the array. Each time a hit record is copied, the pointer is updated to point at
the array element after the one into which the topmost element of the name stack
was stored. If copying the hit record into the selection array would cause the total
number of values to exceed n, then as much of the record as fits in the array is
written and an overflow flag is set.

Selection mode is exited by calling RenderMode with an argument value other
than SELECT. When called while in selection mode, RenderMode returns the
number of hit records copied into the selection array and resets the SelectBuffer
pointer to its last specified value. Values are not guaranteed to be written into the
selection array until RenderMode is called. If the selection array overflow flag
was set, then RenderMode returns —1 and clears the overflow flag. The name
stack is cleared and the stack pointer reset whenever RenderMode is called.

The state required for selection consists of the address of the selection array
and its maximum size, the name stack and its associated pointer, a minimum and
maximum depth value, and several flags. One flag indicates the current Render-
Mode value. In the initial state, the GL is in the RENDER mode. Another flag is
used to indicate whether or not a hit has occurred since the last name stack ma-
nipulation. This flag is reset upon entering selection mode and whenever a name
stack manipulation takes place. One final flag is required to indicate whether the
maximum number of copied names would have been exceeded. This flag is reset
upon entering selection mode. This flag, the address of the selection array, and its
maximum size are GL client state.

5.3 Feedback

The GL is placed in feedback mode by calling RenderMode with FEEDBACK.
When in feedback mode, framebuffer updates as described in chapter 4 are not
performed. Instead, information about primitives that would have otherwise been
rasterized is returned to the application via the feedback buffer.

Feedback is controlled using

void FeedbackBuffer(sizei n, enumtype, float *buffer);

Version 2.1 - December 1, 2006

5.3. FEEDBACK 239

buffer is a pointer to an array of floating-point values into which feedback informa-
tion will be placed, and » is a number indicating the maximum number of values
that can be written to that array. fype is a symbolic constant describing the informa-
tion to be fed back for each vertex (see figure 5.2). The error INVALID_OPERATION
results if the GL is placed in feedback mode before a call to FeedbackBuffer has
been made, or if a call to FeedbackBuffer is made while in feedback mode.

While in feedback mode, each primitive that would be rasterized (or bitmap
or call to DrawPixels or CopyPixels, if the raster position is valid) generates a
block of values that get copied into the feedback array. If doing so would cause
the number of entries to exceed the maximum, the block is partially written so as
to fill the array (if there is any room left at all). The first block of values gener-
ated after the GL enters feedback mode is placed at the beginning of the feedback
array, with subsequent blocks following. Each block begins with a code indicat-
ing the primitive type, followed by values that describe the primitive’s vertices and
associated data. Entries are also written for bitmaps and pixel rectangles. Feed-
back occurs after polygon culling (section 3.5.1) and PolygonMode interpretation
of polygons (section 3.5.4) has taken place. It may also occur after polygons with
more than three edges are broken up into triangles (if the GL implementation ren-
ders polygons by performing this decomposition). z, y, and z coordinates returned
by feedback are window coordinates; if w is returned, it is in clip coordinates. No
depth offset arithmetic (section 3.5.5) is performed on the z values. In the case
of bitmaps and pixel rectangles, the coordinates returned are those of the current
raster position.

The texture coordinates and colors returned are those resulting from the clip-
ping operations described in section 2.14.8. Only coordinates for texture unit
TEXTUREQ are returned even for implementations which support multiple texture
units. The colors returned are the primary colors.

The ordering rules for GL command interpretation also apply in feedback
mode. Each command must be fully interpreted and its effects on both GL state
and the values to be written to the feedback buffer completed before a subsequent
command may be executed.

Feedback mode is exited by calling RenderMode with an argument value other
than FEEDBACK. When called while in feedback mode, RenderMode returns the
number of values placed in the feedback array and resets the feedback array pointer
to be buffer. The return value never exceeds the maximum number of values passed
to FeedbackBuffer.

If writing a value to the feedback buffer would cause more values to be written
than the specified maximum number of values, then the value is not written and an
overflow flag is set. In this case, RenderMode returns —1 when it is called, after
which the overflow flag is reset. While in feedback mode, values are not guaranteed

Version 2.1 - December 1, 2006

240 CHAPTER 5. SPECIAL FUNCTIONS

Type coordinates ‘ color ‘ texture | total values
2D T,y - - 2
3D T, Y, 2 - - 3
3D_COLOR T, Y, Z k - 3+k
3D_COLOR._TEXTURE | @, ¥, 2 k 4 T+ k
4D_COLOR_TEXTURE | x, ¥y, 2, W k 4 8+ k

Table 5.2: Correspondence of feedback type to number of values per vertex. k is 1
in color index mode and 4 in RGBA mode.

to be written into the feedback buffer before RenderMode is called.

Figure 5.2 gives a grammar for the array produced by feedback. Each primitive
is indicated with a unique identifying value followed by some number of vertices.
A vertex is fed back as some number of floating-point values determined by the
feedback type. Table 5.2 gives the correspondence between feedback buffer and
the number of values returned for each vertex.

The command

void PassThrough(float foken);

may be used as a marker in feedback mode. token is returned as if it were a prim-
itive; it is indicated with its own unique identifying value. The ordering of any
PassThrough commands with respect to primitive specification is maintained by
feedback. PassThrough may not occur between Begin and End. It has no effect
when the GL is not in feedback mode.

The state required for feedback is the pointer to the feedback array, the maxi-
mum number of values that may be placed there, and the feedback type. An over-
flow flag is required to indicate whether the maximum allowable number of feed-
back values has been written; initially this flag is cleared. These state variables are
GL client state. Feedback also relies on the same mode flag as selection to indicate
whether the GL is in feedback, selection, or normal rendering mode.

5.4 Display Lists

A display list is simply a group of GL commands and arguments that has been
stored for subsequent execution. The GL may be instructed to process a particular
display list (possibly repeatedly) by providing a number that uniquely specifies it.
Doing so causes the commands within the list to be executed just as if they were
given normally. The only exception pertains to commands that rely upon client

Version 2.1 - December 1, 2006

5.4. DISPLAY LISTS

feedback-list:
feedback-item feedback-list
feedback-item

feedback-item:
point
line-segment
polygon
bitmap
pixel-rectangle
passthrough

point:

POINT_TOKEN vertex
line-segment:

LINE_TOKEN vertex vertex

LINE_RESET_TOKEN vertex vertex

polygon:

POLYGON_TOKEN n polygon-spec

polygon-spec:
polygon-spec vertex
vertex vertex vertex
bitmap:
BITMAP_TOKEN vertex

241

pixel-rectangle:
DRAW_PIXEL_TOKEN vertex
COPY_PIXEL_TOKEN vertex

passthrough:
PASS_THROUGH_TOKEN f

vertex:
2D:

fr
Frr

3D_COLOR:

f f f color

3D_COLOR_TEXTURE:
f [f color tex
4D_COLOR_TEXTURE:

3D:

f f f f color tex
color:

Frry

f
tex:

Frry

Figure 5.2: Feedback syntax. f is a floating-point number. n is a floating-point in-
teger giving the number of vertices in a polygon. The symbols ending with _TOKEN
are symbolic floating-point constants. The labels under the “vertex” rule show the
different data returned for vertices depending on the feedback fype. LINE_TOKEN
and LINE_RESET_TOKEN are identical except that the latter is returned only when

the line stipple is reset for that line segment.

Version 2.1 - December 1, 2006

242 CHAPTER 5. SPECIAL FUNCTIONS

state. When such a command is accumulated into the display list (that is, when
issued, not when executed), the client state in effect at that time applies to the com-
mand. Only server state is affected when the command is executed. As always,
pointers which are passed as arguments to commands are dereferenced when the
command is issued. (Vertex array pointers are dereferenced when the commands
ArrayElement, DrawArrays, DrawElements, or DrawRangeElements are ac-
cumulated into a display list.)
A display list is begun by calling

void NewList(uint n, enummode);

n is a positive integer to which the display list that follows is assigned, and mode is a
symbolic constant that controls the behavior of the GL during display list creation.
If mode is COMPILE, then commands are not executed as they are placed in the
display list. If mode is COMPILE_AND_EXECUTE then commands are executed as
they are encountered, then placed in the display list. If n = 0, then the error
INVALID_VALUE is generated.

After calling NewList all subsequent GL commands are placed in the display
list (in the order the commands are issued) until a call to

void EndList(void);

occurs, after which the GL returns to its normal command execution state. It is
only when EndList occurs that the specified display list is actually associated with
the index indicated with NewList. The error INVALID_OPERATION is generated
if EndList is called without a previous matching NewList, or if NewList is called
a second time before calling EndList. The error OUT_OF _MEMORY is generated if
EndList is called and the specified display list cannot be stored because insufficient
memory is available. In this case GL implementations of revision 1.1 or greater
insure that no change is made to the previous contents of the display list, if any,
and that no other change is made to the GL state, except for the state changed by
execution of GL commands when the display list mode is COMPILE_AND_EXECUTE.
Once defined, a display list is executed by calling

void CallList(uint n);
n gives the index of the display list to be called. This causes the commands saved
in the display list to be executed, in order, just as if they were issued without using

a display list. If n = 0, then the error INVALID_VALUE is generated.
The command

Version 2.1 - December 1, 2006

5.4. DISPLAY LISTS

void CallLists(sizei n, enumtype, void *lists);

provides an efficient means for executing a number of display lists. » is an in-
teger indicating the number of display lists to be called, and lists is a pointer
that points to an array of offsets. Each offset is constructed as determined by
lists as follows. First, type may be one of the constants BYTE, UNSIGNED BYTE,
SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT, or FLOAT indicating that the ar-
ray pointed to by lists is an array of bytes, unsigned bytes, shorts, unsigned shorts,
integers, unsigned integers, or floats, respectively. In this case each offset is found
by simply converting each array element to an integer (floating point values are
truncated). Further, type may be one of 2 BYTES, 3_BYTES, or 4 BYTES, indicat-
ing that the array contains sequences of 2, 3, or 4 unsigned bytes, in which case
each integer offset is constructed according to the following algorithm:

of fset — 0

fori=1tod
of fset «— of fset shifted left 8 bits
of fset «— of fset + byte
advance to next byfe in the array

bis 2, 3, or 4, as indicated by fype. If n = 0, CallLists does nothing.

Each of the n constructed offsets is taken in order and added to a display list
base to obtain a display list number. For each number, the indicated display list is
executed. The base is set by calling

void ListBase(uint base);

to specify the offset.

Indicating a display list index that does not correspond to any display list has no
effect. CallList or CallLists may appear inside a display list. (If the mode supplied
to NewList is COMPILE_AND_EXECUTE, then the appropriate lists are executed,
but the CallList or CallLists, rather than those lists’ constituent commands, is
placed in the list under construction.) To avoid the possibility of infinite recursion
resulting from display lists calling one another, an implementation dependent limit
is placed on the nesting level of display lists during display list execution. This
limit must be at least 64.

Two commands are provided to manage display list indices.

uint GenLists(sizei s);

returns an integer n such that the indices n, . . ., n+s—1 are previously unused (i.e.
there are s previously unused display list indices starting at n). GenLists also has

Version 2.1 - December 1, 2006

243

244 CHAPTER 5. SPECIAL FUNCTIONS

the effect of creating an empty display list for each of the indices n,...,n+s—1,
so that these indices all become used. GenLists returns 0 if there is no group of s
contiguous previously unused display list indices, or if s = 0.

boolean IsList(uint list);

returns TRUE if /ist is the index of some display list.
A contiguous group of display lists may be deleted by calling

void DeleteLists(uint list, sizei range);

where list is the index of the first display list to be deleted and range is the number
of display lists to be deleted. All information about the display lists is lost, and the
indices become unused. Indices to which no display list corresponds are ignored.
If range = 0, nothing happens.

Certain commands, when called while compiling a display list, are not com-
piled into the display list but are executed immediately. These commands fall in
several categories including

Display lists: GenLists and DeleteLists.

Render modes: FeedbackBuffer, SelectBuffer, and RenderMode.

Vertex arrays: ClientActiveTexture, ColorPointer, EdgeFlagPointer, Fog-
CoordPointer, IndexPointer, InterleavedArrays, NormalPointer, Secondary-
ColorPointer, TexCoordPointer, VertexAttribPointer, and VertexPointer.

Client state: EnableClientState, DisableClientState, EnableVertexAttrib-
Array, DisableVertexAttribArray, PushClientAttrib, and PopClientAttrib.

Pixels and textures: PixelStore, ReadPixels, GenTextures, DeleteTextures,
and AreTexturesResident.

Occlusion queries: GenQueries and DeleteQueries.

Vertex buffer objects: GenBuffers, DeleteBuffers, BindBuffer, BufferData,
BufferSubData, MapBuffer, and UnmapBuffer.

Program and shader objects: CreateProgram, CreateShader, DeletePro-
gram, DeleteShader, AttachShader, DetachShader, BindAttribLocation,
CompileShader, ShaderSource, LinkProgram, and ValidateProgram.

GL command stream management: Finish and Flush.

Other queries: All query commands whose names begin with Get and Is (see
chapter 6).

GL commands that source data from buffer objects dereference the buffer ob-
ject data in question at display list compile time, rather than encoding the buffer
ID and buffer offset into the display list. Only GL commands that are executed
immediately, rather than being compiled into a display list, are permitted to use a
buffer object as a data sink.

Version 2.1 - December 1, 2006

5.5. FLUSH AND FINISH 245

TexImage3D, TexImage2D, TexImagelD, Histogram, and Col-
orTable are executed immediately when called with the correspond-
ing proxy arguments PROXY_TEXTURE_3D; PROXY_TEXTURE 2D or
PROXY_TEXTURE_CUBE_MAP; PROXY_TEXTURE_1D; PROXY_HISTOGRANM;
and PROXY_COLOR.TABLE, PROXY_POST_CONVOLUTION_COLOR_TABLE, oOr
PROXY_POST_COLOR.MATRIX_COLOR-TABLE.

When a program object is in use, a display list may be executed whose vertex
attribute calls do not match up exactly with what is expected by the vertex shader
contained in that program object. Handling of this mismatch is described in sec-
tion 2.15.3.

Display lists require one bit of state to indicate whether a GL command should
be executed immediately or placed in a display list. In the initial state, commands
are executed immediately. If the bit indicates display list creation, an index is
required to indicate the current display list being defined. Another bit indicates,
during display list creation, whether or not commands should be executed as they
are compiled into the display list. One integer is required for the current ListBase
setting; its initial value is zero. Finally, state must be maintained to indicate which
integers are currently in use as display list indices. In the initial state, no indices
are in use.

5.5 Flush and Finish
The command
void Flush(void);

indicates that all commands that have previously been sent to the GL must complete
in finite time.
The command

void Finish(void);

forces all previous GL. commands to complete. Finish does not return until all
effects from previously issued commands on GL client and server state and the
framebuffer are fully realized.

5.6 Hints

Certain aspects of GL behavior, when there is room for variation, may be controlled
with hints. A hint is specified using

Version 2.1 - December 1, 2006

246

CHAPTER 5. SPECIAL FUNCTIONS

Target

Hint description

PERSPECTIVE_CORRECTION_HINT

Quality of parameter interpolation

POINT_SMOOTH_HINT

Point sampling quality

LINE_SMOOTH_HINT

Line sampling quality

POLYGON_SMOOTH_HINT

Polygon sampling quality

FOG_HINT

Fog quality
(calculated per-pixel or per-vertex)

GENERATE _MIPMAP_HINT

Quality and performance of

automatic mipmap level generation

TEXTURE_COMPRESSION_HINT Quality and performance of

texture image compression

FRAGMENT_SHADER DERIVATIVE_HINT | Derivative accuracy for fragment
processing built-in functions
dFdx, dFdy and fwidth

Table 5.3: Hint targets and descriptions.

void Hint(enum target, enum hint);

target is a symbolic constant indicating the behavior to be controlled, and hint is a
symbolic constant indicating what type of behavior is desired. The possible targets
are described in table 5.3; for each target, hint must be one of FASTEST, indicating
that the most efficient option should be chosen; NICEST, indicating that the highest
quality option should be chosen; and DONT_CARE, indicating no preference in the
matter.

For the texture compression hint, a hint of FASTEST indicates that texture im-
ages should be compressed as quickly as possible, while NICEST indicates that
the texture images be compressed with as little image degradation as possible.
FASTEST should be used for one-time texture compression, and NICEST should
be used if the compression results are to be retrieved by GetCompressedTexIm-
age (section 6.1.4) for reuse.

The interpretation of hints is implementation dependent. An implementation
may ignore them entirely.

The initial value of all hints is DONT_CARE.

Version 2.1 - December 1, 2006

Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in section 6.2. Most
state is set through the calls described in previous chapters, and can be queried
using the calls described in section 6.1.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identified by symbolic constants. The values
of these state variables can be obtained using a set of Get commands. There are
four commands for obtaining simple state variables:

void GetBooleanv(enum value, boolean *data);
void Getlntegerv(enum value, int *data);
void GetFloatv(enum value, float *data);
void GetDoublev(enum value, double *data);

The commands obtain boolean, integer, floating-point, or double-precision state
variables. value is a symbolic constant indicating the state variable to return. data
is a pointer to a scalar or array of the indicated type in which to place the returned
data. In addition

boolean IsEnabled(enum value);
can be used to determine if value is currently enabled (as with Enable) or disabled.

247

248 CHAPTER 6. STATE AND STATE REQUESTS

6.1.2 Data Conversions

If a Get command is issued that returns value types different from the type of the
value being obtained, a type conversion is performed. If GetBooleanv is called,
a floating-point or integer value converts to FALSE if and only if it is zero (oth-
erwise it converts to TRUE). If GetIntegerv (or any of the Get commands below)
is called, a boolean value is interpreted as either 1 or 0, and a floating-point value
is rounded to the nearest integer, unless the value is an RGBA color component,
a DepthRange value, a depth buffer clear value, or a normal coordinate. In these
cases, the Get command converts the floating-point value to an integer according
the INT entry of table 4.7; a value not in [—1, 1] converts to an undefined value.
If GetFloatv is called, a boolean value is interpreted as either 1.0 or 0.0, an in-
teger is coerced to floating-point, and a double-precision floating-point value is
converted to single-precision. Analogous conversions are carried out in the case of
GetDoublev. If a value is so large in magnitude that it cannot be represented with
the requested type, then the nearest value representable using the requested type is
returned.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the two DepthRange parameters are returned in the order n
followed by f. Similarly, points for evaluator maps are returned in the order that
they appeared when passed to Mapl. Map2 returns R;; in the [(uorder)i + j]th
block of values (see page 231 for 4, j, uorder, and R;;).

Matrices may be queried and returned in transposed form by calling Get-
Booleanv, GetIntegerv, GetFloatv, and GetDoublev with pname set to
one of TRANSPOSE MODELVIEW MATRIX, TRANSPOSE PROJECTION MATRIX,
TRANSPOSE_TEXTURE_MATRIX, or TRANSPOSE_COLOR_MATRIX. The effect of

GetFloatv (TRANSPOSE_MODELVIEW.MATRIX, M) ;
is the same as the effect of the command sequence

GetFloatv (MODELVIEW.MATRIX, M) ;
T

m=m";

Similar conversions occur when querying TRANSPOSE_PROJECTION_MATRIX,
TRANSPOSE_TEXTURE _MATRIX, and TRANSPOSE_COLOR_MATRIX.

Most texture state variables are qualified by the value of ACTIVE_TEXTURE
to determine which server texture state vector is queried. Client tex-
ture state variables such as texture coordinate array pointers are qual-
ified by the value of CLIENT.ACTIVE_TEXTURE. Tables 6.5, 6.6, 6.10,

Version 2.1 - December 1, 2006

6.1. QUERYING GL STATE 249

6.16, 6.19, and 6.34 indicate those state variables which are qualified by
ACTIVE_TEXTURE or CLIENT_ACTIVE_TEXTURE during state queries. Queries
of texture state variables corresponding to texture coordinate processing
units (namely, TexGen state and enables, and matrices) will generate an
INVALID_OPERATION error if the value of ACTIVE_TEXTURE is greater than or
equal to MAX_TEXTURE_COORDS. All other texture state queries will result in an
INVALID_OPERATION error if the value of ACTIVE_TEXTURE is greater than or
equal to MAX_COMBINED_-TEXTURE_IMAGE_UNITS.

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identified by a category
(clip plane, light, material, etc.) as well as a symbolic constant. These are

void GetClipPlane(enum plane, double eqn[4]);
void GetLight{if}v(enum light, enumvalue, T data);
void GetMaterial{if}v(enum face, enumvalue, T data);
void GetTexEnv{if}v(enumenv, enumvalue, T data);
void GetTexGen{ifd}v(enum coord, enum value, T data);
void GetTexParameter{if}v(enum target, enum value,
T data);
void GetTexLevelParameter{if}v(enum target, int lod,
enum value, T data);
void GetPixelMap{ui us f}v(enummap, T data);
void GetMap{ifd}v(enum map, enumvalue, T data);
void GetBufferParameteriv(enum farget, enum value,
T data);

GetClipPlane always returns four double-precision values in egn; these are the
coefficients of the plane equation of plane in eye coordinates (these coordinates
are those that were computed when the plane was specified).

GetLight places information about value (a symbolic constant) for light (also a
symbolic constant) in data. POSITION or SPOT_-DIRECTION returns values in eye
coordinates (again, these are the coordinates that were computed when the position
or direction was specified).

GetMaterial, GetTexGen, GetTexEnv, GetTexParameter, and GetBuffer-
Parameter are similar to GetLight, placing information about value for the target
indicated by their first argument into data. The face argument to GetMaterial
must be either FRONT or BACK, indicating the front or back material, respectively.
The env argument to GetTexEnv must be either POINT_SPRITE, TEXTURE_ENV,

Version 2.1 - December 1, 2006

250 CHAPTER 6. STATE AND STATE REQUESTS

or TEXTURE_FILTER_CONTROL. The coord argument to GetTexGen must be one
of s, T, R, or Q. For GetTexGen, EYE_LINEAR coefficients are returned in the eye
coordinates that were computed when the plane was specified; OBJECT_LINEAR
coefficients are returned in object coordinates.

GetTexParameter
parameter farget may be one of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, Or
TEXTURE_CUBE_MAP, indicating the currently bound one-, two-, three-dimensional,
or cube map texture object. GetTexLevelParameter parameter farget may be one
of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE _MAP POSITIVE X,
TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE.Y,
TEXTURE_CUBE_MAP NEGATIVE.Y, TEXTURE_CUBE_MAP POSITIVE_Z,
TEXTURE_CUBE_MAP NEGATIVE_Z, PROXY_TEXTURE_1D, PROXY_TEXTURE_2D,
PROXY_TEXTURE_3D, or PROXY_TEXTURE_CUBE_MAP, indicating the one-, two-, or
three-dimensional texture object, or one of the six distinct 2D images making up
the cube map texture object or one-, two-, three-dimensional, or cube map proxy
state vector. Note that TEXTURE_CUBE_MAP is not a valid target parameter for
GetTexLevelParameter, because it does not specify a particular cube map face.
value is a symbolic value indicating which texture parameter is to be obtained.
For GetTexParameter, value must be either TEXTURE_RESIDENT, or one of the
symbolic values in table 3.18. The lod argument to GetTexLevelParameter de-
termines which level-of-detail’s state is returned. If the lod argument is less than
zero or if it is larger than the maximum allowable level-of-detail then the error
INVALID_VALUE OCCUTS.

For texture images with uncompressed internal formats, queries of
value of TEXTURE_RED_SIZE, TEXTURE_GREEN_SIZE, TEXTURE _BLUE_SIZE,
TEXTURE_ALPHA_SIZE, TEXTURE_LUMINANCE_SIZE, TEXTUREDEPTH._SIZE,
and TEXTURE_INTENSITY_SIZE return the actual resolutions of the stored im-
age array components, not the resolutions specified when the image array was
defined. For texture images with a compressed internal format, the resolutions
returned specify the component resolution of an uncompressed internal format that
produces an image of roughly the same quality as the compressed image in ques-
tion. Since the quality of the implementation’s compression algorithm is likely
data-dependent, the returned component sizes should be treated only as rough ap-
proximations.

Querying value TEXTURE_ COMPRESSED_IMAGE_SIZE returns the
size (in ubytes) of the compressed texture image that would be
returned by GetCompressedTexImage (section 6.1.4). Querying
TEXTURE_COMPRESSED_IMAGE_SIZE is not allowed on texture images with
an uncompressed internal format or on proxy targets and will result in an
INVALID_OPERATION error if attempted.

Version 2.1 - December 1, 2006

6.1. QUERYING GL STATE 251

Queries of value TEXTURE_WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH, and
TEXTURE_BORDER return the width, height, depth, and border as specified when
the image array was created. The internal format of the image array is queried
as TEXTURE_INTERNAL_FORMAT, or as TEXTURE_COMPONENTS for compatibility
with GL version 1.0.

For GetPixelMap, the map must be a map name from table 3.3. For GetMap,
map must be one of the map types described in section 5.1, and value must
be one of ORDER, COEFF, or DOMAIN. The GetPixelMapfv, GetPixelMapuiv,
and GetPixelMapusv commands write all the values in the named pixel map
to data. 1If a pixel pack buffer is bound (as indicated by a non-zero value of
PIXEL_PACK_BUFFER_BINDING), dafa is an offset into the pixel pack buffer; oth-
erwise, data is a pointer to client memory. All pixel storage and pixel trans-
fer modes are ignored when returning a pixel map. n machine units are written
where n is the size of the pixel map times the size of FLOAT, UNSIGNED_INT,
or UNSIGNED_SHORT respectively in basic machine units. If a pixel pack buffer
object is bound and data + n is greater than the size of the pixel buffer, an
INVALID_OPERATION error results. If a pixel pack buffer object is bound and
data is not evenly divisible by the number of basic machine units needed to
store in memory a FLOAT, UNSIGNED_INT, or UNSIGNED_SHORT respectively, an
INVALID_OPERATION error results.

6.1.4 Texture Queries

The command

void GetTexImage(enum tex, int lod, enum format,
enum type, void *img);

is used to obtain texture images. It is somewhat different from the other get com-
mands; tex is a symbolic value indicating which texture (or texture face in the case
of a cube map texture target name) is to be obtained. TEXTURE_1D, TEXTURE_2D,
and TEXTURE_3D indicate a one-, two-, or three-dimensional texture respectively,
while TEXTURE_CUBE_MAP POSITIVE.X, TEXTURE_CUBE_MAP NEGATIVE.X,
TEXTURE_CUBE_MAP POSITIVE.Y, TEXTURE_CUBE_MAP NEGATIVE.Y,
TEXTURE_CUBE_MAP_POSITIVE_Z, and TEXTURE_CUBE_MAP_NEGATIVE_Z indi-
cate the respective face of a cube map texture. lod is a level-of-detail number,
format is a pixel format from table 3.6, type is a pixel type from table 3.5.
GetTexImage obtains component groups from a texture image with the
indicated level-of-detail. — Calling GetTexImage with a color format (one
of RED, GREEN, BLUE, ALPHA, RGB, BGR, RGBA, BGRA, LUMINANCE, oOr

Version 2.1 - December 1, 2006

252 CHAPTER 6. STATE AND STATE REQUESTS

LUMINANCE_ALPHA) when the base internal format of the texture image is not a
color format, or with a format of DEPTH_COMPONENT when the base internal format
is not a depth format, causes the error INVALID_OPERATION. If the base internal
format is a color format then the components are assigned among R, G, B, and A
according to table 6.1, starting with the first group in the first row, and continuing
by obtaining groups in order from each row and proceeding from the first row to
the last, and from the first image to the last for three-dimensional textures. If the
base internal format is DEPTH_COMPONENT, then each depth component is assigned
with the same ordering of rows and images. These groups are then packed and
placed in client or pixel buffer object memory. If a pixel pack buffer is bound (as
indicated by a non-zero value of PIXEL_PACK_BUFFER_BINDING), img is an offset
into the pixel pack buffer; otherwise, img is a pointer to client memory. No pixel
transfer operations are performed on this image, but pixel storage modes that are
applicable to ReadPixels are applied.

For three-dimensional textures, pixel storage operations are applied as if the
image were two-dimensional, except that the additional pixel storage state values
PACK_IMAGE_HEIGHT and PACK_SKIP_IMAGES are applied. The correspondence
of texels to memory locations is as defined for TexImage3D in section 3.8.1.

The row length, number of rows, image depth, and number of images are de-
termined by the size of the texture image (including any borders). Calling GetTex-
Image with lod less than zero or larger than the maximum allowable causes the
error INVALID VALUE. Calling GetTexImage with a format of COLOR_INDEX or
STENCIL_INDEX causes the error INVALID_ENUM. If a pixel pack buffer object
is bound and packing the texture image into the buffer’s memory would exceed the
size of the buffer, an INVALID_OPERATION error results. If a pixel pack buffer
object is bound and img is not evenly divisible by the number of basic machine
units needed to store in memory a FLOAT, UNSIGNED_INT, or UNSIGNED_SHORT
respectively, an INVALID_OPERATION error results.

The command

void GetCompressedTexImage(enum target, int lod,
void *img);

is used to obtain texture images stored in compressed form. The parameters target,
lod, and img are interpreted in the same manner as in GetTexImage. When called,
GetCompressedTexImage writes 7 ubytes of compressed image data to the
pixel pack buffer or client memory pointed to by img, where n is the value of
TEXTURE_COMPRESSED_IMAGE_SIZE for the texture. The compressed image data
is formatted according to the definition of the texture’s internal format. All pixel
storage and pixel transfer modes are ignored when returning a compressed texture
image.

Version 2.1 - December 1, 2006

6.1. QUERYING GL STATE 253

’ Base Internal Format ‘ R ‘ G ‘ B ‘ A ‘
ALPHA 0| 0| 0| A4
LUMINANCE (or 1) L;| 0] 0 1
LUMINANCE_ ALPHA (or2) | L; | O 0 | A;
INTENSITY L, | 0 0 1
RGB (or 3) R; | G; | B; 1
RGBA (or 4) R, | G| B; | 4

Table 6.1: Texture, table, and filter return values. R;, G;, B;, A;, L;, and I; are
components of the internal format that are assigned to pixel values R, G, B, and A.
If a requested pixel value is not present in the internal format, the specified constant
value is used.

Calling GetCompressedTexImage with an lod value less than zero or greater
than the maximum allowable causes an INVALID_VALUE error. Calling GetCom-
pressedTexImage with a texture image stored with an uncompressed internal for-
mat causes an INVALID_OPERATION error. If a pixel pack buffer object is bound
and 9mg + n is greater than the size of the buffer, an INVALID_OPERATION error
results.

The command

boolean IsTexture(uint texture);

returns TRUE if fexture is the name of a texture object. If texture is zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returns FALSE. A name returned by GenTextures, but not yet bound, is
not the name of a texture object.

6.1.5 Stipple Query
The command

void GetPolygonStipple(void *pattern);
obtains the polygon stipple. The pattern is packed into pixel pack buffer or client
memory according to the procedure given in section 4.3.2 for ReadPixels; it is
as if the height and width passed to that command were both equal to 32, the type

were BITMAP, and the format were COLOR_INDEX.

Version 2.1 - December 1, 2006

254 CHAPTER 6. STATE AND STATE REQUESTS

6.1.6 Color Matrix Query

The scale and bias variables are queried using GetFloatv with pname set
to the appropriate variable name. The top matrix on the color matrix
stack is returned by GetFloatv called with pname set to COLORMATRIX or
TRANSPOSE_COLOR-MATRIX. The depth of the color matrix stack, and the maxi-
mum depth of the color matrix stack, are queried with GetIntegerv, setting pname
to COLOR.MATRIX_STACK_DEPTH and MAX_COLOR_MATRIX_STACK_DEPTH respec-
tively.

6.1.7 Color Table Query

The current contents of a color table are queried using

void GetColorTable(enum target, enum format, enum type,
void *table);

target must be one of the regular color table names listed in table 3.4. format and
type accept the same values as do the corresponding parameters of GetTexImage,
except that a format of DEPTH_COMPONENT causes the error INVALID_ENUM. The
one-dimensional color table image is returned to pixel pack buffer or client mem-
ory starting at fable. No pixel transfer operations are performed on this image, but
pixel storage modes that are applicable to ReadPixels are performed. Color com-
ponents that are requested in the specified format, but which are not included in the
internal format of the color lookup table, are returned as zero. The assignments of
internal color components to the components requested by format are described in
table 6.1.
The functions

void GetColorTableParameter{if}v(enum target,
enum pname, T params);

are used for integer and floating point query.

target must be one of the regular or proxy color table names listed in
table 3.4. pname is one of COLOR._TABLE_SCALE, COLOR_TABLE_BIAS,
COLOR_TABLE_FORMAT, COLOR_TABLE WIDTH, COLOR_TABLE_RED_SIZE,
COLOR-TABLE_GREEN_SIZE, COLOR_TABLE_BLUE_SIZE,
COLOR_TABLE _ALPHA_SIZE, COLOR_TABLE_LUMINANCE_SIZE, or
COLOR_TABLE_INTENSITY.SIZE. The value of the specified parameter is
returned in params.

Version 2.1 - December 1, 2006

6.1. QUERYING GL STATE 255

6.1.8 Convolution Query

The current contents of a convolution filter image are queried with the command

void GetConvolutionFilter(enum target, enum format,
enum type, void *image);

target must be CONVOLUTION_1D or CONVOLUTION_2D. format and type accept
the same values as do the corresponding parameters of GetTexImage, except
that a format of DEPTH_COMPONENT causes the error INVALID_ENUM. The one-
dimensional or two-dimensional images is returned to pixel pack buffer or client
memory starting at image. Pixel processing and component mapping are identical
to those of GetTexImage.

The current contents of a separable filter image are queried using

void GetSeparableFilter(enum target, enum format,
enum type, void *row, void *column, void *span);

target must be SEPARABLE_2D. format and type accept the same values as do the
corresponding parameters of GetTexImage. The row and column images are re-
turned to pixel pack buffer or client memory starting at row and column respec-
tively. span is currently unused. Pixel processing and component mapping are
identical to those of GetTexImage.

The functions

void GetConvolutionParameter{if}v(enum rarget,
enum pname, T params);

are used for integer and floating point query. target must be
CONVOLUTION_1D, CONVOLUTION_2D, or SEPARABLE_2D. pname iS
one of CONVOLUTION_BORDER COLOR, CONVOLUTION_BORDER_MODE,
CONVOLUTION_FILTER_SCALE, CONVOLUTTION_FILTER_BIAS,
CONVOLUTION_FORMAT, CONVOLUTION_WIDTH, CONVOLUTION_HEIGHT,
MAX_CONVOLUTION.WIDTH, or MAX_CONVOLUTION._HEIGHT. The value of the
specified parameter is returned in params.

6.1.9 Histogram Query

The current contents of the histogram table are queried using

void GetHistogram(enum target, boolean reset,
enum format, enum type, voidx* values);

Version 2.1 - December 1, 2006

256 CHAPTER 6. STATE AND STATE REQUESTS

target must be HI STOGRAM. type and format accept the same values as do the corre-
sponding parameters of GetTexImage, except that a format of DEPTH_COMPONENT
causes the error INVALID_ENUM. The one-dimensional histogram table image is re-
turned to pixel pack buffer or client memory starting at fype. Pixel processing and
component mapping are identical to those of GetTexImage, except that instead of
applying the Final Conversion pixel storage mode, component values are simply
clamped to the range of the target data type.

If reset is TRUE, then all counters of all elements of the histogram are reset to
zero. Counters are reset whether returned or not.

No counters are modified if reset is FALSE.

Calling

void ResetHistogram(enum target);

resets all counters of all elements of the histogram table to zero. farget must be
HISTOGRAM.

It is not an error to reset or query the contents of a histogram table with zero
entries.

The functions

void GetHistogramParameter{if}v(enum rarget,
enum pname, T params);

are used for integer and floating point query. tfarget must be HISTOGRAM or
PROXY_HISTOGRAM. pname is one of HISTOGRAM_FORMAT, HISTOGRAM_WIDTH,
HISTOGRAM RED_SIZE, HISTOGRAM GREEN_SIZE, HISTOGRAM BLUE_SIZE,
HISTOGRAM ALPHA SIZE, or HISTOGRAM LUMINANCE_SIZE. pname may be
HISTOGRAM_SINK only for target HISTOGRAM. The value of the specified
parameter is returned in params.

6.1.10 Minmax Query
The current contents of the minmax table are queried using

void GetMinmax(enum farget, boolean reset, enum format,
enum type, voidx* values);

target must be MINMAX. type and format accept the same values as do the corre-

sponding parameters of GetTexImage, except that a format of DEP TH_COMPONENT
causes the error INVALID_ENUM. A one-dimensional image of width 2 is returned

Version 2.1 - December 1, 2006

6.1. QUERYING GL STATE 257

to pixel pack buffer or client memory starting at values. Pixel processing and
component mapping are identical to those of GetTexImage.

If reset is TRUE, then each minimum value is reset to the maximum repre-
sentable value, and each maximum value is reset to the minimum representable
value. All values are reset, whether returned or not.

No values are modified if reset is FALSE.

Calling

void ResetMinmax(enum farget);

resets all minimum and maximum values of target to to their maximum and mini-
mum representable values, respectively, farget must be MINMAX.
The functions

void GetMinmaxParameter{if}v(enum target, enum pname,
T params);

are used for integer and floating point query. farget must be MINMAX. pname is
MINMAX _FORMAT or MINMAX_SINK. The value of the specified parameter is re-
turned in params.

6.1.11 Pointer and String Queries
The command
void GetPointerv(enum pname, void **params);

obtains the pointer or pointers named pname in the
array params. The possible values for pname are
SELECTION BUFFER POINTER, FEEDBACK_BUFFER_POINTER,
VERTEX_ARRAY_POINTER, NORMAL_ARRAY_POINTER, COLOR_ARRAY_POINTER,
SECONDARY_COLOR_ARRAY_POINTER, INDEX_ARRAY _POINTER,
TEXTURE_COORD_ARRAY POINTER, FOG_COORD_ARRAY POINTER, and
EDGE_FLAG_ARRAY_POINTER. Each returns a single pointer value.

Finally,

ubyte *GetString(enum name);

returns a pointer to a static string describing some aspect of the current GL
connection'. The possible values for name are VENDOR, RENDERER, VERSION,

! Applications making copies of these static strings should never use a fixed-length buffer, because
the strings may grow unpredictably between releases, resulting in buffer overflow when copying.
This is particularly true of the EXTENSIONS string, which has become extremely long in some
GL implementations.

Version 2.1 - December 1, 2006

258 CHAPTER 6. STATE AND STATE REQUESTS

SHADING_LANGUAGE_VERSION, and EXTENSIONS. The format of the RENDERER
and VENDOR strings is implementation dependent. The EXTENSIONS string con-
tains a space separated list of extension names (the extension names themselves do
not contain any spaces). The VERSION and SHADING_LANGUAGE_VERSION strings
are laid out as follows:

<version number> <space> < vendor-specific information>

The version number is either of the form major_number.minor_number or ma-
Jjor_number.minor_number.release_number, where the numbers all have one or
more digits. The release_number and vendor specific information are optional.
However, if present, then they pertain to the server and their format and contents
are implementation dependent.

GetString returns the version number (returned in the VERSION string) and
the extension names (returned in the EXTENSTONS string) that can be supported
on the connection. Thus, if the client and server support different versions and/or
extensions, a compatible version and list of extensions is returned.

6.1.12 Occlusion Queries

The command
boolean IsQuery(uint id);

returns TRUE if id is the name of a query object. If id is zero, or if id is a non-zero
value that is not the name of a query object, IsQuery returns FALSE.
Information about a query target can be queried with the command

void GetQueryiv(enum farget, enum pname, int *params);

If pname is CURRENT_QUERY, the name of the currently active query for target, or
zero if no query is active, will be placed in params.

If pname is QUERY_COUNTER _BITS, the number of bits in the counter for target
will be placed in params. The number of query counter bits may be zero, in which
case the counter contains no useful information. Otherwise, the minimum number
of bits allowed is a function of the implementation’s maximum viewport dimen-
sions (MAX_VIEWPORT_DIMS). In this case, the counter must be able to represent
at least two overdraws for every pixel in the viewport The formula to compute the
allowable minimum value (where n is the minimum number of bits) is:

n = min{32, [logy(maxViewportWidth « maxViewportHeight x 2)]}

The state of a query object can be queried with the commands

Version 2.1 - December 1, 2006

6.1. QUERYING GL STATE 259

void GetQueryObjectiv(uint id, enum pname,
int *params);

void GetQueryObjectuiv(uint id, enum pname,
uint *params);

If id is not the name of a query object, or if the query object named by id is currently
active, then an INVALID_OPERATION error is generated.

If pname is QUERY RESULT, then the query object’s result value is placed in
params. If the number of query counter bits for target is zero, then the result value
is always 0.

There may be an indeterminate delay before the above query returns. If
pname is QUERY RESULT_AVAILABLE, it immediately returns FALSE if such a de-
lay would be required, TRUE otherwise. It must always be true that if any query
object returns result available of TRUE, all queries issued prior to that query must
also return TRUE.

Querying the state for any given query object forces that occlusion query to
complete within a finite amount of time.

If multiple queries are issued on the same target and id prior to calling Get-
QueryObject[u]iv, the result returned will always be from the last query issued.
The results from any queries before the last one will be lost if the results are not
retrieved before starting a new query on the same target and id.

6.1.13 Buffer Object Queries

The command
boolean IsBuffer(uint buffer);

returns TRUE if buffer is the name of an buffer object. If buffer is zero, or if buffer is
a non-zero value that is not the name of an buffer object, IsBuffer returns FALSE.
The command

void GetBufferSubData(enum rarget, intptr offset,
sizeiptr size, void *data);

queries the data contents of a buffer object. target is ARRAY BUFFER,
ELEMENT_ARRAY_BUFFER, PIXEL_PACK BUFFER, Or PIXEL_UNPACK_BUFFER.
offset and size indicate the range of data in the buffer object that is to be queried, in
terms of basic machine units. data specifies a region of client memory, size basic
machine units in length, into which the data is to be retrieved.

Version 2.1 - December 1, 2006

260 CHAPTER 6. STATE AND STATE REQUESTS

An error is generated if GetBufferSubData is executed for a buffer object that
is currently mapped.

While the data store of a buffer object is mapped, the pointer to the data store
can be queried by calling

void GetBufferPointerv(enum farget, enum pname,
void **params);

with rarget set to ARRAY BUFFER, ELEMENT_ARRAY BUFFER,
PIXEL_PACK_BUFFER, Or PIXEL_UNPACK BUFFER and pname set to
BUFFER.MAP_POINTER. The single buffer map pointer is returned in *params.
GetBufferPointerv returns the NULL pointer value if the buffer’s data store is not
currently mapped, or if the requesting client did not map the buffer object’s data
store, and the implementation is unable to support mappings on multiple clients.

6.1.14 Shader and Program Queries

State stored in shader or program objects can be queried by commands that ac-
cept shader or program object names. These commands will generate the error
INVALID_VALUE if the provided name is not the name of either a shader or pro-
gram object, and INVALID_OPERATION if the provided name identifies an object
of the other type. If an error is generated, variables used to hold return values are
not modified.

The command

boolean IsShader(uint shader);

returns TRUE if shader is the name of a shader object. If shader is zero, or a non-
zero value that is not the name of a shader object, IsShader returns FALSE. No
error is generated if shader is not a valid shader object name.

The command

void GetShaderiv(uint shader, enum pname, int *params);

returns properties of the shader object named shader in params. The parameter
value to return is specified by pname.

If pname is SHADER_TYPE, VERTEX_SHADER is returned if shader is a ver-
tex shader object, and FRAGMENT_SHADER is returned if shader is a fragment
shader object. If pname is DELETE_STATUS, TRUE is returned if the shader
has been flagged for deletion and FALSE is returned otherwise. If pname is
COMPILE_STATUS, TRUE is returned if the shader was last compiled successfully,

Version 2.1 - December 1, 2006

6.1. QUERYING GL STATE 261

and FALSE is returned otherwise. If pname is INFO_LOG_LENGTH, the length of
the info log, including a null terminator, is returned. If there is no info log, zero
is returned. If pname is SHADER_SOURCE_LENGTH, the length of the concatenation
of the source strings making up the shader source, including a null terminator, is
returned. If no source has been defined, zero is returned.

The command

boolean IsProgram(uint program);

returns TRUE if program is the name of a program object. If program is zero,
or a non-zero value that is not the name of a program object, IsProgram returns
FALSE. No error is generated if program is not a valid program object name.

The command

void GetProgramiv(uint program, enum pname,
int *params);

returns properties of the program object named program in params. The parameter
value to return is specified by pname.

If pname is DELETE_STATUS, TRUE is returned if the program has been flagged
for deletion and FALSE is returned otherwise. If pname is LINK_STATUS, TRUE
is returned if the program was last compiled successfully, and FALSE is returned
otherwise. If pname is VALIDATE_STATUS, TRUE is returned if the last call to Val-
idateProgram with program was successful, and FALSE is returned otherwise. If
pname is INFO_LOG_LENGTH, the length of the info log, including a null terminator,
is returned. If there is no info log, O is returned. If pname is ATTACHED _SHADERS,
the number of objects attached is returned. If pname is ACTIVE_ATTRIBUTES, the
number of active attributes in program is returned. If no active attributes exist,
0 is returned. If pname is ACTIVE_ ATTRIBUTE_MAX_LENGTH, the length of the
longest active attribute name, including a null terminator, is returned. If no ac-
tive attributes exist, 0 is returned. If pname is ACTIVE_UNIFORMS, the number of
active uniforms is returned. If no active uniforms exist, O is returned. If pname
iS ACTIVE_UNIFORM MAX_LENGTH, the length of the longest active uniform name,
including a null terminator, is returned. If no active uniforms exist, O is returned.

The command

void GetAttachedShaders(uint program, sizei maxCount,
sizel *count, uint *shaders);

returns the names of shader objects attached to program in shaders. The actual
number of shader names written into shaders is returned in count. If no shaders are

Version 2.1 - December 1, 2006

262 CHAPTER 6. STATE AND STATE REQUESTS

attached, count is set to zero. If count is NULL then it is ignored. The maximum
number of shader names that may be written into shaders is specified by maxCount.
The number of objects attached to program is given by can be queried by calling
GetProgramiv with ATTACHED_SHADERS.

A string that contains information about the last compilation attempt on a
shader object or last link or validation attempt on a program object, called the
info log, can be obtained with the commands

void GetShaderInfoLog(uint shader, sizei bufSize,
sizei *length, char *infoLog);

void GetProgramlnfolog(uint program, sizei bufSize,
sizei *length, char *infoLog);

These commands return the info log string in infoLog. This string will be null
terminated. The actual number of characters written into infoLog, excluding the
null terminator, is returned in length. If length is NULL, then no length is returned.
The maximum number of characters that may be written into infoLog, including
the null terminator, is specified by bufSize. The number of characters in the info
log can be queried with GetShaderiv or GetProgramiv with INFO_LOG_LENGTH.
If shader is a shader object, the returned info log will either be an empty string
or it will contain information about the last compilation attempt for that object. If
program is a program object, the returned info log will either be an empty string or
it will contain information about the last link attempt or last validation attempt for
that object.

The info log is typically only useful during application development and an
application should not expect different GL implementations to produce identical
info logs.

The command

void GetShaderSource(uint shader, sizei bufSize,
sizei *length, char *source);

returns in source the string making up the source code for the shader object shader.
The string source will be null terminated. The actual number of characters written
into source, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written into
source, including the null terminator, is specified by bufSize. The string source is
a concatenation of the strings passed to the GL using ShaderSource. The length
of this concatenation is given by SHADER_SOURCE_LENGTH, which can be queried
with GetShaderiv.

The commands

Version 2.1 - December 1, 2006

6.1. QUERYING GL STATE 263

void GetVertexAttribdv(uint index, enum pname,
double *params);

void GetVertexAttribfv(uint index, enum pname,
float *params);

void GetVertexAttribiv(uint index, enum pname,
int *params);

obtain the vertex attribute state named by pname for the generic ver-
tex attribute numbered index and places the information in the array
params. pname must be one of VERTEX ATTRIB_ARRAY BUFFER_BINDING,
VERTEX_ATTRIB_ARRAY_ENABLED, VERTEX_ATTRIB_ARRAY_SIZE,
VERTEX_ATTRIB_ARRAY_STRIDE, VERTEX_ATTRIB_ARRAY _TYPE,
VERTEX_ATTRIB_ARRAY_NORMALIZED, or CURRENT_VERTEX_ATTRIB. Note that
all the queries except CURRENT_VERTEX_ATTRIB return client state. The
error INVALID_VALUE is generated if index is greater than or equal to
MAX_VERTEX_ATTRIBS.

All but CURRENT_VERTEX_ATTRIB return information about generic vertex at-
tribute arrays. The enable state of a generic vertex attribute array is set by the
command EnableVertexAttribArray and cleared by DisableVertexAttribArray.
The size, stride, type and normalized flag are set by the command VertexAttrib-
Pointer. The query CURRENT_VERTEX_ATTRIB returns the current value for the
generic attribute index. In this case the error INVALID_OPERATION is generated if
index is zero, as there is no current value for generic attribute zero.

The command

void GetVertexAttribPointerv(uint index, enum pname,
void **pointer);

obtains the pointer named pname for vertex attribute numbered index
and places the information in the array pointer. pname must be
VERTEX_ATTRIB_ARRAY POINTER. The INVALID VALUE error is generated if in-
dex is greater than or equal to MAX_VERTEX_ATTRIBS.

The commands

void GetUniformfv(uint program, int location,
float *params);

void GetUniformiv(uint program, int location,
int *params);

return the value or values of the uniform at location /ocation for program object
program in the array params. The type of the uniform at location determines the

Version 2.1 - December 1, 2006

264 CHAPTER 6. STATE AND STATE REQUESTS

number of values returned. The error INVALID_OPERATION is generated if pro-
gram has not been linked successfully, or if location is not a valid location for
program. In order to query the values of an array of uniforms, a GetUniform*
command needs to be issued for each array element. If the uniform queried is a
matrix, the values of the matrix are returned in column major order. If an error
occurred, the return parameter params will be unmodified.

6.1.15 Saving and Restoring State

Besides providing a means to obtain the values of state variables, the GL also
provides a means to save and restore groups of state variables. The PushAttrib,
PushClientAttrib, PopAttrib and PopClientAttrib commands are used for this
purpose. The commands

void PushAttrib(bitfield mask);
void PushClientAttrib(bitfield mask);

take a bitwise OR of symbolic constants indicating which groups of state variables
to push onto an attribute stack. PushAttrib uses a server attribute stack while
PushClientAttrib uses a client attribute stack. Each constant refers to a group
of state variables. The classification of each variable into a group is indicated
in the following tables of state variables. The error STACK_OVERFLOW is gener-
ated if PushAttrib or PushClientAttrib is executed while the corresponding stack
depth is MAX_ATTRIB_STACK_DEPTH or MAX_CLIENT_ATTRIB_STACK_DEPTH re-
spectively. Bits set in mask that do not correspond to an attribute group are ignored.
The special mask values ALL_ATTRIB_BITS and CLIENT_ALL_ATTRIB_BITS may
be used to push all stackable server and client state, respectively.
The commands

void PopAttrib(void);
void PopClientAttrib(void);

reset the values of those state variables that were saved with the last corresponding
PushAttrib or PopClientAttrib. Those not saved remain unchanged. The er-
ror STACK_UNDERFLOW is generated if PopAttrib or PopClientAttrib is executed
while the respective stack is empty.

Table 6.2 shows the attribute groups with their corresponding symbolic con-
stant names and stacks.

When PushAttrib is called with TEXTURE_BIT set, the priorities, border col-
ors, filter modes, wrap modes, and other state of the currently bound texture objects
(see table 6.17), as well as the current texture bindings and enables, are pushed onto

Version 2.1 - December 1, 2006

6.1. QUERYING GL STATE

Stack Attribute Constant

server | accum-buffer ACCUM_BUFFER_BIT
server color-buffer COLOR_BUFFER BIT
server current CURRENT_BIT

server depth-buffer DEPTH_BUFFER BIT
server enable ENABLE BIT

server eval EVAL_BIT

server fog FOG.BIT

server hint HINT_BIT

server lighting LIGHTING.BIT
server line LINE_BIT

server list LIST BIT

server multisample MULTISAMPLE BIT
server pixel PIXEL MODE_BIT
server point POINT_BIT

server polygon POLYGON_BIT

server | polygon-stipple POLYGON_STIPPLE BIT
server scissor SCISSORBIT

server | stencil-buffer STENCIL BUFFER BIT
server texture TEXTURE_BIT

server transform TRANSFORM BIT
server viewport VIEWPORT BIT
server ALL_ATTRIB.BITS
client vertex-array CLIENT_VERTEX_ARRAY BIT
client pixel-store CLIENT_PIXEL_STORE.BIT
client select can’t be pushed or pop’d
client feedback can’t be pushed or pop’d
client CLIENT ALL_ATTRIB BITS

Table 6.2: Attribute groups

Version 2.1 - December 1, 2006

265

266 CHAPTER 6. STATE AND STATE REQUESTS

the attribute stack. (Unbound texture objects are not pushed or restored.) When an
attribute set that includes texture information is popped, the bindings and enables
are first restored to their pushed values, then the bound texture object’s parameters
are restored to their pushed values.

Operations on attribute groups push or pop texture state within that group for
all texture units. When state for a group is pushed, all state corresponding to
TEXTUREO is pushed first, followed by state corresponding to TEXTURE1, and so
on up to and including the state corresponding to TEXTUREk where k& + 1 is the
value of MAX_TEXTURE_UNITS. When state for a group is popped, texture state is
restored in the opposite order that it was pushed, starting with state corresponding
to TEXTUREKk and ending with TEXTUREO. Identical rules are observed for client
texture state push and pop operations. Matrix stacks are never pushed or popped
with PushAttrib, PushClientAttrib, PopAttrib, or PopClientA ttrib.

The depth of each attribute stack is implementation dependent but must be at
least 16. The state required for each attribute stack is potentially 16 copies of each
state variable, 16 masks indicating which groups of variables are stored in each
stack entry, and an attribute stack pointer. In the initial state, both attribute stacks
are empty.

In the tables that follow, a type is indicated for each variable. Table 6.3 ex-
plains these types. The type actually identifies all state associated with the indi-
cated description; in certain cases only a portion of this state is returned. This
is the case with all matrices, where only the top entry on the stack is returned;
with clip planes, where only the selected clip plane is returned, with parameters
describing lights, where only the value pertaining to the selected light is returned;
with textures, where only the selected texture or texture parameter is returned; and
with evaluator maps, where only the selected map is returned. Finally, a “~" in the
attribute column indicates that the indicated value is not included in any attribute
group (and thus can not be pushed or popped with PushAttrib, PushClientAttrib,
PopAttrib, or PopClientAttrib).

The M and m entries for initial minmax table values represent the maximum
and minimum possible representable values, respectively.

6.2 State Tables

The tables on the following pages indicate which state variables are obtained with
what commands. State variables that can be obtained using any of GetBooleanv,
Getlntegerv, GetFloatv, or GetDoublev are listed with just one of these com-
mands — the one that is most appropriate given the type of the data to be returned.
These state variables cannot be obtained using IsEnabled. However, state vari-

Version 2.1 - December 1, 2006

6.2. STATE TABLES

] Type code \ Explanation
B Boolean
BMU Basic machine units

C Color (floating-point R, G, B, and A values)

CcI Color index (floating-point index value)

T Texture coordinates (floating-point s, ¢, 7, g val-

ues)

N Normal coordinates (floating-point x, y, z values)
\%4 Vertex, including associated data

Z Integer

Al Non-negative integer

Zy, Zrsx | k-valued integer (k* indicates k is minimum)
R Floating-point number
R* Non-negative floating-point number
Rla.?) Floating-point number in the range [a, b

RF k-tuple of floating-point numbers

P Position (x, ¥y, z, w floating-point coordinates)

D Direction (z, y, z floating-point coordinates)

M2 4 x 4 floating-point matrix

S NULL-terminated string
1 Image

A Attribute stack entry, including mask

Y Pointer (data type unspecified)

n X type | n copies of type type (n* indicates n is minimum)

Table 6.3: State Variable Types

Version 2.1 - December 1, 2006

267

268 CHAPTER 6. STATE AND STATE REQUESTS

ables for which IsEnabled is listed as the query command can also be obtained
using GetBooleanv, GetIntegerv, GetFloatv, and GetDoublev. State variables
for which any other command is listed as the query command can be obtained only
by using that command.

State table entries which are required only by the imaging subset (see sec-
tion 3.6.2) are typeset against a gray background .

Version 2.1 - December 1, 2006

269

6.2. STATE TABLES

arow 10 ‘g ‘1 ‘0 :dims

- 1'9°C penb ur Jej 0s $901119A JO JoqUINN - - A -
UuoIONIISU0d

- 1'9C Iopun penb oy Jo seonIoA - - AXE -

- 1'9°C Jojutod xayroa gyy dins o[Suely, - - ty -
aiow 10 ‘] ‘0 :dims 9[3ueLn

- 1'9°C Ul JeJ OS SIIAA JO JoqUInN - - Sz -
dins s[duern puy/uiddg

- 19 B UI SOOMIOA 0M) SNOTAIJ - - AXT -

- 197 §2013424-u03K70d JO JI9qUINN - - “z -
uogAjod

- 1'9°C PUF/uI3ag JO OPISUT SOINIOA - - A XU -

- e I01unoo orddns aury - - A -
doog

- 1'9°C ul| puj/uI3ag © JO XLA ISI - - A -

- 197C 1SIY Y} ST X2L124-2Ul] JT SOJIIPU] - - g -

- 1'9°C JuI puy/uISdg Ul X9JIOA SNOTAIJ - - A -
199[qo

- 19C PU3/UI3aq SANBIIPUL () 7 UM | - 'z -

Jnquy 09§ uonduosog onep puewwo) odA], on[eAa jen

Tentug

10

Table 6.4. GL Internal begin-end state variables (inaccessible)

Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

270

Jjualmd | 7°9'Z SegoSpg | onil | Aued[0o0glI9) g OVLIE0ad
JUALIND €1'e 11q prfea uonisod 19)sey | ani] | AUBI[00GIOL) g AI'TVA"NOLLISOd ¥ALS VI LNTYNND
uonisod 19)ser
JueLIND €1'7 | yim pajeroosse sajeuIpIood 21X, | 1°0°0°0 AJRO[199) IX*¢ SQYO0D TUNLXAL YALS VI LNTYNND
uonisod
JUALIND €1z JIQ)SBI Y)IM PIIBIDOSSE Xopul JO[0)) I AJRO[1199 10 XIANIYELS VI LNINNND
PREREINTIEDR)
uonisod 19)sel
JUALIND €1'C)M PIJBIDOSSE JO[0D AIBPUO0ddS | 1°0°0°0 AJeo[1199 0 OTO0 AAVANOIHS HALSVH LNAHAND
PRESEINTIER)
uonisod
JUALIND €1'C I9)SeI YIIM PAJeIdosse 1010D) | T1°1°T AJeo[1199 0 AOTOO HALS VA LNTRIND
PRESEINTIER)
JuoLINd €1'e QOUR)SIP JAISBI JUALIN)D) 0 AJeO[J19D) Y AONVISIAJALS VI INTIANO
JUQIIND €1°C uonisod 1djse1juarn) | 1°0°‘0‘0 ARO[195 v NOLLISOd ¥HLSV ¥ LNEHAND
XQ1I9A ISB|
- 9C UM PIIBIDOSSE SJBUIPIOOD INJXI], - - L -
X9)IQA
- 9T JSe[IIM PAJRIDOSSE XIPUI JO[0)) - - 10 -
- 9T XJ)I9A JSB[)M PIIBIDOSSE JO[0)) - - 0 -
JuoLINd LT 9JeUIPIOO0D S0 JUALIND) 0 AJRO[J199) Y Q00D DOI" INENAND
‘AJISNUIID
JUQLIND LT [euLou JuaLIN) | [°0°0 AJRO[199 N TVINMON LNS¥IND
JUALIND LT S9JRUIPIOOD AIMXI) JUdLIND) | [°0°0°0 AJeO[195) IX *g SAYO0D TANLXAL LNIIAND
JUQLIND LT XJpul JO[0D JUALIND) I AJeO[J199) 1D XIANT INTHIND
‘AJIZNUIRND
JUALIND LT 10[09 ATepUu0d3s JuaIIn)) | 1000 A)eO[]199) o) M0T0D"AAVANODAS™ LNANAND
‘AJI3NUIRND)
JUALIND LT Jo[odjuarn)) | [T1°r AJeo[1199 o) OTODLNHIND
PRESEINTIER)
anqupy 09 uonduosag anfeA puBwIwOo)) odA1, anyea Jo0
[enruy 19D

Table 6.5. Current Values and Associated Data

Version 2.1 - December 1, 2006

271

6.2. STATE TABLES

Keire-xo)oA | 87 Ae1re Xopur ay) 0] IJUIoq 0 AIUIORD) | & YALNIO AVHIV-XHANI
Aeire-xo)oA | 97 SOOIPUI U29M)2q PLIS 0 ARZNUPD | .7 SARILS AV¥IV XIANI
Kelre-xal1oA | 87 soo1pur Jo 2dAJ, Iv0T14d ARSNUIPD | Ty GdAL AVIIVXIANT
AelIe-XoloA | §°C JIqeud Kelre xopuy asing parqeuysy g AVAVXHANI
Keire-xo)oA | 97 | Aelre 10[0d A1epu099s Q) 0) JOIUIO] 0 AIUIOgRD) | X MALNIOd AVNV 40100 RIVANODES
ABIIB-XJ)IOA | Q7 SIO[0D AIEPUOIIS UAIM)(] IPLNS 0 ARINUPY | 7 HATILS AVAY 40100 AMVANODSES
syuouodwiod
KeITB-XJ)IOA | Q7 10[09 ATepuodas Jo adA, IY0T14 ARSNUPRD | 8y H4ALAVIAV HOTOD AAVANODES
XOMIOA
KeIre-xal1oA | 87 1od syuouodwod 10[00 ATepuodds ¢ ATBNUIPD | 7 9ZIS" AV Y ¥0T0D AdVANODAS
AelIe-XoMoA | §'C 9[qeud ARLIE 10[0D ATRPUOIIS asing parqeuysy g AV 40100 AVANODHS
Ke1re-xo)oA | 97 Ke11e J0[09 9} 0} JUIO] 0 AIUIOgRD) | & MALNIOd AVHIV 400D
Aeire-xo)oA | 97 SI0]00 UdaM)2q PLIS 0 ARZNUPRD | .7 GARLLS AVEEV IOTOD
Ae1Ie-XaloA | §'7 syuouodwod 10[09 Jo adA], IVO0Td AIRZNUIPRD | 87 AdAL AVENY 00D
Keire-xoloA | 87 X319 Jod syuauoduwiod 1010 v ARSNUPD | .7 2ZIS AVEEVHOI0D
Ae1re-xo)oA | 97 91qeud AelIe 10[0D) s pajqeuySy g AVNIVOTOD
Keire-xo)oA | Q7 Aeire p10od 30§ 2y 03 IAQUIO] 0 AIMUIOgRY | A WILNIOd AV V- QY000 D0
Ae1re-xo)oA | 97 SPI009 30J UAM]Iq APLIS 0 ARINUPY | 7 AARALS” AV Q00D D04
Aelre-XolIoA | §'7 syjuouodwod p100d 30J Jo odAJ, IVOTId ATIZNUTID ty HdAL AVIIY QY000 D0
KeIre-xouoA | 87 JIqeua Aelre p100d 304 asIn pajqeuys| q AVINV Q000004
Kelre-xo)oA | 87 AelIe [BULIOU I} O} JJUIO] 0 AIUIOgRD) | & MALNIOd AV V- TYINION
Ae1re-xo)oA | 97 S[RWIOU U29M]2q pINS 0 ARZNUPRD | .7 AATILS”AVHIY TYIWION
KelIe-xoloA | 87 S9JRUIPIOOD [BULIOU JO odAT, Iv0T14 ARSNUIPRYH | Sz HIAL AVIIV-TVINION
KeIIe-XoMaA | §'C J[qeud ABILIe [BUWLION asIn pajqeuysT q AVINV TVIVION
Keire-xo)loA | 87 A®1I® X91I9A A} 03 IJUIO] 0 AIMUIOgRY | MALNIOd VNV XALNTA
Ae1re-xo)oA | 97 SQOIIOA U22M)Qq 9PLIS 0 ARZNUPD | .7 FARLLS AVEAV XALEA
AeIIe-XalIoA | §'7 SQIBUIPIOOD XAIdA JO odA], IVOT1d AJISIULII) vz AdAL AVIIY XALITA
ABITB-XJIOA | 87 Xxa11oA 12d sareuIpIoo) % ARINUPY | 7 HZIS" AV Y XALIAA
Keire-xo)oA | 87 9]qeud AeIIE XO1IOA S| pajqeuysy qg AVNNV XEL¥EA
Aeire-xo)oA | /7 J10JO9[$ JIUN IMIXI) JANIR JURAI[D | 0HINIXHEL | AISIU[IRD | *Tz TANLXALTALLOV-INAITD
ANqUPY "008 uondLosaq onfeA puewwio) odAL, onyea jon
[enmg 19D

Table 6.6. Vertex Array Data

Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

272

Kelre

Kelre-xo1oA | §°C Sep 93pa oy 0} IojuIOg 0 ATNUIOJIND) X MALNIOd AVHV OV L"30Ad
s3ey

KeITe-XJIOA | Q7 98po uoomjaq IpLIg 0 AJ3NU[II) A HARILS AVINY DV L H0AH

Kelre-xauoA | 87 J1qeud Kexre Sey a3pyg as|o,] pajqeuys| q AVINY OV AT

Iurod UIOJqLIY

ARIIR-X9)I0A 8T Aeire qLe X9)IoA TINN -X3)I3A)95 dX +91 YALNIOd AV IV dIALLY XAIIaA
pazifewIou

Kelre-xolA | §°C Aeire qunye X9lIoA EN 2 qUIIVXIIARD | gX + 97T QEZITYINSON AV ¥V 1M LLY XALNHA

Kelre-xouoA | 97 od£y Aerre qume xo10A | IVOTA qUIPVXIAPRY | 77X + 9T HdAL AVIAVGTILIV XIIITA

Kelre-xo1oA | §°C opis AelIe qIIje XoMoA 0 qUIYXIIARY | 7 X + 9T HARILSAVHYY HRILLV XELEA

Kelre-xo1oA | §°C 9ZIS ABIIE qLI)IE XOLIOA % qUIIVXIIIIARYD | ZX + 97T HZIS"AVHNY SIRILLY XELNEA

KeIIe-Xo1I0A | §'7 | 9[qRUQ Aelre qLIIE XJLIOA aSID] qUIVXIANIARY | gX + 9] QETEVNE AVHYY ERILLY XELEA
Ke1Ie 91euIpIo0d

Ke1re-xo)oa | 87 2IN)X3) A} 03 IAJUIO] 0 ARUIOJIND) AX %G MALNIOA AV IV QYO0 HUNLXEL
SIJRUIPIOOD

Kelre-xo1oA | §°C 2IN)X3) UAIMI2Qq APMIS 0 ARINUIPD | X *(HANLS” AV YY" Q00D HINLXAL
SIJRUIPIOOD

AelIB-X)IoA | Q7 Amxa) Jo odAL, | IV¥OTd AJIZNUIID) AEXE HAAL AVIEY QY000 TMNLXEL

Keire-xouoA | 97 | JuQwR[R Jod sareurpioo)) % ARINUIPY | L ZX *] 215" AV Q00D HUNLXEL
JIqeud

Keire-xouoA | Q7 | AelIe QJRUIPIOOD 2IMIXJT, | 2SIBY pajqeuys| gx *g AVIV- QY000 HUNLXEL

AnquNy REIN uonduosaq anfeA pueswIwio) odAL, anyea 100
[entug 19D

Table 6.7. Vertex Array Data (cont.)

Version 2.1 - December 1, 2006

273

6.2. STATE TABLES

Surpuiq

Aeire-xo)loA | 6'C Ioyynq Aelre aInquUNy 0 AIQLI)IYXAIDAYD | 7T + 9T ONIANIE ¥EHNE AV Y GIALLY XELEA
Surpuiq

Ke1re-xo)oA | 7°6°C Jopnq Aeire JUWIH 0 ATIZIUIID) 7z ONIANIE HALINE AV Y LINAWA' T
Surpuiq 1onq

Kelre-xaloa | 67 Kel1e 9)1euIpI009 304 0 AJIZNUIIID) 7z ONIANIEJELANE AVHIV-TI000 00
Surpuiq 1oynq

KelIe-Xol0A | 6'C Ke1re 10109 ATepuoddS 0 ATISNUIIID 7z DNIANIE¥ELLANE AV HAY 40 T0D" AAVANODES
Surpuiq

Aelre-xa)10A | 6'C Iopgnq Aeire ey a3pyg 0 AJ3NULIID) +7Z ONIANIE JHIANE AVIAV DV T4 HOaH
Surpuiq

Keire-xo)oA | §'C Jopnq Aelre PIO0OXA], 0 ARSNULPY | 7X*(ONIANIE ¥ELNE AVINY Q00D TINLXEL
Surpuiq

Kelre-xooA | 67 Iopnq Aelre xopup 0 ATISNUIIRD) “Z ONIANTE ¥EINE AVIIV-XEANT
Surpuiq

ARIIB-XJMOA | 6T I91nq Aelre 10[0) 0 ATZNUIIID) <7 ONIANIE ¥EAINE AVAY 40100
Surpuiq

AelIe-XaloA | 67 Iopnq ABILIe [BWION 0 AJ3NUIIID) A ONIANIE ¥HLINE AV IV TVINION
Surpuiq

Kelre-xaloa | 67 Iopnq Aelre Xo)IoA 0 ATISANUIIRD) “Z ONIANTEJELINGAVIIV XIIITA

ARIIB-XJMIOA | 6T Surpuiq Iopnq juaLmn)) 0 ATIZNUIIID) A ONIANIE JHLANE AVHAV

AnquUPy "00§ uonduoseqg onfep puewILIo) odA], onfea 3o
fentug 19D

Table 6.8. Vertex Array Data (cont.)

Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

274

- 6T 1urod 1oynq paddey TINN ARUIOJIRJNGID) AXU WHINIOd dVIN ¥ELIN
- 6T Sep dew 1opyng STV ALIRJOWRIBRJ NI g xu QEddYIN¥ENd
- 67T Sep sseoov ropng | AIINMAM AVAY | AMJWERIEJIPNGIID) o7 XU SSHOOV ¥EAANg
- 6C woned afesn rong | MVIA DLLVLS | AMRJOWRIRJIINgId9) gZ XU 4OVSN AN
- 67T 9z1s eyep opng 0 ALI)URIBRJIJINGIOD) LZ XU azIS ¥A1ANg
- 6°C Bjep Iafng : Bleqqnseyngidy) AWNE XU -
Anquyy 09 uonduasaq anfeA puewIwo)) adA], anfea o0
[eniuy 1D

Table 6.9. Buffer Object State

Version 2.1 - December 1, 2006

275

6.2. STATE TABLES

po[qeua

d[qeud/wIOsURY | 7T ouerd Surddrpo 1asn ype as|uyg pajqeurys| gx*9 VANV dITO
SIUSIOYJo00

wojsuern 1T ouerd Surddrpo 1oy 0°‘0°0°0 ue[di;nivn X %9 YANVId dITO
Joyjuo

J[qeud/wIojsues} | €717 | SUIEISAI [BWIOU JUSLIND) s palqeuyst q TVWHON HTVOSHY
JJO/UO UOTIRZI[EWIOU

d[qeud/wiIojsuen} | ¢ 117 [eWIOU JUaLIND) S| palIqeust q AZITVINION

wIojsuen) 71T opow XIjew juaun)) | METATHAON | AJISNUIIdD A HAOW XIUIVIN
Iqwrod

— T Jor)S XIIJBW QINIXA], I ATISNUIIRD LIX*G HLJAA MOVLS HANLXAL
1wrod

- TIC yoerls xujew uonodafoig I AJ3NU[IID) 7 HLAQ MOVLS NOILOAIO¥d
1ojurod

- TI1°7 | YOorIS XIIJeW MOIA-[OPOIN I ATISNUID) A HLAAA SOVLS MAEINTIAON
Ioyurod

= €o¢ JoB)S XINeW J0[0)) I ATISINUYIID) <7 HLAHA OVLS XLV I0TOD

10dmara I'11°¢C Tey 29 1eou o3uel ypdoq 10 AJRO[J399) LY XT HONVI HLAHAA

110dmara I'11°Z | 1uexe 29 uruo 1odmarp 1'11°C 998 AJIZNUIRD 7 X¥ LOdMEIA

(XTILVIN HINLXAL HSOdSNV L)

- TIT Joe)S XLIeW IN)Xa], Amuapy AJRO[J199) I X % GX %G XIYLVNHENLXEL

(XIYIVIN"NOLLDHO¥d ASOdSNVI.L)

- TI1T yoerls Xew uonadford Kmuapy AJRO[]199) X *g XTALVIN NOLLOFI0¥d

(XIILYIN” MAIATAHAOW dSOd SNV I.L)

- TIT°7 | YorIS XIIjeW MOIA-[OPOIN Kmuapy AJRO[J39%) P X * 2€ XIALVIN MATATIAOW

(XILYIN JOTOD dSOdSNV L)

= €9¢ JOB)S XINeU J0[0D) Amuapy AJRO[195 2UX %G XIILVIHO0T0D

anquIy LN uondiosaq anfeA purwIwio)) adAL anyea 100
[eniug 1D

Table 6.10. Transformation state

Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

276

Sunysi LY1T 3uIos [PPOIAPPRYS HIOOWS ARINUPYH | L7 THGOW IAVHS
JIqeud/30J 6'¢ P9[qBUL WNS JO[0J JT ani], EN R PalqeuST q WS HO'I0D
uonemored
303 01°¢ 305 10J 91BUIPIOOD JO 20INOS | HIAAA INIWNOVIA | AISIUIPRS) | C7 O¥S"AU00D DO
JIqeus/30 | Or1°¢ parqeus 3oy J1 onif, aSID palqeudst qg 904
30J 0r’¢ Jpow 304 dxd AJIZIUIID) €7 AAOW DO
303 or’¢ pus 30J JeqUI] 01 AJeO[J195) Yy aNED0d
303 or¢ jIe)s 0§ JeQUI] 00 AJROL 1)) Yy LAVLS DO
30J 01°¢ Kysuap 303 [enuauodxyg 01 ARO[399 Yy ALISNZA™DO1
30J ore Xopur 304 0 AJeo[419 10 XAANTHOd
303 0r'¢ 101092 304 0°0°0°0 AJeO[J195) o) ¥0T00700d
ANquUNVY 098 uondrosaq anfeA puewwio) odAJ, an[eA 190
[entuy 1D

Table 6.11. Coloring

Version 2.1 - December 1, 2006

277

6.2. STATE TABLES

Suny3y I'v1°C [013U0d I0[0D) MOTOD HTONIS AJIZIUIID) ty TOYINOO ¥OTOD TAAOW LHOI'T
Sunysy

Sunysiy 1'v1°2 PopIs-0Mm] as() aS|n AUBI[00g)95) q 2dIS"OM L TAON LHOI'T

Suny3r I'v1°C [BO0] ST JOMAIA s AUBI[00¢[195) g HAMAIATVOO T TAAON LHOI'T
10102

Sunysi| ['v1'C QU99S JURIqUIY (0'1°T0°T0°T0) AJeo[419) 10) INATENVIHAON LHOTT
[eLIoYRW
Jo juauodxa

Suny3y I'v1°C Ienoadg 00 AJIBLIDIRIAIRY) | Y X G SSANINIHS
I0[0D

Sunysy |4 ‘el SAISSTUIY (0'T°0°0°0°0°0°0) AJIBIIRIBINID) | D X T NOISSING
I0[0D

Sunysiy ['71'C | [euorew renoadg (0'T°0°0°0°0°0°0) AJBLIIBINRD | D X T AVINAdS
I0[0D

Sunysi| ['vI'C [eLIoJeW osnIq (0'1°8°0°8°0°8°0) AJIBLIDIBIAIRD) | D X G 8441
I0[02

Sunysy ['P1°C | TeUREW JUIlquUIy (0'1°T0°T0°T0) AJIBLIRIBIAIY) | D X T LNAIENY
Sunyoen 10[0d £q

Sunysy eEvIi'T PjoxJe (S)o0r] MOVE ANV INOYd AJAZNULIID) &7 OV VALY HO'T0D
I0[0D
juaLINd Juryoen)
sonzodod

Sunysiy €YIT [BLRIRN | ESNAATA ANY INAIIWY AJIZANUIIN) Sz MALANY IV TYRALYIN 40700
po[qeu?
st Sunyoen

o[qeud/3unysdi| | ¢'y['C 10[09 JT only, 28104 PIlqeuys| q TVRHALVINHOTOD
po[qeu?

o[qeu/3uny3y | ['H1°7 | St Sunysyy jroniy, aS|n PaIqeuHST q ONILHOI'T

ANqUNVY "09§ uondmoseg anfep puBwIwIo)) adAL, anfea 190
[enmy 1D

Table 6.12. Lighting (see also table 2.10 for defaults)

Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

278

Sunysi
Sunysi 1'¥1°C XopuI JO[0d J0J “s pue ‘“p ‘“p 1°T°0 AJJBLIRIBRIAIRD | Y X € X G SHXIANIHOTOD
o[qeus/3unysI| | 17 Pa[qeuD 2 Jy3I| J1 oniy, s palqeuys| X *8 HLHOIT
Sunysi| I'v1'C ¢ y31] jo 93ue Jodg 0081 APYSITRD LY X *8 4101051048
Suny3y I'v1°C 1 3y31] Jo Juduodx? Jysipodg 00 APYSIIn LY X *8 LNEANOAXE 10dS
Sunysi I'vi'e ¢ 311 Jo uonoamp w3mods | (0°1-0°0°0°0) APUSITIRD ax*g NOLLOBHIAT10dS
Sunysiy I'¥1°C 10}o'} "uaye dneIpend) 00 APYSITIND L% %8 NOILVNALLY DILY¥avNO
Suny3y IR I0)0€} "USJIe Jeaur| 00 AJYSITIND LY X %8 NOLLVINHLLV-dVANIT
Suny3r I'v1°C J10)0BJ “UANIR JUBISUOD) 01 AJYSITIND LU X %8 NOLLV/INHLLY"LNVLSNOD
Sunysi I'y1'e ¢Sy jo uonisod | (0°0°0°1°0°0°0°0) APUBITIRD dX*8 NOILLISOd
Suny3y 1'v1°C 1 y311 Jo Aysudqur renoads | (7 9[qel 29s APYSII9n OX %8 AVINOHES
3unysip I'v1'C £ WS Jo AYISuQUI SNI | ([T 29I 98 APUSITIND DX *8 asnaaIa
Sunysiy ['71°C 29311 Jo Aisudquiyuaiquiy | (0°1°0°0°0°0°0°0) | APUSITID DX *8 NSV
ANquUNVY 098§ uondrosa anfep puewIwo)) adAL, anfea 10
[entug 1D

Table 6.13. Lighting (cont.)
Version 2.1 - December 1, 2006

279

6.2. STATE TABLES

d1qeud/uosAtod | 7°¢¢ 91qeus oddns uosLjog asig parqeuysy g 21dd1LS NODXTOd

orddns-uoSAtod | ¢'¢ orddns uo3A[oq S.1 arddnsuosdLjoq1an T -
UOIJBZ1I9)SEI POl

orqeusuodAfod | ¢'¢¢ T4 10} 9[qeua Jasjjo uo3A[0d S| paIqeuds| q TILT LESLI0"NODATOd
UOI)BZ1I9)SEI PO

d1qeud/uosAtod | ¢¢¢ AN IT J0J 9[qeUD JasjJo uoSA[0d PYL palqeuyst q ANIT LAS10"NODATOd
UOT}BZ1I9)SBI POl

Jrqeus/uodAfod | ¢¢'¢ INIOJ 10J 9[qeua 195]j0 uo3A[04 as|n palqeudsy q INIOd" LAS310"NODXTOd

uo3Ajod Sge sjun 39sjgo uo3A[od 0 AJeO[199 Yy SLINA"LASA0"NODATO

uo3Kjod S¢e 1010%] JasjJ0 uo3A10d 0 AJeO[J19D) Yy MOLOVH LSAI0"NODXTOd
(poeq ®

uo3Ajod ¥'G€ JUOIJ) OpOW UONEBZIIAISEI U0TA[0] TIId AJISANUIIIN) €7 X g HQOW NODX10d

Jrqeus/uodAfod | ¢'¢ uo 3urserenue uo34L[0d S| PaIqeuHST g HIOOWS NODXT10d
I0jeOIpUl

uo3Ajod 'S¢ MDD/MD 2depuolj uo3Lod MDD AJRZUIID) (574 HOVALNO¥

uo3Ajod 1'6¢ suo3A[od Suroey yoequoIy [[ND Movd AJIZNULIID) €7 HAOW HOVATIND

JrqeusuodAtod | 1°¢¢ parqeua Sur[nd uo3A[od as|ny PaIqeuAST q HOVATIND

J[qeua/aur] s Jrqeus ofddns aury aSID palqeudst q HTddILSENTT

aury s jeadar opddnys aurg I AJIZIUIID) A IVAJIN T 1ddILS ENI'T

aury aas 9rddns oury S.1 AJAZNUIIID) A NYHLIVA T TddILS ANIT

J[qeua/aul] s uo JuIserfenue our| aSID pa1qeusst q HLOOWS aNIT

aur| ¥'€ YIpIM QUI| 01 AJBO[19D Y HLAIMENIT

jurod €¢ soiuids jurod 1oy uoneuaLio WIS | IAFT YdddN AJISIULIID) ty NIDINO™ QY000 HLINdS LNIOd

jutod €€ SIUQIOLJO00 UOTIBNUINY 0°0°T AJROLTI9D) LY X € || NOLVANALLV EDNVLSITINIOd

jutod €€ uonenuaye eydye J0J ploysaryg, 01 AJROL IR Y 218" TOHSTIHL HAV4"INIOd
*saz1s Jutod Yloows pue pasere
“xewr juapuadop [dwir a9y} JO “XeN

jurod €¢ ; "oz1s jurod wnwixew pajenuany { ARO[39D oy XVINHZIS INIO

jutod IS 9z1s Jurod wnwiruIw pajenuany 00 AJBO[19D Yy NIWHZIS"INIOd

J[qeuappurod €€ 91qeud auds Jurog aSID] pa1qeust q LIS INIOd

o[qeuajurod €€ uo Jurserenue jurog SO palqeudst q HIOOWS INIOd

jutod €¢ 9z1s Ju10d 01 AJRO[19D) 2 4ZIS"INIOd

AINqUNY 098§ uondmossq anfeA puewIwIo)) adAL, anfea 190
fentuy 1D

Version 2.1 - December 1, 2006

Table 6.14. Rasterization

CHAPTER 6. STATE AND STATE REQUESTS

280

odwresnmnu R% oN[eA YSew 93BIOA0D JIOAU] | 2SIV | AUBI[00F)ID) g LAFANIIOVHIAOD T TdINVS
orduwresnnu 1 on[eA Jsew 93.I0A0D) 1 AJBO[J199) Y ANTVA HOVIIAOD HTNVS
Jrqeus/oidwresnur | ¢4 93e10A00 AJIpowt 01 YSBIN | 28] PalqeuysI q ADVITAOD TTINY'S
Jlqeus/erdwesnnut | ¢['f wnwrxew o) eyde 10§ | sy Palqeudst qg ANO™OL VH'TV HTdNVS
J[qeug/edwesynu | €[4 eyde woij 93eI0A00 AJIPOIN | 28D pPaIqeuysI q HOVYIAOD OL VHA TV T TdINVS
o[qeus/edwesnnu | [°7°€ uonezuaisel oidwesnny | anif palqeudst g TTANVSIZINN
Anquny REIN uonduosaq aneA puewIwo)) adA], anyea 100
[entug 19D

Table 6.15. Multisampling

Version 2.1 - December 1, 2006

281

6.2. STATE TABLES

¢ "p 0’1 18 9w AIN)X3)

- 1'8°¢ dew oqno 908} z— | ['Q°¢ 99S | AZRW[XILII) Ixu ZHALLVDEN dVIN S8 3N LXEL
1 "pr0°] Je 93BWI AINIX9)

- '8¢ dew oqno 908} 2+ | ['Q°¢ 99s | AGRW[XAL]IID) Ixu ZHAILISOd dVINHEND SN LXEL
1 "pro’[I8 9FBWI 9INIXJ)

- 1'8°€ dew oqno ooey fi— | 1°8°¢ 99 | AZBWIXILIID) IxXu A HALLYDEN dVIN 280D HINLXEL
1 'pr0°] Je 93BWI AINIXI)

- ['8°¢ dew oqno 9o®) i+ | ['Q°¢ 99S | IGRW[XIL D) I XU K HALLISOddVINHENDTNNLXEL
1 "p’0°] Je 93BWI AINIX9)

- 1'8°¢ dew oqno a0} £— | 1°g°¢ 99S | 9FLWXALID) IXu X HALLYOEN dVIN 2800 TANLXAL
1 "pro°] Je 93eWI AINIX9)

- 1'8°¢ dew oqno 908 T+ | 1°8°¢ 99s | IFBWIXALID) I XU X HAILISOd dVINTEN0 TN LXEAL
Lpo

- ¥ Je oSeWI AINIXd) T | {'C99S | AFLWIXILI0D) IxXu Az TYNLXEAL
dVIW HdND HINIXHL

ivell 11°8°€ 0} punoq 399[qo 2IMxaJ, 0 AJRZUIIID) LZX*G dVIHENO DNIANIE HNLXEL
AT ddNIXHdL

S ivel 71'8°€ 0) punoq 399[qo aImxay, 0 ARINUIPY | 7 X EX x Q= DNIANIE H¥NLXEL
PI[qEBUD ST FULINIXI)

J[qeUL/QIMXA) | €1°]°C dew oqno Jr onig, aspg PaIqeuAST gX %7 dVINHEND HNNLXEL
€ JO ‘Z ‘T SI T ‘pajqeud

J[qeUQ/AIMXA) | 9[°]°¢C SI SULIMIX9) QT J1oniy, EN 2 pajqeuyst g X EeX*g Q@ HINLXEL

AnquUNY "09S uonduosog anfeA puewIwIo)) odA1, an[eA jon
[enruy 19D

Table 6.16. Textures (state per texture unit and binding point)
Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

282

uoneIdu3

AIMIX9) Ny dewdrw opewony q4STVA IPWRIRIXI[D) qgxu dVINAINELLV¥ENED
uonouny

Aamxd) | $1°9°¢ uosuredwod armyxay, TVNOAT ALIRJOWRIBJXIJID) 87 X U ONNAFAVANOD TANLXAL
opowt

Aamxa) | $1°9°€ uostredwos armyxay, HNON ALIRJOWRIBJXI] J9D) Tz X U HAON HYVANOD HYNLXAL

AIMIX9) '8¢ opow a1n)xa) Yydo | IONVYNIWNT | AMIJOWRIBRIXILIND) 7 XU HAON HYNLXHAL HIAEA
for215m1q serq

AIMIX9) {'8]'¢ [Te1op JO [QAQJ[2INXA], 00 AJIRPUWRILIXI D) yxu SVIE QO THANLXAL
[9A9]

QIMIX9) 8¢ AelIe QINIX9) WNWIXBIA 0001 AJI)RWRIRJXI] 19D LZ XU THAST XV HYNLXEL

AIMIX9) 8¢ AelIe 21)x9) aseqg 0 AJIRWRIRIXI] D) L7 XU TAATTASYE TANLXAL

AIMIX9) 8¢ [Te39P JO [9AS] WINWIIXBIA] 0001 AJId)RWRIRJXI] 19D yxu QOTXVIN HuNLXHL

AIMIX9) 8¢ [1e19P JO [9AJ] WINWIUTIA] 0001- INSEIELI LCALR) E RETS) Yy xu QOTNINFINLXAL

amxa)l | 7I'S°€ KoUapIsa1 AINIXaJ, T1°8°¢ 998 ALIRJPWRIBJXI] JID) gxu INSAISTI TANLXEL

AMXA | 71°9°¢ Kyuond 103[qo aIyxay, 1 AJIIPUWRIEIXALIND | [X U ALRHORId HINLXAL
(Auo sermxal (¢)

AIMIX9) L'S°€ opowr deim .4 pI00IX3], IVEdaEy IPWRIBIXI[D) Sz XU A VAN HANLXEL
(A[uo sarmxa)
dewr oqnd ‘qg ‘Ae)

AIMIX9) L'S’E opowr deim 7 pI00dXaJ, IVEd=Ey JI9)PWRIEJXIL D) Sz xu LdVIMHINLXAL

QIMX9) L'S°E opout deim § pI009Xa], IVEdRY JI9)PWRIRIXI[D) Sz XU S"AVIM HENLXAL
uornouny

AIMIX9) 6'8°¢ uonedyIusew Xy, Q¢ 998 IPWRIRIXI[D) Sz X U WAL OV HANLXEL
uonouny

AIMIX9) {'8]'¢ UONeIYIUIW AINIXJ], Q¢ 98 JIPWRIRIXI] D) 97 X U HELTE NI TANLXEL

AINIX3) Y JO[00D I9PI0Q 2INIXJ], 0°‘0°0°0 J3jouwIeIRJX9],)95) O Xu OO0 QYO HINLXAL

anqupy 09S uonduosaq anfeA puBwILIO)) adAy, angea 120
[enmy 1D

Table 6.17. Textures (state per texture object)

Version 2.1 - December 1, 2006

283

6.2. STATE TABLES

oFewr
21xa) passardwod

- €8¢ Jo (se1A&qgn ur) az1s 0 IPUWRILIPAITXILID | 7 XU HZIS HOVINT QaSSTIdNOD TANLXAL
JeuLIo)
[eusour passardwod e

- €'9°¢ | seyoSewr aIrmIxa) Jroniy, | asjp | JPUWRIBJPAYTXILIRD | g X U QESSTIINOD THNLXAL
uonn[osal

- 8¢ yrdap s o8ewr 21n)xo) 0 JIPWRIBJPAITXILINY | 7 X U 21§ HLJIQ SN IXAL
uonn[osal

- 8¢ Aysudur s, 93wl AIN)X3) 0 JIPWRIBJPAITXILIND | 7 X U 9215 ALISNELNT HENLXEL
uonnjosal doueUIWIN]

- 8¢ erdiiigeliie) 0 JPWERIRJPAIXIID) | 7 X U ZIS EONVNINO TN LXEL
uonn[osal

- 8¢ eydre s, o5ewr o1nIxa) 0 JOPWRIBJPAYTXILID) | 7 X U 9ZIS"VHA TV TNIXAL
uonn[osal

- 8¢ an|q s, o5eWI 2IN)X9) 0 JIPWRIBJPAITXILINY | 7 X U 4ZIS H T TANLXAL
uonn[osal

- ¥y QI3 s,958WI IN)X3) 0 JIPWRIBJPAY XL | 7 X U ZIS"NHEID HUNLXEL
uonn[osal

- 8¢ pa1 s,oFewr 91nIx9) 0 JPWERIRJPAIXIPID) | 7 X U ZIS" QI TN LXEL

jewIO} 93ewl (SINENOJWOD H¥NLXAL)

- 8¢ [BUIUI S, 25RWI AIN)X3) I JIJPWERIBJRAI XA | *097 X u LVIANOA TVNYH NI SN LXAL
yIpim Iapioq

- 8¢ | poyroads s.oFewr aIMx9) 0 JIPWRIBJPAITXILIND | 7 X U YIQUOL AUNLXAL
ydop payroads

- 8¢ s, o5ew a1MIx9) ¢ 0 JIPWERIRJPAITXID) | 7 X U HLJEq TN LXEL
1yS1oy payroads

- 8¢ s,o8ewr a1mx9) ¢/AT 0 JPWERIRJPAIXIID) | 7 X U LHOIIH H¥NLXAL
yipim

- 8¢ | poyroads s,o3ewr 2IMxd) 0 JIPWRIBJPAITXILIND | 7 X U HLAIM TENLXAL

AnquPy 09§ uonduosaq onfeA puBwILIO)) odA], onyea jon
[entuy 19D

Table 6.18. Textures (state per texture image)

Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

284

2INIX9) €1'8°¢ Surreos rourquoos-isod eydpy 01 AJAUXJLID) X %7 HTVOS VHA TV
AIN)X3) €1'8°¢ Surress rourquod-isod goy 01 AJAUYXJL 9D X % H1VOS 40y
AINIX9) €1'8°¢ zpuerado eydly | VHATV D¥S AIAUXJL 199 Sz X x(VHdTV-ZANV¥EdO
QINX9) €I'8’€ [puerodo eyd]y | YHATIVY D¥US AIAUXJL199) ST X % VHATV TANVYEdO
AINIX9) €1'8°¢ 0 puerado eyd[y | VHATV D¥S ATAUHXJ]}95) 7 X % VHdTV-0ANV¥EdO
AIN)X3) €I']°¢ zpuerado gOy | VYHATY O4US ATAUXJ] 195 VX x¢ 0¥ TANVYEO
el €1'8°¢ [puerado goy | ¥OTOD DES AIAUXJ[199 V7 X % 0% 1ANVYEO
AIN)X3) €I']°¢ opuerado goy | HOTODDES AIAUXJL199) AEX €0 0ANVYEO
INIX9) €1'8°¢ 7 2o1nos eydry INYISNOD ATAUXJ[}99) E7X % VHTV20dS
el €I'8'¢ [2omos eyd[y SNOIAEYA ATAUXJ[195) E7X x ¢ VHATV"1D¥S
vl €1'8°¢ 0 9@o1nos eydyy TINIXHAL ATAUXJ[}99) E7X % VHATV 00S
2IN)%3) €1'8°¢ 7 90In0S gOy INYISNOD ATAUXJ[195 E7X x ¢ 40U TS
IMIX3) €1'8°¢ 1 901n0s Oy SNOIAHEYA ATAUXJT}99) E7X % 404" 10¥S
IN)%3) €1'8°¢ 0 90In0S gDy TINIXAL ATAUXJ[195 EZX x ¢ 40U 0DUS
SInivell €1'8°¢ uonouny Iourquod eydpy HIVINAOW ATAUXJT}99) 97 X *x g VHJTV ENIENOD
IN)%3) €1'8’¢ uonouny IaUIquIod goy HIVINAOW ATAUFXJ[195 87X * ¢ SO ANIENOD
O pue g
AIN)X3) 11T ‘L ‘S 10J) uUa3xa} J10J pasn uonoun | YVANIT HXH | AIWDXILID | 7 X X x g HAOW NEOHINLXEL
(O pue Y ‘L ‘S 10J)
Snivell V11T SJUSIOYF09 Ieaul| 309[qo uadxay, ' 1177 998 AJWROXIALPD | Y X FX * g ANV'1d"LOHIE0
(O pue *J ‘L ‘S 10J)
AINIX9) 11T sjuaroyJeoo uonenbo osueyd uadxay, 1177 998 AJUIDXALPRD | H X FX * ANV 14 HAS
J[qeueIMXal | 11T (O 10 Y ‘L ‘S SI) po[qeud uagdxa], asID] P3lqeuySt g XPX*g 2" NEO HINLXEL
wwﬁﬁ&@w%@.@@
il 8'8°¢ SBIQ [TB)9P JO [QAJ] INIXI], 00 AJAUYXJL)99 YX*g SVIEAOTHINLXEL
2IN)%3) €1'8°¢ JO[00 JUSWUOIIAUD INJXJ], 0°0°0°0 AJAUYXJL 19D OX *q MOTOD" ANT HINLXAL
Snivell €1'8°¢ uonouny uonesrdde aImyxay, HIVINAOW ATAUXJ[}99) 97 X *x g HAON ANEHINLXEL
2IN)%3) LT JOJOQ[AS JTUN AINJXI) JANIY 0TINIXHAL AJIZNUIIRD) *T HNLXLHALLOY
jutod ¢¢ 91qeus Juawase[dal 9JeUIPIO0)) s ATAUXJ]}95) gx*g HOV1dEY QY000
ANQLNY 09§ uonduoseg anfep puewwo)) odA], anyeaA 190
fenriy 1D

Table 6.19. Texture Environment and Generation

Version 2.1 - December 1, 2006

285

6.2. STATE TABLES

Iopnqg-yidop 9T¥ uonouny 1593 0Pnq ypdoq SSdT ATISANUIIID) 87 ONNA"HLdHA
dlqeud/ropng-pdop | 91y pajqeus 1onq yideq 8104 PI[qeuysy q LSALHLIdAA
uornoe
IQJNQ-[Iou}s STy ssed 1o13nq adap [1oU)s yoeg daay ATISNUIIID) 87 SSVdHLIAA SSVd MOVE TIONALS
Iopng-[1oudls ¢'1'v | uonoe [rey 1opnq ydap [10uU)s yoeg daay ATISANUIIID 87 IV HLAIA™SS VA OVE TIONELS
IQJNQ-[Iou}s STy UOT)OE [IeJ [IOUR]S Jorg daay ATISNUIIID) 87 IV SOVE TIDNELS
Iopng-[1oudls S1v JN[BA 9JUAIJAI [IOU)S Jovg 0 ATISNUIIID 7 JE¥OVETIONELS
IQJNQ-[Iou)s STy JSew [IOU)S Jorg ST ARSNUIIID 7 SSVINENTVA OVE TIONELS
IoJng-[1oudls ST uonouny [10u)s Yoy | SAYMIVY | AJIFIULIRD 87 ONNUSOVE TIONELS
uornoe
19JJng-110ua)s Sy ssed 1opnq yadap [10U3S U0 dday AJRZNUIID) 87 SSVA HLJAA SSVd TIONELS
IQJNQ-[IOU}s ¢'1't | uonoe [rey pnq ydop [10U9)S JUOL] daay ATISNUIIID) 87 IV HLAIA"SSYd TIONELS
IoJnQ-[1ou)s STy UoTOR [IBJ [IOUQ)S JUOL] daay ATISANUTIID 87 IV TIONELS
IQJNQ-[Iou}s STy IN[eA QOUIIRJAI [IOUR)S JUOL] 0 ATISNUIIID) A JEATIONELS
IonQ-[1oudls STy JSBW [IOUQ)S JUOL] S.1 ATISANUIIID 7 MSYINHNTYA TIONELS
IQJNQ-[Iou}s STy uonouny [IOU)s JUoL] | SAYMTIY | AIISNUIID 87 ONNATIONELS
dlqeus/Ioygng-[iousls | ¢ [y P[qeRUL FUI[IDUAS 8194 PI[qeuHsy q LSALTIONALS
I9JJnQ-I10[0d AR an[eA 20URIRJAI I59) eyd[y 0 ATISNUIIID) Y JEY LSAL VHA TV
I9JJng-10[0d V1Y uonouny 1s eydly | SAYMTIV | AIISIULIRD) 87 ONNA"LSAL VHATY
9[qBUS/IOPNG-I10[0d | +' ' pa[qeus 1s9) eydry S0 palqeudst qg LSALVHATV
JIOSSIOS AR X0Q IOSSIOS | 714 99S | AIRSIUPD | Z X T X0 4OSSIOS
J[qrU/IOSSTOS AR Pa[qeuQ SULIoSSIOS S0 parqeudst qg LSHLMOSSIDS
ANqQUNY LI uonduosaq anfep puewwo)) adAL, aneaA 190
[eniuy 1D

Table 6.20. Pixel Operations

Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

286

191Jng-I0[0d or'l vy uonouny do 91307 Xd0D ARZNUIPY | 9y AAOW dO™DIDOT

9[qreu9/I3]INg-I0[0d | 01 [+ porqeus do 01301 1010 as|pg palqeuyst g dO"OIDOTHOTOD

9[qBUS/IdPNG-10[0d | OI'['¥ parqeus do o1301 xapuy EN R parqeusst g (dO™DIDOT0'14) dOOIDOT XAANI

9[qeu9/I3[Ng-I0[0d | &' 1'% pojqeus SuLey(anif palqeuyst g ¥HHLIA

J9JJnq-I0100 IV JO[0O pu9[q JuRISUO)D) 0°0°00 AJeO[195 o) 010D ANA'Td

I9JJnqg-10[0D 81+ | uonenbo Surpusqeydly | AA¥ ONAJ | AISIUPRY | S7 VHATV NOLLVNOE AN Td

(NOLLYNOA ANHTE :§'14)

IoJynQ-I10[0d 1t uonenbo Sulpud[q gOY | AAV ONNA | ARSIUpPRY | 7 0¥ NOLLVNOT ANE'TH
uonouny

I9JJNQ-I0[0D ST¥ V "1s9p Surpuarg O¥HZ ARSHUPY | Ty VHA TV LSaaNT1d
uonouny

I9JJnQ-10[0d I'¥ g0y "1sop Surpuorg O¥dd7Z ARSHUPRYH | Ty (LSQANHTEE 10) GDW LST ANHTE
uonouny

Iopng-I10[0d T V 221n0s Jurpuarg ANO ARSHULPRYH | Sz VHA TV O¥S ANE'TE
uonouny

191Jng-I0]0d I Oy 201nos Jurpuarg ANO AIRZNUIPRY | Sy (O¥S"ANETEE 14) DY OUS ANETE

J[qeuUs/I9PNg-10[0d | §'['} pa[qeus Surpuayg SO parqeuyst g anaTd

AnquIy REIN uonduosaq anfeA puewwio) adA], anfea jon
[eniu] 1D

Table 6.21. Pixel Operations (cont.)

Version 2.1 - December 1, 2006

287

6.2. STATE TABLES

RYNQ-wnode | ¢'7h dnfeA IBJ[d JI9QNg UONR[NWNIIY 0 AJeO[199 L X T HNTVA VIO INNDOV

PPYNQ-oudAs | €T nJeA Jed[d [UAS 0 ATRZNUIIID 7 HNTVA IVETO TIONELS

opgng-yydep | €T¥ anfea res[d 1pnq Ppdog I AJIZNUIIID) Y 2N TVA VIO HLdEd
(opowr xapur

_YPYNQ-I0[0d | €T J0[09) an[eA Jed[d J_Jjnq I0[0D) 0 AJeO[190 10 HNTVA VETO XEANI
(opowr

1PPNQ-10[00 | €°C'Y VDY) dN[eA 1B3[0 J9Jynq I0[0) 0°0°0°0 AJeo[419) 19) INTVARIVETOHOTOD

RINQ-TOUAS | 7TY NSBW)LIM JJJNq [I0Ud)S Joryg S.1 AJIZNUIIID) A SISVWELRMM MOVE TIONELS

RPYNQ-oudAs | 77 NSBW)LIM JOJNQ [IOU)S JUOL] S.1 ATISNUIID) 7 SSVWELRM TIONELS

opgng-yydep | TP Sunum 03 po[qeus 1oynq Ppdog andf AUBI[00g)9) q SMSVWILIMM H1dad

I_JNQ-10100 | 7T’V V 10 ‘g ‘D ‘Y S9[qeuD LM JO[0D) an.j AUBI[00g)9) Xy SISVWHLRM™0TOD

_INQ-I10[0d | TP JSBUWRILIM XJpUI JO[0)) S.1 AJIZNUIIID) 7z SSVNELIM XEANI
0 1002

R_YNQ-I0[0d | [T ndino 10J paIdd[as _YNq MBI | ['TH 99S | AIISIIULIND *0Tr7 YEANE MV
1 J0[0D

_PYNQ-I0[0d | [T ndino 10J pAOS[as VNG MeI(J | [TH 99 | AIRSNUPY | 0Ty X PYEINE MV

ANqLY feleIN uondrosaq onfeA puewIwo)) adAL onyeA Jo0)
[entug 19D

Table 6.22. Framebuffer Control

Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

288

[oxid €9°¢ SYId T JO onfeA 0 AJBO[199 y svIg®
HIdHAJ 10 ‘YHATVY ‘dNTd ‘NIIID
[oxid €9¢ ‘A ST T ‘HTYIS™T JO anfep 1 AJBO[199 g a1vos°T
[oxid £€9¢ I1HISAA0"XHAANT JO anJep 0 AJIZIANUTIIN) 7 LASLI0"XAANI
[oxid €9¢ IATHS XHAANT JO an[ep 0 ATRSNUIIID) VA LATHS XHANI
oxid €9¢ paddew ore sonfea [10U)s JIonl], | asjp] | AUBI[00IID) q TTIONHLS dVIN
oxid €o¢ paddew are s10[00 Jroniy, | 2sjp] | AUBI[00GIID) q AOTOY dVIN
ao)s-xid | €1°7°9 Surpuiq Jopynq yoedun [ax1g 0 ARINUIPD | 7 || ONANIE¥EHNENOVINT TIXId
aos-foxid | 7 ey Surpuiq 1opynq yoed [ox1d 0 ARINUIPY | 7 ONIANIE ¥ELINE MOV TaXId
aros-poxid | 7ey INTWNDITY MOV d JO aneA ¥ ARINUIPD | L7 INSANOI TV 3OVd
aos-foxid | 7ey STAXIJ dINMS MOVd JO an[eA 0 ARSNUPY | .7 STAXIA dDIS MOVd
aro)s-foxid | 7 ey SMOY"dIMS MOV d JO anfeA 0 ARINUIPD | L7 SMOY dDIS IOV
ao)s-foxid | 7ey HIONAT MOI MOVd JO an[eA 0 ARSNUPY | .7 HLONET MO¥ SOVd
atos-foxid | 7ey SEOVNI-dINS MOV d JO anfeA 0 ARINUIPH | L7 SHOVIT IS SOVd
aos-fxid | zey IHOIEH EOVWI~MDOVJ JO onfeA 0 ARSNUPY | L7 LHOIGH EDVINI MOV
aros-foxid | 7ey ISYIA ST MOVdJoon[eA | asipy | AUBI[00gID) q LSALTESTOVd
aojs-fxid | ey SHIXG dVMS™MOVJ JOo on[eA | asjp] | AUBI[00GIID) q SHLAE dVMS OV
a0)s-poxid | 19°¢ INTWNDITY MOVANN JO anfeA % ARINUIPY | L7 INSANOI TV SOVANA
aos-foxid | [°9°¢ STAXId dIMS MOVANQ JO onfeA 0 ARSUPY | .7 STAXIA dDIS MOVANN
a0ys-poxid | 1°9°¢ SMOY"dIMS MIOVANQ JO anfeA 0 ARINUIPY | L7 SMOY dIDIS IOVANN
Aaos-pxid | 19°¢ HISNHIT MOY MOVANQ JO an[eA 0 ARZNUIPY | 7 HLONST MOY SIOVINA
a0)s-poxid | 19°¢ SEOVINI dIMS MIVANQ JO anfep 0 ARINUIPY | L7 SEDVINT IS SIOVANN
IHODIHH EDVYWI YMDOVANN
atoys-poxid | [9°¢ Jo aneA 0 ARINUIPD | L7 LHOIFH FOVINTIOVANN
aoys-poxid | 1°9°¢ ISYIA ST MOVANN JOaNEA | asjpf | AUBd[00gII9 q LSALTESTHOVANN
at0ys-poxid | [9°¢ SHIXG dVMSMOVANA JO on[eA | asjp] | AUBI[00gIID) q SHLAE dVMS OVANN
anquny LN uonduosaq anfeA purwIwio)) AdAL, anyea 100
[eniug 1D

Table 6.23. Pixels

Version 2.1 - December 1, 2006

289

6.2. STATE TABLES

SQIUD 9[qer) IO[0d INBEIELI AL
[exid €9¢ 0} parjdde sioyoey serg | 0000 -3[qBL10[0)I5) wl X ¢ SVIEET1EVL¥0T0D
SAMUD 9[qe) JO[0D INBEIELI AL
[oxid €9'¢ | o01pardde siopeyo[eds | [1°T°1 -3[qBLI0[0D19D) W4 X € IVOS ATEVI 00D
ALISNHLINT
10 ‘HONVYNINAT
‘YHATY ‘ANTd ‘NIAID
‘@dy ST T ‘uonNnjosaI ALI)IWIRIC]
- €9°¢ juouodwod J[qe) I0[0D) 0 -3[qBLI00DIPD) | 7 X EX X9 HZIS" T HTEVL 00D
YIpIs ALRjJOWRIR]
= €0¢ payroads s9[qes J0[0) 0 -3[qe],10[0)}95) LZXEXT HLAIM HTEVLH0T0D
jeurIo} o3ewl ALIdJIWRIR]
= €0¢ [eUIUI S9[qR) IO[0D) | VIO -9[qe] 10[0)}95) Sy X ¢ X ¢ LVINHOL HTEVLHOT0D
9[qe)
= €9¢ J0J0J XINeW I0[09)S0q | A1duia J[qe].I0[0))95) T 218V MOTOD XMV 40T0D"LSOd
oIqel
- €9¢ JO[0D UONN[OAU0D ISOJ | A1duia J[qBLI0[0DID) T HT8VL 00D NOILNTOANOD"LSOd
= €9¢ J[qel 1010 | Ldwo E) (AR (QIENR) I F18VL¥OTO0D
auop
s1 dnyoo[91qe) 10[0d
diqeud/exid | €9°¢ | Xmew Jo[odjsod jroniy, | asipg PE) (G | g FTEVL MO0 TOD XLV I0T0D"LSOd
auop
st dnyoo[9[qe} 10[0d
Jrqeus/pexid | ¢'9'¢ uonn[oAuod isod Jroniy, | aspg P2AIqBuAST g FTEVL YO TOD NOILATOANOD LSOd
Quop st dnyoo|
o[qeus/exid | €9'¢ 9[qe) I0[0D JLoni], | as|pq palqeudst g T8V H0T0D
AnquNy REIN uonduosaq anfeA puswIwio)) ad4], anfea 120
[eniuy 1D

Table 6.24. Pixels (cont.)

Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

290

ALRJWRIR]
= ¢'9°¢ | IYSIeY I9)[J UOHN[OAUOD) 0 -uonNNoAU0)Y | 7 X g LHOIEH NOLL'TOANOD
ALRjJOWRIRY
- S9¢ | WP IS UonnjoAucsH 0 -uonnjoAuoNPy) | L7 X € B NOINEANED
JeWIO) [RUIdJUL ALRJOWRIRY
= S'9'¢ I9)[J UOIN[OAUO)) Yaod -uonNN[OAU0)IIN) | vy X ¢ IVINMOA NOLLOTOANOD
SANUD IA)[J UOTIN[OAUOD AJIR)WERICY
[oxid €9°¢ 0} perjdde sioyoey serg | 0‘0°0‘0 -uopNoAUODPY | Y X ¢ SVIE AL NOILATOANOD
SOLIJUD JA)[J UOIINJOAUOD AJIR)WERICY
oxid €9¢ 0 parjdde si0joej o[eoS TTT°T -uoNNOAU0)P | Y X § A1VOS AL T NOLLOTOANOD
Jpouwr ALRjJOWRIRY
oxid G9¢ IopIoqg UONN[OAUO)) | HONAHY -UoNN[OAU0DPY | 77 X ¢ Q0N ¥AAIOE NOLLNTOANOD
AJIR)WERICY
[exid G'9°¢ | JIO[0D I9PIOQ UONN[OAUO)) 0°0°0°0 -UoNNJ0AU0))I5) o xXe MO0 T0D™¥IAIOE NOLLOTOANOD
BN 1} 1)
= €9¢ uonNn[oAu0d dqeredog &duia - -9[qeaedagion | 7 X g QT H1EVIVIES
7o nIg
= €90¢ SI 2 {SI9)[IJ UOTIN[OAUOD) &duio -UONN[OAUOD)IIL) | [X G Q%"NOLLOTOANOD
QUOP SI UONN[OAUOD
Jrqeus/pexid | ¢'9'¢ ¢z 2qeredass J1 onij, as|pg Palqeudsy q Az a18VAVdES
uop
o[qeus/pexid | ¢'9'¢ | SIUONN[OAUOD (JZ JT onif, as|o,] PEI(IGH | q QZTNOLLN'TOANOD
Quop
J[qeud/exid | €°9°¢ | SIUOINOAUOD (I JI onif, asIo,] PE) (G | g QI"NOLLO'TOANOD
Anquy kN uonduosag anfeA puBwIwo)) odA1, anfea o0
[enmy 19D

Table 6.25. Pixels (cont.)

Version 2.1 - December 1, 2006

291

6.2. STATE TABLES

sdnoi3 [oxid sawnsuod ALRJWRIR]
= €0¢ Surwrrer3o)siy Jroniy, | 9sfed -wea30)SIHIND) q SINISTWVEDOLSIH
HONVNIRWAT I0 ‘VHATY
‘4NTd ‘NEIID ‘ddy st
T ‘uonnosar juauodwod ALRJPWRIRY
= €0¢ J[qe) WeI3oIsIH 0 -WRIAZOISIIY) | 7 X T X G HZIS T NV ¥DOLSIH
JeWLIO] ALRPWRIRY
= €0°¢ | [euIdur d[qe) WeISoISTH | vIOd -wea30)SIHID) Yy X g LVINNOZ WVIDOLSIH
ALIRJPWRIRY
- €9°¢ IPIM 9[qe) WeISoISTH 0 -WBIS0)STHIID) L7 XT HLAIM WY ¥DOLSIH
= €9¢ o[qey weidoisty | A1duia weI30)SIHINY) I WY¥DOLSIH
po[qeud
Jrqeus/pexid | ¢'9'¢ | ST SuruweIsolsiy Jr oniy, | Is[eq Palqeudsy q WV3DOLSIH
XLIeW JO[09 Id)je
[oxid €9°¢ s10308] serq Jusuodwo)) 0 AJBO[J39%) g SVIE =" XTIV 40T00"LSOd
XLIJeW JO[0D Id)je
oxid €9°¢ | si0)oe] 9MR2S Jusuodwo)) 1 AJBO[199 Yy VDS 2" XIALVIN 40 T0D"LSOd
UuoNN[OAUOD JAJJe
[oxid €9¢ s1030®] serq yusuodwo)) 0 AJeO[]199) y SVIE 2" NOLLOTOANOD™1SOd
YHJdTIY
10 ‘ANTd ‘NATID ‘&g
ST Z ‘UONN[OAUOD Id}Je
[oxid €9°¢ | s10)o8] 9eOS Jusuodwo)) I AJBO[J199) y ATVOS " NOLLI'TOANOD"LSOd
ANqUNY "09S uonduosog onfeA puewIwIo)) odA1, onfeaA 100
[enmy 1°D

Table 6.26. Pixels (cont.)

Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

292

[oxid Y I9Jjnq 90In0S pey 7€ 99s AJISIULII) {574 AN avay
- €o¢ T 9[qe} JO 97ZIS I AJI3UIIID) A azis@
¢'¢ 91qe) woiy swreu dew
® SI T S9[qe) Uone[sue)
- £9¢ dejAPxX1g Xopuf 8.0 deAPRXIPD | ZX %3¢ X g ¢
€'¢ 9[qe) woiy sweu dewr
® SI T ¢S9[qe) uone[suLI
- £9¢ denpxid VIO 8.0 deARXIIPD | Y X * 3¢ X 8 ¢
roxid $'9°¢ 10)o') WooZ fi 01 AJRO[]199) Yy ANOOZ
roxtd $'9°¢ I0)0®j WOO0Z T 01 AJeOL19D) v XNOOZ
sdnoi3 [ox1d sewnsuod ALIRPUIRIR]
- €9¢ Xewuru JI onij, as[eq -XBUWUIA}95) q SINISXYINNIN
JeUWIO] ALRJPWRIRJ
— €9¢ [BUI)UI S[qe) XBWUIA vgod -XBUWUIA)95) (9474 LYINIOI XVINNIN
- £9°¢ 9[qe) Xewury | (W w w) (N ININ'IND) XBUWUIIAI9D) udl PRTRINIIRL
po[qeus
orqeus/pexid | ¢'9'¢ ST Xewurur JI onij, as[eq Pa1qBuAST q XVIANIA
AnquNy 098 uondroso(anfep puewuIo)) odA1, anpea 100
[eniug 1D

Table 6.27. Pixels (cont.)

Version 2.1 - December 1, 2006

293

6.2. STATE TABLES

pa[qeu?

J[qeU9/[BAD | [°C | UONBIOUAS [BULIOU ONRWIOINE JIONIL, | aSjpy | PI[qeudsI g TVNYON 0LV

[ead 'S SUOISIAIP PLIS pg ‘T AJRO[1399 L7 XT SINGWDES ARID TdVIN

[ead I'S SUOISIAIp pLIS P 1 AJRO[J19%) 7 SLNHWOHS ARID" [dVIN

[ea9 I's siutodpuo pus pg | [°0:1°0 | AJeOI4IdD qd Xy NIVINO@ IO ZdVIN

[ead I'S syurodpus pus3 p| 1°0 AJRO[J19%) Y X7 NIVINOT dRID" 1dVIN

Jqeud/[eAd | [°G od£y dews st 2 :sojqeud dewr pg | asjmy | pajqeuyst g %6 T TdVIN

J[qeUS/[EAd | [°C odAy dews st z :so[qeus dewr p| | asjpg | pIjqeuHSI g X6 1Y

- (S syutodpud urewrop pg | [°G 23S | Ajdejnpon Y Xy X6 NIVINOQ

- I'S syutodpua urewop p] | [°G99s | AjdeA1en Y XTX6 NIVINOQ

- 'S syurod [onUOd P | [°G99s | AJABIAND) | LY X *x8X *Q X § 44900

- I'S syutod onuod p1 | [°G99s | AjdeAen WX %8 X 6 44500

- 'S s1opio dew pg 11 Aldej\399 87 X T X6 A0

- I'S Iopio dew p 1 Ardezen *87 X 6 MHAAO
ANy 99 uonduosaq on[eA puBwWIIO) adAL, anfeaA 190

[entuy 1D

Table 6.28. Evaluators (GetMap takes a map name)

Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

294

- v1I'19 9p0d 90IN0S JO YISUT 0 ALIIPRYSIID) 7z HIONETH0¥NOS MIAVHS
- ['SI'C I9peys B 10J 9p02 2010 | Juins AJdwd | 90InoSIIpeySId) | IBYOX + ()
- vI'1°9 o[oyur Jo Yh3ua] 0 ALIdPRYSIID 7z HIONETDOTO:ANI
- ¥1'1°9 s100[qo 1opeys 10y 3o] ojul | Suws Aidwo | FoJoJULIPRYSIID | IRYDX + ()
- 1'GI'C popa9oons o[idwod Ise| asIn ALIdPRYSIID) q SNIVLS ATIdNOD
- 1'S1°C uonoop 10j pasdey Iopeys asIo] ALIDPRYS)ID) qg SNIVLS dLaTad
- 1’617 | (uowiSe1j J0 X9119A) 19peys Jo odA[, - ALIdpRYS)ID) ey HdALNAAVHS
ANqUNY 09§ uondrosaq anfep puBWIWO) adAL, onfea 100
[entuy 1D

Table 6.29. Shader Object State

Version 2.1 - December 1, 2006

295

6.2. STATE TABLES

y3u9|
- YI'T9 Swreu INqLIIe dANIL WNWIXBIA 0 AIWRBIZ0IJIND) z HLONIT XVINSELAERLIV HALLOV
- €CI'e Jnqunie aAnoe jJo oweN | Adwo QLI VIAIPVID Teydx + () -
- €SI anquye 2ANE Jo adL[, - qLIIVIAPVIIDH +ZX+0)
- €S1?e SINqLe aAnNde Jo 9ZI§ - qUPVIAOVIRD +ZX+0)
- €'GI'z | 9Inquye oLIoUas 9AIOR JO UOTIBIO] - uoned0qLII VN9 7ZX+0 -
- €CI'e SINQLIIE SANIE JO IOqUINN 0 ATUIRIS0IJId) 7 SALNERILLY HALLOY
- €Cl'C oN[eA UlIojrun) 0 wLIojiu399) qx +zIg
y3u9|
- Y119 QUWBU WIOJTUN 9AT)OR WNWIXBIA 0 ATWRBIZ0IJID) -z HLONET XVIN WHOAINN HALLOY
- €CI'e wIojIun 9A13oR Jo oweN | Aydwo ULIOJIU()IAT}IVIOD) Ieyd X + () -
- €61T uLIojIun 9ANde Jo adAJ, - ULIOJIU()IAI}IVI95) LZX+0 -
- €CI'e WLIOJIUN QATJOR JO 9ZIS - ULIOJIU()IAIIVIOD) LZX+0 -
- ¥1'1°9 SULIOJIUN QANOR JO UONBIO] - UONBIOTULIOJU()IO5) 7ZX+0 -
- €CI'e SWLIOJIUN JAT)OR JO JOQUUINN] 0 ATWRIZ01JIND) 7 SINHOLINTHALLDY
- €GI'e Sof ojur Jo y3ua| 0 ATueI301J3195) 7z HIONATOOTO4NI
- ¥1'T°9 103[qo weio1d 103 Sof ojuy | A)dwo | FojojuyweIZ0IJIdL) | IRUDX + () -
- ¥1'1°9 payoene s103[qo 1opeys | A)dwo | SIIPeYSPIAYILVIIL) HX+0 -
- ¥1°1°9 | $109[qo 1opeys payoene Jo 1oquinN 0 ATurea301 195 7 SAAAVHS QHHOVLLV
- TSI'T popoooons jdurene ajepifea Jse| | asipg ATWRIZ01JI0) g SOIVLS HIVAITVA
- 7S1T popedoons ydwope Yurp Ise | asimyg ATRIZ0IJ199) q SOLVLSINIT
- 7S1T pajo[ep 109lqo wreiSold | asipy AIWRBIZ0IJID) q SOLVLS HIATIA
- 7S1T 103[qo wrea3oid juarmd Jo oweN 0 AJISIULID) A VDO LNERIND
Anquy "9 uonduosag onfeA puBwIwIo)) odA1, onfea 10
[enmy 1D

Table 6.30. Program Object State

Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

296

J[qeua ¢ opowr azIs JuIog | asjpq parqeuys] g 4ZIS" LNIOd NV D0Ud XALEA
JuaIINd LT NgLNIE XA OLIUAD) | [0°0°0 | qUIIVXIAY | FY X + 9T HIALLLY XALIAA LNTHAND
Aqeud | TH1°C OpOWI 10100 POPIS-O0M], | aSIB] parqeuySs] g HAIS OML WV HDOUd XALYHA
anqupy 99§ uondrosaqg onjep puBWIWO)) adA£1, onjeA 190
[eniuy 1D

Table 6.31. Vertex Shader State

Version 2.1 - December 1, 2006

297

6.2. STATE TABLES

jury AoeInooe

Iy 9°G QATJBATIOP Iopeys JuewiSer] | YYD INOQ | AIdSHUpR9 | €7 INTHEALLVATIEQ SAVHS INTNDV ¥
g 9°G jury Ayrenb vorssardwod a1mxaY, | YYD INOA | AJISIIULIRN) 74 LNIH NOISSTIdNOD BUNLXAL
jury 9¢ jury uoneruas dewdry | IYVDO INOQ | AJIISIIULIND) 974 INIH dVINdTA™ 1V SENED
g 9¢ jury So | FIVO INOA | AIITHULI9n) A INIHDOd
jury 9¢ jury yroowss uoSA[0d | TIVO INOA | AIISNUIIIL) Sz INTH HLOOWS NOOATOd
jury 9G JUIY Jjoowss Ul | TUVI INOA | AIIZIUIID 74 INIHHLOOWS ENI'T
jury 9°G jury yjoows Juiod | FTIVO INOA | AIIFIULIRD 1974 INTHHLOOWS™INIOd
jury 9°G JUIY UOTOQII0D 9ANDAdsIod | TUVYD " INOAd | AJISQUIId9) A LNIH NOILOHAH00 HALLOAAS ¥Ald
Anquyy 09 uonduosaq anfeA puBwIIO)) ad4], anyea 100
[entuy 1D

Table 6.32. Hints

Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

298

- I'11°2 SUOISUSWIP 1I0dMITA WNWIXRA | ['[['C 39S | AIRSNUPD | L7 X g SINIQ" LYOdMETA"XVIN
I9pI0

- NS [erwouA[od J0jen[eAd WNWIXBA Q AJIZNUTID) A AQUO VAT XYIN

- ¥'S Sunsou [[eo Is1] Ae[dsIp wnwIxe 9 ATIZNULID) 7z ONILSAN LSITXVIN
ypdop

- TS JOe)S WEBU UOT)OIIS WNWIXBA $9 ATISNUIIID) 7 HLJHAIOVLS HNYN XVIN
9[qe) uorje[SULI)

- €9¢ deA[[oXI{] ® JO 9ZIS WNWIXBA € ATIZNUTINO) A TTVL VN TIXITXYIN
UOISUQWIP

- 1'8°€ a8ewr 21myx9) dewr aqno WNWIXBA 9] AJIZNUIIRD) 7z HZIS TINIXAL dVIN 2N XVIN
Selq [rejop

- 8'8°¢ JO [9AQ] 2IN)X3) IN[OSqE WINWIXEIA] 07¢ AJBO[199 Y SVIEQOTHYNLXALXVIN
UOISUQWIP

- 1'8°¢ a8ewr 2IMIXd) (0 [/ WNWIXBIA +9 AJIZANUTID) A HZIS TANLIXALXVIN
UOISUQWIP

- I'8°¢ 98ewr 2IMIX9) (J§ WNWIXBIA 91 ATISNUIIID) A 4ZIS"TANLXAL AEXYIN
®ff pue “x U9AIdS UI uoIsiaid

- ¢ [oxidqns jo s3q Jo oquinN % ATIZNULID) .z SLIE TAXIAENS
oIS XIjew

- 7117 | emyxe) Jo yydop roquinu winuwirxejy C ATISNUIIID) 7 HLJHA IOVLS HANLXALXVIN
pdop

- TI1T yoess xmew uonddford wnwrxejy T ATIZNUTINO) 7z H1dGa MOVLS NOLLOAIO¥d XYIN

- TI1'Z | ydop Jorls MOIA-[opOW WNWITXBIA € ATISNUIIID) 7 HLJAA IOVLS MAIATIGOW XVIN

= €9¢ ydap Yoels X1jew J0[09 WNWIXBIA Z AJ3NUIIID) 7z HLdEA MOVLS XIILYIN MOTOD XVIN
soue[d

- AN Surddro rosn Jo JoquInu WNWIXBA 9 ATIZIUTID) 7z SANVId dITOXVIN

- I'v1°T SIYSI] JO JoqUINU WNWIXBIA 8 ATISNUIIID) A SLHOITXVIN

aAnqupy 09§ uondrsaq on[eA puewwIo) adAL, anfeaA 190
WNWIUTA 190

Table 6.33. Implementation Dependent Values

Version 2.1 - December 1, 2006

299

6.2. STATE TABLES

Kyuenued

(ALIIVINNVID HLAIM ENIT ' 14)

- s UIPIM SUI[PaseI[enuY - AJROL19D) %Y ALRIVINNYIO HLAIM ANITHIOOWS

SUIPIM QUI paseIenue (IONVY HLAIM ENTT T 14)

- '€ Jo (1 03 0]) 23uey ‘1 AJROLIRD | L X T HONVY HLAIM ENITHLOOWS
SyIpIM Uty

- '€ pasere Jo (14 03 of) a3uey 11 AJROLIID) | Y X G HONVY HLAIM ENIT ESVITY

Ayrenueid (ALRVINNVEDHZIS INIO 1 1'14)

— c'c az1s jurod paserenuy - AJRO[]195) Y ALRVINNVIDHZIS INIOd HLOOWS

sazrs jutod paserenue (FONVY2ZIS INIOd 1 14)

- ¢¢ Jo (1y 01 0f) a3uey 11 AJROLAPD | 1Y X T DNV HZIS"INIOd HIOOWS
soz1s jutod

- ¢¢ pasere jo (14 01 0]) a3uey 17T AJRO[IRD) | LY X ¢ HONVY 4ZIS"INIOd QIS VITY
ISTXQ

- 9 s1opnq Y311 29 o[J1 oniJ, - AUBI[00g)95) g OHYHLS
1SIX0 SI9JINq

- 1'Cy yoeq 29 1WOIJ JI N7, - AUBI[00¢}95) q AAAINGTTANOA
Soxapul

- LT 91018 SI9JINQq I0[0D JT NI, - AUBI[00LIID) g JAONXEANI
vabdd

- LT 9J03S SIong JO[0D JI AnI], - AUBI[00{}35) q HA0N VEDY
SI9jjnq

- 'y ATer[rxne Jo IoquunN 0 ATIZNUIIID 7z SYELING"XAY
oIqel

- €'9°¢ | weISoIsiy oY JO 9ZIS “XBIA € - 7z -

- €9¢ 9[qe) J0[0D ® JO IZIS "XBIN € -l zxe -
3oRIS AINQLINE 1UIL[O

- 9 oy Jo ydop winwirxe 9] AJAZNULIID) A HLdAQ MOVLS IYLIV INAITO XVIN
J[oe)S AINQLINE IOAIOS

- 9 y} Jo ypdop wnuwirxe 9] AJIZIUIIID) 7 HLAQ MOVLS 1MLV XVIN

AnquIy 09§ uonduosag anfeA puBWIWIO)) odA], an[eA 100
WNWIUTA 10

Table 6.34. Implementation Dependent Values (cont.)

Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

300

paytoddns
- 1119 uorsIoA ouadQ - 1118 TN EYS) S NOISYHA
- I1°1°9 3uLns JIopuaA - F1118ITNEYS) S HOANFA
panioddns uorsioa
- 1119 o3en3ue Surpeys - F111A TN ETS) S NOISYIA HOVNONV T ONIAVHS
- 1119 Suns 1a19puay - F11 1R TNETS) S MEHANTS
- I1°1°9 suorsu9)xa poyroddng - SuLnglen S SNOISNELXH
$1q
- Z1'1°9 | I91Uunod Axonb uorsn[ooQ | Z1°1°9 998 AILINQRH 7z SLIET¥EINNOD AYEND
SJBWLIOJ IN)X3)
- €8¢ passardwos jo oqunN 0 ATIZNUTID A SLVINMO HENLXE L QESSTIINOD NN
SJEWIOJ 9IN)X9)
= €8¢ passaidwod pajerownuyg - ATSIUIPRY | 7 X () SLYINYOA TN LXIL QISSTAINOD
- 1'2¢€ 9Z1S Ysew 93BIOA0D) 0 AJIZNUIIRD 7 STTINVS
s1opnq
- 1'2¢ ordwresnnu jo roqunN 0 ATISNUIIID Z SYELINT T TNVS
SOOT)IOA
SJUAWRISUBYMBI(]
Jo Joqunu
- 8T "XeW POpPUAWOINY - ATISNUIIID 7z SHOLLYAASLNAWA TEXVIN
SooTpUul
SJUWRISUBYMBI(]
Jo Joquinu
- 8T "XRUW PIPUSUTIOIY - AJIZNUIIRD) +Z SHOIANT SINANA T XVIN
I9)[IJ UOT)NJOAUOD ALR)IURIEJ
= % JO YS9y WNWIXeN € -uonNN[oAU0)PY | . 7 X g LHOIEH NOLLO'TOANOD XVIN
I9)[IJ UOT)NJOATOD ALR)IURIEJ
- R% JO (IPIM WINWIIXBA € -UONN[OAUO) P | , 7 X € HLAIM NOLLNTOANOD XVIN
Anquy 09§ uondrosaq an[eA puBWIWO)) adAT, an[eA 190
WNWIUTA 190

Table 6.35. Implementation Dependent Values (cont.)

Version 2.1 - December 1, 2006

301

6.2. STATE TABLES

SI9JJNQ MEBIP 9ATIOR

- 1'cvy Jo Joquunu winwIrxej +1 >.~0w3=:®mv +7Z SYFLANT MVIA XVIN
s9[qeLIRA
wIojiun Iopeys ‘geiy

- I'T1°€ JOJ SpIOM JO JoqUINN 9 >.5w3=~aomv A SINANOJINOD INIOAINN LNINOV I XVIN
$19S 9JBUIPIOOD

- LT QIMIX3) JO JoqUINN 4 ARZNUIPY | 7 SQIO0D HINLXAL XVIN
Surssaooid juowely
£q 9[qI$S?00® sjun

- $'C1°7 | 28ewr a1mxa) Jo roquinN C ARINUIPY | 7 SLINOEDOVINT H¥NLXAL XVIN
I9pRYS XA
' AQ 9[qISS?00®. sjun

- $°G1'7 | 2Sewr 2u)xa) Jo JaquInN 0 AJIZIUIIN) z SLINNHOVINI TN LXAL XILIHA XVIN
10
) £q 9[qIsS9d0€ Ssun

- ' CI'C 2IN)X3) JO Joquinu [e10], C >.~0woa=~aomv +7 SLINN IDVIANI FINLXAL AINITFINOD XVIN
so[qeLIeA JUIAIRA

- €CI'T I0J syeopJ Jo IaquinN 7€ ARINUPYH | L7 SIVOTIDNIAIVA XVIN
s9[qeLIRA
WLIOJIUN JOPRYS XILIOA

- €C1'T JOJ SpIOM JO JoqUINN 716 >.~ww3:~aomv +Z SLNANOdINOD WIOAINNXAINAA XVIN
sanque

- LT XA QANIE JO JAqUINN 9] ARZNUIPY | 7 SAIMLIV XALITA XY
sjun
QIN)X3] UONOUNJ-PaXy

- 9T Jo JoqunN ré AJIZANUTIIN) +Z SLINHINLXEAL XVIN

anqupy 09S uonduasaq anfeA puBwIWO)) adAy, anfea 100
WNWIUTA 12D

Table 6.36. Implementation Dependent Values (cont.)

Version 2.1 - December 1, 2006

CHAPTER 6. STATE AND STATE REQUESTS

302

VHATY 10 ‘ENTd ‘NIHID
‘@d@y st x) uauodwod 19ynq

- ¥ UONB[NWNIOR T UI S}Iq JO JOqUINN - ARSNUPD | 7 || sugTwaoov
- ¥ soue[d [10U9)s JO JoquUNN] - ARINUPYH | L7 SLIETIONELS
- ¥ soueld 1opnq ydop Jo Jequuny - ARZNUIPY | 7 SLIEHLdAd
XEANI 10 ‘YHATY ‘HNTd ‘NITID
‘a9 Jo auo st z Syuauodwod
- ¥ IoJJnq JO[0D T UI SIIq JO JoquInN - ARINUPY | L7 sLge
Anqupy 09 uonduasaq aneA puewwio) adA[, anfea 100
[entuy RO

Table 6.37. Implementation Dependent Pixel Depths

Version 2.1 - December 1, 2006

303

6.2. STATE TABLES

- L'T¥ junod passed-sadures uoIsnooQ 0 - A
- LTV 1 A1onb uorsn[o00 210y 0 AIL1NQ)3RH A AMEND"INEAAND
- L'TYy aAnoe K1anb uorsnooQ as|pg - q
IOLI
- ST Surpuodse1100 ® ST 919y} JI oniJ, s - qgxu -
- ST ($)9p0d 10119 JUALIN)) 0 JOLIH)ID) 87 XU -
Yoeqpady | €°¢ ad£y yoeqpaoq azc ATIZNUTID Sz HdAL ¥ELNE MOVEAEE
yoeqpady | €°¢ 9718 191ynq YorqpIdq 0 ATISNUIID 7z 971 434N MOV EaHad
Yoeqpasj | €°¢ 1o1urod 1opynq Yorqpasq 0 ATNUIOJ)IID) X AALNIOd AN NOVEATA
109708 TS 971s I9JJnq UOT}IJ[AS 0 AJI3U[IID) 7 ZIS¥H4NE NOLLOH TS
109195 TS 19urod 19Jjnq UOTIOI[AS 0 ATNUIOJ}IID) X YALNIOd ¥4ANE NOLLOA TS
- TS 3u119S IPOIAIIPUIY | JHANTY | AIISNUIIID) €7 QO YAANTY
- TS ydap yoels aureN 0 AJISIUIII) A HLdga OVLS HINVN
- 9 .HQEOQ Yoejs anqgLuie Judl) 0 >.~®M3=Haow +7 HLJAA MOVLS 9I¥MLLY " LNAITO
- 9 Jor)s 9InqLIIe JUSAD Kyduro - VX %97 -
- 9 19jurod yoels 9InquIIe IOAIS 0 ATISANUYIID) A HLAAA MOVLS SI4LLV
- 9 Yoels nquie wARS | Aidwe - VX %9T -
QUOU JI pauyopun {UONONISUOD
- 'S Iopun 3s1] Ae[dsip Jo oapo]N 0 ATISNUIID A HAOWLSIT
QuUOU JI () ‘UOT}ONISUOD
- A Japun Js1] Ae[dsip jo requinN 0 AJI3NU[IID) 7 XEANILSIT
IST] ¥'S aseq)sr] Jo Sumieg 0 ATISNUIID) A ASVELSIT
anquyy 09 uonduosoq anfeA puBwIwo)) adAy, anfea jon
[eniuy 1D

Table 6.38. Miscellaneous

Version 2.1 - December 1, 2006

Appendix A

Invariance

The OpenGL specification is not pixel exact. It therefore does not guarantee an ex-
act match between images produced by different GL implementations. However,
the specification does specify exact matches, in some cases, for images produced
by the same implementation. The purpose of this appendix is to identify and pro-
vide justification for those cases that require exact matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of GL com-
mands. For any given GL and framebuffer state vector, and for any GL command,
the resulting GL and framebuffer state must be identical whenever the command is
executed on that initial GL and framebuffer state.

One purpose of repeatability is avoidance of visual artifacts when a double-
buffered scene is redrawn. If rendering is not repeatable, swapping between two
buffers rendered with the same command sequence may result in visible changes
in the image. Such false motion is distracting to the viewer. Another reason for
repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeata-
bility as a requirement, two scenes rendered with one (small) polygon changed
in position might differ at every pixel. Such a difference, while within the law
of repeatability, is certainly not within its spirit. Additional invariance rules are
desirable to ensure useful operation.

304

A.2. MULTI-PASS ALGORITHMS 305

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such al-
gorithms render multiple times, each time with a different GL mode vector, to
eventually produce a result in the framebuffer. Examples of these algorithms in-
clude:

e “Erasing” a primitive from the framebuffer by redrawing it, either in a dif-
ferent color or using the XOR logical operation.

e Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity of high-
performance implementations of the GL. Even the weak repeatability requirement
significantly constrains a parallel implementation of the GL. Because GL imple-
mentations are required to implement ALL GL capabilities, not just a convenient
subset, those that utilize hardware acceleration are expected to alternate between
hardware and software modules based on the current GL mode vector. A strong
invariance requirement forces the behavior of the hardware and software modules
to be identical, something that may be very difficult to achieve (for example, if the
hardware does floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to port to
OpenGL.

A.3 Invariance Rules
For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given GL com-
mand, the resulting GL and framebuffer state must be identical each time the com-
mand is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any
other state value is not affected by the change):

Required:

o Framebuffer contents (all bitplanes)
o The color buffers enabled for writing

o The values of matrices other than the top-of-stack matrices

Version 2.1 - December 1, 2006

306 APPENDIX A. INVARIANCE

Scissor parameters (other than enable)

Writemasks (color, index, depth, stencil)

Clear values (color, index, depth, stencil, accumulation)

@]

Current values (color, index, normal, texture coords, edgeflag)
o Current raster color, index and texture coordinates.

o Material properties (ambient, diffuse, specular, emission, shininess)
Strongly suggested:

e Matrix mode

e Matrix stack depths

e Alpha test parameters (other than enable)

e Stencil parameters (other than enable)

o Depth test parameters (other than enable)

o Blend parameters (other than enable)

e Logical operation parameters (other than enable)
e Pixel storage and transfer state

e FEvaluator state (except as it affects the vertex data generated by the
evaluators)

e Polygon offset parameters (other than enables, and except as they affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values
marked with e in Rule 2.

Corollary 2 The window coordinates (x, y, and z) of generated fragments are also
invariant with respect to

Required:

e Current values (color, color index, normal, texture coords, edgeflag)
e Current raster color, color index, and texture coordinates

o Material properties (ambient, diffuse, specular, emission, shininess)

Rule 3 The arithmetic of each per-fragment operation is invariant except with re-
spect to parameters that directly control it (the parameters that control the alpha
test, for instance, are the alpha test enable, the alpha test function, and the alpha
test reference value).

Version 2.1 - December 1, 2006

A.4. WHAT ALL THIS MEANS 307

Corollary 3 Images rendered into different color buffers sharing the same frame-
buffer, either simultaneously or separately using the same command sequence, are
pixel identical.

Rule 4 The same vertex or fragment shader will produce the same result when
run multiple times with the same input. The wording ’'the same shader’ means a
program object that is populated with the same source strings, which are compiled
and then linked, possibly multiple times, and which program object is then executed
using the same GL state vector.

Rule 5 All fragment shaders that either conditionally or unconditionally assign
gl _FragCoord.z to gl FragDepth are depth-invariant with respect to each
other, for those fragments where the assignment to gl _FragDepth actually is
done.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to software op-
eration when some GL state vectors are encountered. Even the weak repeatability
requirement means, for example, that OpenGL implementations cannot apply hys-
teresis to this swap, but must instead guarantee that a given mode vector implies
that a subsequent command always is executed in either the hardware or the soft-
ware machine.

The stronger invariance rules constrain when the switch from hardware to soft-
ware rendering can occur, given that the software and hardware renderers are not
pixel identical. For example, the switch can be made when blending is enabled or
disabled, but it should not be made when a change is made to the blending param-
eters.

Because floating point values may be represented using different formats in dif-
ferent renderers (hardware and software), many OpenGL state values may change
subtly when renderers are swapped. This is the type of state value change that Rule
1 seeks to avoid.

Version 2.1 - December 1, 2006

Appendix B

Corollaries

The following observations are derived from the body and the other appendixes of
the specification. Absence of an observation from this list in no way impugns its
veracity.

1.

The CURRENT_RASTER_TEXTURE_COORDS must be maintained correctly at
all times, including periods while texture mapping is not enabled, and when
the GL is in color index mode.

. When requested, texture coordinates returned in feedback mode are always

valid, including periods while texture mapping is not enabled, and when the
GL is in color index mode.

. The error semantics of upward compatible OpenGL revisions may change.

Otherwise, only additions can be made to upward compatible revisions.

. GL query commands are not required to satisfy the semantics of the Flush

or the Finish commands. All that is required is that the queried state be con-
sistent with complete execution of all previously executed GL commands.

. Application specified point size and line width must be returned as specified

when queried. Implementation dependent clamping affects the values only
while they are in use.

. Bitmaps and pixel transfers do not cause selection hits.

. The mask specified as the third argument to StencilFunc affects the operands

of the stencil comparison function, but has no direct effect on the update of
the stencil buffer. The mask specified by StencilMask has no effect on the
stencil comparison function; it limits the effect of the update of the stencil
buffer.

308

10.

11.

12.

13.

14.

15.

16.

309

. Polygon shading is completed before the polygon mode is interpreted. If the

shade model is FLAT, all of the points or lines generated by a single polygon
will have the same color.

. A display list s just a group of commands and arguments, so errors generated

by commands in a display list must be generated when the list is executed.
If the list is created in COMP ILE mode, errors should not be generated while
the list is being created.

RasterPos does not change the current raster index from its default value
in an RGBA mode GL context. Likewise, RasterPos does not change the
current raster color from its default value in a color index GL context. Both
the current raster index and the current raster color can be queried, however,
regardless of the color mode of the GL context.

A material property that is attached to the current color via ColorMaterial
always takes the value of the current color. Attempts to change that material
property via Material calls have no effect.

Material and ColorMaterial can be used to modify the RGBA material
properties, even in a color index context. Likewise, Material can be used to
modify the color index material properties, even in an RGBA context.

There is no atomicity requirement for OpenGL rendering commands, even
at the fragment level.

Because rasterization of non-antialiased polygons is point sampled, poly-
gons that have no area generate no fragments when they are rasterized in
FILL mode, and the fragments generated by the rasterization of “narrow”
polygons may not form a continuous array.

OpenGL does not force left- or right-handedness on any of its coordinates
systems. Consider, however, the following conditions: (1) the object coordi-
nate system is right-handed; (2) the only commands used to manipulate the
model-view matrix are Scale (with positive scaling values only), Rotate, and
Translate; (3) exactly one of either Frustum or Ortho is used to set the pro-
jection matrix; (4) the near value is less than the far value for DepthRange.
If these conditions are all satisfied, then the eye coordinate system is right-
handed and the clip, normalized device, and window coordinate systems are
left-handed.

ColorMaterial has no effect on color index lighting.

Version 2.1 - December 1, 2006

310

17.

18.

19.

20.

21.

APPENDIX B. COROLLARIES

(No pixel dropouts or duplicates.) Let two polygons share an identical edge
(that is, there exist vertices A and B of an edge of one polygon, and vertices
C and D of an edge of the other polygon, and the coordinates of vertex A
(resp. B) are identical to those of vertex C (resp. D), and the state of the the
coordinate transfomations is identical when A, B, C, and D are specified).
Then, when the fragments produced by rasterization of both polygons are
taken together, each fragment intersecting the interior of the shared edge is
produced exactly once.

OpenGL state continues to be modified in FEEDBACK mode and in SELECT
mode. The contents of the framebuffer are not modified.

The current raster position, the user defined clip planes, the spot directions
and the light positions for LIGHT4, and the eye planes for texgen are trans-
formed when they are specified. They are not transformed during a PopAt-
trib, or when copying a context.

Dithering algorithms may be different for different components. In particu-
lar, alpha may be dithered differently from red, green, or blue, and an imple-
mentation may choose to not dither alpha at all.

For any GL and framebuffer state, and for any group of GL commands and
arguments, the resulting GL and framebuffer state is identical whether the
GL commands and arguments are executed normally or from a display list.

Version 2.1 - December 1, 2006

Appendix C

Version 1.1

OpenGL version 1.1 is the first revision since the original version 1.0 was released
on 1 July 1992. Version 1.1 is upward compatible with version 1.0, meaning that
any program that runs with a 1.0 GL implementation will also run unchanged with
a 1.1 GL implementation. Several additions were made to the GL, especially to
the texture mapping capabilities, but also to the geometry and fragment operations.
Following are brief descriptions of each addition.

C.1 Vertex Array

Arrays of vertex data may be transferred to the GL with many fewer commands
than were previously necessary. Six arrays are defined, one each storing vertex
positions, normal coordinates, colors, color indices, texture coordinates, and edge
flags. The arrays may be specified and enabled independently, or one of the pre-
defined configurations may be selected with a single command.

The primary goal was to decrease the number of subroutine calls required
to transfer non-display listed geometry data to the GL. A secondary goal was to
improve the efficiency of the transfer; especially to allow direct memory access
(DMA) hardware to be used to effect the transfer. The additions match those of
the GL_LEXT_vertex_array extension, except that static array data are not sup-
ported (because they complicated the interface, and were not being used), and the
pre-defined configurations are added (both to reduce subroutine count even further,
and to allow for efficient transfer of array data).

311

312 APPENDIX C. VERSION 1.1

C.2 Polygon Offset

Depth values of fragments generated by the rasterization of a polygon may be
shifted toward or away from the origin, as an affine function of the window coor-
dinate depth slope of the polygon. Shifted depth values allow coplanar geometry,
especially facet outlines, to be rendered without depth buffer artifacts. They may
also be used by future shadow generation algorithms.

The additions match those of the GL_EXT_polygon_offset extension, with
two exceptions. First, the offset is enabled separately for POINT, LINE, and FILL
rasterization modes, all sharing a single affine function definition. (Shifting the
depth values of the outline fragments, instead of the fill fragments, allows the con-
tents of the depth buffer to be maintained correctly.) Second, the offset bias is
specified in units of depth buffer resolution, rather than in the [0,1] depth range.

C.3 Logical Operation

Fragments generated by RGBA rendering may be merged into the framebuffer
using a logical operation, just as color index fragments are in GL version 1.0.
Blending is disabled during such operation because it is rarely desired, be-
cause many systems could not support it, and to match the semantics of the
GL.-EXT.-blend-logic_op extension, on which this addition is loosely based.

C.4 Texture Image Formats

Stored texture arrays have a format, known as the internal format, rather than a
simple count of components. The internal format is represented as a single enu-
merated value, indicating both the organization of the image data (LUMINANCE,
RGB, etc.) and the number of bits of storage for each image component. Clients
can use the internal format specification to suggest the desired storage precision
of texture images. New base internal formats, ALPHA and INTENSITY, provide
new texture environment operations. These additions match those of a subset of
the GL_EXT_texture extension.

C.5 Texture Replace Environment
A common use of texture mapping is to replace the color values of generated

fragments with texture color data. This could be specified only indirectly in GL
version 1.0, which required that client specified “white” geometry be modulated

Version 2.1 - December 1, 2006

C.6. TEXTURE PROXIES 313

by a texture. GL version 1.1 allows such replacement to be specified explicitly,
possibly improving performance. These additions match those of a subset of the
GL_EXT_texture extension.

C.6 Texture Proxies

Texture proxies allow a GL implementation to advertise different maximum tex-
ture image sizes as a function of some other texture parameters, especially of the
internal image format. Clients may use the proxy query mechanism to tailor their
use of texture resources at run time. The proxy interface is designed to allow such
queries without adding new routines to the GL interface. These additions match
those of a subset of the GL_EXT_texture extension, except that implementations
return allocation information consistent with support for complete mipmap arrays.

C.7 Copy Texture and Subtexture

Texture array data can be specified from framebuffer memory, as well as from
client memory, and rectangular subregions of texture arrays can be redefined either
from client or framebuffer memory. These additions match those defined by the
GL_EXT_copy_texture and GL_EXT_subtexture extensions.

C.8 Texture Objects

A set of texture arrays and their related texture state can be treated as a single
object. Such treatment allows for greater implementation efficiency when multi-
ple arrays are used. In conjunction with the subtexture capability, it also allows
clients to make gradual changes to existing texture arrays, rather than completely
redefining them. These additions match those of the GL_EXT_texture_object
extension, with slight additions to the texture residency semantics.

C.9 Other Changes

1. Color indices may now be specified as unsigned bytes.

2. Texture coordinates s, ¢, and r are divided by ¢ during the rasterization of
points, pixel rectangles, and bitmaps. This division was documented only
for lines and polygons in the 1.0 version.

Version 2.1 - December 1, 2006

314 APPENDIX C. VERSION 1.1

3. The line rasterization algorithm was changed so that vertical lines on pixel
borders rasterize correctly.

4. Separate pixel transfer discussions in chapter 3 and chapter 4 were combined
into a single discussion in chapter 3.

5. Texture alpha values are returned as 1.0 if there is no alpha channel in the
texture array. This behavior was unspecified in the 1.0 version, and was
incorrectly documented in the reference manual.

6. Fog start and end values may now be negative.

7. Evaluated color values direct the evaluation of the lighting equation if Col-
orMaterial is enabled.

C.10 Acknowledgements

OpenGL 1.1 is the result of the contributions of many people, representing a cross
section of the computer industry. Following is a partial list of the contributors,
including the company that they represented at the time of their contribution:

Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland

Andy Bigos, 3Dlabs

Pat Brown, IBM

Jim Cobb, Evans & Sutherland

Dick Coulter, Digital Equipment

Bruce D’ Amora, GE Medical Systems

John Dennis, Digital Equipment

Fred Fisher, Accel Graphics

Chris Frazier, Silicon Graphics

Todd Frazier, Evans & Sutherland

Tim Freese, NCD

Ken Garnett, NCD

Mike Heck, Template Graphics Software

Dave Higgins, IBM

Phil Huxley, 3Dlabs

Dale Kirkland, Intergraph

Hock San Lee, Microsoft

Kevin LeFebvre, Hewlett Packard

Jim Miller, IBM

Tim Misner, SunSoft

Version 2.1 - December 1, 2006

C.10. ACKNOWLEDGEMENTS 315

Jeremy Morris, 3Dlabs

Israel Pinkas, Intel

Bimal Poddar, IBM

Lyle Ramshaw, Digital Equipment
Randi Rost, Hewlett Packard

John Schimpf, Silicon Graphics
Mark Segal, Silicon Graphics

Igor Sinyak, Intel

Jeff Stevenson, Hewlett Packard
Bill Sweeney, SunSoft

Kelvin Thompson, Portable Graphics
Neil Trevett, 3Dlabs

Linas Vepstas, IBM

Andy Vesper, Digital Equipment
Henri Warren, Megatek

Paula Womack, Silicon Graphics
Mason Woo, Silicon Graphics
Steve Wright, Microsoft

Version 2.1 - December 1, 2006

Appendix D

Version 1.2

OpenGL version 1.2, released on March 16, 1998, is the second revision since the
original version 1.0. Version 1.2 is upward compatible with version 1.1, meaning
that any program that runs with a 1.1 GL implementation will also run unchanged
with a 1.2 GL implementation.

Several additions were made to the GL, especially to texture mapping capa-
bilities and the pixel processing pipeline. Following are brief descriptions of each
addition.

D.1 Three-Dimensional Texturing

Three-dimensional textures can be defined and used. In-memory formats for three-
dimensional images, and pixel storage modes to support them, are also defined.
The additions match those of the GL_EXT_texture3D extension.

One important application of three-dimensional textures is rendering volumes
of image data.

D.2 BGRA Pixel Formats

BGRA extends the list of client memory color formats. Specifically, it provides
a component order matching file and framebuffer formats common on Windows
platforms. The additions match those of the GL_EXT bgra extension.

316

D.3. PACKED PIXEL FORMATS 317

D.3 Packed Pixel Formats

Packed pixels in client memory are represented entirely by one unsigned byte,
one unsigned short, or one unsigned integer. The fields with the packed pixel are
not proper machine types, but the pixel as a whole is. Thus the pixel storage modes
and their unpacking counterparts all work correctly with packed pixels.

The additions match those of the GL_EXT_packed_pixels extension, with the
further addition of reversed component order packed formats.

D.4 Normal Rescaling

Normals may be rescaled by a constant factor derived from the model-view matrix.
Rescaling can operate faster than renormalization in many cases, while resulting in
the same unit normals.

The additions are based on the GL_EXT_rescale_normal extension.

D.5 Separate Specular Color

Lighting calculations are modified to produce a primary color consisting of emis-
sive, ambient and diffuse terms of the usual GL lighting equation, and a secondary
color consisting of the specular term. Only the primary color is modified by the
texture environment; the secondary color is added to the result of texturing to pro-
duce a single post-texturing color. This allows highlights whose color is based on
the light source creating them, rather than surface properties.

The additions match those of the GL._EXT_separate_specular_color exten-
sion.

D.6 Texture Coordinate Edge Clamping

GL normally clamps such that the texture coordinates are limited to exactly the
range [0, 1]. When a texture coordinate is clamped using this algorithm, the texture
sampling filter straddles the edge of the texture image, taking half its sample values
from within the texture image, and the other half from the texture border. It is
sometimes desirable to clamp a texture without requiring a border, and without
using the constant border color.

A new texture clamping algorithm, CLAMP_TO_EDGE, clamps texture coordi-
nates at all mipmap levels such that the texture filter never samples a border texel.
The color returned when clamping is derived only from texels at the edge of the
texture image.

Version 2.1 - December 1, 2006

318 APPENDIX D. VERSION 1.2

The additions match those of the GL._SGIS_texture_edge_clamp extension.

D.7 Texture Level of Detail Control

Two constraints related to the texture level of detail parameter A\ are added. One
constraint clamps A to a specified floating point range. The other limits the se-
lection of mipmap image arrays to a subset of the arrays that would otherwise be
considered.

Together these constraints allow a large texture to be loaded and used initially
at low resolution, and to have its resolution raised gradually as more resolution is
desired or available. Image array specification is necessarily integral, rather than
continuous. By providing separate, continuous clamping of the A parameter, it is
possible to avoid ~’popping” artifacts when higher resolution images are provided.

The additions match those of the GL_SGIS_texture_lod extension.

D.8 Vertex Array Draw Element Range

A new form of DrawElements that provides explicit information on the range of
vertices referred to by the index set is added. Implementations can take advantage
of this additional information to process vertex data without having to scan the
index data to determine which vertices are referenced.

The additions match those of the GI._EXT_draw_range_elements extension.

D.9 Imaging Subset

The remaining new features are primarily intended for advanced image processing
applications, and may not be present in all GL implementations. The are collec-
tively referred to as the imaging subset.

D.9.1 Color Tables

A new RGBA-format color lookup mechanism is defined in the pixel transfer pro-
cess, providing additional lookup capabilities beyond the existing lookup. The key
difference is that the new lookup tables are treated as one-dimensional images with
internal formats, like texture images and convolution filter images. Thus the new
tables can operate on a subset of the components of passing pixel groups. For ex-
ample, a table with internal format ALPHA modifies only the A component of each
pixel group, leaving the R, G, and B components unmodified.

Version 2.1 - December 1, 2006

D.9. IMAGING SUBSET 319

Three independent lookups may be performed: prior to convolution; after con-
volution and prior to color matrix transformation; after color matrix transformation
and prior to gathering pipeline statistics.

Methods to initialize the color lookup tables from the framebuffer, in addition
to the standard memory source mechanisms, are provided.

Portions of a color lookup table may be redefined without reinitializing the
entire table. The affected portions may be specified either from client memory or
from the framebuffer.

The additions match those of the GL.EXT.color_table and
GL_EXT_color_subtable extensions.

D.9.2 Convolution

One- or two-dimensional convolution operations are executed following the first
color table lookup in the pixel transfer process. The convolution kernels are them-
selves treated as one- and two-dimensional images, which can be loaded from ap-
plication memory or from the framebuffer.

The convolution framework is designed to accommodate three-dimensional
convolution, but that API is left for a future extension.

The additions match those of the GL._EXT.convolution and
GL_HP_convolution_border_modes extensions.

D.9.3 Color Matrix

A 4x4 matrix transformation and associated matrix stack are added to the pixel
transfer path. The matrix operates on RGBA pixel groups, using the equation

C'=MC,
where
R
G
¢= B
A

and M is the 4 x 4 matrix on the top of the color matrix stack. After the
matrix multiplication, each resulting color component is scaled and biased by a
programmed amount. Color matrix multiplication follows convolution.

The color matrix can be used to reassign and duplicate color components. It
can also be used to implement simple color space conversions.

The additions match those of the GL_SGI_color matrix extension.

Version 2.1 - December 1, 2006

320 APPENDIX D. VERSION 1.2

D.9.4 Pixel Pipeline Statistics

Pixel operations that count occurences of specific color component values (his-

togram) and that track the minimum and maximum color component values (min-

max) are performed at the end of the pixel transfer pipeline. An optional mode

allows pixel data to be discarded after the histogram and/or minmax operations are

completed. Otherwise the pixel data continues on to the next operation unaffected.
The additions match those of the GL_EXT_histogram extension.

D.9.5 Constant Blend Color

A constant color that can be used to define blend weighting factors may be defined.
A typical usage is blending two RGB images. Without the constant blend factor,
one image must have an alpha channel with each pixel set to the desired blend
factor.

The additions match those of the GL_EXT blend_color extension.

D.9.6 New Blending Equations

Blending equations other than the normal weighted sum of source and destination
components may be used.

Two of the new equations produce the minimum (or maximum) color com-
ponents of the source and destination colors. Taking the maximum is useful for
applications such as maximum projection in medical imaging.

The other two equations are similar to the default blending equation, but pro-
duce the difference of its left and right hand sides, rather than the sum. Image
differences are useful in many image processing applications.

The additions match those of the GL.EXTDblendminmax and
GL_EXT blend_subtract extensions.

D.10 Acknowledgements

OpenGL 1.2 is the result of the contributions of many people, representing a cross
section of the computer industry. Following is a partial list of the contributors,
including the company that they represented at the time of their contribution:

Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland

Otto Berkes, Microsoft

Pierre-Luc Bisaillon, Matrox Graphics

Drew Bliss, Microsoft

Version 2.1 - December 1, 2006

D.10. ACKNOWLEDGEMENTS 321

David Blythe, Silicon Graphics

Jon Brewster, Hewlett Packard

Dan Brokenshire, IBM

Pat Brown, IBM

Newton Cheung, S3

Bill Clifford, Digital

Jim Cobb, Parametric Technology
Bruce D’ Amora, IBM

Kevin Dallas, Microsoft

Mahesh Dandapani, Rendition

Daniel Daum, AccelGraphics

Suzy Deffeyes, IBM

Peter Doyle, Intel

Jay Duluk, Raycer

Craig Dunwoody, Silicon Graphics
Dave Erb, IBM

Fred Fisher, AccelGraphics / Dynamic Pictures
Celeste Fowler, Silicon Graphics
Allen Gallotta, ATI

Ken Garnett, NCD

Michael Gold, Nvidia / Silicon Graphics
Craig Groeschel, Metro Link

Jan Hardenbergh, Mitsubishi Electric
Mike Heck, Template Graphics Software
Dick Hessel, Raycer Graphics

Paul Ho, Silicon Graphics

Shawn Hopwood, Silicon Graphics
Jim Hurley, Intel

Phil Huxley, 3Dlabs

Dick Jay, Template Graphics Software
Paul Jensen, 3Dfx

Brett Johnson, Hewlett Packard
Michael Jones, Silicon Graphics

Tim Kelley, Real3D

Jon Khazam, Intel

Louis Khouw, Sun

Dale Kirkland, Intergraph

Chris Kitrick, Raycer

Don Kuo, S3

Herb Kuta, Quantum 3D

Version 2.1 - December 1, 2006

322 APPENDIX D. VERSION 1.2

Phil Lacroute, Silicon Graphics
Prakash Ladia, S3

Jon Leech, Silicon Graphics

Kevin Lefebvre, Hewlett Packard
David Ligon, Raycer Graphics

Kent Lin, S3

Dan McCabe, S3

Jack Middleton, Sun

Tim Misner, Intel

Bill Mitchell, National Institute of Standards
Jeremy Morris, 3Dlabs

Gene Munce, Intel

William Newhall, Real3D

Matthew Papakipos, Nvidia / Raycer
Garry Paxinos, Metro Link
Hanspeter Pfister, Mitsubishi Electric
Richard Pimentel, Parametric Technology
Bimal Poddar, IBM / Intel

Rob Putney, IBM

Mike Quinlan, Real3D

Nate Robins, University of Utah
Detlef Roettger, Elsa

Randi Rost, Hewlett Packard

Kevin Rushforth, Sun

Richard S. Wright, Real3D

Hock San Lee, Microsoft

John Schimpf, Silicon Graphics
Stefan Seeboth, ELSA

Mark Segal, Silicon Graphics

Bob Seitsinger, S3

Min-Zhi Shao, S3

Colin Sharp, Rendition

Igor Sinyak, Intel

Bill Sweeney, Sun

William Sweeney, Sun

Nathan Tuck, Raycer

Doug Twillenger, Sun

John Tynefeld, 3dfx

Kartik Venkataraman, Intel

Andy Vesper, Digital Equipment

Version 2.1 - December 1, 2006

D.10. ACKNOWLEDGEMENTS 323

Henri Warren, Digital Equipment / Megatek
Paula Womack, Silicon Graphics

Steve Wright, Microsoft

David Yu, Silicon Graphics

Randy Zhao, S3

Version 2.1 - December 1, 2006

Appendix E

Version 1.2.1

OpenGL version 1.2.1, released on October 14, 1998, introduced ARB extensions
(see Appendix K). The only ARB extension defined in this version is multitex-
ture, allowing application of multiple textures to a fragment in one rendering pass.
Multitexture is based on the GL_SGIS.multitexture extension, simplified by
removing the ability to route texture coordinate sets to arbitrary texture units.

A new corollary discussing display list and immediate mode invariance was
added to Appendix B on April 1, 1999.

324

Appendix F

Version 1.3

OpenGL version 1.3, released on August 14, 2001, is the third revision since the
original version 1.0. Version 1.3 is upward compatible with earlier versions, mean-
ing that any program that runs with a 1.2, 1.1, or 1.0 GL implementation will also
run unchanged with a 1.3 GL implementation.

Several additions were made to the GL, especially texture mapping capabilities
previously defined by ARB extensions. Following are brief descriptions of each
addition.

F.1 Compressed Textures

Compressing texture images can reduce texture memory utilization and improve
performance when rendering textured primitives. The GL provides a framework
upon which extensions providing specific compressed image formats can be built,
and a set of generic compressed internal formats that allow applications to specify
that texture images should be stored in compressed form without needing to code
for specific compression formats (specific compressed formats, such as S3TC or
FXT]1, are supported by extensions).

Texture compression was promoted from the
GL_ARB_texture_compression extension.

F.2 Cube Map Textures

Cube map textures provide a new texture generation scheme for looking up textures
from a set of six two-dimensional images representing the faces of a cube. The
(str) texture coordinates are treated as a direction vector emanating from the center
of a cube. At texture generation time, the interpolated per-fragment (str) selects

325

326 APPENDIX FE. VERSION 1.3

one cube face two-dimensional image based on the largest magnitude coordinate
(the major axis). A new (st) is calculated by dividing the two other coordinates
(the minor axes values) by the major axis value, and the new (st) is used to lookup
into the selected two-dimensional texture image face of the cube map.

Two new texture coordinate generation modes are provided for use in con-
junction with cube map texturing. The REFLECTION MAP mode generates tex-
ture coordinates (str) matching the vertex’s eye-space reflection vector, useful for
environment mapping without the singularity inherent in SPHERE_MAP mapping.
The NORMAL_MAP mode generates texture coordinates matching the vertex’s trans-
formed eye-space normal, useful for texture-based diffuse lighting models.

Cube mapping was promoted from the GL_ARB_texture_cube_map extension.

F.3 Multisample

Multisampling provides a antialiasing mechanism which samples all primitives
multiple times at each pixel. The color sample values are resolved to a single, dis-
playable color each time a pixel is updated, so antialiasing appears to be automatic
at the application level. Because each sample includes depth and stencil infor-
mation, the depth and stencil functions perform equivalently to the single-sample
mode.

When multisampling is supported, an additional buffer, called the multisample
buffer, is added to the framebuffer. Pixel sample values, including color, depth, and
stencil values, are stored in this buffer.

Multisampling is usually an expensive operation, so it is usually not supported
on all contexts. Applications must obtain a multisample-capable context using the
new interfaces provided by GLX 1.4 or by the WGL_ARB multisample extension.

Multisampling was promoted from the GL_ARB multisample extension; The
definition of the extension was changed slightly to support both multisampling and
supersampling implementations.

F.4 Multitexture

Multitexture adds support for multiple texture units. The capabilities of the mul-
tiple texture units are identical, except that evaluation and feedback are supported
only for texture unit 0. Each texture unit has its own state vector which includes
texture vertex array specification, texture image and filtering parameters, and tex-
ture environment application.

The texture environments of the texture units are applied in a pipelined fashion
whereby the output of one texture environment is used as the input fragment color

Version 2.1 - December 1, 2006

E5. TEXTURE ADD ENVIRONMENT MODE 327

for the next texture environment. Changes to texture client state and texture server
state are each routed through one of two selectors which control which instance of
texture state is affected.

Multitexture was promoted from the GL_ARB multitexture extension.

F.5 Texture Add Environment Mode

The TEXTURE_ENV_MODE texture environment function ADD provides a texture
function to add incoming fragment and texture source colors.

Texture add mode was promoted from the GL_ARB_texture_env_add exten-
sion.

F.6 Texture Combine Environment Mode

The TEXTURE_ENV_MODE texture environment function COMBINE provides a wide
range of programmable combiner functions using the incoming fragment color,
texture source color, texture constant color, and the result of the previous texture
environment stage as possible parameters.

Combiner operations include passthrough, multiplication, addition and biased
addition, subtraction, and linear interpolation of specified parameters. Different
combiner operations may be selected for RGB and A components, and the final
result may be scaled by 1, 2, or 4.

Texture combine was promoted from the GL_ARB_texture_env_combine ex-
tension.

F.7 Texture Dot3 Environment Mode

The TEXTURE_ENV_MODE COMBINE operations also provide three-component dot
products of specified parameters, with the resulting scalar value replicated into the
RGB or RGBA components of the output color. The dot product is performed
using pseudo-signed arithmetic to enable per-pixel lighting computations.

Texture DOT3 mode was promoted from the GL_ARB_texture_env_dot3 ex-
tension.

F.8 Texture Border Clamp

The texture wrap parameter CLAMP_TO_BORDER mode clamps texture coordinates
at all mipmap levels such that when the texture filter straddles an edge of the texture

Version 2.1 - December 1, 2006

328 APPENDIX FE. VERSION 1.3

image, the color returned is derived only from border texels. This behavior mirrors
the behavior of the texture edge clamp mode introduced by OpenGL 1.2.

Texture border clamp was promoted from the
GL_ARB_texture_border_clamp extension.

F.9 Transpose Matrix

New functions and tokens are added allowing application matrices stored in row
major order rather than column major order to be transferred to the implementa-
tion. This allows an application to use standard C-language 2-dimensional arrays
and have the array indices match the expected matrix row and column indexes.
These arrays are referred to as transpose matrices since they are the transpose of
the standard matrices passed to OpenGL.

Transpose matrix adds an interface for transfering data to and from the OpenGL
pipeline. It does not change any OpenGL processing or imply any changes in state
representation.

Transpose matrix was promoted from the GL_ARB_transpose_matrix exten-
sion.

F.10 Acknowledgements

OpenGL 1.3 is the result of the contributions of many people. Following is a partial
list of the contributors, including the company that they represented at the time of
their contribution:

Adrian Muntianu, ATI

Al Reyes, 3dfx

Alain Bouchard, Matrox

Alan Commike, SGI

Alan Heirich, Compaq

Alex Herrera, SP3D

Allen Akin, VA Linux

Allen Gallotta, ATI

Alligator Descartes, Arcane

Andy Vesper, MERL

Andy Wolf, Diamond Multimedia

Axel Schildan, S3

Barthold Lichtenbelt, 3Dlabs

Benj Lipchak, Compaq

Bill Armstrong, Evans & Sutherland

Version 2.1 - December 1, 2006

F10. ACKNOWLEDGEMENTS

Bill Clifford, Intel

Bill Mannel, SGI

Bimal Poddar, Intel

Bob Beretta, Apple

Brent Insko, NVIDIA

Brian Goldiez, UCF

Brian Greenstone, Apple
Brian Paul, VA Linux

Brian Sharp, GLSetup
Bruce D’ Amora, IBM

Bruce Stockwell, Compaq
Chris Brady, Alt.software
Chris Frazier, Raycer

Chris Hall, 3dlabs

Chris Hecker, GLSetup
Chris Lane, Intel

Chris Thornborrow, PixelFusion
Christopher Fraser, IMG
Chuck Smith, Intelligraphics
Craig Dunwoody, SGI
Dairsie Latimer, PixelFusion

Dale Kirkland, 3Dlabs / Intergraph

Dan Brokenshire, IBM

Dan Ginsburg, ATI

Dan McCabe, S3

Dave Aronson, Microsoft
Dave Gosselin, ATI

Dave Shreiner, SGI

Dave Zenz, Dell

David Aronson, Microsoft
David Blythe, SGI

David Kirk, NVIDIA

David Story, SGI

David Yu, SGI

Deanna Hohn, 3dfx

Dick Coulter, Silicon Magic
Don Mullis, 3dfx

Eamon O Dea, PixelFusion
Edward (Chip) Hill, Pixelfusion
Eiji Obata, NEC

Version 2.1 - December 1, 2006

329

330

APPENDIX FE. VERSION 1.3

Elio Del Giudice, Matrox
Eric Young, S3

Evan Hart, ATI

Fred Fisher, 3dLabs

Garry Paxinos, Metro Link
Gary Tarolli, 3dfx

George Kyriazis, NVIDIA
Graham Connor, IMG

Herb Kuta, Quantum3D
Howard Miller, Apple

Igor Sinyak, Intel

Jack Middleton, Sun

James Bowman, 3dfx

Jan C. Hardenbergh, MERL
Jason Mitchell, ATT

Jeff Weyman, ATI

Jeffrey Newquist, 3dfx

Jens Owen, Precision Insight
Jeremy Morris, 3Dlabs

Jim Bushnell, Pyramid Peak
John Dennis, Sharp Eye
John Metcalfe, IMG

John Stauffer, Apple

John Tynan, PixelFusion
John W. Polick, NEC

Jon Khazam, Intel

Jon Leech, SGI

Jon Paul Schelter, Matrox
Karl Hilleslad, NVIDIA
Kelvin Thompson

Ken Cameron, Pixelfusion
Ken Dyke, Apple

Ken Nicholson, SGI

Kent Lin, Intel

Kevin Lefebvre, HP

Kevin Martin, VA Linux
Kurt Akeley, SGI

Les Silvern, NEC

Mahesh Dandipani, Rendition
Mark Kilgard, NVIDIA

Version 2.1 - December 1, 2006

F10. ACKNOWLEDGEMENTS 331

Martin Amon, 3dfx

Martina Sourada, ATI

Matt Lavoie, Pixelfusion

Matt Russo, Matrox

Matthew Papakipos, NVIDIA
Michael Gold, NVIDIA
Miriam Geller, SGI

Morgan Von Essen, Metro Link
Naruki Aruga, PFU

Nathan Tuck, Raycer Graphics
Neil Trevett, 3Dlabs

Newton Cheung, S3

Nick Triantos, NVIDIA
Patrick Brown, Intel

Paul Jensen, 3dfx

Paul Keller, NVIDIA

Paul Martz, HP

Paula Womack, 3dfx

Peter Doenges, Evans & Sutherland
Peter Graffagnino, Apple

Phil Huxley, 3Dlabs

Ralf Biermann, Elsa AG
Randi Rost, 3Dlabs

Renee Rashid, Micron

Rich Johnson, HP

Richard Pimentel, PTC
Richard Schlein, Apple

Rick Hammerstone, ATI

Rik Faith, VA Linux

Rob Glidden, Sun

Rob Wheeler, 3dfx

Shari Petersen, Rendition
Shawn Hopwood, SGI

Steve Glickman, Silicon Magic
Steve McGuigan, SGI

Steve Wright, Microsoft
Stuart Anderson, Metro Link
T. C. Zhao, MERL

Teri Morrison, HP

Thomas Fox, IBM

Version 2.1 - December 1, 2006

332 APPENDIX FE. VERSION 1.3

Tim Kelley, Real 3D
Tom Frisinger, ATI
Victor Vedovato, Micron
Vikram Simha, MERL
Yanjun Zhang, Sun
Zahid Hussain, T1

Version 2.1 - December 1, 2006

Appendix G

Version 1.4

OpenGL version 1.4, released on July 24, 2002, is the fourth revision since the
original version 1.0. Version 1.4 is upward compatible with earlier versions, mean-
ing that any program that runs with a 1.3, 1.2, 1.1, or 1.0 GL implementation will
also run unchanged with a 1.4 GL implementation.

In addition to numerous additions to the classical fixed-function GL pipeline
in OpenGL 1.4, the OpenGL ARB also approved the GL_ARB vertex_program
extension, which supports programmable vertex processing. Following are brief
descriptions of each addition to OpenGL 1.4; see Chapter K for a description of
GL_ARB_vertex_program.

G.1 Automatic Mipmap Generation

Setting the texture parameter GENERATE MIPMAP to TRUE introduces a side effect
to any modification of the levely,s. of a mipmap array, wherein all higher levels of
the mipmap pyramid are recomputed automatically by successive filtering of the
base level array.

Automatic
mipmap generation was promoted from the GL_SGIS_generate mipmap exten-
sion.

G.2 Blend Squaring
Blend squaring extends the set of supported source and destination blend functions

to permit squaring RGB and alpha values during blending. Functions SRC_COLOR
and ONE_MINUS_SRC_COLOR are added to the allowed source blending functions,

333

334 APPENDIX G. VERSION 1.4

and DST_COLOR and ONE_MINUS_DST_COLOR are added to the allowed destination
blending functions.
Blend squaring was promoted from the GL_NV_blend_square extension.

G.3 Changes to the Imaging Subset

The subset of blending features described by BlendEquation, BlendColor,
and the BlendFunc modes CONSTANT_COLOR, ONE_MINUS_CONSTANT_COLOR,
CONSTANT_ALPHA, and ONE_MINUS_CONSTANT_ALPHA are now supported. These
feature were available only in the optional imaging subset in versions 1.2 and 1.3
of the GL.

G.4 Depth Textures and Shadows

Depth textures define a new texture internal format, DEPTH, normally used to repre-
sent depth values. Applications include image-based shadow casting, displacement
mapping, and image-based rendering.

Image-based shadowing is enabled with a new texture application mode de-
fined by the parameter TEXTURE_COMPARE MODE. This mode enables comparing
texture r coordinates to depth texture values to generate a boolean result.

Depth textures and shadows were promoted from the GL_ARB_depth_texture
and GL_ARB_shadow extensions.

G.5 Fog Coordinate

A new associated vertex and fragment datum, the fog coordinate may be used
in computing fog for a fragment, instead of using eye distance to the frag-
ment, by specifying the coordinate with the FogCoord commands and setting the
FOG_COORDINATE_SOURCE fog parameter. Fog coordinates are particularly useful
in computing more complex fog models.

Fog coordinate was promoted from the GL_EXT_fog_coord extension.

G.6 Multiple Draw Arrays

Multiple primitives may be drawn in a single call using the MultiDrawArrays and
MultiDrawElements comments.

Multiple draw arrays was promoted from the GL_EXT multi.draw.arrays
extension.

Version 2.1 - December 1, 2006

G.7. POINT PARAMETERS 335

G.7 Point Parameters

Point parameters defined by the PointParameter commands support additional
geometric characteristics of points, allowing the size of a point to be affected by
linear or quadratic distance attenuation, and increasing control of the mapping from
point size to raster point area and point transparency. This effect may be used for
distance attenuation in rendering particles or light points.

Point parameters was promoted from the GL_ARB_point_parameters exten-
sion.

G.8 Secondary Color

The secondary color may be varied even when lighting is disabled by specifying it
as a vertex parameter with the SecondaryColor commands.

Secondary color was promoted from the GL_EXT_secondary_color exten-
sion.

G.9 Separate Blend Functions

Blending capability is extended with BlendFuncSeparate to allow independent
setting of the RGB and alpha blend functions for blend operations that require
source and destination blend factors.

Separate blend functions was promoted from the
GL_EXT_blend_func_separate extension.

G.10 Stencil Wrap

New stencil operations INCR_WRAP and DECR_WRAP allow the stencil value to wrap
around the range of stencil values instead of saturating to the minimum or maxi-
mum values on decrement or increment. Stencil wrapping is needed for algorithms
that use the stencil buffer for per-fragment inside-outside primitive computations.
Stencil wrap was promoted from the GL_EXT_stencil_wrap extension.

G.11 Texture Crossbar Environment Mode
Texture crossbar extends the texture combine environment mode COMBINE by al-

lowing use of the texture color from different texture units as sources to the texture
combine function.

Version 2.1 - December 1, 2006

336 APPENDIX G. VERSION 1.4

Texture
environment crossbar was promoted from the GL_ARB_texture_env_crossbar
extension.

G.12 Texture LOD Bias

The texture filter control parameter TEXTURE_LOD_BIAS may be set to bias the
computed A\ parameter used in texturing for mipmap level of detail selection, pro-
viding a means to blur or sharpen textures. LOD bias may be used for depth of field
and other special visual effects, as well as for some types of image processing.

Texture LOD bias was based on the GL_EXT_texture_lod_bias extension,
with the addition of a second per-texture object bias term.

G.13 Texture Mirrored Repeat

Texture mirrored repeat extends the set of texture wrap modes with the mode
MIRRORED_REPEAT. This effectively defines a texture map twice as large as the
original texture image in which the additional half, for each mirrored texture co-
ordinate, is a mirror image of the original texture. Mirrored repeat can be used
seamless tiling of a surface.

Texture mirrored repeat was promoted from the
GL_ARB_texturemirrored._repeat extension.

G.14 'Window Raster Position

The raster position may be set directly to specified window coordinates with the
WindowPos commands, bypassing the transformation applied to RasterPos. Win-
dow raster position is particularly useful for imaging and other 2D operations.

Window raster position was promoted from the GL_ARB_window_pos exten-
sion.

G.15 Acknowledgements

OpenGL 1.4 is the result of the contributions of many people. Following is a partial
list of the contributors, including the company that they represented at the time of
their contribution. The editor especially thanks Bob Beretta and Pat Brown for
their sustained efforts in leading the GL_ARB vertex_program working group,

Version 2.1 - December 1, 2006

G.15. ACKNOWLEDGEMENTS 337

without which this critical extension could not have been defined and approved in
conjunction with OpenGL 1.4.
Kurt Akeley, NVIDIA
Allen Akin
Bill Armstrong, Evans & Sutherland
Ben Ashbaugh, Intel
Chris Bentley, ATI
Bob Beretta, Apple
Daniel Brokenshire, IBM
Pat Brown, NVIDIA
Bill Clifford, Intel
Graham Connor, Videologic
Matt Craighead, NVIDIA
Suzy Deffeyes, IBM
Jean-Luc Dery, Discreet
Kenneth Dyke, Apple
Cass Everitt, NVIDIA
Allen Gallotta, ATI
Lee Gross, IBM
Evan Hart, ATI
Chris Hecker, Definition 6
Alan Heirich, Compaq / HP
Gareth Hughes, VA Linux
Michael I Gold, NVIDIA
Rich Johnson, HP
Mark Kilgard, NVIDIA
Dale Kirkland, 3Dlabs
David Kirk, NVIDIA
Christian Laforte, Alias—Wavefront
Luc Leblanc, Discreet
Jon Leech, SGI
Bill Licea-Kane, ATI
Barthold Lichtenbelt, 3Dlabs
Jack Middleton, Sun
Howard Miller, Apple
Jeremy Morris, 3Dlabs
Jon Paul Schelter, Matrox
Brian Paul, VA Linux / Tungsten Graphics
Bimal Poddar, Intel
Thomas Roell, Xi Graphics

Version 2.1 - December 1, 2006

338 APPENDIX G. VERSION 1.4

Randi Rost, 3Dlabs

Jeremy Sandmel, ATI

John Stauffer, Apple

Nick Triantos, NVIDIA
Daniel Vogel, Epic Games
Mason Woo, World Wide Woo
Dave Zenz, Dell

Version 2.1 - December 1, 2006

Appendix H

Version 1.5

OpenGL version 1.5, released on July 29, 2003, is the fifth revision since the orig-
inal version 1.0. Version 1.5 is upward compatible with earlier versions, meaning
that any program that runs with a 1.4, 1.3, 1.2, 1.1, or 1.0 GL implementation will
also run unchanged with a 1.5 GL implementation.

In addition to additions to the classical fixed-function GL pipeline in OpenGL
1.5, the OpenGL ARB also approved a related set of ARB extensions including
the OpenGL Shading Language specification and the GL_ARB_shader_objects,
GL_ARB_vertex_shader, and GL_ARB_fragment_shader extensions through
which high-level shading language programs can be loaded and used in place of
the fixed-function pipeline.

Following are brief descriptions of each addition to OpenGL 1.5. The low-
level and high-level shading languages are important adjuncts to the OpenGL core.
They are described in more detail in appendix K, and their corresponding ARB
extension specifications are available online as described in that appendix.

H.1 Buffer Objects

Buffer objects allow various types of data (especially vertex array data) to be
cached in high-performance graphics memory on the server, thereby increasing
the rate of data transfers to the GL.

Buffer objects were promoted from the GL_ARB_vertex buffer_object ex-
tension.

339

340 APPENDIX H. VERSION 1.5

H.2 Occlusion Queries

An occlusion query is a mechanism whereby an application can query the number
of pixels (or, more precisely, samples) drawn by a primitive or group of primitives.
The primary purpose of occlusion queries is to determine the visibility of an object.

Occlusion query was promoted from the GL_ARB_ occlusion_query exten-
sion.

H.3 Shadow Functions

Texture comparison functions are generalized to support all eight binary functions
rather than just LEQUAL and GEQUAL.

Texture comparison functions were promoted from the
GL_EXT_shadow_funcs extension.

H.4 Changed Tokens

To achieve consistency with the syntax guidelines for OpenGL function and token
names, new token names are introduced to be used in place of old, inconsistent
names. However, the old token names continue to be supported, for backwards
compatibility with code written for previous versions of OpenGL. The new names,
and the old names they replace, are shown in table H.1.

H.S Acknowledgements

OpenGL 1.5 is the result of the contributions of many people. The editor especially
thanks the following individuals for their sustained efforts in leading ARB working
groups essential to the success of OpenGL 1.5 and of ARB extensions approved in
conjunction with OpenGL 1.5:

Matt Craighead led the working group
which created the GL_ARB vertex buffer_object extension and OpenGL 1.5
core feature. Kurt Akeley wrote the initial specification for the group.

Daniel Ginsburg and Matt Craighead led the working group which created the
GL_ARB_occlusion_query extension and OpenGL 1.5 core feature.

Benjamin Lipchak led the fragment program working group which created the
GL_ARB_fragment_program extension, completing the low-level programmable
shading interface.

Bill Licea-Kane led the GL2 working group which created the high-
level programmable shading interface, including the GL_ARB_fragment_shader,

Version 2.1 - December 1, 2006

H.5. ACKNOWLEDGEMENTS

341

New Token Name

Old Token Name

FOG_COORD_SRC

FOG_COORDINATE_SOURCE

FOG_COORD

FOG_COORDINATE

CURRENT_FOG_COORD

CURRENT_FOG_COORDINATE

FOG_.COORD_ARRAY_TYPE

FOG_COORDINATE_ARRAY_TYPE

FOG_.COORD_ARRAY_STRIDE

FOG_COORDINATE_ARRAY_STRIDE

FOG_.COORD_ARRAY_POINTER

FOG_COORDINATE_ARRAY_POINTER

FOG_COORD_ARRAY

FOG_COORDINATE_ARRAY

FOG_.COORD_ARRAY BUFFER_BINDING

FOG_COORDINATE_ARRAY_BUFFER_BINDING

SRCO_RGB

SOURCEO_RGB

SRC1_RGB SOURCE1_RGB
SRC2_RGB SOURCE2_RGB
SRCO_ALPHA SOURCEO_ALPHA
SRC1_ALPHA SOURCE1_ALPHA
SRC2_ALPHA SOURCEZ_ALPHA

Table H.1: New token names and the old names they replace.

GL_ARB_shader_objects, and GL_ARB_vertex_shader extensions and the

OpenGL Shading Language.

John Kessenich was the principal editor of the OpenGL Shading Language
specification for the GL2 working group, starting from the initial glslang proposal
written by John, Dave Baldwin, and Randi Rost.

A partial list of other contributors, including the company that they represented

at the time of their contribution, follows:
Kurt Akeley, NVIDIA
Allen Akin
Chad Anson, Dell Computer
Bill Armstrong, Evans & Sutherland
Ben Ashbaugh, Intel
Dave Baldwin, 3Dlabs
Chris Bentley, ATI
Bob Beretta, Apple
David Blythe
Alain Bouchard, Matrox
Daniel Brokenshire, IBM
Pat Brown, NVIDIA
John Carmack, Id Software

Version 2.1 - December 1, 2006

342

APPENDIX H. VERSION 1.5

Paul Carmichael, NVIDIA
Bob Carwell, IBM

Paul Clarke, IBM

Bill Clifford, Intel

Roger Cloud, SGI
Graham Connor, Power VR
Matt Craighead, NVIDIA
Doug Crisman, SGI

Matt Cruikshank, Vital Images
Deron Dann Johnson, Sun
Suzy Deffeyes, IBM

Steve Demlow, Vital Images
Joe Deng, SiS

Jean-Luc Dery, Discreet
Kenneth Dyke, Apple
Brian Emberling, Sun
Cass Everitt, NVIDIA
Brandon Fliflet, Intel
Allen Gallotta, ATI
Daniel Ginsburg, ATI
Steve Glanville, NVIDIA
Peter Graffagnino, Apple
Lee Gross, IBM

Rick Hammerstone, ATI
Evan Hart, ATI

Chris Hecker, Definition 6
Alan Heirich, HP

Gareth Hughes, NVIDIA
Michael I Gold, NVIDIA
John Jarvis, Alt.software
Rich Johnson, HP

John Kessenich, 3Dlabs
Mark Kilgard, NVIDIA
Dale Kirkland, 3Dlabs
Raymond Klassen, Intel
Jason Knipe, Bioware
Jayant Kolhe, NVIDIA
Steve Koren, 3Dlabs

Bob Kuehne, SGI
Christian Laforte, Alias

Version 2.1 - December 1, 2006

H.5. ACKNOWLEDGEMENTS 343

Luc Leblanc, Discreet

Jon Leech, SGI

Kevin Lefebvre, HP

Bill Licea-Kane, ATI
Barthold Lichtenbelt, 3Dlabs
Kent Lin, Intel

Benjamin Lipchak, ATI

Rob Mace, ATI

Bill Mark, NVIDIA

Michael McCool, U. Waterloo
Jack Middleton, Sun

Howard Miller, Apple

Teri Morrison, HP / 3Dlabs
Marc Olano, SGI/ U. Maryland
Jean-Francois Panisset, Discreet
Jon Paul Schelter, Matrox
Brian Paul, Tungsten Graphics
Scott Peterson, HP

Bimal Poddar, Intel

Thomas Roell, Xi Graphics
Phil Rogers, ATI

Tan Romanick, IBM

John Rosasco, Apple

Randi Rost, 3Dlabs

Matt Russo, Matrox

Jeremy Sandmel, ATI

Paul Sargent, 3Dlabs

Folker Schamel, Spinor GMBH
Michael Schulman, Sun

John Scott, Raven Software
Avinash Seetharamaiah, Intel
John Spitzer, NVIDIA

Vlad Stamate, Power VR
Michelle Stamnes, Intel

John Stauffer, Apple

Eskil Steenberg, Obsession
Bruce Stockwell, HP
Christopher Tan, IBM

Ray Tice, Avid

Pierre P. Tremblay, Discreet

Version 2.1 - December 1, 2006

344 APPENDIX H. VERSION 1.5

Neil Trevett, 3Dlabs

Nick Triantos, NVIDIA
Douglas Twilleager, Sun
Shawn Underwood, SGI

Steve Urquhart, Intelligraphics
Victor Vedovato, ATI

Daniel Vogel, Epic Games
Mik Wells, Softimage

Helene Workman, Apple

Dave Zenz, Dell

Karel Zuiderveld, Vital Images

Version 2.1 - December 1, 2006

Appendix I

Version 2.0

OpenGL version 2.0, released on September 7, 2004, is the sixth revision since the
original version 1.0. Despite incrementing the major version number (to indicate
support for high-level programmable shaders), version 2.0 is upward compatible
with earlier versions, meaning that any program that runs with a 1.5, 1.4, 1.3, 1.2,
1.1, or 1.0 GL implementation will also run unchanged with a 2.0 GL implemen-
tation.

Following are brief descriptions of each addition to OpenGL 2.0.

I.1 Programmable Shading

The OpenGL Shading Language, and the related APIs to create, manage, and use
programmable shaders written in the Shading Language, were promoted to core
features in OpenGL 2.0. The complete list of features related to programmable
shading includes:

I.1.1 Shader Objects

Shader objects provides mechanisms necessary to manage shader and program ob-
jects. Shader objects were promoted from the GL_ARB_shader_objects exten-
sion.

I.1.2 Shader Programs

Vertex and fragment shader programs may be written in the high-level OpenGL
Shading Language, replacing fixed-functionality vertex and fragment process-
ing respectively. Vertex and fragment shader programs were promoted from the
GL_ARB_vertex_shader and GL_ARB_fragment_shader extensions.

345

346 APPENDIX I. VERSION 2.0

I.1.3 OpenGL Shading Language

The OpenGL Shading Language is a high-level, C-like language used to program
the vertex and fragment pipelines. The Shading Language Specification defines
the language proper, while OpenGL API features control how vertex and fragment
programs interact with the fixed-function OpenGL pipeline and how applications
manage those programs.

OpenGL 2.0 implementations must support at least revision 1.10
of the OpenGL Shading Language. Implementations may query the
SHADING_LANGUAGE_VERSION string to determine the exact version of the
language supported. The OpenGL Shading Language was promoted from the
GL.ARB.shading_language_-100 extension (the shading language itself is
specified in a companion document; due to the way it’s written, that document did
not need to be changed as a consequence of promoting programmable shading to
the OpenGL core).

I.1.4 Changes To Shader APIs

Small changes to the APIs for managing shader and program objects were made
in the process of promoting the shader extensions to the OpenGL 2.0 core. These
changes do not affect the functionality of the shader APIs, but include use of the
existing uint core GL type rather than the new handleARB type introduced by
the extensions, and changes in some function names, for example mapping the ex-
tension function CreateShaderObjectARB into the core function CreateShader.

I.2 Multiple Render Targets

Programmable shaders may write different colors to multiple output color
buffers in a single pass. Multiple render targets was promoted from the
GL_ARB_draw buffers extension.

I.3 Non-Power-Of-Two Textures

The restriction of textures to power-of-two dimensions has been relaxed for
all texture targets, so that non-power-of-two textures may be specified with-
out generating errors. Non-power-of-two textures was promoted from the
GL_ARB_texture_non_power_of_two extension.

Version 2.1 - December 1, 2006

L4. POINT SPRITES 347

1.4 Point Sprites

Point sprites replace point texture coordinates with texture coordinates interpolated
across the point. This allows drawing points as customized textures, useful for
particle systems.

Point sprites were promoted from the GL_ARB_point_sprite extension, with
the further addition of the POINT_SPRITE_COORD_-ORIGIN parameter controlling
the direction in which the ¢ texture coordinate increases.

.5 Separate Blend Equation

Blending capability is extended with BlendEquationSeparate to allow indepen-
dent setting of the RGB and alpha blend equations for blend operations.

Separate blend functions was pro-
moted from the GL_EXT_blend_equation_separate extension. Note that blend
equation LOGIC-OP is not supported unless the GL_EXT_blend-logic_op exten-
sion is supported; LOGIC_OP was inadvertently included in the initial release of the
OpenGL 2.0 Specification.

I.6 Separate Stencil

Separate stencil functionality may be defined for the front and back faces of primi-
tives, improving performance of shadow volume and Constructive Solid Geometry
rendering algorithms.

Separate stencil was based on the the
API of the GL._ATI_separate_stencil extension, with additional state defined
by the similar GL_EXT_stencil_two_side extension.

I.7 Other Changes

Several minor revisions and corrections to the OpenGL 1.5 specification were
made:

e In section 2.7, SecondaryColor3 was changed to set A to 1.0 (previously
0.0), so the initial GL state can be restored.

e In section 2.13, transformation was added to the list of steps not performed
by WindowPos.

Version 2.1 - December 1, 2006

348

APPENDIX I. VERSION 2.0

Section 3.8.1 was clarified to mandate that selection of texture internal for-
mat must allocate a non-zero number of bits for all components named by
the internal format, and zero bits for all other components.

Tables 3.21 and 3.22 were generalized to multiple textures by replacing C'y
with C),.

In section 6.1.9, GetHistogram was clarified to note that the Final Conver-
sion pixel storage mode is not applied when storing histogram counts.

The FOG_COORD_ARRAY_BUFFER_BINDING enumerant alias was added to ta-
ble H.1.

After the initial version of the OpenGL 2.0 was released, several more minor

corrections were made in the specification revision approved on October 22, 2004:

Corrected name of the fog source from FOG_.COORD_SRC to FOG_COORD in
section 2.13.

Corrected last parameter type in the declaration of the UniformMatrix*
commands to const float *value, in section 2.15.3.

Changed the end of the second paragraph of the Conversion to Fragments
subsection of section 3.6.4, to more clearly describe the set of generated
fragments.

Changed from the older FOG_COORDINATE to the newer FOG_COORD notation
in section 3.10.

Added POINT_SPRITE_COORD_ORIGIN state to table 6.14.

Changed the description of MAX_TEXTURE_UNITS in table 6.35 to reflect its
legacy status (referring to the number of fixed-function texture units), and
moved it into table 6.36.

Removed duplicated table entries for MAX_TEXTURE_IMAGE_UNITS and
MAX_TEXTURE_COORDS from table 6.36.

Added Victor Vedovato to the OpenGL 2.0 Acknowledgements section.

Miscellaneous typographical corrections.

Additional minor corrections were made in the specification revision approved

on February 9, 2005:

Version 2.1 - December 1, 2006

1.8. ACKNOWLEDGEMENTS 349

e Restored missing language from the depth texture extension in section 6.1.4,
allowing DEPTH_COMPONENT as a format for texture readbacks.

o Added separate blend equation to the feature list in appendix I. The feature
has been in the actual OpenGL 2.0 specification all along, but was omitted
from the feature list in the initial specification release.

e Removed LOGIC_OP from the allowed blend equations in section 4.1.8 and
table 4.1, and adjusted the type of the blend equation state in table 6.21
accordingly.

e Restored missing VERTEX_ATTRIB_ARRAY BUFFER_BINDING state from ta-
ble 6.8.

e Miscellaneous typographical corrections.

.8 Acknowledgements

OpenGL 2.0 is the result of the contributions of many people. The editors espe-
cially thank the ongoing work of the ARB GL2 working group, led by Bill Licea-
Kane and with specifications edited by John Kessenich and Barthold Lichtenbelt,
in performing work necessary to promote the OpenGL Shading Language to a core
OpenGL feature.

A partial list of other contributors, including the company that they represented
at the time of their contribution, follows:

Kurt Akeley, NVIDIA

Allen Akin

Dave Baldwin, 3Dlabs

Bob Beretta, Apple

Pat Brown, NVIDIA

Matt Craighead, NVIDIA

Suzy Deffeyes, IBM

Ken Dyke, Apple

Cass Everitt, NVIDIA

Steve Glanville, NVIDIA

Michael I. Gold, NVIDIA

Evan Hart, ATI

Phil Huxley, 3Dlabs

Deron Dann Johnson, Sun

John Kessenich, 3Dlabs

Mark Kilgard, NVIDIA

Version 2.1 - December 1, 2006

350 APPENDIX I. VERSION 2.0

Dale Kirkland, 3Dlabs

Steve Koren, 3Dlabs

Jon Leech, SGI

Bill Licea-Kane, ATI

Barthold Lichtenbelt, 3DIlabs
Kent Lin, Intel

Benjamin Lipchak, ATI

Rob Mace, ATI

Michael McCool, U. Waterloo
Jack Middleton, Sun

Jeremy Morris, 3Dlabs

Teri Morrison, 3Dlabs

Marc Olano, SGI/ U. Maryland
Glenn Ortner, ATI

Brian Paul, Tungsten Graphics
Bimal Poddar, Intel

Phil Rogers, ATI

Ian Romanick, IBM

Randi Rost, 3Dlabs

Jeremy Sandmel, ATI

Folker Schamel, Spinor GMBH
Geoff Stahl, Apple

Eskil Steenberg, Obsession
Neil Trevett, 3Dlabs

Victor Vedovato, ATI

Mik Wells, Softimage

Esen Yilmaz, Intel

Dave Zenz, Dell

Version 2.1 - December 1, 2006

Appendix J

Version 2.1

OpenGL version 2.1, released on August 2, 2006, is the seventh revision since the
original version 1.0. Despite incrementing the major version number (to indicate
support for high-level programmable shaders), version 2.1 is upward compatible
with earlier versions, meaning that any program that runs with a 2.0, 1.5, 1.4,
1.3, 1.2, 1.1, or 1.0 GL implementation will also run unchanged with a 2.0 GL
implementation.

Following are brief descriptions of each addition to OpenGL 2.1.

J.1 OpenGL Shading Language

OpenGL 2.1 implementations must support at least revision 1.20 of
the OpenGL Shading Language. Implementations may query the
SHADING_LANGUAGE_VERSION string to determine the exact version of the
language supported. Refer to the OpenGL Shading Language Specification for
details of the changes between revision 1.10 and 1.20.

J.2 Non-Square Matrices

Added the UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv commands in sec-
tion 2.15.3, allowing specification of non-square uniform matrices.

J.3 Pixel Buffer Objects

Pixel buffer objects expand on the interface provided by the vertex buffer objects,
allowing buffer objects to be used with both vertex array and pixel data. This allows

351

352 APPENDIX J. VERSION 2.1

more acceleration opportunities for OpenGL pixel commands.

When a buffer object is bound to the PIXEL_PACK_BUFFER target, commands
such as ReadPixels write their data into a buffer object. When a buffer object is
bound to the PIXEL_UNPACK_BUFFER target, commands such as DrawPixels and
TexImage2D read their data from a buffer object.

Pixel buffer objects was promoted from the GL_ARB_ pixel buffer_object
extension. The specification was tightened to consistently require error be gener-
ated when read or write operations to a pixel buffer object would run past the end
of the buffer, or would be misaligned with respect to the data type being read or
written.

J.4 sRGB Textures

New uncompressed and compressed color texture formats with sSRGB color com-
ponents are defined. The sSRGB color space is based on typical (non-linear) monitor
characteristics expected in a dimly lit office. It has been standardized by the Inter-
national Electrotechnical Commission (IEC) as IEC 61966-2-1. The sRGB color
space roughly corresponds to 2.2 gamma correction.

SRGB textures was promoted from the GL_EXT_texture_sRGB extension.
Specific compressed sSRGB internal formats defined by the extension were not in-
cluded in OpenGL 2.1, while the generic uncompressed and compressed formats
were retained

J.5 Other Changes

Several minor revisions and corrections to the OpenGL 2.0 specification were
made:

e Note that the information log for program objects can include both link and
validation information, in section 2.15.2.

e Noted in section 3.6.4 that there is a current raster secondary color, and added
the CURRENT_RASTER_SECONDARY_COLOR query.

e Required perspective-correct interpolation for
all fragment attributes except depth in sections 3.4.1 and 3.5.1, effectively
making GL_PERSPECTIVE_CORRECT_HINT a no-op.

e Merged specific and generic compressed internal texture format tables into
the single table 3.17.

Version 2.1 - December 1, 2006

J.5. OTHER CHANGES 353

e Changed the type of texture wrap mode and min/mag filter parameters from
integer to enum in table 3.18.

e Removed mention of compressed texture depth components from sec-
tion 3.8.1, since no compressed depth formats are currently defined.

e Added forward reference from section 3.8.5 to section 3.8.14, which defines
how depth textures are actually used.

e Remove . notation in table 4.1, and fixed blend equations for
FUNC_REVERSE_SUBTRACT.

e Noted in section 6.1.15 that all texture object parameters are pushed and
popped by PushAttrib and PopAttrib when TEXTURE_BIT is set in the at-
tribute mask.

e Miscellaneous typographical corrections.

Additional minor corrections were made in a specification revision approved on
August 10, 2006, with a few additional fixes and omissions corrected on December
1, 2006:

e Noted in section 2.5 that INVALID VALUE is generated for negative
sizeiptr values.

e Noted in section 2.7 that VertexAttrib* can be used to load attributes for
any supported matrix type, not just square matrices.

e Removed the description of generating multiple connected components
when clipping vertices with w, values of different signs, at the end of sec-
tion 2.12. Implementations should not render in the w. < 0 region.

e Added FLOAT_MAT2x3, FLOAT_MAT2x4, FLOAT_MAT3x2, FLOAT_MAT3x4,
FLOAT MAT4x2, and FLOAT MAT4x3 tokens for non-square matrix types to
GetActiveAttrib and GetActiveUniform in section 2.15.3, and expanded
the description of how attribute components are mapped to matrix elements
to match.

e Clarified in section 3.8.12 that the texture object passed to Bind Texture must
match the specified farget, not just the dimensionality of rarget.

o Added missing TexEnv targets RGB_.SCALE, ALPHA_SCALE, SRCn_RGB,
SRCn_ALPHA, OPERANDnN_RGB, and OPERANDn_ALPHA in section 3.8.13.

Version 2.1 - December 1, 2006

354 APPENDIX J. VERSION 2.1

e Noted that POINT_SPRITE is a possible env parameter to GetTexEnv in sec-
tion 6.1.3.

e Miscellaneous typographical corrections.

J.6 Acknowledgements

OpenGL 2.1 is the result of the contributions of many people. The editor especially
thanks the ongoing work of the ARB GLSL working group, led by Bill Licea-Kane
and with specifications edited by John Kessenich and Barthold Lichtenbelt, in up-
dating the OpenGL Shading Language to revision 1.20. Ralf Biermann, Derek Cor-
nish, Matt Craighead, and Mark Kilgard edited the EXT_pixel buffer_object
proposal later adopted and developed by the ARB Pixel Buffer Object working
group, and Mark Kilgard edited the EXT_texture_sRGB extension.

A partial list of other contributors, including the company that they represented
at the time of their contribution, follows:

Aaftab Munshi, ATI

Avi Shapira, Graphic Remedy

Barthold Lichtenbelt, 3Dlabs / NVIDIA

Benjamin Lipchak, ATI

Benji Bowman, Imagination Technologies

Bill Armstrong, Evans and Sutherland

Bill Licea-Kane, ATI

Bimal Poddar, Intel

Bob Beretta, Apple

Brian Paul, Tungsten Graphics

Cass Everitt, NVIDIA

Chris Dodd, NVIDIA

Chris Starkey, 3Dlabs

Dale Kirkland, 3DIlabs

Daniel Vogel, Epic Games

Dave Shreiner, SGI

Derek Cornish, NVIDIA

Eskil Steenberg, Obsession

Evan Hart, ATI

Folker Schamel, Spinor GMBH

Geoff Stahl, Apple

Howard Miller, Apple

Tan Romanick, IBM

Version 2.1 - December 1, 2006

J.6. ACKNOWLEDGEMENTS 355

James A. McCombe, Apple
Jeff Juliano, NVIDIA

Jeff Weyman, ATI

Jeremy Sandmel, Apple / ATI
John Kessenich, 3Dlabs / Intel
John Rosasco, Apple

John Scott

Jon Leech, SGI

Jon Trulson, Xi Graphics

Ken Severson, NVIDIA
Kenneth Dyke, Apple
Kenneth Russell, Sun

Kent Lin, Intel

Marc Olano, U. Maryland
Mark Kilgard, NVIDIA
Michael Gold, NVIDIA
Neeraj Srivastava, Dell

Neil Trevett, 3Dlabs / NVIDIA
Nick Burns, Apple

Pat Brown, NVIDIA

Paul Martz, SimAuthor

Paul Ramsey, Sun

Pierre Boudier, ATI

Ralf Biermann, NVIDIA
Randi Rost, 3Dlabs

Rob Mace, ATI

Robert Simpson, Bitboys / ATI
Saifuddin Fakhruddin, Intel
Shawn Underwood, SGI
Steve Demlow, Vital Images
Steve Koren, 3Dlabs

Steven Zhu, Intel

Thomas Roell, NVIDIA

Tom Lanzoni, Dell

Travis Bryson, Sun

Yaki Tebeka, Graphic Remedy

Version 2.1 - December 1, 2006

Appendix K

ARB Extensions

OpenGL extensions that have been approved by the OpenGL Architectural Review
Board (ARB) are described in this chapter. These extensions are not required to be
supported by a conformant OpenGL implementation, but are expected to be widely
available; they define functionality that is likely to move into the required feature
set in a future revision of the specification.

In order not to compromise the readability of the core specification, ARB ex-
tensions are not integrated into the core language; instead, they are made available
online in the OpenGL Extension Registry (as are a much larger number of vendor-
specific extensions, as well as extensions to GLX and WGL). Extensions are doc-
umented as changes to the Specification. The Registry is available on the World
Wide Web at URL

http://www.opengl.org/registry/

Brief descriptions of ARB extensions are provided below.

K.1 Naming Conventions

To distinguish ARB extensions from core OpenGL features and from vendor-
specific extensions, the following naming conventions are used:

e A unique name string of the form "GL_ARB_name" is associated with each
extension. If the extension is supported by an implementation, this string
will be present in the EXTENSIONS string described in section 6.1.11.

o All functions defined by the extension will have names of the form Func-
tionARB

356

http://www.opengl.org/registry/

K.2. PROMOTING EXTENSIONS TO CORE FEATURES 357

e All enumerants defined by the extension will have names of the form
NAME_ARB.

e In additional to OpenGL extensions, there are also ARB extensions to the
related GLX and WGL APIs. Such extensions have name strings prefixed by
"GLX_" and "WGL_" respectively. Not all GLX and WGL ARB extensions
are described here, but all such extensions are included in the registry.

K.2 Promoting Extensions to Core Features

ARB extensions can be promoted to required core features in later revisions of
OpenGL. When this occurs, the extension specifications are merged into the core
specification. Functions and enumerants that are part of such promoted extensions
will have the ARB affix removed.

GL implementations of such later revisions should continue to export the name
strings of promoted extensions in the EXTENSIONS string, and continue to support
the ARB-affixed versions of functions and enumerants as a transition aid.

For descriptions of extensions promoted to core features in OpenGL 1.3 and
beyond, see appendices F, G, H, and I respectively.

K.3 Multitexture

The name string for multitexture is GL_ARB_multitexture. It was promoted to a
core feature in OpenGL 1.3.

K.4 Transpose Matrix

The name string for transpose matrix iS GL_ARB_transpose matrix. It was pro-
moted to a core feature in OpenGL 1.3.

K.5 Multisample

The name string for multisample is GL_.ARB.multisample. It was promoted to a
core feature in OpenGL 1.3.

Version 2.1 - December 1, 2006

358 APPENDIX K. ARB EXTENSIONS

K.6 Texture Add Environment Mode

The name string for texture add mode is GL_ARB_texture_env_add. It was pro-
moted to a core feature in OpenGL 1.3.

K.7 Cube Map Textures

The name string for cube mapping is GL_ARB_texture_cube map. It was pro-
moted to a core feature in OpenGL 1.3.

K.8 Compressed Textures

The name string for compressed textures is GL_.ARB_texture_compression. It
was promoted to a core feature in OpenGL 1.3.

K.9 Texture Border Clamp

The name string for texture border clamp is GL_ARB_texture_border_clamp. It
was promoted to a core feature in OpenGL 1.3.

K.10 Point Parameters

The name string for point parameters is GL_ARB_point _parameters. It was pro-
moted to a core features in OpenGL 1.4.

K.11 Vertex Blend

Vertex blending replaces the single model-view transformation with multiple ver-
tex units. Each unit has its own transform matrix and an associated current weight.
Vertices are transformed by all the enabled units, scaled by their respective weights,
and summed to create the eye-space vertex. Normals are similarly transformed by
the inverse transpose of the model-view matrices.

The name string for vertex blend is GL_ARB_vertex_blend.

Version 2.1 - December 1, 2006

K.12. MATRIX PALETTE 359

K.12 Matrix Palette

Matrix palette extends vertex blending to include a palette of model-view matrices.
Each vertex may be transformed by a different set of matrices chosen from the
palette.

The name string for matrix palette is GL_ARB.matrix palette.

K.13 Texture Combine Environment Mode

The name string for texture combine mode is GL_ARB_texture_env_combine. It
was promoted to a core feature in OpenGL 1.3.

K.14 Texture Crossbar Environment Mode

The name string for texture crossbar is GL_ARB_texture_env_crossbar. It was
promoted to a core features in OpenGL 1.4.

K.15 Texture Dot3 Environment Mode

The name string for DOT3 is GL_ARB_texture_env_dot3. It was promoted to a
core feature in OpenGL 1.3.

K.16 Texture Mirrored Repeat

The name string for texture mirrored repeat is
GL_ARB_texture mirrored.repeat. It was promoted to a core feature in
OpenGL 1.4.

K.17 Depth Texture

The name string for depth texture is GL_ARB_depth_texture. It was promoted to
a core feature in OpenGL 1.4.

K.18 Shadow

The name string for shadow is GL_ARB_shadow. It was promoted to a core feature
in OpenGL 1.4.

Version 2.1 - December 1, 2006

360 APPENDIX K. ARB EXTENSIONS

K.19 Shadow Ambient

Shadow ambient extends the basic image-based shadow functionality by allowing
a texture value specified by the TEXTURE_COMPARE _FAIL_VALUE_ARB texture pa-
rameter to be returned when the texture comparison fails. This may be used for
ambient lighting of shadowed fragments and other advanced lighting effects.

The name string for shadow ambient is GL_.ARB_shadow_ambient.

K.20 Window Raster Position

The name string for window raster position is GL_ARB_.window_pos. It was pro-
moted to a core feature in OpenGL 1.4.

K.21 Low-Level Vertex Programming

Application-defined vertex programs may be specified in a new low-level program-
ming language, replacing the standard fixed-function vertex transformation, light-
ing, and texture coordinate generation pipeline. Vertex programs enable many new
effects and are an important first step towards future graphics pipelines that will be
fully programmable in an unrestricted, high-level shading language.

The name string for low-level vertex programming is
GL_ARB_vertex_program.

K.22 Low-Level Fragment Programming

Application-defined fragment programs may be specified in the same low-level lan-
guage as GL_ARB_vertex_program, replacing the standard fixed-function vertex
texturing, fog, and color sum operations.

The name string for low-level fragment programming is
GL_ARB_fragment_program.

K.23 Buffer Objects

The name string for buffer objects is GL_.ARB_vertex.-buffer_object. It was
promoted to a core feature in OpenGL 1.5.

Version 2.1 - December 1, 2006

K.24. OCCLUSION QUERIES 361

K.24 Occlusion Queries

The name string for occlusion queries is GL.ARB_.occlusion_query. It was pro-
moted to a core feature in OpenGL 1.5.

K.25 Shader Objects

The name string for shader objects is GL._ARB_shader_objects. It was promoted
to a core feature in OpenGL 2.0.

K.26 High-Level Vertex Programming

The name string for high-level vertex programming iS GL_ARB_vertex_shader.
It was promoted to a core feature in OpenGL 2.0.

K.27 High-Level Fragment Programming

The name string for high-level fragment
programming is GL_ARB_fragment_shader. It was promoted to a core feature
in OpenGL 2.0.

K.28 OpenGL Shading Language

The name string for the OpenGL Shading Language is
GL_ARB_shading_language_100. The presence of this extension string in-
dicates that programs written in version 1 of the Shading Language are accepted
by OpenGL.

It was promoted to a core feature in OpenGL 2.0.

K.29 Non-Power-Of-Two Textures

The name string for non-power-of-two textures is
GL-ARB.texture_non_power_of_two. It was promoted to a core feature in
OpenGL 2.0.

Version 2.1 - December 1, 2006

362 APPENDIX K. ARB EXTENSIONS

K.30 Point Sprites

The name string for point sprites is GL_ARB_point_sprite. It was promoted to a
core feature in OpenGL 2.0.

K.31 Fragment Program Shadow

Fragment program shadow extends low-level fragment programs defined with
GL.ARB_fragment_program to add shadow 1D, 2D, and 3D texture targets, and
remove the interaction with GL_ARB_shadow.

The name string for fragment program shadow is
GL_ARB_fragment_program_shadow.

K.32 Multiple Render Targets

The name string for multiple render targets is GL_ARB_draw buffers. It was
promoted to a core feature in OpenGL 2.0.

K.33 Rectangular Textures

Rectangular textures define a new texture target TEXTURE_RECTANGLE_ARB that
supports 2D textures without requiring power-of-two dimensions. Rectangular
textures are useful for storing video images that do not have power-of-two sizes
(POTS). Resampling artifacts are avoided and less texture memory may be re-
quired. They are are also useful for shadow maps and window-space texturing.
These textures are accessed by dimension-dependent (aka non-normalized) texture
coordinates.

Rectangular textures are a restricted version of non-power-of-two textures. The
differences are that rectangular textures are supported only for 2D; they require a
new texture target; and the new target uses non-normalizes texture coordinates

The name string for texture rectangles is GL_ARB_texture_rectangle.

K.34 Floating-Point Color Buffers

Floating-point color buffers can represent values outside the normal [0, 1] range
of colors in the fixed-function OpenGL pipeline. This group of related exten-
sions enables controlling clamping of vertex colors, fragment colors throughout the
pipeline, and pixel data read back to client memory, and also includes WGL and

Version 2.1 - December 1, 2006

K.35. HALF-PRECISION FLOATING POINT 363

GLX extensions for creating frame buffers with floating-point color components
(referred to in GLX as framebuffer configurations, and in WGL as pixel formats).

The name strings for floating-point color buffers are
GL_ARB_color_buffer_float, GLX_ARB_fbconfig_float, and
WGL_ARB_pixel_format_float.

K.35 Half-Precision Floating Point

This extension defines the representation of a 16-bit floating point data format, and
a corresponding type argument which may be used to specify and read back pixel
and texture images stored in this format in client memory. Half-precision floats are
smaller than full precision floats, but provide a larger dynamic range than similarly
sized (short) data types.

The name string for half-precision floating point is
GL_ARB_half float_pixel.

K.36 Floating-Point Textures

Floating-point textures stored in both 32- and 16-bit formats may be defined using
new internalformat arguments to commands which specify and read back texture
images.

The name string for floating-point textures is GL_ARB_texture_float.

K.37 Pixel Buffer Objects

The buffer object interface is expanded by adding two new binding targets for
buffer objects, the pixel pack and unpack buffers. This permits buffer objects to be
used to store pixel data as well as vertex array data. Pixel-drawing and -reading
commands using data in pixel buffer objects may operate at greatly improved per-
formance compared to data in client memory.

The name string for pixel buffer objects is GL_ARB_pixel buffer_object. It
was promoted to a core feature in OpenGL 2.1.

Version 2.1 - December 1, 2006

Index

z_BIAS, 117, 288

x_SCALE, 117, 288

2D, 240, 241, 303

2_BYTES, 243

3D, 240, 241

3D_COLOR, 240, 241
3D_COLOR_TEXTURE, 240, 241
3_BYTES, 243
4D_COLOR_TEXTURE, 240, 241
4_BYTES, 243

1, 152, 161, 180, 253, 281
2,152, 161, 253, 281
3,152, 161, 253, 281
4,152, 161, 253

ACCUM, 220, 221
Accum, 220, 221
ACCUM_BUFFER_BIT, 219, 265
ACTIVE_ATTRIBUTE_MAX_LENGTH,
77,261
ACTIVE_ATTRIBUTES, 77, 261
ACTIVE_TEXTURE, 21, 47, 55, 184,
232,248, 249
ACTIVE_UNIFORM_MAX_LENGTH,
81, 261
ACTIVE_UNIFORMS, 80, 261
ActiveTexture, 47, 83, 192
ADD, 185, 187, 188, 220, 221, 327
ADD_SIGNED, 188
ALL_ATTRIB_BITS, 264, 265
ALPHA, 117, 130, 141, 142, 152,
155, 169, 170, 185-187,
211, 224, 226, 251, 253,
289, 291, 302, 312, 318
ALPHAI12, 154

154,
190,
288,

364

ALPHALIG6, 154

ALPHAA4, 154

ALPHAS, 154

ALPHA BIAS, 139
ALPHA_SCALE, 139, 185, 353
ALPHA _TEST, 204

AlphaFunc, 204

ALWAYS, 169, 190, 204-207, 285
AMBIENT, 65, 66, 68
AMBIENT_AND_DIFFUSE, 65, 66, 68
AND, 214

AND_INVERTED, 214
AND_REVERSE, 214
Antialiasing, 107
AreTexturesResident, 183, 244
ARRAY _BUFFER, 33, 35-39, 259, 260
ARRAY BUFFER_BINDING, 38
ArrayElement, 19, 27-29, 38, 242
ATTACHED_SHADERS, 261, 262
AttachShader, 74, 244
AUTO_NORMAL, 85, 233

AUXi, 215, 216

AUXm, 215, 216

AUXn, 224

AUXO, 215, 216, 224

BACK, 64, 66, 67, 108, 109, 111, 205,
215-218, 224, 249, 279

BACK_LEFT, 215, 216, 224

BACK_RIGHT, 215, 216, 224

Begin, 12, 15-20, 28, 29, 40, 64, 68, 70,
87, 101, 105, 108, 111, 234,
235, 240

BeginQuery, 207, 208

BGR, 130, 224, 226, 251

BGRA, 130, 132, 136, 224, 251, 316

INDEX

BindAttribLocation, 78, 244

BindBuffer, 33, 39, 244

BindTexture, 47, 83, 182, 183, 353

BITMAP, 110, 118, 121, 127, 129, 136,
149, 226, 253

Bitmap, 149

BITMAP_TOKEN, 241

BLEND, 185, 187, 209, 213

BlendColor, 212, 334

BlendEquation, 209, 334

BlendEquationSeparate, 209, 347

BlendFunc, 211, 334

BlendFuncSeparate, 211, 335

BLUE, 117, 130, 224, 226, 251, 288,
289, 291, 302

BLUE_BIAS, 139

BLUE_SCALE, 139

BOOL, 81

BOOL_VEC2, 81

BOOL_VECS3, 81

BOOL_VEC(4, 81

BUFFER_ACCESS, 34, 36, 37

BUFFER_MAP_POINTER, 34, 36-38,
260

BUFFER_MAPPED, 34, 36-38

BUFFER_SIZE, 34, 36

BUFFER_USAGE, 34, 36, 37

BufferData, 35, 36, 244

BufferSubData, 36, 37, 244

bvec2, 82

BYTE, 24, 129, 226, 227, 243

C3F_V3F, 31, 32

C4F_N3F_V3F, 31, 32

C4UB_V2F, 31, 32

C4UB_V3F, 31, 32

CallList, 19, 242, 243

CallLists, 19, 242, 243

CCW, 63, 64,279

CLAMP, 169, 171
CLAMP_TO_BORDER, 169, 172, 327
CLAMP_TO_EDGE, 169, 171, 172, 317
CLEAR, 214

Clear, 219, 220

ClearAccum, 219

365

ClearColor, 219

ClearDepth, 219

ClearlIndex, 219

ClearStencil, 219

CLIENT_ACTIVE_TEXTURE, 26, 248,
249

CLIENT_ALL_ATTRIB_BITS, 264, 265

CLIENT_PIXEL_STORE_BIT, 265

CLIENT_VERTEX_ARRAY _BIT, 265

ClientActiveTexture, 20, 26, 244

CLIP_PLANE:;, 52, 53

CLIP_PLANEQO, 53

ClipPlane, 52

COEEFF, 251

COLOR, 43, 47, 48, 120, 124, 125, 161,
229

Color, 19, 21, 22,57, 68,71, 76

Color3, 21

Color4, 21

Color[size][type]v, 27

COLOR_ARRAY, 26, 31

COLOR_ARRAY _POINTER, 257

COLOR_BUFFER_BIT, 219, 220, 265

COLOR_NDEX, 110, 118, 121, 127,
130, 140, 149, 224, 229, 252,
253

COLOR_INDEXES, 65, 69

COLOR_LOGIC_OP, 213

COLOR_MATERIAL, 66, 68

COLOR_MATRIX, 254

COLOR_MATRIX_STACK_DEPTH,
254

COLOR_SUM, 194

COLOR_TABLE, 119, 121, 140

COLOR_TABLE_ALPHA SIZE, 254

COLOR_TABLE_BIAS, 118, 119, 254

COLOR_TABLE_BLUE_SIZE, 254

COLOR_TABLE_FORMAT, 254

COLOR_TABLE_GREEN_SIZE, 254

COLOR_TABLE_INTENSITY _SIZE,
254

COLOR_TABLE_LUMINANCE_SIZE,
254

COLOR_TABLE_RED_SIZE, 254

Version 2.1 - December 1, 2006

366

COLOR_TABLE_SCALE,
254
COLOR_TABLE_WIDTH, 254
ColorMask, 217, 218
ColorMaterial, 66—68, 233, 309, 314
ColorPointer, 19, 24, 25, 31, 244
ColorSubTable, 115, 120
ColorTable, 115, 118-121, 145, 146, 244
ColorTableParameter, 119
ColorTableParameterfv, 118
Colorub, 71
Colorui, 71
Colorus, 71
COMBINE, 185, 188, 192, 327, 335
COMBINE_ALPHA, 185, 188, 189
COMBINE_RGB, 185, 188, 189
COMPARE_R_TO_TEXTURE, 169,
190
COMPILE, 242, 309
COMPILE_AND_EXECUTE, 242, 243
COMPILE_STATUS, 73, 260
CompileShader, 73, 244
COMPRESSED_ALPHA, 155
COMPRESSED_INTENSITY, 155
COMPRESSED_LUMINANCE, 155
COMPRESSED_LUMINANCE_ALPHA,
155
COMPRESSED_RGB, 155
COMPRESSED_RGBA, 155
COMPRESSED_SLUMINANCE, 155,
191

118-120,

COMPRESSED_SLUMINANCE_ALPHA,

155, 191
COMPRESSED_SRGB, 155, 191
COMPRESSED_SRGB_ALPHA, 155,

191
COMPRESSED_TEXTURE_FORMATS,

153
CompressedTexImage, 167
CompressedTexImagelD, 165-167
CompressedTexImage2D, 165-167
CompressedTexImage3D, 165-167
CompressedTexSubImage1D, 166—168
CompressedTexSublmage2D, 166—168
CompressedTexSublmage3D, 167, 168

INDEX

CONSTANT, 187, 189, 284
CONSTANT_ALPHA, 211, 334
CONSTANT_ATTENUATION, 65
CONSTANT_BORDER, 143, 144
CONSTANT_COLOR, 211, 334
CONVOLUTION_ID, 122-124, 141,
158, 255
CONVOLUTION_2D, 121-123, 141,
158, 255
CONVOLUTION_BORDER_COLOR,
143, 255
CONVOLUTION_BORDER_MODE,
143, 255
CONVOLUTION_FILTER_BIAS, 122,
123, 255
CONVOLUTION_FILTER_SCALE,
122-124, 255
CONVOLUTION_FORMAT, 255
CONVOLUTION_HEIGHT, 255
CONVOLUTION_WIDTH, 255
ConvolutionFilter1D, 115, 122-124
ConvolutionFilter2D, 115, 121-124
ConvolutionParameter, 122, 143
ConvolutionParameterfv, 122, 123, 143
ConvolutionParameteriv, 123, 143
COORD_REPLACE, 96, 100
COPY, 213, 214, 286
COPY_INVERTED, 214
COPY _PIXEL_TOKEN, 241
CopyColorSubTable, 120
CopyColorTable, 120
CopyConvolutionFilter1D, 124
CopyConvolutionFilter2D, 123
CopyPixels, 114, 116, 120, 124, 141,
161, 221, 226, 228, 239
CopyTexImagelD, 141, 161, 163, 177
CopyTexImage2D, 141, 159, 161, 163,
177
CopyTexImage3D, 163
CopyTexSublmagelD, 141, 162-165
CopyTexSublmage2D, 141, 162, 164,
165
CopyTexSublmage3D, 141, 162, 163,
165
CreateProgram, 74, 244

Version 2.1 - December 1, 2006

INDEX

CreateShader, 72, 244, 346
CreateShaderObjectARB, 346
CULL_FACE, 108

CullFace, 108, 109, 113
CURRENT_BIT, 265
CURRENT_FOG_COORD, 341
CURRENT_FOG_COORDINATE, 341
CURRENT_QUERY, 258

CURRENT_RASTER_SECONDARY_COLOR,

352

CURRENT_RASTER_TEXTURE_COORDS,

55, 308
CURRENT_TEXTURE_COORDS, 21
CURRENT_VERTEX_ATTRIB, 263
CW, 64

DECAL, 185, 186

DECR, 206

DECR_WRAP, 206, 335

DELETE_STATUS, 73, 260, 261

DeleteBuffers, 34, 244

DeleteLists, 244

DeleteProgram, 75, 244

DeleteQueries, 208, 244

DeleteShader, 73, 244

DeleteTextures, 183, 244

DEPTH, 118, 122, 125, 126, 161, 229,
288, 334

DEPTH_BIAS, 117, 139

DEPTH_BUFFER _BIT, 219, 220, 265

DEPTH_COMPONENT, 86, 118, 121,
127, 130, 152-154, 190, 198,
222,225,229, 251, 252, 254~
256, 349

DEPTH_COMPONENT16, 154

DEPTH_COMPONENT?24, 154

DEPTH_COMPONENT?32, 154

DEPTH_SCALE, 117, 139

DEPTH_TEST, 206

DEPTH_TEXTURE_MODE, 169, 181,
190

DepthFunc, 207

DepthMask, 218, 222

DepthRange, 42, 57, 248, 309

DepthTest, 222

367

DetachShader, 74, 244

dFdx, 246

dFdy, 246

DIFFUSE, 65, 66

Disable, 47, 48, 51, 53, 59, 63, 66, 94—
96, 102, 104, 108, 110, 112,
145-147, 191, 194, 203-206,
209, 213, 232, 233

DisableClientState, 19, 26, 31, 33, 244

DisableVertexAttribArray, 26, 244, 263

DITHER, 213

DOMAIN, 251

DONT_CARE, 246, 297

DOT3_RGB, 188

DOT3_RGBA, 188

DOUBLE, 24, 27

DRAW _PIXEL_TOKEN, 241

DrawArrays, 28, 29, 38, 242

DrawBuffer, 213, 215-218, 220

DrawBuffers, 215-217

DrawElements, 29, 30, 38, 39, 242, 318

DrawPixels, 110, 113-116, 118, 121,
127-132, 136, 138, 141, 148,
149, 151, 152, 221, 222, 226,
229, 239, 352

DrawRangeElements, 30, 38, 39, 242,
300

DST_ALPHA, 211

DST_COLOR, 211, 334

DYNAMIC_COPY, 34, 36

DYNAMIC_DRAW, 34, 35

DYNAMIC_READ, 34, 36

EDGE_FLAG_ARRAY, 26, 31

EDGE_FLAG_ARRAY_POINTER, 257

EdgeFlag, 19

EdgeFlagPointer, 19, 24, 25, 244

EdgeFlagyv, 19, 27

ELEMENT_ARRAY BUFFER, 33, 35,
37-39, 259, 260

EMISSION, 65, 66

Enable, 47, 48, 51, 53, 59, 63, 66, 94-96,
102, 104, 108, 110, 112, 145—
147, 191, 194, 203-206, 209,
213,232, 233, 247

Version 2.1 - December 1, 2006

368

ENABLE_BIT, 265

EnableClientState, 19, 26, 31, 33, 244

EnableVertexAttribArray, 26, 244, 263

End, 12, 15-20, 28, 29, 40, 64, 68, 70,
101, 108, 111, 234, 235, 240

EndList, 242

EndQuery, 207, 208

EQUAL, 169, 190, 205-207

EQUIV, 214

EVAL _BIT, 265

EvalCoord, 19, 232, 233

EvalCoordl1, 233-235

EvalCoord1d, 234

EvalCoord1f, 234

EvalCoord2, 233, 235, 236

EvalMeshl, 234

EvalMesh2, 234, 235

EvalPoint, 19

EvalPointl1, 235

EvalPoint2, 235

EXP, 195, 196, 276

EXP2, 195

EXT _pixel_buffer_object, 354

EXT_texture_sRGB, 354

EXTENSIONS, 116, 257, 258, 356, 357

EYE_LINEAR, 50-52, 250, 284

EYE_PLANE, 50, 51

FALSE, 19, 34, 36, 38, 61-63, 73-75,
82, 88, 89, 96, 114, 115, 117,
125, 126, 136, 139, 147, 148,
169, 180, 183, 198, 204, 208,
222, 224, 248, 253, 256-261,
282

FASTEST, 246

FEEDBACK, 237-239, 310

FEEDBACK_BUFFER_POINTER, 257

FeedbackBuffer, 238, 239, 244

FILL, 111-113, 234, 279, 309, 312

Finish, 244, 245, 308

FLAT, 70, 309

FLOAT, 24, 27, 31-33, 77, 81, 129, 225,
227,243,251, 252,271,272

float, 76

FLOAT_MAT?2, 77, 81

INDEX

FLOAT_MAT2x3, 77, 81, 353

FLOAT _MAT2x4, 77, 81, 353

FLOAT_MAT3, 77, 81

FLOAT_MAT3x2, 77, 81, 353

FLOAT_MAT3x4, 77, 81, 353

FLOAT_MAT4, 77, 81

FLOAT_MAT4x2, 77, 81, 353

FLOAT_MAT4x3, 77, 81, 353

FLOAT_VEC2, 77, 81

FLOAT_VECS3, 77, 81

FLOAT_VEC4, 77, 81

Flush, 244, 245, 308

FOG, 194

Fog, 194, 195

FOG_BIT, 265

FOG_COLOR, 195

FOG_COORD, 55, 194, 195, 341, 348

FOG_COORD_ARRAY, 26, 31, 341

FOG_COORD_ARRAY_BUFFER_BINDING,
341, 348

FOG_COORD_ARRAY_POINTER,
257,341

FOG_COORD_ARRAY _STRIDE, 341

FOG_COORD_ARRAY_TYPE, 341

FOG_COORD_SRC, 57, 195, 196, 341,
348

FOG_COORDINATE, 341, 348

FOG_COORDINATE_ARRAY, 341

FOG_COORDINATE_ARRAY _BUFFER_BINDING,
341

FOG_COORDINATE_ARRAY _POINTER,
341

FOG_COORDINATE_ARRAY _STRIDE,
341

FOG_COORDINATE_ARRAY_TYPE,
341

FOG_COORDINATE_SOURCE, 334,
341

FOG_DENSITY, 195

FOG_END, 195

FOG_HINT, 246

FOG_INDEX, 195

FOG_MODE, 195, 196

FOG_START, 195

FogCoord, 19, 21, 334

Version 2.1 - December 1, 2006

INDEX

FogCoord[type]v, 27
FogCoordPointer, 19, 24, 25, 244
FRAGMENT_DEPTH, 194-196, 276
FRAGMENT_SHADER, 196, 260

FRAGMENT_SHADER _DERIVATIVE_HINT,

246
FRONT, 64, 66, 68, 108, 109, 111, 205,
215-218, 224, 249
FRONT_AND_BACK, 64, 6668, 108,
111, 205, 215-218
FRONT_LEFT, 215, 216, 224
FRONT_RIGHT, 215, 216, 224
FrontFace, 63, 108, 199
Frustum, 44, 46, 309
ftransform, 87
FUNC_ADD, 209, 210, 212, 286
FUNC_REVERSE_SUBTRACT, 209,
210, 353
FUNC_SUBTRACT, 209, 210
fwidth, 246

GenBuffers, 34, 244
GENERATE_MIPMAP, 169, 170, 178,
181, 333
GENERATE_MIPMAP_HINT, 246
GenlLists, 243, 244
GenQueries, 208, 244
GenTextures, 183, 244, 253
GEQUAL, 169, 190, 205-207, 340
Get, 21,43, 54, 244, 247, 248
GetActiveAttrib, 76, 77, 353
GetActiveUniform, 80-82, 353
GetAttachedShaders, 261
GetAttribLocation, 77, 78
GetBooleanv, 204, 247, 248, 266, 268
GetBufferParameter, 249
GetBufferParameteriv, 249
GetBufferPointerv, 260
GetBufferSubData, 259, 260
GetClipPlane, 249
GetColorTable, 121, 224, 254
GetColorTableParameter, 254
GetCompressedTexImage,
246, 250, 252
GetConvolutionFilter, 224, 255

166168,

369

GetConvolutionParameter, 255

GetConvolutionParameteriv, 122, 123

GetDoublev, 247, 248, 266, 268

GetError, 11

GetFloatv, 204, 247, 248, 253, 254, 266,
268

GetHistogram, 126, 224, 255, 348

GetHistogramParameter, 256

Getlntegerv, 30, 94, 217, 247, 248, 254,
266, 268

GetLight, 249

GetMap, 249, 251

GetMaterial, 249

GetMinmax, 224, 256

GetMinmaxParameter, 257

GetPixelMap, 249, 251

GetPixelMapfyv, 251

GetPixelMapuiv, 251

GetPixelMapusy, 251

GetPointerv, 257

GetPolygonStipple, 224, 253

GetProgramInfoLog, 75, 262

GetProgramiv, 74, 77, 80, 81, 88, 261,
262

GetQueryiv, 258

GetQueryObject[u]iv, 259

GetQueryObjectiv, 259

GetQueryObjectuiv, 259

GetSeparableFilter, 224, 255

GetShaderInfoLog, 73, 262

GetShaderiv, 73, 260, 262

GetShaderSource, 262

GetString, 257, 258

GetTexEnv, 249, 354

GetTexGen, 249, 250

GetTexImage, 182, 224, 251, 252, 254—
256

GetTexLevelParameter, 249, 250

GetTexParameter, 249, 250

GetTexParameterfyv, 182, 183

GetTexParameteriv, 182, 183

GetUniform*, 264

GetUniformfv, 263

GetUniformiv, 263

GetUniformLocation, 79, 81, 83

Version 2.1 - December 1, 2006

370

GetVertexAttribdv, 263

GetVertex Attribfv, 263

GetVertex Attribiv, 263

GetVertex AttribPointerv, 263

GL_ARB _color_buffer_float, 363

GL_ARB _depth_texture, 334, 359

GL_ARB _draw _buffers, 346, 362

GL_ARB _fragment_program, 340, 360,
362

GL_ARB _fragment_program_shadow,
362

GL_ARB fragment_shader, 339, 340,
345, 361

GL_ARB _half_float_pixel, 363

GL_ARB _matrix_palette, 359

GL_ARB _multisample, 326, 357

GL_ARB _multitexture, 327, 357

GL_ARB _occlusion_query, 340, 361

GL_ARB _pixel_buffer_object, 352, 363

GL_ARB point_parameters, 335, 358

GL_ARB _point_sprite, 347, 362

GL_ARB _shader_objects, 339, 341, 345,
361

GL_ARB _shading_language_100, 346,
361

GL_ARB _shadow, 334, 359, 362

GL_ARB _shadow_ambient, 360

GL_ARB _texture_border_clamp, 328,
358

GL_ARB _texture_compression, 325, 358

GL_ARB _texture_cube_map, 326, 358

GL_ARB _texture_env_add, 327, 358

GL_ARB _texture_env_combine, 327,
359

GL_ARB _texture_env_crossbar, 336, 359

GL_ARB _texture_env_dot3, 327, 359

GL_ARB _texture_float, 363

GL_ARB _texture_mirrored_repeat, 336,
359

GL_ARB _texture_non_power_of_two,
346, 361

GL_ARB _texture_rectangle, 362

GL_ARB _transpose_matrix, 328, 357

GL_ARB _vertex_blend, 358

INDEX

GL_ARB _vertex_buffer_object, 339,
340, 360

GL_ARB _vertex_program, 333, 336, 360

GL_ARB _vertex_shader, 339, 341, 345,
361

GL_ARB _window _pos, 336, 360

GL_ATI separate_stencil, 347

gl_BackColor, 63

gl_BackSecondaryColor, 63

gl_ClipVertex, 53

gl_Color, 198

GL_EXT_bgra, 316

GL_EXT_blend_color, 320

GL_EXT_blend_equation_separate, 347

GL_EXT_blend_func_separate, 335

GL_EXT_blend_logic_op, 312, 347

GL_EXT_blend_minmax, 320

GL_EXT _blend_subtract, 320

GL_EXT _color_subtable, 319

GL_EXT _color_table, 319

GL_EXT _convolution, 319

GL_EXT _copy_texture, 313

GL_EXT _draw_range_elements, 318

GL_EXT _fog_coord, 334

GL_EXT __histogram, 320

GL_EXT_multi_draw _arrays, 334

GL_EXT _packed_pixels, 317

GL_EXT _polygon_offset, 312

GL_EXT _rescale_normal, 317

GL_EXT_secondary_color, 335

GL_EXT _separate_specular_color, 317

GL_EXT _shadow _funcs, 340

GL_EXT _stencil_two_side, 347

GL_EXT _stencil_wrap, 335

GL_EXT _subtexture, 313

GL_EXT _texture, 312, 313

GL_EXT _texture3D, 316

GL_EXT _texture_lod_bias, 336

GL_EXT _texture_object, 313

GL_EXT _texture_sRGB, 352

GL_EXT _vertex_array, 311

gl_FogFragCoord, 55

gl _FragColor, 199, 216

gl_FragCoord, 198

gl_FragCoord.z, 307

Version 2.1 - December 1, 2006

INDEX

gl _FragData, 199, 216

gl _FragData[n], 199

gl_FragDepth, 199, 307

gl_FrontColor, 63

gl _FrontFacing, 198

gl_FrontSecondaryColor, 63

GL_HP_convolution_border_modes, 319

GL_NV _blend_square, 334

GL_PERSPECTIVE_CORRECT_HINT,
352

gl_PointSize, 95

gl _Position, 84

gl_SecondaryColor, 198

GL_SGI_color_matrix, 319

GL_SGIS _generate_mipmap, 333

GL_SGIS _multitexture, 324

GL_SGIS _texture_edge _clamp, 318

GL_SGIS _texture_lod, 318

GLX_ARB_fbconfig_float, 363

GREATER, 169, 190, 205-207

GREEN, 117, 130, 224, 226, 251, 288,
289, 291, 302

GREEN_BIAS, 139

GREEN_SCALE, 139

Hint, 245
HINT _BIT, 265
HISTOGRAM, 125, 126, 147, 255, 256
Histogram, 125, 126, 147, 244
HISTOGRAM_ALPHA _SIZE, 256
HISTOGRAM _BLUE_SIZE, 256
HISTOGRAM _FORMAT, 256
HISTOGRAM_GREEN_SIZE, 256
HISTOGRAM_LUMINANCE_SIZE,
256
HISTOGRAM_RED_SIZE, 256
HISTOGRAM_SINK, 256
HISTOGRAM_WIDTH, 256

INCR, 206
INCR_-WRAP, 206, 335
INDEX, 302

Index, 19, 22
Index[type]v, 27
INDEX_ARRAY, 26, 31

371

INDEX_ARRAY _POINTER, 257

INDEX_LOGIC_OP, 213

INDEX_OFFSET, 117, 139, 288

INDEX_SHIFT, 117, 139, 288

IndexMask, 217, 218

IndexPointer, 20, 24, 25, 244

INFO_LOG_LENGTH, 261, 262

InitNames, 236

INT, 24, 81, 129, 226, 227, 243

INT_VEC2, 81

INT_VEC3, 81

INT_VEC4, 81

INTENSITY, 125, 126, 141, 142, 152,
154, 155, 169, 170, 186, 187,
190, 253, 289, 312

INTENSITY 12, 154

INTENSITY 16, 154

INTENSITY4, 154

INTENSITYS, 154

InterleavedArrays, 20, 31, 32, 244

INTERPOLATE, 188

INVALID_ENUM, 12, 27, 47, 51, 64,
115, 121, 125-127, 161, 165,
167, 182, 252, 254-256

INVALID_OPERATION, 12, 19, 34, 37—
39,47,72,74,75, 78, 80, 82—
84, 87,88, 115, 117, 127, 131,
153, 157, 161, 165-168, 182,
208, 215-217, 221, 222, 224,
226, 232, 237, 239, 242, 249~
253, 259, 260, 263, 264

INVALID_VALUE, 12, 22, 24, 26, 28—
30, 36, 43, 46, 64, 72, 77, 78,
80, 95, 96, 102, 114, 116, 117,
119, 120, 122, 123, 125, 152,
156-158, 161-164, 166, 167,
177, 183, 195, 203, 217, 219,
231, 232, 234, 242, 250, 252,
260, 263, 353

INVERT, 206, 214

Is, 244

IsBuffer, 259

IsEnabled, 203, 247, 266, 268

IsList, 244

IsProgram, 261

Version 2.1 - December 1, 2006

372

IsQuery, 258
IsShader, 260
IsTexture, 253

KEEP, 206, 285

LEFT, 215-217, 224

LEQUAL, 169, 181, 190, 204, 206, 207,
282, 340

LESS, 169, 190, 204, 206, 207, 285

Light, 64-66

LIGHTq, 64, 66, 310

LIGHTO, 64

LIGHT _MODEL_AMBIENT, 65

LIGHT _MODEL_COLOR_CONTROL,
65

LIGHT _MODEL_LOCAL_VIEWER,
65

LIGHT_MODEL_TWO_SIDE, 65

LIGHTING, 59

LIGHTING_BIT, 265

LightModel, 64, 65

LINE, 111-113, 234, 235, 279, 312

LINE_BIT, 265

LINE_LOOP, 16

LINE_RESET_TOKEN, 241

LINE_SMOOTH, 102, 107

LINE_SMOOTH_HINT, 246

LINE_STIPPLE, 104

LINE_STRIP, 15, 234

LINE_TOKEN, 241

LINEAR, 169, 175, 177-179, 181, 195

LINEAR_ATTENUATION, 65

LINEAR _MIPMAP_LINEAR, 169, 177,
178

LINEAR _MIPMAP_NEAREST, 169,
177

LINES, 16, 105

LineStipple, 104

LineWidth, 102

LINK_STATUS, 74, 261

LinkProgram, 74, 75, 77, 78, 80, 83, 244

LIST_BIT, 265

ListBase, 243, 245

LOAD, 220, 221

INDEX

Loadldentity, 44
LoadMatrix, 43, 44
LoadMatrix[fd], 44
LoadName, 236, 237
LoadTransposeMatrix, 44
LoadTransposeMatrix[fd], 44
LOGIC_OP, 213, 347, 349
LogicOp, 213, 214
LOWER_LEFT, 96, 100
LUMINANCE, 130, 137, 141, 142, 152,
154, 155, 169, 170, 181, 186,
187, 190, 224-226, 251, 253,
282, 289, 291, 312
LUMINANCEI2, 154
LUMINANCEI12_ALPHA12, 154
LUMINANCEI12_ALPHA4, 154
LUMINANCELIS®6, 154
LUMINANCE16_ALPHAI6, 154
LUMINANCE4, 154
LUMINANCE4_ALPHA4, 154
LUMINANCEG6_ALPHA?2, 154
LUMINANCES, 154
LUMINANCES_ALPHAS, 154
LUMINANCE_ALPHA, 130, 137, 141,
142, 152, 154, 155, 186, 187,
224-226, 251, 253

Mapl, 230-232, 248

MAPI1_COLOR 4, 231

MAPI1_INDEX, 231

MAPI1_NORMAL, 231
MAPI_TEXTURE_COORD_1, 231, 233
MAPI_TEXTURE_COORD_2, 231, 233
MAPI_TEXTURE_COORD_3, 231
MAPI_TEXTURE_COORD 4, 231
MAPI1_VERTEX_3, 231
MAPI1_VERTEX 4, 231

Map2, 231, 232, 248
MAP2_VERTEX 3, 233
MAP2_VERTEX 4, 233

MAP_COLOR, 117, 139, 140
MAP_STENCIL, 117, 140
MAP_VERTEX_3, 233
MAP_VERTEX 4, 233

Map{12}, 232

Version 2.1 - December 1, 2006

INDEX

MapBuffer, 36, 37, 244

MapGridl, 234

MapGrid2, 234

mat2, 76

mat2x3, 76

mat2x4, 76

mat3, 76

mat3x2, 76

mat3x4, 76

mat4, 76

mat4x2, 76

mat4x3, 76

Material, 19, 64, 65, 69, 309

MATRIX_MODE, 47

MatrixMode, 43

MAX, 209, 210

MAX3D_TEXTURE_SIZE, 157

MAX_ATTRIB_STACK_DEPTH, 264

MAX_CLIENT_ATTRIB_STACK_DEPTH,
264

MAX_COLOR_MATRIX_STACK_DEPTH,
254

373

MAX_VARYING_FLOATS, 84
MAX_VERTEX_ATTRIBS, 22-24, 26,
33,76, 78, 263

MAX_VERTEX_TEXTURE_IMAGE_UNITS,

85

MAX_VERTEX_UNIFORM_COMPONENTS,

79
MAX_VIEWPORT_DIMS, 258
MIN, 209, 210
MINMAX, 126, 147, 256, 257
Minmax, 126, 148
MINMAX _FORMAT, 257
MINMAX _SINK, 257
MIRRORED _REPEAT, 169, 172, 336
MODELVIEW, 43, 47, 48
MODELVIEW _MATRIX, 248
MODULATE, 185-188, 284
MULT, 220, 221
MultiDrawArrays, 29, 38, 334
MultiDrawElements, 30, 38, 39, 334
MULTISAMPLE, 94, 101, 107, 113,
148, 150, 203, 213, 214

MAX_COMBINED_TEXTURE_IMAGE_UNITSMULTISAMPLE _BIT, 265

47, 86, 249
MAX_CONVOLUTION_HEIGHT, 122,
255
MAX_CONVOLUTION_WIDTH, 122,
123,255
MAX_CUBE_MAP_TEXTURE_SIZE,
157
MAX_DRAW _BUFFERS, 217
MAX_ELEMENTS_INDICES, 30
MAX_ELEMENTS_VERTICES, 30
MAX_EVAL_ORDER, 231, 232

MAX_FRAGMENT_UNIFORM_COMPONENTS,

196
MAX_PIXEL_MAP_TABLE, 117, 139
MAX_TEXTURE_COORDS, 21, 23,

33,47, 249, 348
MAX_TEXTURE_IMAGE_UNITS, 85,

198, 348
MAX_TEXTURE_LOD_BIAS, 173
MAX_TEXTURE_SIZE, 157
MAX_TEXTURE_UNITS, 13, 47, 192,

266, 348

MultiTexCoord, 19-21, 27
MultiTexCoord[size][type]v, 27
MultMatrix, 43, 44
MultMatrix[fd], 44
MultTransposeMatrix, 44
MultTransposeMatrix[fd], 44

N3F_V3F, 31, 32

NAND, 214

NEAREST, 169, 174, 177, 178, 191

NEAREST_MIPMAP_LINEAR, 169,

177-179, 181

NEAREST_MIPMAP_NEAREST, 169,
177, 179, 191

NEVER, 169, 190, 204, 206, 207

NewlList, 242, 243

NICEST, 246

NO_ERROR, 11

NONE, 86, 169, 181, 190, 198, 213,
215-217, 220, 282

NOOP, 214

NOR, 214

Version 2.1 - December 1, 2006

374

Normal, 19, 21, 76

Normal3, 8, 21

Normal3[type]v, 27

Normal3d, 8

Normal3dyv, 8

Normal3f, 8

Normal3fv, 8

NORMAL_ARRAY, 26, 31, 33

NORMAL_ARRAY _BUFFER_BINDING,
38

NORMAL_ARRAY _POINTER, 257

NORMAL_MAP, 50, 51, 326

NORMALIZE, 49

NormalPointer, 20, 24, 25, 31, 38, 244

NOTEQUAL, 169, 190, 205-207

NULL, 33, 34, 36-38, 40, 73, 77, 80,
260, 262, 267

NUM_COMPRESSED_TEXTURE_FORMATS,

153

OBJECT_LINEAR, 50, 52, 250
OBJECT_PLANE, 50, 51

ONE, 211, 212, 286
ONE_MINUS_CONSTANT_ALPHA,

211,334
ONE_MINUS_CONSTANT_COLOR,
211,334

ONE_MINUS_DST_ALPHA, 211
ONE_MINUS_DST_COLOR, 211, 334
ONE_MINUS_SRC_ALPHA, 189, 211
ONE_MINUS_SRC_COLOR, 189, 211,

333
OPERAND#n_ALPHA, 185, 189, 192,
353
OPERAND#_RGB, 185, 189, 192, 353
OR, 214

OR_INVERTED, 214

OR_REVERSE, 214

ORDER, 251

Ortho, 44, 46, 309

OUT_OF_-MEMORY, 11, 12, 36, 37, 242

PACK_ALIGNMENT, 224, 288
PACK_IMAGE_HEIGHT, 224, 252, 288
PACK_LSB_FIRST, 224, 288

INDEX

PACK_ROW_LENGTH, 224, 288
PACK_SKIP_IMAGES, 224, 252, 288
PACK_SKIP_PIXELS, 224, 288
PACK_SKIP_ROWS, 224, 288
PACK_SWAP_BYTES, 224, 288
PASS_THROUGH_TOKEN, 241
PassThrough, 240
PERSPECTIVE_CORRECTION_HINT,
246
PIXEL_MAP_A_TO_A, 118, 139
PIXEL_MAP_B_TO_B, 118, 139
PIXEL_MAP_G_TO_G, 118, 139
PIXEL_MAP_I_TO_A, 118, 140
PIXEL_MAP_I_TOB, 118, 140
PIXEL_MAP_I_TO_G, 118, 140
PIXEL_MAP_I_TO, 118, 140
PIXEL_MAP_I_TOR, 118, 140
PIXEL_MAP_R_TOR, 118, 139
PIXEL_MAP_S_TO_S, 118, 140
PIXEL_MODE_BIT, 265
PIXEL_PACK_BUFFER, 33, 35, 37, 38,
114, 222, 259, 260, 352
PIXEL_PACK_BUFFER_BINDING,
226, 251, 252
PIXEL_UNPACK_BUFFER, 33, 35, 37,
38, 114, 259, 260, 352
PIXEL_UNPACK_BUFFER _BINDING,
117,127, 165
PixelMap, 114, 116-118, 229
PixelStore, 20, 114-116, 224, 229, 244
PixelTransfer, 114, 116, 117, 145, 229
PixelZoom, 138, 148
POINT, 111-113, 234, 235,279, 312
POINT_BIT, 265
POINT_DISTANCE_ATTENUATION,
96
POINT_FADE_THRESHOLD_SIZE, 96
POINT_SIZE_MAX, 96
POINT_SIZE_MIN, 96
POINT_SMOOTH, 96, 101
POINT_SMOOTH_HINT, 246
POINT_SPRITE, 96, 101, 184, 185, 249,
354
POINT_SPRITE_COORD_ORIGIN, 96,
100, 347, 348

Version 2.1 - December 1, 2006

INDEX

POINT_TOKEN, 241

PointParameter, 96, 335

PointParameter®, 96

POINTS, 15, 234

PointSize, 95

POLYGON, 16, 19

POLYGON_BIT, 265

POLYGON_OFFSET_FILL, 112

POLYGON_OFFSET_LINE, 112

POLYGON_OFFSET_POINT, 112

POLYGON_SMOOTH, 108, 113

POLYGON_SMOOTH_HINT, 246

POLYGON_STIPPLE, 110

POLYGON_STIPPLE_BIT, 265

POLYGON_TOKEN, 241

PolygonMode, 107, 111, 113,237, 239

PolygonOffset, 112

PolygonStipple, 110, 115

PopAttrib, 264, 266, 310, 353

PopClientAttrib, 19, 244, 264, 266

PopMatrix, 48

PopName, 236

POSITION, 65, 249

POST_COLOR_MATRIX_xz_BIAS, 117

POST_COLOR_MATRIX_x_SCALE,
117

POST_COLOR_MATRIX_ALPHA BIAS,
146

POST_COLOR_MATRIX_ALPHA _SCALE,
146

POST_COLOR_MATRIX_BLUE_BIAS,
146

POST_COLOR_MATRIX_BLUE_SCALE,
146

POST_COLOR_MATRIX_COLOR_TABLE,
119, 146

POST_COLOR_MATRIX_GREEN_BIAS,
146

POST_COLOR_MATRIX_GREEN_SCALE,
146

POST_COLOR_MATRIX_RED _BIAS,
146

POST_COLOR_MATRIX_RED_SCALE,
146

POST_CONVOLUTION_z_BIAS, 117

375

POST_CONVOLUTION_z_SCALE,
117
POST_CONVOLUTION_ALPHA BIAS,
145
POST_CONVOLUTION_ALPHA_SCALE,
145
POST_CONVOLUTION_BLUE_BIAS,
145
POST_CONVOLUTION_BLUE_SCALE,
145
POST_CONVOLUTION_COLOR_TABLE,
119, 145, 146
POST_CONVOLUTION_GREEN_BIAS,
145
POST_CONVOLUTION_GREEN_SCALE,
145
POST_CONVOLUTION_RED_BIAS,
145
POST_CONVOLUTION_RED_SCALE,
145
PREVIOUS, 187, 189, 284
PRIMARY _COLOR, 189
PrioritizeTextures, 184
PROJECTION, 43, 47, 48
PROXY_COLOR_TABLE, 119, 121,

245
PROXY_HISTOGRAM, 125, 126, 245,
256
PROXY_POST_COLOR_MATRIX_COLOR_TABLE,
119, 245
PROXY_POST_CONVOLUTION_COLOR_TABLE,
119, 245
PROXY_TEXTURE_ID, 152, 158, 181,
182, 245, 250
PROXY_TEXTURE_2D, 152, 158, 181,
182, 244, 250
PROXY_TEXTURE_3D, 151, 181, 182,
244,250
PROXY_TEXTURE_CUBE_MAP, 158,
181, 182, 245, 250

PushAttrib, 264, 266, 353
PushClientAttrib, 19, 244, 264, 266
PushMatrix, 48

PushName, 236

Version 2.1 - December 1, 2006

376

Q, 50, 51, 250

QUAD_STRIP, 18
QUADRATIC_ATTENUATION, 65
QUADS, 18, 19
QUERY_COUNTER_BITS, 258
QUERY _RESULT, 259
QUERY_RESULT_AVAILABLE, 259

R, 50, 51, 250

R3_G3_B2, 154

RasterPos, 54, 87, 237, 309, 336

RasterPos2, 54

RasterPos3, 54

RasterPos4, 54

READ_ONLY, 34, 37

READ_WRITE, 34, 36, 37

ReadBuffer, 222, 224, 229

ReadPixels, 114, 116, 129, 130, 132,
141, 221-224, 226, 229, 244,
252-254, 352

Rect, 40, 108

RED, 117, 130, 224, 226, 251, 288, 289,
291, 302

RED_BIAS, 139

RED_SCALE, 139

REDUCE, 143, 145, 290

REFLECTION_MAP, 50, 51, 326

RENDER, 237, 238, 303

RENDERER, 257, 258

RenderMode, 237-239, 244

REPEAT, 169, 171, 175, 176, 181, 282

REPLACE, 185, 186, 188, 206

REPLICATE_BORDER, 143, 144

RESCALE_NORMAL, 49

ResetHistogram, 256

ResetMinmax, 257

RETURN, 220, 221

RGB, 130, 132, 136, 141, 142, 152, 154,
155, 185-187, 211, 224, 226,
251, 253, 312

RGB10, 154

RGB10_A2, 154

RGB12, 154

RGBI16, 154

RGB4, 154

INDEX

RGBS, 154

RGB5_Al, 154

RGBS, 154

RGB_SCALE, 185, 353

RGBA, 120, 121, 124, 126, 130, 132,
136, 141, 142, 152, 154, 155,
186, 187, 224, 229, 251, 253,
289-292

RGBA12, 154

RGBAL16, 154

RGBA2, 154

RGBA4, 154

RGBAS, 154

RIGHT, 215-217, 224

Rotate, 44, 45, 309

S, 50, 51, 250

SAMPLE_ALPHA_TO_COVERAGE,
203

SAMPLE_ALPHA_TO_ONE, 203, 204

SAMPLE _BUFFERS, 94, 101, 107, 113,
148, 150, 203, 208, 213, 214,
218,222

SAMPLE_COVERAGE, 203, 204

SAMPLE_COVERAGE_INVERT, 203,
204

SAMPLE_COVERAGE_VALUE, 203,
204

SampleCoverage, 204

sampler1D, 86, 198

sampler 1 DShadow, 86, 197, 198

sampler2D, 83, 86, 198

sampler2DShadow, 86, 198

SAMPLER_1D, 81

SAMPLER_1D_SHADOW, 81

SAMPLER_2D, 81

SAMPLER_2D_SHADOW, 81

SAMPLER_3D, 81

SAMPLER_CUBE, 81

SAMPLES, 94, 208

SAMPLES PASSED, 207

Scale, 44, 45, 309

Scissor, 203

SCISSOR_BIT, 265

SCISSOR_TEST, 203

Version 2.1 - December 1, 2006

INDEX

SECONDARY_COLOR_ARRAY, 26,
31

SECONDARY_COLOR_ARRAY _POINTER,

257
SecondaryColor, 19, 22, 335
SecondaryColor3, 21, 347
SecondaryColor3[type]v, 27
SecondaryColorPointer, 20, 24, 25, 244
SELECT, 237, 238, 310
SelectBuffer, 237, 238, 244
SELECTION_BUFFER _POINTER, 257
SEPARABLE_ 2D, 123, 141, 158, 255
SeparableFilter2D, 115, 123
SEPARATE_SPECULAR_COLOR, 62
SET, 214
ShadeModel, 70
SHADER_SOURCE_LENGTH, 261,
262
SHADER_TYPE, 88, 260
ShaderSource, 72, 73, 244, 262
SHADING_LANGUAGE_VERSION,
258, 346, 351
SHININESS, 65
SHORT, 24, 129, 226, 227, 243
SINGLE_COLOR, 61, 62, 277
SLUMINANCE, 155, 191
SLUMINANCES, 191
SLUMINANCES_ALPHAS, 191
SLUMINANCE_ALPHA, 191
SLUMINANCE_ALPHAR, 155
SMOOTH, 70, 276
SOURCEOQ_ALPHA, 341
SOURCEOQO_RGB, 341
SOURCEI1_ALPHA, 341
SOURCEI1_RGB, 341
SOURCE2_ALPHA, 341
SOURCE2_RGB, 341
SPECULAR, 65, 66
SPHERE_MAP, 50-52, 326
SPOT_CUTOFF, 65
SPOT_DIRECTION, 65, 249
SPOT_EXPONENT, 65
SRCO_ALPHA, 341
SRCO_RGB, 341
SRC1_ALPHA, 341

377

SRCI_RGB, 341

SRC2_ALPHA, 341

SRC2_RGB, 341

SRC_ALPHA, 187, 189, 211, 284

SRC_ALPHA_SATURATE, 211

SRC_COLOR, 187, 189, 211, 284, 333

SRCn_ALPHA, 185, 189, 192, 353

SRCn_RGB, 185, 189, 192, 353

SRGB, 191

SRGBS, 155, 191

SRGB8_ALPHAS, 155, 191

SRGB_ALPHA, 191

STACK_OVERFLOW, 12, 48, 237, 264

STACK_UNDERFLOW, 12, 48, 237,
264

STATIC_COPY, 34, 35

STATIC_DRAW, 34, 35

STATIC_READ, 34, 35

STENCIL, 229

STENCIL_BUFFER_BIT, 219, 220, 265

STENCIL_INDEX, 118, 121, 127, 130,
138, 151, 221, 222, 225, 229,
252

STENCIL_TEST, 205

StencilFunc, 205, 206, 308

StencilFuncSeparate, 205, 206

StencilMask, 218, 222, 308

StencilMaskSeparate, 218, 222

StencilOp, 205, 206

StencilOpSeparate, 205, 206

STREAM_COPY, 34, 35

STREAM_DRAW, 34, 35

STREAM _READ, 34, 35

SUBTRACT, 188

T, 50, 250

T2F_C3F_V3F, 31, 32
T2F_C4F_N3F_V3F, 31, 32
T2F_C4UB_V3F, 31, 32
T2F_N3F_V3F, 31, 32

T2F_V3F, 31, 32
T4F_C4F_N3F_V4F, 31, 32
T4F_VA4F, 31, 32
TABLE_TOO_LARGE, 12, 119, 125
TexCoord, 19-21

Version 2.1 - December 1, 2006

378

TexCoordl1, 20

TexCoord2, 20

TexCoord3, 20

TexCoord4, 20

TexCoordPointer, 20, 24-26, 31, 244

TexEnv, 47, 184, 192, 353

TexEnv*, 96

TexGen, 47, 50, 51, 249

TexImage, 47, 163

TexImagelD, 115, 141, 143, 155, 158,
159, 161, 162, 165, 177, 181,
244

TexImage2D, 115, 141, 143, 155, 157-
159, 161, 162, 165, 177, 181,
244,352

TexImage3D, 115, 151, 155, 156, 158,
159, 162, 165, 177, 181, 244,
252

TexParameter, 47, 168

TexParameter[if], 173, 177

TexParameterf, 184

TexParameterfv, 184

TexParameteri, 184

TexParameteriv, 184

TexSublmage, 163

TexSublmagelD, 115, 141, 162, 164,
165, 167

TexSublmage2D, 115, 141, 162, 164,
165, 167

TexSublmage3D, 115, 162, 163, 165,
167

TEXTURE, 43, 46-48, 187, 189, 284

TEXTURE;, 21, 47

TEXTUREOQ, 21, 27, 33, 47, 48, 232,
239, 266, 271, 284

TEXTUREI, 266

TEXTURE_xD, 281

TEXTURE_ID, 152, 158, 161, 162, 168,
182, 183, 191, 250, 251

TEXTURE_2D, 47, 83, 152, 157, 161,
162, 168, 182, 183, 191, 250,
251

TEXTURE_3D, 151, 162, 168, 181-183,
191, 250, 251

TEXTURE_ALPHA_SIZE, 250

INDEX

TEXTURE_BASE_LEVEL, 157, 168,
169, 177, 181

TEXTURE_BIT, 264, 265, 353

TEXTURE_BLUE_SIZE, 250

TEXTURE_BORDER, 166, 168, 250

TEXTURE_BORDER_COLOR, 168,
169, 176, 180, 181

TEXTURE_COMPARE _FAIL_VALUE_ARB,

360
TEXTURE_COMPARE _FUNC, 169,

181, 187, 190
TEXTURE_COMPARE_MODE, 86,

169, 181, 187, 190, 198, 334
TEXTURE_COMPONENTS, 251

TEXTURE_COMPRESSED_IMAGE_SIZE,

166, 167, 250, 252
TEXTURE_COMPRESSION_HINT,
246
TEXTURE_COORD_ARRAY, 26, 31
TEXTURE_COORD_ARRAY _POINTER,
257
TEXTURE_CUBE_MAP, 158, 168, 182,
183, 191, 250, 281
TEXTURE_CUBE_MAP_*, 158
TEXTURE_CUBE_MAP_NEGATIVE_X,
157, 161, 162, 170, 250, 251
TEXTURE_CUBE_MAP_NEGATIVE.Y,
157, 161, 162, 170, 250, 251
TEXTURE_CUBE_MAP_NEGATIVE_Z,
157, 161, 162, 170, 250, 251
TEXTURE_CUBE_MAP_POSITIVE_X,
157, 158, 161, 162, 170, 250,
251
TEXTURE_CUBE_MAP_POSITIVE.Y,
157, 161, 162, 170, 250, 251
TEXTURE_CUBE_MAP_POSITIVE_Z,
157, 161, 162, 170, 250, 251
TEXTURE_DEPTH, 166-168, 250
TEXTURE_DEPTH_SIZE, 250
TEXTURE_ENYV, 184, 185, 249
TEXTURE_ENV_COLOR, 185
TEXTURE_ENV_MODE, 185, 192, 327
TEXTURE_FILTER_CONTROL, 184,
185, 249
TEXTURE_GEN_MODE, 50-52

Version 2.1 - December 1, 2006

INDEX

TEXTURE_GEN_Q, 52
TEXTURE_GEN_R, 52
TEXTURE_GEN._S, 51
TEXTURE_GEN.T, 51
TEXTURE_GREEN_SIZE, 250
TEXTURE_HEIGHT, 166-168, 250
TEXTURE_INTENSITY _SIZE, 250
TEXTURE_INTERNAL_FORMAT,
166-168, 251
TEXTURE_LOD_BIAS, 169, 173, 185,
336
TEXTURE_LUMINANCE_SIZE, 250
TEXTURE_MAG_FILTER, 169, 178,

181, 191

TEXTURE_MAX_LEVEL, 168, 169,
177, 181

TEXTURE_MAX_LOD, 168, 169, 173,
181

TEXTURE_MIN_FILTER, 169,
174, 175, 177, 178, 180, 181,
191

TEXTURE_MIN_LOD, 168, 169, 173,
181

TEXTURE_PRIORITY, 168, 169, 181,
184

TEXTURE_RECTANGLE_ARB, 362
TEXTURE_RED_SIZE, 250
TEXTURE_RESIDENT, 181, 183, 250
TEXTURE_WIDTH, 166-168, 250
TEXTURE_WRAPR, 169, 171, 175,
176
TEXTURE_WRAP.S, 169, 171, 175
TEXTURE_WRAP_T, 169, 171, 175
TEXTURER, 189, 192
TRANSFORM_BIT, 265
Translate, 44, 45, 309
TRANSPOSE_COLOR_MATRIX, 248,
254
TRANSPOSE_MODELVIEW _MATRIX,
248
TRANSPOSE_PROJECTION_MATRIX,
248
TRANSPOSE_TEXTURE_MATRIX,
248
TRIANGLE_FAN, 17

379

TRIANGLE_STRIP, 16, 17

TRIANGLES, 17, 19

TRUE, 19, 26, 34, 37, 38, 54, 61-63, 73,
74, 82, 88, 96, 100, 114, 115,
117, 125, 126, 169, 170, 178,
183, 198, 204, 207, 217, 224,
244,248, 253, 256-261, 333

Uniform, 81

Uniform*, 79, 82, 83

Uniform*f{v}, 81, 82

Uniform*i{v}, 82

Uniformli{v}, 82, 83

Uniformliv, 82

Uniform2f{v}, 82

Uniform2i{v}, 82

Uniform4f{v}, 82

Uniform4i{v}, 82

UniformMatrix*, 348

UniformMatrix2x4fv, 82

UniformMatrix3fv, 82

UniformMatrix{234}fv, 81, 82

UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 }fv,
81, 82, 351

UnmapBuffer, 38, 244

UNPACK_ALIGNMENT, 115, 131,
151, 288

UNPACK_IMAGE_HEIGHT, 115, 151,
288

UNPACK_LSB_FIRST, 115, 136, 288

UNPACK_ROW_LENGTH, 115, 131,
151, 288

UNPACK_SKIP_IMAGES, 115, 152,
158, 288

UNPACK_SKIP_PIXELS, 115, 131,
136, 288

UNPACK_SKIP_ROWS, 115, 131, 136,
288

UNPACK_SWAP_BYTES, 115, 130,
288

UNSIGNED_BYTE, 24, 29, 32, 129,
133, 226, 227, 243

UNSIGNED_BYTE 2_.3.3_ REV, 129,
131-133, 227

Version 2.1 - December 1, 2006

380

UNSIGNED_BYTE_3.3.2, 129, 131-
133, 227
UNSIGNED_INT, 24, 29, 129, 135, 226,
227,243, 251, 252
UNSIGNED_NT_10.10_10_2, 129, 131,
132, 135, 227
UNSIGNED_NT_2_10_10_.10_REYV,
129, 131, 132, 135, 227
UNSIGNED_INT_ 8.8 8.8, 129, 131,
132, 135, 227
UNSIGNED_INT_8_8 8 8 REV, 129,
131, 132, 135, 227
UNSIGNED_SHORT, 24, 29, 129, 134,
226, 227, 243, 251, 252
UNSIGNED_SHORT_1_.5_.5_5 REV,
129, 131, 132, 134, 227
UNSIGNED_SHORT 4.4.4 4, 129,
131, 132, 134, 227
UNSIGNED_SHORT 4_4_4_ 4 REV,
129, 131, 132, 134, 227
UNSIGNED_SHORT_ 5551, 129,
131, 132, 134, 227
UNSIGNED_SHORT_5.6_5, 129, 131,
132, 134, 227
UNSIGNED_SHORT_5_6 5 REV, 129,
131, 132, 134, 227
UPPER_LEFT, 96, 100
UseProgram, 75, 84

V2F, 31, 32

V3F, 31, 32
VALIDATE_STATUS, 88, 261
ValidateProgram, 87, 88, 244, 261
vec2, 76

vec3, 76

vecd, 76, 82

VENDOR, 257, 258
VERSION, 257, 258

Vertex, 7, 19, 20, 55, 76, 233
Vertex2, 20, 23, 40

Vertex2sv, 7

Vertex3, 20, 23

Vertex3f, 7

Vertex4, 20, 23
Vertex[size][type]v, 28

INDEX

VERTEX_ARRAY, 26, 33

VERTEX_ARRAY _POINTER, 257

VERTEX_ATTRIB_ARRAY_BUFFER_BINDING,
263, 349

VERTEX_ATTRIB_ARRAY_ENABLED,
263

VERTEX_ATTRIB_ARRAY_NORMALIZED,
263

VERTEX_ATTRIB_ARRAY_POINTER,
263

VERTEX_ATTRIB_ARRAY _SIZE, 263

VERTEX_ATTRIB_ARRAY _STRIDE,
263

VERTEX_ATTRIB_ARRAY_TYPE,
263

VERTEX_PROGRAM _POINT_SIZE,
95

VERTEX_PROGRAM_TWO_SIDE, 63

VERTEX_SHADER, 72, 260

VertexAttrib, 19, 22

Vertex Attrib*, 22, 23, 76, 353

Vertex Attrib1%*, 22

Vertex Attrib2*, 22

Vertex Attrib3*, 22

Vertex Attrib4, 22

Vertex Attrib4*, 22

Vertex Attrib4N, 22

Vertex Attrib4Nub, 22

Vertex Attrib[size][type]v, 27

Vertex Attrib[size]N[type]v, 27

Vertex AttribPointer, 20, 24, 25, 244, 263

VertexPointer, 20, 24, 25, 33, 244

Viewport, 42

VIEWPORT_BIT, 265

WGL_ARB_multisample, 326
WGL_ARB _pixel_format_float, 363
WindowPos, 55, 57, 237, 336, 347
WindowPos2, 55

WindowPos3, 55

WRITE_ONLY, 34, 37

XOR, 214

ZERO, 2006, 211, 212, 286

Version 2.1 - December 1, 2006

	Introduction
	Formatting of Optional Features
	What is the OpenGL Graphics System?
	Programmer's View of OpenGL
	Implementor's View of OpenGL
	Our View
	Companion Documents

	OpenGL Operation
	OpenGL Fundamentals
	Floating-Point Computation

	GL State
	GL Command Syntax
	Basic GL Operation
	GL Errors
	Begin/End Paradigm
	Begin and End
	Polygon Edges
	GL Commands within Begin/End

	Vertex Specification
	Vertex Arrays
	Buffer Objects
	Vertex Arrays in Buffer Objects
	Array Indices in Buffer Objects
	Buffer Object State

	Rectangles
	Coordinate Transformations
	Controlling the Viewport
	Matrices
	Normal Transformation
	Generating Texture Coordinates

	Clipping
	Current Raster Position
	Colors and Coloring
	Lighting
	Lighting Parameter Specification
	ColorMaterial
	Lighting State
	Color Index Lighting
	Clamping or Masking
	Flatshading
	Color and Associated Data Clipping
	Final Color Processing

	Vertex Shaders
	Shader Objects
	Program Objects
	Shader Variables
	Shader Execution
	Required State

	Rasterization
	Invariance
	Antialiasing
	Multisampling

	Points
	Basic Point Rasterization
	Point Rasterization State
	Point Multisample Rasterization

	Line Segments
	Basic Line Segment Rasterization
	Other Line Segment Features
	Line Rasterization State
	Line Multisample Rasterization

	Polygons
	Basic Polygon Rasterization
	Stippling
	Antialiasing
	Options Controlling Polygon Rasterization
	Depth Offset
	Polygon Multisample Rasterization
	Polygon Rasterization State

	Pixel Rectangles
	Pixel Storage Modes and Pixel Buffer Objects
	The Imaging Subset
	Pixel Transfer Modes
	Rasterization of Pixel Rectangles
	Pixel Transfer Operations
	Pixel Rectangle Multisample Rasterization

	Bitmaps
	Texturing
	Texture Image Specification
	Alternate Texture Image Specification Commands
	Compressed Texture Images
	Texture Parameters
	Depth Component Textures
	Cube Map Texture Selection
	Texture Wrap Modes
	Texture Minification
	Texture Magnification
	Texture Completeness
	Texture State and Proxy State
	Texture Objects
	Texture Environments and Texture Functions
	Texture Comparison Modes
	sRGB Texture Color Conversion
	Texture Application

	Color Sum
	Fog
	Fragment Shaders
	Shader Variables
	Shader Execution

	Antialiasing Application
	Multisample Point Fade

	Per-Fragment Operations and the Framebuffer
	Per-Fragment Operations
	Pixel Ownership Test
	Scissor Test
	Multisample Fragment Operations
	Alpha Test
	Stencil Test
	Depth Buffer Test
	Occlusion Queries
	Blending
	Dithering
	Logical Operation
	Additional Multisample Fragment Operations

	Whole Framebuffer Operations
	Selecting a Buffer for Writing
	Fine Control of Buffer Updates
	Clearing the Buffers
	The Accumulation Buffer

	Drawing, Reading, and Copying Pixels
	Writing to the Stencil Buffer
	Reading Pixels
	Copying Pixels
	Pixel Draw/Read State

	Special Functions
	Evaluators
	Selection
	Feedback
	Display Lists
	Flush and Finish
	Hints

	State and State Requests
	Querying GL State
	Simple Queries
	Data Conversions
	Enumerated Queries
	Texture Queries
	Stipple Query
	Color Matrix Query
	Color Table Query
	Convolution Query
	Histogram Query
	Minmax Query
	Pointer and String Queries
	Occlusion Queries
	Buffer Object Queries
	Shader and Program Queries
	Saving and Restoring State

	State Tables

	Invariance
	Repeatability
	Multi-pass Algorithms
	Invariance Rules
	What All This Means

	Corollaries
	Version 1.1
	Vertex Array
	Polygon Offset
	Logical Operation
	Texture Image Formats
	Texture Replace Environment
	Texture Proxies
	Copy Texture and Subtexture
	Texture Objects
	Other Changes
	Acknowledgements

	Version 1.2
	Three-Dimensional Texturing
	BGRA Pixel Formats
	Packed Pixel Formats
	Normal Rescaling
	Separate Specular Color
	Texture Coordinate Edge Clamping
	Texture Level of Detail Control
	Vertex Array Draw Element Range
	Imaging Subset
	Color Tables
	Convolution
	Color Matrix
	Pixel Pipeline Statistics
	Constant Blend Color
	New Blending Equations

	Acknowledgements

	Version 1.2.1
	Version 1.3
	Compressed Textures
	Cube Map Textures
	Multisample
	Multitexture
	Texture Add Environment Mode
	Texture Combine Environment Mode
	Texture Dot3 Environment Mode
	Texture Border Clamp
	Transpose Matrix
	Acknowledgements

	Version 1.4
	Automatic Mipmap Generation
	Blend Squaring
	Changes to the Imaging Subset
	Depth Textures and Shadows
	Fog Coordinate
	Multiple Draw Arrays
	Point Parameters
	Secondary Color
	Separate Blend Functions
	Stencil Wrap
	Texture Crossbar Environment Mode
	Texture LOD Bias
	Texture Mirrored Repeat
	Window Raster Position
	Acknowledgements

	Version 1.5
	Buffer Objects
	Occlusion Queries
	Shadow Functions
	Changed Tokens
	Acknowledgements

	Version 2.0
	Programmable Shading
	Shader Objects
	Shader Programs
	OpenGL Shading Language
	Changes To Shader APIs

	Multiple Render Targets
	Non-Power-Of-Two Textures
	Point Sprites
	Separate Blend Equation
	Separate Stencil
	Other Changes
	Acknowledgements

	Version 2.1
	OpenGL Shading Language
	Non-Square Matrices
	Pixel Buffer Objects
	sRGB Textures
	Other Changes
	Acknowledgements

	ARB Extensions
	Naming Conventions
	Promoting Extensions to Core Features
	Multitexture
	Transpose Matrix
	Multisample
	Texture Add Environment Mode
	Cube Map Textures
	Compressed Textures
	Texture Border Clamp
	Point Parameters
	Vertex Blend
	Matrix Palette
	Texture Combine Environment Mode
	Texture Crossbar Environment Mode
	Texture Dot3 Environment Mode
	Texture Mirrored Repeat
	Depth Texture
	Shadow
	Shadow Ambient
	Window Raster Position
	Low-Level Vertex Programming
	Low-Level Fragment Programming
	Buffer Objects
	Occlusion Queries
	Shader Objects
	High-Level Vertex Programming
	High-Level Fragment Programming
	OpenGL Shading Language
	Non-Power-Of-Two Textures
	Point Sprites
	Fragment Program Shadow
	Multiple Render Targets
	Rectangular Textures
	Floating-Point Color Buffers
	Half-Precision Floating Point
	Floating-Point Textures
	Pixel Buffer Objects

