
C++ Primer, Fifth Edition
Workarounds for C++11 Features

not Implemented in Visual Studio 2012

Barbara E. Moo
bmoo@att.net

August 9, 2012

Some C++11 features used in C++ Primer are not yet implemented in the
latest Microsoft compiler (Visual Studio 2012). This document outlines these
unimplemented features and, where possible, suggests workarounds.

We used the release candidate, Version 17.00.50522.1, to test the code that
is included on the book’s website. When Visual Studio is generally available
(expected to be sometime in mid-September) we will verify the code and make
any updates as appropriate.

constexpr variables Use const instead. Note, the compiler will not verify
that the initializer is a constant expression.

constexpr functions Explicitly write out the code that would have been in-
side the function. Note, preprocessor macros are a reasonable substitute for
constexpr functions. However, as with const variables, the compiler will
not verify whether the macro returns a constant expression.

constexpr constructors and member functions There is no workaround.

= default Explicitly define the member. Because the compiler does not yet
implement in-class initializers, it is important to remember that the default
constructor should explicitly initialize every member of built-in type.

= delete For a member function, declare the member as private and do
not supply a definition for that member.

Delegating and inherited constructors Write the corresponding definitions di-
rectly.

func Use the Microsoft nonstandard CPP variable, FUNCTION , which,
like func , holds the name of the current function.

Using function with pointers to member There is a known bug that causes
the compiler to incorrectly reject some uses of pointers to members with the
library function template. Use mem_fn to generate a callable object. For
example, assuming that Lshift is a member of a class named ShiftOps:

// compiler incorrectly rejects this code
function<int (ShiftOps*, int, int)> memp =

&ShiftOps::Lshift;

// equivalent code that does compile
function<int (ShiftOps*, int, int)> memp =

mem_fn(&ShiftOps::Lshift);

In-class initializers Explicitly supply the initializer in the constructor initial-
izer list of every constructor that would otherwise use the in-class initializer.
Doing so is particularly important for members of built-in type.

1

mailto:bmoo@att.net

initializer list<T> In place of an initializer list<T> parameter,
use a library container or an array. For example, we can rewrite the error_msg
function from page 221 to take pointers to elements of an array:

// original code
void error_msg(initializer_list<string>);

// workaround version
void error_msg(const string*, const string*);

Users will have to put arguments in a local array and pass pointers to that
array. The Microsoft library defines the begin and end functions, which we
can use to calculate these pointers:

// original code
if (expected != actual)
error_msg({"functionX", expected, actual});

// workaround version
if (expected != actual) {

const string arr[] =
{"functionX", expected, actual};

error_msg(begin(arr), end(arr));
}

List initialization:

1. If you need to supply a list of element initializers for a container, such as
vector, define and initialize an array with the same elements and then
initialize the container by copying the elements from the array:

// desired initialization
vector<int> v{1,2,3,4,5,6,7};
// equivalent effect
const int temp[] = {1,2,3,4,5,6,7};
vector<int> v(begin(temp), end(temp));

2. If you need to list initialize a return value, use a local variable of the return
type to hold whatever values you want to return and then return that local
variable. For example, we can rewrite the program on page 226 as follows:

vector<string> retVals; // local variable that we’ll return
if (expected.empty())

return retVals; // return an empty vector
else if (expected == actual) {

retVals.push_back("functionX"); // build the vector
retVals.push_back("okay");
return retVals; // and return it

} else // . . .

3. There is no substitute for using curly braces to initialize a variable of built-
in type. You must omit the curly braces, in which case narrowing conver-
sions will be allowed.

4. To pass arguments to use to construct an object of class type, use paren-
theses rather than curly braces:

vector<string> v1 = {10, "hi"}; // ten elements each has value hi
vector<string> v2(10, "hi"); // equivalent declaration

As described on page 99, if you’re using curly braces to provide element
initializers, you cannot substitute parentheses, but should use the strategy
described in step 1 above.

lround function Version_test.h provides a definition for lround. This
function can be simulated as follows:

long n = lround(d); // original version
long n = long((d>=0) ? d + 0.5 : d - 0.5); // workaround

2

noexcept exception specification Nonthrowing functions can be designated
as throw() in place of noexceptwithout an operand. However, there may be
subtle differences in what happens if a function designated as throw() (rather
than as noexcept() throws. There is no direct substitute for a noexcept
specification that takes an operand.

noexcept operator There is no direct subsitute for the noexcept operator.

Reference qualified member functions There is no direct workaround for this
feature. Because reference qualifiers are generally used as an optimization to
trigger move semantics, few programs require this feature.

sizeof data member Instead of taking the size directly from the class, e.g.
Sales_data::revenue, take the size from an object of the class type, e.g.
Sales_data().revenue. Because the operand of sizeof is not evaluated,
this technique does not incur the time overhead that would be needed to con-
struct the class object.

Template default arguments for function templates Define a set of overloaded
templates. For example:

template <typename T, typename F> // user supplied comparison
int compare(const T &v1, const T &v2, F f);

template <typename T> // use less<T>
int compare(const T &v1, const T &v2);

Template type alias There is no direct workaround for this feature.

unions with class-type members that have constructors or copy-control mem-
bers. There is no direct workaround for this missing feature.

Variadic templates There is no direct substitute for variadic templates. Some
applications can simulate variadic templates by defining a collection of over-
loaded functions taking different numbers of parameters. Whether this ap-
proach works depends on the details of the application.

3

