

OpenGL 4.0 Shading
Language Cookbook

Over 60 highly focused, practical recipes to maximize your
use of the OpenGL Shading Language

David Wolff

 BIRMINGHAM - MUMBAI

OpenGL 4.0 Shading Language Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2011

Production Reference: 1180711

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849514-76-7

www.packtpub.com

Cover Image by Fillipo (filosarti@tiscali.it)

Credits

Author
David Wolff

Reviewers
Martin Christen

Nicolas Delalondre

Markus Pabst

Brandon Whitley

Acquisition Editor
Usha Iyer

Development Editor
Chris Rodrigues

Technical Editors
Kavita Iyer

Azharuddin Sheikh

Copy Editor
Neha Shetty

Project Coordinator
Srimoyee Ghoshal

Proofreader
Bernadette Watkins

Indexer
Hemangini Bari

Graphics
Nilesh Mohite

Valentina J. D’silva

Production Coordinators
Kruthika Bangera

Adline Swetha Jesuthas

Cover Work
Kruthika Bangera

About the Author

David Wolff is an associate professor in the Computer Science and Computer
Engineering Department at Pacific Lutheran University (PLU). He received his PhD in
Physics from Oregon State University. He has a passion for computer graphics and
the intersection between art and science. He has been teaching computer graphics to
undergraduates at PLU for over 10 years, using OpenGL.

Special thanks to Brandon Whitley for interesting discussions and helpful
insights during the writing of this book. His help has been incredibly valuable.
Thanks also to all of the reviewers and editors for their help.

I'd also like to thank my parents for a lifetime of support, love and
encouragement.

About the Reviewers

Martin Christen graduated with a Computer Science degree. Today, he is a senior
research associate at the Institute of Geomatics Engineering of the University of Applied
Sciences Northwestern (FHNW) Switzerland. He is the lead developer of the open source
virtual globe engine (http://www.openwebglobe.org).

Previously, he was software developer in the fields of 3D geoinformation and in 3D
computer game development. His main research interests are GPU-programming, parallel
computing, terrain-rendering, and 3D graphics engine architecture.

Nicolas Delalondre has been working on 3D computer graphics software for more
than ten years mainly in OpenGL on desktop and mobile devices. Currently, he is a
freelance developer at Digital Mind and an associate at Rhino Terrain where he develops
geomodeling and meshing algorithms. Before joining Rhino Terrain, Nicolas was a
3D software engineer at Bionatics, a French startup, developing OpenGL engine and
algorithms for geographic information system (GIS). Prior to working with Bionatics, he
worked for INRIA (French research institute in computer science) in the radiosity field.
Nicolas has a Master's degree in Computer Science from EFREI, France.

Markus Pabst has been working with OpenGL since 2002. He works in the digital
mapping industry and has worked with the desktop and embedded versions of OpenGL.
Since 2007, he has been leading a team of software engineers developing an embedded
OpenGL-based cockpit display system for the Airbus A400M aircraft certified against DO-
178B Level C standard. In 2005, he began teaching OpenGL at the German University of
Applied Sciences Ravensburg-Weingarten.

Markus received his university degree in Multimedia Technologies from the Technical
University of Ilmenau, in 2002. In the summer, you may find Markus on a sailing boat in
southern Germany.

Brandon Whitley worked for four years as a graphics programmer for Zipper
Interactive, a Sony Computer Entertainment Worldwide Studio. He earned his Masters
degree in Computer Science from Georgia Institute of Technology. While obtaining his
undergraduate degree at Pacific Lutheran University, he was inspired by the author
of this book to pursue a career in computer graphics. Brandon is currently a graphics
programmer at Bungie, creators of the Halo series.

I would like to thank my wife, Katie, and my son, Parker, for their love
and support.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: Getting Started with GLSL 4.0	 5

Introduction	 6
Using the GLEW Library to access the latest OpenGL functionality	 8
Using the GLM library for mathematics	 10
Determining the GLSL and OpenGL version	 13
Compiling a shader	 15
Linking a shader program	 18
Sending data to a shader using per-vertex attributes and vertex buffer objects	22
Getting a list of active vertex input attributes and indices	 29
Sending data to a shader using uniform variables	 31
Getting a list of active uniform variables	 35
Using uniform blocks and uniform buffer objects	 37
Building a C++ shader program class	 43

Chapter 2: The Basics of GLSL Shaders	 47
Introduction	 47
Implementing diffuse, per-vertex shading with a single point light source	 50
Implementing per-vertex ambient, diffuse, and specular (ADS) shading	 55
Using functions in shaders	 62
Implementing two-sided shading	 65
Implementing flat shading	 69
Using subroutines to select shader functionality	 71
Discarding fragments to create a perforated look	 76

Chapter 3: Lighting, Shading Effects, and Optimizations	 81
Introduction	 81
Shading with multiple positional lights	 82
Shading with a directional light source	 84
Using per-fragment shading for improved realism	 88

ii

Table of Contents

Using the halfway vector for improved performance	 91
Simulating a spotlight	 94
Creating a cartoon shading effect	 97
Simulating fog	 100

Chapter 4: Using Textures	 105
Introduction	 105
Applying a 2D texture	 106
Applying multiple textures	 111
Using alpha maps to discard pixels	 114
Using normal maps	 116
Simulating reflection with cube maps	 123
Simulating refraction with cube maps	 130
Image-based lighting	 135
Applying a projected texture	 138
Rendering to a texture	 143

Chapter 5: Image Processing and Screen Space Techniques	 149
Introduction	 149
Applying an edge detection filter	 150
Applying a Gaussian blur filter	 157
Creating a "bloom" effect	 164
Using gamma correction to improve image quality	 170
Using multisample anti-aliasing	 173
Using deferred shading	 179

Chapter 6: Using Geometry and Tessellation Shaders	 187
Introduction	 187
Point sprites with the geometry shader	 192
Drawing a wireframe on top of a shaded mesh	 198
Drawing silhouette lines using the geometry shader	 205
Tessellating a curve	 214
Tessellating a 2D quad	 220
Tessellating a 3D surface	 225
Tessellating based on depth	 230

Chapter 7: Shadows	 235
Introduction	 235
Rendering shadows with shadow maps	 236
Anti-aliasing shadow edges with PCF	 247
Creating soft shadow edges with random sampling 	 251
Improving realism with prebaked ambient occlusion	 258

iii

Table of Contents

Chapter 8: Using Noise in Shaders	 263
Introduction	 263
Creating a noise texture using libnoise	 265
Creating a seamless noise texture	 269
Creating a cloud-like effect	 272
Creating a wood grain effect	 275
Creating a disintegration effect	 279
Creating a paint-spatter effect	 281
Creating a night-vision effect	 284

Chapter 9: Animation and Particles	 289
Introduction	 289
Animating a surface with vertex displacement	 290
Creating a particle fountain	 293
Creating a particle system using transform feedback	 299
Creating a particle system using instanced particles	 308
Simulating fire with particles	 312
Simulating smoke with particles	 314

Index	 317

Preface
The OpenGL Shading Language (GLSL) Version 4.0 brings unprecedented power and flexibility
to programmers interested in creating modern, interactive, graphical programs. It allows us to
harness the power of modern Graphics Processing Units (GPUs) in a straightforward way by
providing a simple, yet powerful, language and API.

The OpenGL 4.0 Shading Language Cookbook will provide easy-to-follow examples that start
by walking you through the theory and background behind each technique. It then goes on
to provide and explain the GLSL and OpenGL code needed to implement them. Beginning
through to advanced techniques are presented, including topics such as texturing, screen-
space techniques, lighting, shading, tessellation shaders, geometry shaders, and shadows.

What this book covers
Chapter 1, Getting Started with GLSL 4.0, provides tips and tricks for setting up your OpenGL
development environment to take advantage of the latest OpenGL and GLSL language
features. It also teaches the basic techniques for communicating with shader programs.

Chapter 2, The Basics of GLSL Shaders, provides examples of basic shading techniques such
as diffuse shading, two-sided shading, and flat shading. It also discuses an example of a new
4.0 language feature: subroutines.

Chapter 3, Lighting and Shading Effects and Optimizations, provides examples of more
complex lighting and shading such as multiple lights, per-fragment shading, spotlights,
cartoon shading, and fog. It moves further to explain how to gain a slight increase in execution
speed by using the halfway vector or a directional light source.

Chapter 4, Using Textures, provides a variety of examples illustrating how textures can be
used in GLSL shaders. It also explores examples involving simple 2D textures, multiple
textures, normal maps, alpha maps, cube maps, and projected textures. It also discusses how
to render to a texture using framebuffer objects.

Chapter 5, Image Processing and Screen Space Techniques, discusses various techniques to
apply post-processing effects such as bloom, blur, and edge detection. It also discusses an
example of a very popular rendering technique known as deferred shading.

Preface

2

Chapter 6, Using Geometry and Tessellation Shaders, provides a series of examples to
introduce you to the new and powerful segments of the shader pipeline. It provides some
examples of geometry shaders, and discusses how to use tessellation shaders to dynamically
render geometry at different levels of detail.

Chapter 7, Shadows, provides several recipes surrounding the shadow-mapping algorithm. It
also discusses some basic and advanced techniques for producing shadows, focusing mainly
on texture-based shadow maps.

Chapter 8, Using Noise in Shaders, provides recipes that demonstrate how to make use of a
pre-computed noise texture to create a variety of effects. The first two recipes demonstrate
how to generate a noise texture using the free, open-source library libnoise. Then, it moves on
to explain several examples that use noise textures to produce natural and artificial effects
such as wood grain, clouds, electrical interference, splattering, and erosion.

Chapter 9, Animation and Particles, discusses several examples of animation within shaders,
focusing mostly on particle systems. It also provides an example illustrating how to use
OpenGL's transform feedback functionality within a particle system. The last two recipes in
the chapter demonstrate some particle systems for simulating complex real systems, such as
smoke and fire.

What you need for this book
You will need familiarity with OpenGL programming, along with an understanding of the typical
3D coordinate systems, projections, and transformations.

Who this book is for
This book is for OpenGL programmers who would like to take advantage of the modern
features of GLSL 4.0 to create real-time, three-dimensional graphics. It can also be useful
for experienced GLSL programmers who are looking to implement the techniques that are
presented here.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The ambient component is computed and stored in
the variable named ambient".

Preface

3

A block of code is set as follows:

#version 400

in vec3 LightIntensity;

layout(location = 0) out vec4 FragColor;

void main() {
 FragColor = vec4(LightIntensity, 1.0);
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

QGLFormat format;
format.setVersion(4,0);
format.setProfile(QGLFormat::CoreProfile);
QGLWidget *myWidget = new QGLWidget(format);

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "The four corners of the quad are
given by: e0 – ext, e0 – n – ext, e1 + ext, and e1 –n + ext as shown in the preceding diagram".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

4

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit
http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started with

GLSL 4.0

In this chapter, we will cover:

ff Using the GLEW library to access the latest OpenGL functionality

ff Using the GLM library for mathematics

ff Determining the GLSL and OpenGL version

ff Compiling a shader

ff Linking a shader program

ff Sending data to a shader using per-vertex attributes and vertex buffer objects

ff Getting a list of active vertex input attributes and indices

ff Sending data to a shader using uniform variables

ff Getting a list of active uniform variables

ff Using uniform blocks and uniform buffer objects

ff Building a C++ shader program class

Getting Started with GLSL 4.0

6

Introduction
The OpenGL Shading Language (GLSL) Version 4.0 brings unprecedented power and
flexibility to programmers interested in creating modern, interactive, graphical programs.
It allows us to harness the power of modern Graphics Processing Units (GPUs) in a
straightforward way by providing a simple yet powerful language and API. Of course, the first
step towards using the OpenGL Shading Language version 4.0 is to create a program that
utilizes the latest version of the OpenGL API. GLSL programs don't stand on their own, they
must be a part of a larger OpenGL program. In this chapter, I will provide some tips on getting
a basic OpenGL/GLSL program up and running and some techniques for communication
between the OpenGL application and the shader (GLSL) program. There isn't any GLSL
programming in this chapter, but don't worry, we'll jump into GLSL with both feet in Chapter 2.
First, let's start with some background.

The OpenGL Shading Language
The OpenGL Shading Language (GLSL) is now a fundamental and integral part of the OpenGL
API. Going forward, every program written using OpenGL will internally utilize one or several
GLSL programs. These "mini-programs" written in GLSL are often referred to as shader
programs, or simply shaders. A shader program is one that runs on the GPU, and as the
name implies, it (typically) implements the algorithms related to the lighting and shading
effects of a 3-dimensional image. However, shader programs are capable of doing much more
than just implementing a shading algorithm. They are also capable of performing animation,
tessellation, and even generalized computation.

The field of study dubbed GPGPU (General Purpose Computing on
Graphics Processing Units) is concerned with utilization of GPUs (often
using specialized APIs such as CUDA or OpenCL) to perform general purpose
computations such as fluid dynamics, molecular dynamics, cryptography, and
so on.

Shader programs are designed to be executed directly on the GPU and often in parallel. For
example, a fragment shader might be executed once for every pixel, with each execution
running simultaneously on a separate GPU thread. The number of processors on the graphics
card determines how many can be executed at one time. This makes shader programs
incredibly efficient, and provides the programmer with a simple API for implementing highly
parallel computation.

The computing power available in modern graphics cards is impressive. The following table
shows the number of shader processors available for several models in the NVIDIA GeForce
400 series cards (source: http://en.wikipedia.org/wiki/Comparison_of_Nvidia_
graphics_processing_units).

Chapter 1

7

Model Unified Shader Processors
GeForce GT 430 96
GeForce GTS 450 192
GeForce GTX 480 480

Shader programs are intended to replace parts of the OpenGL architecture referred to as the
fixed-function pipeline. The default lighting/shading algorithm was a core part of this fixed-
function pipeline. When we, as programmers, wanted to implement more advanced or realistic
effects, we used various tricks to force the fixed-function pipeline into being more flexible
than it really was. The advent of GLSL helped by providing us with the ability to replace this
"hard-coded" functionality with our own programs written in GLSL, thus giving us a great deal
of additional flexibility and power. For more details on the programmable pipeline, see the
introduction to Chapter 2.

In fact, recent (core) versions of OpenGL not only provide this capability, but they require
shader programs as part of every OpenGL program. The old fixed-function pipeline has
been deprecated in favor of a new programmable pipeline, a key part of which is the shader
program written in GLSL.

Profiles: Core vs. Compatibility
OpenGL version 3.0 introduced a deprecation model, which allowed for the gradual removal
of functions from the OpenGL specification. Functions or features can now be marked as
deprecated, meaning that they are expected to be removed from a future version of OpenGL.
For example, immediate mode rendering using glBegin/glEnd was marked deprecated in
version 3.0 and removed in version 3.1.

In order to maintain backwards compatibility, the concept of compatibility profiles was
introduced with OpenGL 3.2. A programmer who is writing code intended for a particular
version of OpenGL (with older features removed) would use the so-called core profile.
Someone who also wanted to maintain compatibility with older functionality could use the
compatibility profile.

It may be somewhat confusing that there is also the concept of a full vs.
forward compatible context, which is distinguished slightly from the concept of
a core vs. compatibility profile. A context that is considered forward compatible
basically indicates that all deprecated functionality has been removed. In other
words, if a context is forward compatible, it only includes functions that are in
the core, but not those that were marked as deprecated. A full context supports
all features of the selected version. Some window APIs provide the ability to
select full or forward compatible status along with the profile.

Getting Started with GLSL 4.0

8

The steps for selecting a core or compatibility profile are window system API dependent. For
example, in recent versions of Qt (at least version 4.7), one can select a 4.0 core profile using
the following code:

QGLFormat format;
format.setVersion(4,0);
format.setProfile(QGLFormat::CoreProfile);
QGLWidget *myWidget = new QGLWidget(format);

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

All programs in this book are designed to be compatible with an OpenGL 4.0 core profile.

Using the GLEW Library to access the
latest OpenGL functionality

The OpenGL ABI (application binary interface) is frozen to OpenGL version 1.1 on Windows.
Unfortunately for Windows developers, that means that it is not possible to link directly to
functions that are provided in newer versions of OpenGL. Instead, one must get access to
these functions by acquiring a function pointer at runtime. Getting access to the function
pointers requires somewhat tedious work, and has a tendency to clutter your code.
Additionally, Windows typically comes with a standard OpenGL header file that conforms to
OpenGL 1.1. The OpenGL wiki states that Microsoft has no plans to update the gl.h and
opengl32.lib that comes with their compilers. Thankfully, others have provided libraries
that manage all of this for us by probing your OpenGL libraries and transparently providing the
necessary function pointers, while also exposing the necessary functionality in its header files.
One such library is called GLEW (OpenGL Extension Wrangler).

Getting ready
Download the GLEW distribution from http://glew.sourceforge.net. There are binaries
available for Windows, but it is also a relatively simple matter to compile GLEW from source
(see the instructions on the website: http://glew.sourceforge.net).

Place the header files glew.h and wglew.h from the GLEW distribution into a proper
location for your compiler. If you are using Windows, copy the glew32.lib to the appropriate
library directory for your compiler, and place the glew32.dll into a system-wide location, or
the same directory as your program's executable. Full installation instructions for all operating
systems and common compilers are available on the GLEW website.

Chapter 1

9

How to do it...
To start using GLEW in your project, use the following steps:

1.	 Make sure that, at the top of your code, you include the glew.h header before you
include the OpenGL header files:
#include <GL/glew.h>
#include <GL/gl.h>
#include <GL/glu.h>

2.	 In your program code, somewhere just after the GL context is created (typically in
an initialization function), and before any OpenGL functions are called, include the
following code:

GLenum err = glewInit();
if(GLEW_OK != err)
{
 fprintf(stderr, "Error initializing GLEW: %s\n",
 glewGetErrorString(err));
}

That's all there is to it!

How it works...
Including the glew.h header file provides declarations for the OpenGL functions as
function pointers, so all function entry points are available at compile time. At run time,
the glewInit() function will scan the OpenGL library, and initialize all available function
pointers. If a function is not available, the code will compile, but the function pointer will not
be initialized.

There's more...
GLEW includes a few additional features and utilities that are quite useful.

GLEW visualinfo
The command line utility visualinfo can be used to get a list of all available extensions and
"visuals" (pixel formats, pbuffer availability, and so on). When executed, it creates a file called
visualinfo.txt, which contains a list of all the available OpenGL, WGL, and GLU extensions,
including a table of available visuals (pixel formats, pbuffer availability, and the like).

GLEW glewinfo
The command line utility glewinfo lists all available functions supported by your driver.
When executed, the results are printed to stdout.

Getting Started with GLSL 4.0

10

Checking for extension availability at runtime
You can also check for the availability of extensions by checking the status of some GLEW
global variables that use a particular naming convention. For example, to check for the
availability of ARB_vertex_program, use something like the following:

if (! GLEW_ARB_vertex_program)
{
 fprintf(stderr, "ARB_vertex_program is missing!\n");
 …
}

See also
Another option for managing OpenGL extensions is the GLee library (GL Easy Extension).
It is available from http://www.elf-stone.com/glee.php and is open source
under the modified BSD license. It works in a similar manner to GLEW, but does not
require runtime initialization.

Using the GLM library for mathematics
Mathematics is core to all of computer graphics. In earlier versions, OpenGL provided support
for managing coordinate transformations and projections using the standard matrix stacks
(GL_MODELVIEW and GL_PROJECTION). In core OpenGL 4.0, however, all of the functionality
supporting the matrix stacks has been removed. Therefore, it is up to us to provide our own
support for the usual transformation and projection matrices, and then to pass them into our
shaders. Of course, we could write our own matrix and vector classes to manage this, but if
you're like me, you prefer to use a ready-made, robust library.

One such library is GLM (OpenGL Mathematics) written by Christophe Riccio. Its design is
based on the GLSL specification, so the syntax is very similar to the mathematical support
in GLSL. For experienced GLSL programmers, this makes it very easy to use. Additionally, it
provides extensions that include functionality similar to some of the much-missed OpenGL
functions such as glOrtho, glRotate, or gluLookAt.

Getting ready
Download the latest GLM distribution from http://glm.g-truc.net. Unzip the archive file,
and copy the glm directory contained inside to anywhere in your compiler's include path.

Chapter 1

11

How to do it...
Using the GLM libraries is simply a matter of including the core header file (highlighted in the
following code snippet) and headers for any extensions. We'll include the matrix transform
extension, and the transform2 extension.

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtx/transform2.hpp>

The GLM classes are then available in the glm namespace. The following is an example of
how you might go about making use of some of them.

glm::vec4 position = glm::vec4(1.0f, 0.0f, 0.0f, 1.0f);

glm::mat4 view = glm::lookAt(glm::vec3(0.0,0.0,5.0),
 glm::vec3(0.0,0.0,0.0),
 glm::vec3(0.0,1.0,0.0));

glm::mat4 model = glm::mat4(1.0f);
model = glm::rotate(model, 90.0f, glm::vec3(0.0f,1.0f,0.0));

glm::mat4 mv = view * model;

glm::vec4 transformed = mv * position;

How it works...
The GLM library is a header-only library. All of the implementation is included within the
header files. It doesn't require separate compilation and you don't need to link your program
to it. Just placing the header files in your include path is all that's required!

The preceding example first creates a vec4 (four coordinate vector) representing a position.
Then it creates a 4x4 view matrix by using the glm::lookAt function from the transform2
extension. This works in a similar fashion to the old gluLookAt function. In this example, we
set the camera's location at (0,0,5), looking towards the origin, with the "up" direction in the
direction of the Y-axis. We then go on to create the modeling matrix by first storing the identity
matrix in the variable model (via the constructor: glm::mat4(1.0f)), and multiplying by a
rotation matrix using the glm::rotate function. The multiplication here is implicitly done
by the glm::rotate function. It multiplies its first parameter by the rotation matrix that is
generated by the function. The second parameter is the angle of rotation (in degrees), and the
third parameter is the axis of rotation. The net result is a rotation matrix of 90 degrees around
the Y-axis.

Finally, we create our model view matrix (mv) by multiplying the view and model variables,
and then using the combined matrix to transform the position. Note that the multiplication
operator has been overloaded to behave in the expected way.

Getting Started with GLSL 4.0

12

As stated above, the GLM library conforms as closely as possible to the GLSL specification,
with additional features that go beyond what you can do in GLSL. If you are familiar with GLSL,
GLM should be easy and natural to use.

Swizzle operators (selecting components using commands like: foo.x, foo.
xxy, and so on) are disabled by default in GLM. You can selectively enable
them by defining GLM_SWIZZLE before including the main GLM header. The
GLM manual has more detail. For example, to enable all swizzle operators you
would do the following:
#define GLM_SWIZZLE

#include <glm/glm.hpp>

There's more...
It is not recommended to import all of the GLM namespace using a command like:

using namespace glm;

This will most likely cause a number of namespace clashes. Instead, it is preferable to
import symbols one at a time, as needed. For example:

#include <glm/glm.hpp>
using glm::vec3;
using glm::mat4;

Using the GLM types as input to OpenGL
GLM supports directly passing a GLM type to OpenGL using one of the OpenGL vector
functions (with the suffix "v"). For example, to pass a mat4 named proj to OpenGL we
can use the following code:

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

...

glm::mat4 proj = glm::perspective(viewAngle, aspect,
 nearDist, farDist);
glUniformMatrix4fv(location, 1, GL_FALSE, &proj[0][0]);

See also
The GLM website http://glm.g-truc.net has additional documentation and examples.

Chapter 1

13

Determining the GLSL and OpenGL version
In order to support a wide range of systems, it is essential to be able to query for the
supported OpenGL and GLSL version of the current driver. It is quite simple to do so, and
there are two main functions involved: glGetString and glGetIntegerv.

How to do it...
The code shown below will print the version information to stdout:

const GLubyte *renderer = glGetString(GL_RENDERER);
const GLubyte *vendor = glGetString(GL_VENDOR);
const GLubyte *version = glGetString(GL_VERSION);
const GLubyte *glslVersion =
 glGetString(GL_SHADING_LANGUAGE_VERSION);

GLint major, minor;
glGetIntegerv(GL_MAJOR_VERSION, &major);
glGetIntegerv(GL_MINOR_VERSION, &minor);

printf("GL Vendor : %s\n", vendor);
printf("GL Renderer : %s\n", renderer);
printf("GL Version (string) : %s\n", version);
printf("GL Version (integer) : %d.%d\n", major, minor);
printf("GLSL Version : %s\n", glslVersion);

How it works...
Note that there are two different ways to retrieve the OpenGL version: using glGetString
and glGetIntegerv. The former can be useful for providing readable output, but may not
be as convenient for programmatically checking the version because of the need to parse
the string. The string provided by glGetString(GL_VERSION)should always begin with the
major and minor versions separated by a dot; however, the minor version could be followed
with a vendor-specific build number. Additionally, the rest of the string can contain additional
vendor-specific information and may also include information about the selected profile (see
the Introduction to this chapter).

glGetInteger is available in OpenGL 3.0 or greater.

Getting Started with GLSL 4.0

14

The queries for GL_VENDOR and GL_RENDERER provide additional information about the
OpenGL driver. The call glGetString(GL_VENDOR) returns the company responsible for
the OpenGL implementation. The call to glGetString(GL_RENDERER) provides the name
of the renderer which is specific to a particular hardware platform (such as "ATI Radeon HD
5600 Series"). Note that both of these do not vary from release to release, so can be used to
determine the current platform.

Of more importance to us in the context of this book is the call to glGetString(GL_
SHADING_LANGUAGE_VERSION)which provides the supported GLSL version number. This
string should begin with the major and minor version numbers separated by a period, but
similar to the GL_VERSION query, may include other vendor-specific information.

There's more...
It is often useful to query for the supported extensions of the current OpenGL implementation.
In versions prior to OpenGL 3.0, one could retrieve a full, space separated list of extension
names with the following code:

GLubyte *extensions = glGetString(GL_EXTENSIONS);

The string that is returned can be extremely long and parsing it can be susceptible to error if
not done carefully.

In OpenGL 3.0, a new technique was introduced, and the above functionality was deprecated
(and finally removed in 3.1). Extension names are now indexed and can be individually queried
by index. We use the glGetStringi variant for this. For example, to get the name of the
extension stored at index i, we use: glGetString(GL_EXTENSIONS, i). To print a list of
all extensions, we could use the following code:

GLint nExtensions;
glGetIntegerv(GL_NUM_EXTENSIONS, &nExtensions);

for(int i = 0; i < nExtensions; i++)
 printf("%s\n", glGetStringi(GL_EXTENSIONS, i));

See also
The GLEW library has additional support for querying extension information. See Using the
GLEW library to access the latest OpenGL functionality.

Chapter 1

15

Compiling a shader
The GLSL compiler is built into the OpenGL library, and shaders can only be compiled within
the context of a running OpenGL program. There is currently no external tool for pre-compiling
GLSL shaders and/or shader programs.

Recently, OpenGL 4.1 added the ability to save compiled shader programs to
a file, enabling OpenGL programs to avoid the overhead of shader compilation
by loading pre-compiled shader programs.

Compiling a shader involves creating a shader object, providing the source code (as a string
or set of strings) to the shader object, and asking the shader object to compile the code. The
process is represented by the following diagram.

Getting ready
To compile a shader, we'll need a basic example to work with. Let's start with the following
simple vertex shader. Save it in a file named basic.vert.

#version 400

in vec3 VertexPosition;
in vec3 VertexColor;

out vec3 Color;

void main()
{
 Color = VertexColor;
 gl_Position = vec4(VertexPosition, 1.0);
}

In case you're curious about what this code does, it works as a "pass-through" shader. It takes
the input attributes VertexPosition and VertexColor and passes them along to the
fragment shader via the output variables gl_Position and Color.

Getting Started with GLSL 4.0

16

Next, we'll need to build a basic shell for an OpenGL program using any standard windowing
toolkit. Examples of cross-platform toolkits include GLUT, FLTK, Qt, or wxWidgets. Throughout
this text, I'll make the assumption that you can create a basic OpenGL program with your
favorite toolkit. Virtually all toolkits have a hook for an initialization function, a resize callback
(called upon resizing of the window), and a drawing callback (called for each window refresh).
For the purposes of this recipe, we need a program that creates and initializes an OpenGL
context; it need not do anything other than display an empty OpenGL window.

Finally, we need to load the shader source code into a character array named shaderCode.
Don't forget to add the null character at the end! This example assumes that the variable
shaderCode points to an array of GLchar that is properly terminated by a null character.

How to do it...
To compile a shader, use the following steps:

1.	 Create the shader object as follows.
GLuint vertShader = glCreateShader(GL_VERTEX_SHADER);
if(0 == vertShader)
{
 fprintf(stderr, "Error creating vertex shader.\n");
 exit(1);
}

2.	 Copy the source code (perhaps from multiple locations) into the shader object.
const GLchar * shaderCode = loadShaderAsString("basic.vert");
const GLchar* codeArray[] = {shaderCode};
glShaderSource(vertShader, 1, codeArray, NULL);

3.	 Compile the shader.
glCompileShader(vertShader);

4.	 Verify the compilation status.

GLint result;
glGetShaderiv(vertShader, GL_COMPILE_STATUS, &result);
if(GL_FALSE == result)
{

 fprintf(stderr, "Vertex shader compilation failed!\n");

 GLint logLen;
 glGetShaderiv(vertShader, GL_INFO_LOG_LENGTH, &logLen);

 if(logLen > 0)
 {
 char * log = (char *)malloc(logLen);

Chapter 1

17

 GLsizei written;
 glGetShaderInfoLog(vertShader, logLen, &written, log);

 fprintf(stderr, "Shader log:\n%s", log);
 free(log);
 }
}

How it works...
The first step is to create the shader object using the function glCreateShader. The
argument is the type of shader, and can be one of the following: GL_VERTEX_SHADER,
GL_FRAGMENT_SHADER, GL_GEOMETRY_SHADER, GL_TESS_EVALUATION_SHADER, or
GL_TESS_CONTROL_SHADER. In this case, since we are compiling a vertex shader, we
use GL_VERTEX_SHADER. This function returns the value used for referencing the vertex
shader object, sometimes called the object "handle". We store that value in the variable
vertShader. If an error occurs while creating the shader object, this function will return 0,
so we check for that and if it occurs, we print an appropriate message and terminate.

Following the creation of the shader object, we load the source code into the shader
object using the function glShaderSource. This function is designed to accept an array
of strings in order to support the option of compiling multiple files at once. So before
we call glShaderSource, we place a pointer to our source code into an array named
sourceArray. The first argument to glShaderSource is the handle to the shader object.
The second is the number of source code strings that are contained in the array. The third
argument is a pointer to an array of source code strings. The final argument is an array of
GLint values that contains the length of each source code string in the previous argument. In
this case, we pass a value of NULL, which indicates that each source code string is terminated
by a null character. If our source code strings were not null terminated then this argument
must be a valid array. Note that once this function returns, the source code has been copied
into OpenGL internal memory, so the memory used to store the source code can be freed.

The next step is to compile the source code for the shader. We do this by simply calling
glCompileShader, and passing the handle to the shader that is to be compiled. Of course,
depending on the correctness of the source code, the compilation may fail, so the next step is
to check whether or not the compilation was successful.

We can query for the compilation status by calling glGetShaderiv, which is a function for
querying the attributes of a shader object. In this case we are interested in the compilation
status, so we use GL_COMPILE_STATUS as the second argument. The first argument is of
course the handle to the shader object, and the third argument is a pointer to an integer
where the status will be stored. The function provides a value of either GL_TRUE or GL_FALSE
in the third argument, indicating whether or not the compilation was successful.

Getting Started with GLSL 4.0

18

If the compile status is GL_FALSE, then we can query for the shader log, which will provide
additional details about the failure. We do so by first querying for the length of the log by
calling glGetShaderiv again with a value of GL_INFO_LOG_LENGTH. This provides the
length of the log in the variable logLen, including the null termination character. We then
allocate space for the log, and retrieve the log by calling glGetShaderInfoLog. The first
parameter is the handle to the shader object, the second is the size of the character buffer for
storing the log, the third argument is a pointer to an integer where the number of characters
actually written (excluding the null terminator character) will be stored, and the fourth
argument is a pointer to the character buffer for storing the log itself. Once the log is retrieved,
we print it to stderr and free its memory space.

There's more...
The technique for compiling a shader is nearly identical for each shader type. The only
significant difference is the argument to glCreateShader.

Of course, shader compilation is only the first step. To create a working shader program,
we often have at least two shaders to compile, and then the shaders must be linked together
into a shader program object. We'll see the steps involved in linking in the next recipe.

Deleting a shader object
Shader objects can be deleted when no longer needed by calling glDeleteShader. This
frees the memory used by the shader and invalidates its handle. Note that if a shader
object is already attached to a program object (see Linking a shader program), it will not be
immediately deleted, but flagged for deletion when it is detached from the program object.

See also
The next recipe, Linking a shader program.

Linking a shader program
Once we have compiled our shaders and before we can actually install them into the OpenGL
pipeline, we need to link them together into a shader program. Among other things, the linking
step involves making the connections between the input variables from one shader to the
output variables of another, and making the connections between the other input/output
variables of a shader to appropriate locations in the OpenGL environment.

Linking involves steps that are similar to those involved in compiling a shader. We attach each
shader object to a new shader program object and then tell the shader program object to link
(making sure that the shader objects are compiled before linking).

Chapter 1

19

Getting ready
For this recipe we'll assume that you've already compiled two shader objects whose handles
are stored in the variables vertShader and fragShader.

For this and a few other recipes in this chapter, we'll use the following source code for the
fragment shader:

#version 400

in vec3 Color;

out vec4 FragColor;

void main() {
 FragColor = vec4(Color, 1.0);
}

For the vertex shader, we'll use the source code from the previous recipe.

How to do it...
In our OpenGL initialization function, and after the compilation of the shader objects referred
to by vertShader and fragShader, use the following steps.

1.	 Create the program object.
GLuint programHandle = glCreateProgram();
if(0 == programHandle)
{
 fprintf(stderr, "Error creating program object.\n");
 exit(1);
}

2.	 Attach the shaders to the program object.
glAttachShader(programHandle, vertShader);
glAttachShader(programHandle, fragShader);

Getting Started with GLSL 4.0

20

3.	 Link the program.
glLinkProgram(programHandle);

4.	 Verify the link status.
GLint status;
glGetProgramiv(programHandle, GL_LINK_STATUS, &status);
if(GL_FALSE == status) {

 fprintf(stderr, "Failed to link shader program!\n");

 GLint logLen;
 glGetProgramiv(programHandle, GL_INFO_LOG_LENGTH,
 &logLen);
 if(logLen > 0)
 {
 char * log = (char *)malloc(logLen);
 GLsizei written;
 glGetProgramInfoLog(programHandle, logLen,
 &written, log);
 fprintf(stderr, "Program log: \n%s", log);
 free(log);
 }
}

5.	 If linking is successful, install the program into the OpenGL pipeline.

else
{
 glUseProgram(programHandle);
}

How it works...
We start by calling glCreateProgram to create an empty program object. This function
returns a handle to the program object, which we store in a variable named programHandle.
If an error occurs with program creation, the function will return 0. We check for that, and if it
occurs, we print an error message and exit.

Next, we attach each shader to the program object using glAttachShader. The first
argument is the handle to the program object, and the second is the handle to the shader
object to be attached.

Then, we link the program by calling glLinkProgram, providing the handle to the program
object as the only argument. As with compilation, we check for the success or failure of the
link with the subsequent query.

Chapter 1

21

We check the status of the link by calling glGetProgramiv. Similar to glGetShaderiv,
glGetProgramiv allows us to query various attributes of the shader program. In this case,
we ask for the status of the link by providing GL_LINK_STATUS as the second argument. The
status is returned in the location pointed to by the third argument, in this case named status.

The link status is either GL_TRUE or GL_FALSE indicating the success or failure of the link.
If the value of the status is GL_FALSE, we retrieve and display the program information log,
which should contain additional information and error messages. The program log is retrieved
by the call to glGetProgramInfoLog. The first argument is the handle to the program
object, the second is the size of the buffer to contain the log, the third is a pointer to a
GLsizei variable where the number of bytes written to the buffer will be stored (excluding the
null terminator), and the fourth is a pointer to the buffer that will store the log. The buffer can
be allocated based on the size returned by the call to glGetProgramiv with the parameter
GL_INFO_LOG_LENGTH. The string that is provided in log will be properly null terminated.

Finally, if the link is successful, we install the program into the OpenGL pipeline by calling
glUseProgram, providing the handle to the program as the argument.

With the simple fragment shader from this recipe and the vertex shader from the preceding
recipe compiled, linked, and installed into the OpenGL pipeline, we have a complete OpenGL
pipeline and are ready to begin rendering. Drawing a triangle and supplying different values
(red, green, and blue) for the Color attribute yields an image of a multi-colored triangle
where the vertices are red, green, and blue, and inside the triangle, the three colors are
interpolated, causing a blending of colors throughout.

There's more...
You can compile and link multiple shader programs within a single OpenGL program. They
can be swapped in and out of the OpenGL pipeline by calling glUseProgram to select the
desired program.

Getting Started with GLSL 4.0

22

Deleting a shader program
If a program is no longer needed, it can be deleted from the OpenGL memory by calling
glDeleteProgram, providing the program handle as the only argument. This invalidates
the handle and frees the memory used by the program. Note that if the program object is
currently in use, it will not be immediately deleted, but will be flagged for deletion when it is
no longer in use.

The deletion of a shader program detaches the shader objects that were attached to the
program but does not delete them unless those shader objects have already been flagged
for deletion by a previous call to glDeleteShader.

See also
ff Compiling a shader

Sending data to a shader using per-vertex
attributes and vertex buffer objects

The vertex shader is invoked once per vertex. Its main job is to process the data associated
with the vertex, and pass it (and possibly other information) along to the next stage of the
pipeline. In order to give our vertex shader something to work with, we must have some way
of providing (per-vertex) input to the shader. Typically, this includes the vertex position, normal
vector, and texture coordinate (among other things). In earlier versions of OpenGL (prior to
3.0), each piece of vertex information had a specific "channel" in the pipeline. It was provided
to the shaders using functions such as glVertex, glTexCoord, and glNormal (or within
vertex arrays using glVertexPointer, glTexCoordPointer, or glNormalPointer).The
shader would then access these values via built-in variables such as gl_Vertex and gl_
Normal. This functionality was deprecated in OpenGL 3.0 and later removed. Instead, now
vertex information must be provided using generic vertex attributes, usually in conjunction
with (vertex) buffer objects. The programmer is now free to define an arbitrary set of per-vertex
attributes to provide as input to the vertex shader. For example, in order to implement normal
mapping, we might decide that position, normal vector, and tangent vector should be provided
along with each vertex. With OpenGL 4.0, it's easy to define this as the set of input attributes.
This gives us a great deal of flexibility to define our vertex information in any way that is
appropriate for our application, but may require a bit of getting used to for those of us who are
used to the old way of doing things.

In the vertex shader, per-vertex input attributes are declared by using the GLSL qualifier in.
For example, to define a 3-component vector input attribute named VertexColor, we use
the following code:

in vec3 VertexColor;

Chapter 1

23

Of course, the data for this attribute must be supplied by the OpenGL program. To do so, we
make use of vertex buffer objects. The buffer object contains the values for the input attribute
and in the main OpenGL program we make the connection between the buffer and the input
attribute, and define how to "step through" the data. Then, when rendering, OpenGL pulls data
for the input attribute from the buffer for each invocation of the vertex shader.

For this recipe, we'll draw the simplest OpenGL shape, a triangle. Our vertex attributes will
include the position and color. We'll use a fragment shader to blend the colors of each vertex
across the triangle to produce an image similar to the one shown in the following screenshot.
The vertices of the triangle are red, green, and blue, and the interior of the triangle has those
three colors blended together.

Getting ready
We'll start with a simple, empty OpenGL program, and the following shaders.

The vertex shader (basic.vert):

#version 400

in vec3 VertexPosition;
in vec3 VertexColor;

out vec3 Color;

void main()
{
 Color = VertexColor;

 gl_Position = vec4(VertexPosition,1.0);
}

Note that there are two input attributes in the vertex shader: VertexPosition and
VertexColor. Our program needs to provide the data for these two attributes for each
vertex. We will do so by mapping our polygon data to these variables.

Getting Started with GLSL 4.0

24

It also has one output variable named Color, which is sent to the fragment shader. In
this case, Color is just an unchanged copy of VertexColor. Also, note that the attribute
VertexPosition is simply expanded and passed along to the built-in output variable gl_
Position for further processing.

The fragment shader (basic.frag):

#version 400

in vec3 Color;

out vec4 FragColor;

void main() {
 FragColor = vec4(Color, 1.0);
}

There is just one input variable for this shader, Color. This links to the corresponding output
variable in the vertex shader, and will contain a value that has been interpolated across the
triangle based on the values at the vertices. We simply expand and copy this color to the
output variable FragColor (more about fragment shader output variables in later recipes).

Write code to compile and link these shaders into a shader program (see Compiling a Shader
and Linking a Shader Program). In the following code, I'll assume that the handle to the
shader program is programHandle.

How to do it...
Use the following steps to set up your buffer objects and render the triangle.

1.	 Just prior to linking the shader program, define the mapping between vertex
attributes and shader input variables using glBindAttribLocation.
// Bind index 0 to the shader input variable "VertexPosition"
glBindAttribLocation(programHandle, 0, "VertexPosition");

// Bind index 1 to the shader input variable "VertexColor"
glBindAttribLocation(programHandle, 1, "VertexColor");

2.	 Create a global (or private instance) variable to hold our handle to the vertex
array object:
GLuint vaoHandle;

3.	 Within the initialization function, create and populate the vertex buffer objects for
each attribute.
float positionData[] = {
 -0.8f, -0.8f, 0.0f,
 0.8f, -0.8f, 0.0f,
 0.0f, 0.8f, 0.0f };

Chapter 1

25

float colorData[] = {
 1.0f, 0.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 0.0f, 0.0f, 1.0f };

// Create the buffer objects
GLuint vboHandles[2];
glGenBuffers(2, vboHandles);
GLuint positionBufferHandle = vboHandles[0];
GLuint colorBufferHandle = vboHandles[1];

// Populate the position buffer
glBindBuffer(GL_ARRAY_BUFFER, positionBufferHandle);
glBufferData(GL_ARRAY_BUFFER, 9 * sizeof(float), positionData,
 GL_STATIC_DRAW);

// Populate the color buffer
glBindBuffer(GL_ARRAY_BUFFER, colorBufferHandle);
glBufferData(GL_ARRAY_BUFFER, 9 * sizeof(float), colorData,
 GL_STATIC_DRAW);

4.	 Create and bind to a vertex array object, which stores the relationship between
the buffers and the input attributes.
// Create and set-up the vertex array object
glGenVertexArrays(1, &vaoHandle);
glBindVertexArray(vaoHandle);

// Enable the vertex attribute arrays
glEnableVertexAttribArray(0); // Vertex position
glEnableVertexAttribArray(1); // Vertex color

// Map index 0 to the position buffer
glBindBuffer(GL_ARRAY_BUFFER, positionBufferHandle);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0,
 (GLubyte *)NULL);

// Map index 1 to the color buffer
glBindBuffer(GL_ARRAY_BUFFER, colorBufferHandle);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0,
 (GLubyte *)NULL);

5.	 In the render function, bind to the vertex array object and call glDrawArrays to
initiate rendering.

glBindVertexArray(vaoHandle);
glDrawArrays(GL_TRIANGLES, 0, 3);

Getting Started with GLSL 4.0

26

How it works...
Vertex attributes are the input variables to our vertex shader. In the vertex shader above, our
two attributes are VertexPosition and VertexColor. Since we can give these variables
any name we like, OpenGL provides a way to refer to vertex attributes in the OpenGL program
by associating each (active) input variable with a generic attribute index. These generic indices
are simply integers between 0 and GL_MAX_VERTEX_ATTRIBS – 1. We refer to the vertex
attributes in our OpenGL code by referring to the corresponding generic vertex attribute index.

The first step above involves making connections between the shader input variables
VertexPosition and VertexColor and the generic vertex attribute indexes 0 and 1
respectively, using the function glBindAttribLocation. If this is done within the OpenGL
application, we have to do this before the program is linked.

It is not strictly necessary to explicitly specify the mappings between attribute
variables and generic attribute indexes, because OpenGL will automatically
map active vertex attributes to generic indexes when the program is linked.
We could then query for the mappings and determine the indexes that
correspond to the shader's input variables. It may be somewhat clearer,
however, to explicitly specify the mapping as we do in this example.

The next step involves setting up a pair of buffer objects to store our position and color
data. As with most OpenGL objects, we start by acquiring handles to two buffers by calling
glGenBuffers. We then assign each handle to a separate descriptive variable to make
the following code clearer.

For each buffer object, we first bind the buffer to the GL_ARRAY_BUFFER binding point by
calling glBindBuffer. The first argument to glBindBuffer is the target binding point. For
vertex attribute data, we use GL_ARRAY_BUFFER. Examples of other kinds of targets (such
as GL_UNIFORM_BUFFER, or GL_ELEMENT_ARRAY_BUFFER) will be seen in later examples.
Once our buffer object is bound, we can populate the buffer with vertex/color data by calling
glBufferData. The second and third arguments to this function are the size of the array and
a pointer to the array containing the data. Let's focus on the first and last argument. The first
argument indicates the target buffer object. The data provided in the third argument is copied
into the buffer that is bound to this binding point. The last argument is one that gives OpenGL
a hint about how the data will be used so that it can determine how best to manage the buffer
internally. For full details about this argument, take a look at the OpenGL documentation
(http://www.opengl.org/sdk/docs/man4/). In our case, the data specified once will
not be modified, and will be used many times for drawing operations, so this usage pattern
best corresponds to the value GL_STATIC_DRAW.

Chapter 1

27

Now that we have set up our buffer objects, we tie them together into a vertex array object
(VAO). The VAO contains information about the connections between the data in our buffers
and the input vertex attributes. We create a VAO using the function glGenVertexArrays.
This gives us a handle to our new object, which we store in the (global) variable
vaoHandle. Then we enable the generic vertex attribute indexes 0 and 1 by calling
glEnableVertexAttribArray. Doing so indicates that the values for the attributes will be
accessed and used for rendering.

The next step makes the connection between the buffer objects and the generic vertex
attribute indexes.

// Map index 0 to the position buffer
glBindBuffer(GL_ARRAY_BUFFER, positionBufferHandle);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0,
 (GLubyte *)NULL);

First we bind the buffer object to the GL_ARRAY_BUFFER binding point, and then we call
glVertexAttribPointer, which tells OpenGL which generic index the data should be
used with, the format of the data stored in the buffer object, and where it is located within
the buffer object that is bound to the GL_ARRAY_BUFFER binding point. The first argument is
the generic attribute index. The second is the number of components per vertex attribute (1,
2, 3, or 4). In this case, we are providing 3-dimensional data, so we want 3 components per
vertex. The third argument is the data type of each component in the buffer. The fourth is a
Boolean which specifies whether or not the data should be automatically normalized (mapped
to a range of [-1,1] for signed integral values or [0,1] for unsigned integral values). The fifth
argument is the stride, which indicates the byte offset between consecutive attributes. Since
our data is tightly packed, we use a value of zero. The last argument is a pointer, which is not
treated as a pointer! Instead, its value is interpreted as a byte offset from the beginning of
the buffer to the first attribute in the buffer. In this case, there is no additional data in either
buffer prior to the first element, so we use a value of zero (NULL).

The vertex array object stores all of the OpenGL state related to the
relationship between buffer objects and the generic vertex attributes, as well
as the information about the format of the data in the buffer objects. This
allows us to quickly return all of this state when rendering.

In the render function, it is simply a matter of clearing the color buffer using glClear, binding
to the vertex array object, and calling glDrawArrays to draw our triangle. The function
glDrawArrays initiates rendering of primitives by stepping through the buffers for each
enabled attribute array, and passing the data down the pipeline to the vertex shader. The
first argument is the render mode (in this case we are drawing triangles), the second is the
starting index in the enabled arrays, and the third argument is the number of indices to be
rendered (3 vertexes for a single triangle).

Getting Started with GLSL 4.0

28

To summarize, rendering with vertex buffer objects (VBOs) involves the following steps:

1.	 Before linking the shader program, define the mappings between generic vertex
attribute indexes and shader input variables by calling glBindAttribLocation.

2.	 Create and populate the buffer objects for each attribute.

3.	 Create and define the vertex array object by calling glVertexAttribPointer
while the appropriate buffer is bound.

4.	 When rendering, bind to the vertex array object and call glDrawArrays, or other
appropriate rendering function (for example, glDrawElements).

There's more...
You may have noticed that I've neglected saying anything about the output variable
FragColor in the fragment shader. This variable receives the final output color for each
fragment (pixel). Like vertex input variables, this variable also needs to be associated with
a location. Of course, we typically would like this to be linked to the back color buffer, which
by default (in double buffered systems) is "color number" zero. (The relationship of the color
numbers to render buffers can be changed by using glDrawBuffers.) In this program we
are relying on the fact that the linker will automatically link our only fragment output variable
to color number zero. To explicitly do so, we could (and probably should) have used the
following command prior to program linking:

glBindFragDataLocation(programHandle, 0, "FragColor");

We are free to define multiple output variables for a fragment shader, thereby enabling us to
render to multiple output buffers. This can be quite useful for specialized algorithms such as
deferred shading (see Chapter 5).

Using layout qualifiers
We can avoid the need to call glBindAttribLocation within the OpenGL program by
using layout qualifiers to define the attribute index within the shader itself. For example, we
could remove the two calls to glBindAttribLocation, and change the input variable
declarations in our vertex shader to:

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexColor;

This would indicate to the linker that VertexPosition should correspond to generic
attribute index 0 and VertexColor to index 1.

We can use a layout qualifier to define the color number for our fragment output variables
as well:

layout (location = 0) out vec4 FragColor;

Chapter 1

29

This would tell the linker to bind the output variable FragColor to color number 0, avoiding
the need to call glBindFragDataLocation within our OpenGL program.

Using element arrays
It is often the case that we need to step through our vertex arrays in a non-linear fashion. In
other words we may want to "jump around" the data rather than just moving through it from
beginning to end, as we did in this example. For example, we might want to draw a cube where
the vertex data consists of only eight positions (the corners of the cube). In order to draw the
cube, we would need to draw 12 triangles (2 for each face), each of which consists of 3 vertices.
All of the required position data is in the original 8 positions, but to draw all the triangles, we'll
need to jump around and use each position for at least three different triangles.

To jump around in our vertex arrays, we can make use of element arrays. The element array
is another buffer that defines the indices used when stepping through the vertex arrays. For
details on using element arrays, take a look at the function glDrawElements in the OpenGL
documentation (http://www.opengl.org/sdk/docs/man4/).

Interleaved arrays
In this example, we used two buffers (one for color and one for position). Instead, we
could have used just a single buffer and combined all of the data. The data for multiple
attributes can be interleaved within an array, such that all of the data for a given vertex is
grouped together within the buffer. Doing so just requires careful use of the arguments to
glVertexAttribPointer (particularly the fifth argument: the stride). Take a look at the
OpenGL documentation for full details (http://www.opengl.org/sdk/docs/man4/).

The decision about when to use interleaved arrays, and when to use separate arrays, is highly
dependent on the situation. Interleaved arrays may bring better results due to the fact that
data is accessed together and resides closer in memory (so-called locality of reference),
resulting in better caching performance.

See also
ff Getting a list of active vertex input attributes and indices.

Getting a list of active vertex input
attributes and indices

As covered in the previous recipe, the input variables within a vertex shader are linked to
generic vertex attribute indices at the time the program is linked. If we need to specify the
relationship, we can either call glBindAttribLocation before linking, or we can use layout
qualifiers within the shader itself.

Getting Started with GLSL 4.0

30

However, it may be preferable to let the linker create the mappings automatically and query
for them after program linking is complete. In this recipe, we'll see a simple example that
prints all the active attributes and their indices.

Getting ready
Start with an OpenGL program that compiles and links a shader pair. You could use the
shaders from the previous recipe.

As in previous recipes, we'll assume that the handle to the shader program is stored in a
variable named programHandle.

How to do it...
After linking the shader program, use the following steps to print information about the active
attributes in your shader program:

1.	 Retrieve the number of active attributes and the maximum length of their names
using glGetProgramiv.
GLint maxLength, nAttribs;
glGetProgramiv(programHandle, GL_ACTIVE_ATTRIBUTES,
 &nAttribs);
glGetProgramiv(programHandle, GL_ACTIVE_ATTRIBUTE_MAX_LENGTH,
 &maxLength);

2.	 Allocate a buffer to hold each attribute name.
GLchar * name = (GLchar *) malloc(maxLength);

3.	 Get and print information about each active attribute using glGetActiveAttrib
and glGetAttribLocation.

GLint written, size, location;
GLenum type;
printf(" Index | Name\n");
printf("--\n");
for(int i = 0; i < nAttribs; i++) {
 glGetActiveAttrib(programHandle, i, maxLength, &written,
 &size, &type, name);
 location = glGetAttribLocation(programHandle, name);
 printf(" %-5d | %s\n",location, name);
}

free(name);

Chapter 1

31

How it works...
We start by querying for the number of active attributes by calling glGetProgramiv with the
argument GL_ACTIVE_ATTRIBUTES. The result is stored in nAttribs. Next, we query for
the length of the longest attribute name (GL_ACTIVE_ATTRIBUTE_MAX_LENGTH) and store
the result in maxLength. This includes the null terminating character, so we use that value to
allocate space to store each variable name.

Next, we loop over each index (0 to nAttrib - 1), and retrieve information about each
attribute by calling glGetActiveAttrib and glGetAttribLocation. The function
glGetActiveAttrib returns a bunch of information about the attribute at the index
provided as the second argument. Note that this index is not necessarily the same as the
generic vertex attribute index (location) for the variable. The function provides the attribute
name, size, and type, which are stored in the variables name, size, and type. Once we
have the variable name, we can query for its location (the generic attribute index), by calling
glGetAttribLocation, and passing in the program handle and the variable name. We
then print the variable's location and name to standard out.

There's more...
It should be noted that, in order for a vertex shader input variable to be considered active, it
must be used within the vertex shader. In other words, a variable is considered active if it is
determined by the GLSL linker that it may be accessed during program execution. If a variable
is declared within a shader, but not used, the above code will not display the variable because
it is not considered active and will be effectively ignored by OpenGL.

See also
ff Compiling a shader

ff Linking a shader program

ff Sending data to a shader using per-vertex attributes and vertex buffer objects

Sending data to a shader using
uniform variables

Vertex attributes provide one avenue for providing input to shaders, a second technique
is uniform variables. Uniform variables are intended to be used for data that may change
relatively infrequently compared to per-vertex attributes. In fact, it is simply not possible to set
per-vertex attributes with uniform variables. For example, uniform variables are well suited for
the matrices used for modeling, viewing, and projective transformations.

Getting Started with GLSL 4.0

32

Within a shader, uniform variables are read-only. Their values can only be changed from
outside the shader, via the OpenGL API. However, they can be initialized within the shader
by assigning to a constant value along with the declaration.

Uniform variables can appear in any shader within a shader program, and are always used
as input variables. They can be declared in one or more shaders within a program, but if a
variable with a given name is declared in more than one shader, its type must be the same in
all shaders. In other words, the uniform variables are held in a shared uniform namespace for
the entire shader program.

In this recipe, we'll draw the same triangle as in previous recipes in this chapter, however,
this time we'll rotate the triangle using a uniform matrix variable.

Getting ready
We'll use the following vertex shader.

#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexColor;

out vec3 Color;

uniform mat4 RotationMatrix;

void main()
{
 Color = VertexColor;
 gl_Position = RotationMatrix * vec4(VertexPosition,1.0);
}

Chapter 1

33

Note the variable RotationMatrix is declared using the uniform qualifier. We'll provide the
data for this variable from the OpenGL program. The RotationMatrix is used to transform
VertexPosition before assigning it to the default output position variable gl_Position.

We'll use the same fragment shader as in previous recipes.

#version 400

in vec3 Color;

layout (location = 0) out vec4 FragColor;

void main() {
 FragColor = vec4(Color, 1.0);
}

Within the main OpenGL code, we determine the rotation matrix and send it to the shader's
uniform variable. To create our rotation matrix, we'll use the GLM library (see: Using the GLM
library for mathematics in this chapter). Within the main OpenGL code, add the following
include statements:

#include <glm/glm.hpp>
using glm::mat4;
using glm::vec3;

#include <glm/gtc/matrix_transform.hpp>

We'll also assume that code has been written to compile and link the shaders, and to create
the vertex array object for the color triangle. We'll assume that the handle to the vertex array
object is vaoHandle, and the handle to the program object is programHandle.

How to do it...
Within the render method, use the following code.

glClear(GL_COLOR_BUFFER_BIT);

mat4 rotationMatrix = glm::rotate(mat4(1.0f), angle,
 vec3(0.0f,0.0f,1.0f));

GLuint location =glGetUniformLocation(programHandle,
 "RotationMatrix");

if(location >= 0)
{
 glUniformMatrix4fv(location, 1, GL_FALSE,
 &rotationMatrix[0][0]);
}

glBindVertexArray(vaoHandle);
glDrawArrays(GL_TRIANGLES, 0, 3);

Getting Started with GLSL 4.0

34

How it works...
The steps involved with setting the value of a uniform variable include finding the location of the
variable, and then assigning a value to that location using one of the glUniform functions.

In this example, we start by clearing the color buffer, then creating a rotation
matrix using GLM. Next, we query for the location of the uniform variable by calling
glGetUniformLocation. This function takes the handle to the shader program object and
the name of the uniform variable, and returns its location. If the uniform variable is not an
active uniform variable, the function returns -1.

We then assign a value to the uniform variable using glUniformMatrix4fv. The first
argument is the uniform variable's location. The second is the number of matrices that
are being assigned (the uniform variable could be an array). The third is a Boolean value
indicating whether or not the matrix should be transposed when loaded into the uniform
variable. With GLM matrices, a transpose is not required, so we use GL_FALSE here. If you
were implementing the matrix using an array, and the data was in row-major order, you might
need to use GL_TRUE for this argument. The last argument is a pointer to the data for the
uniform variable.

There's more...
Of course uniform variables can be any valid GLSL type including complex types such
as arrays or structures. OpenGL provides a glUniform function with the usual suffixes,
appropriate for each type. For example, to assign to a variable of type vec3, one would
use glUniform3f or glUniform3fv.

For arrays, we can use the functions ending in "v" to initialize multiple values within the array.
Note that if it is desired, we can query for the location of a particular element of the uniform
array using the [] operator. For example, to query for the location of the second element of
MyArray we will query in the following way:

 GLuint location =
 glGetUniformLocation(programHandle, "MyArray[1]");

For structures, the members of the structure must be initialized individually. As with arrays,
one can query for the location of a member of a structure using something like the following:

GLuint location =
 glGetUniformLocation(programHandle,
 "MyMatrices.Rotation");

Where the structure variable is MyMatrices and the member of the structure is Rotation.

Chapter 1

35

See also
ff Compiling a shader

ff Linking a shader program

ff Sending data to a shader using per-vertex attributes and vertex buffer objects

Getting a list of active uniform variables
While it is a simple process to query for the location of an individual uniform variable, there
may be instances where it can be useful to generate a list of all active uniform variables. For
example, one might choose to create a set of variables to store the location of each uniform
and assign their values after the program is linked. This would avoid the need to query for
uniform locations when setting the value of the uniform variables, creating slightly more
efficient code.

Getting ready
We'll start with a basic OpenGL program that compiles and links a shader program. You could
use the shaders from the recipe Sending data to a shader using per-vertex attributes and
vertex buffer objects. In the following example, we'll assume that the handle to the program is
in a variable named programHandle.

How to do it...
After linking the shader program, use the following steps to print information about the active
uniform variables:

1.	 Retrieve the maximum length of the names of all of the active uniforms and the
number of active uniforms using glGetProgramiv.
GLint nUniforms, maxLen;

glGetProgramiv(programHandle, GL_ACTIVE_UNIFORM_MAX_LENGTH,
 &maxLen);
glGetProgramiv(programHandle, GL_ACTIVE_UNIFORMS,
 &nUniforms);

2.	 Allocate space to store each uniform variable's name.
GLchar * name = (GLchar *) malloc(maxLen);

3.	 Retrieve and print information about each active uniform using
glGetActiveUniform and glGetUniformLocation.

GLint size, location;

Getting Started with GLSL 4.0

36

GLsizei written;
GLenum type;
printf(" Location | Name\n");
printf("--\n");
for(int i = 0; i < nUniforms; ++i) {
 glGetActiveUniform(programHandle, i, maxLen, &written,
 &size, &type, name);
 location = glGetUniformLocation(programHandle, name);
 printf(" %-8d | %s\n", location, name);
}

free(name);

How it works...
In step one above, we call the function glGetProgramiv to query for the maximum length of
the uniform variable names (GL_ACTIVE_UNIFORM_MAX_LENGTH), and the number of active
uniforms (GL_ACTIVE_UNIFORMS). The maximum length value includes the null terminating
character, so in step 2 we allocate enough space to store a name of that length.

Next, we loop from zero to the number of uniforms minus one, and call glGetActiveUniform
to retrieve information about each variable. Similar to glGetActiveAttrib, this function
provides several pieces of information about the variable including its size, type, and name. We
then query for the location of that uniform variable by calling glGetUniformLocation. It is
quite often the case that the index used in the call to glGetActiveUniform is the same as
the uniform's location, but we make the call just to be sure.

Finally, we print the name and location of the variable to standard out.

There's more...
As with vertex attributes, a uniform variable is not considered active unless it is determined
by the GLSL linker that it will be used within the shader.

Note that one could also use the function glGetActiveUniformName instead of
glGetActiveUniform. The former only provides the name, while the latter also provides
the size and type.

See also
ff Sending data to a shader using uniform variables

Chapter 1

37

Using uniform blocks and uniform
buffer objects

If your program involves multiple shader programs that use the same uniform variables, one has
to manage the variables separately for each program. Uniform locations are generated when a
program is linked, so the locations of the uniforms may change from one program to the next.
The data for those uniforms may have to be re-generated and applied to the new locations.

Uniform blocks were designed to ease the sharing of uniform data between programs.
With uniform blocks, one can create a buffer object for storing the values of all the uniform
variables, and bind the buffer to the uniform block. Then when changing programs, the same
buffer object need only be re-bound to the corresponding block in the new program.

A uniform block is simply a group of uniform variables defined within a syntactical structure
known as a uniform block. For example, in this recipe, we'll use the following uniform block:

uniform BlobSettings {
 vec4 InnerColor;
 vec4 OuterColor;
 float RadiusInner;
 float RadiusOuter;
};

This defines a block with the name BlobSettings that contains four uniform variables. With
this type of block definition, the variables within the block are still part of the global scope and
do not need to be qualified with the block name.

The buffer object used to store the data for the uniforms is often referred to as a uniform
buffer object. We'll see that a uniform buffer object is simply just a buffer object that is bound
to a certain location.

Getting Started with GLSL 4.0

38

For this recipe, we'll use a simple example to demonstrate the use of uniform buffer objects
and uniform blocks. We'll draw a quad (two triangles) with texture coordinates, and use our
fragment shader to fill the quad with a fuzzy circle. The circle is a solid color in the center, but
at its edge, it gradually fades to the background color, as shown in the following image.

Getting ready
Start with an OpenGL program that draws two triangles to form a quad. Provide the position
at vertex attribute location 0, and the texture coordinate (0 to 1 in each direction) at vertex
attribute location 1 (see: Sending data to a shader using per-vertex attributes and vertex
buffer objects).

We'll use the following vertex shader:

#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexTexCoord;

out vec3 TexCoord;

void main()
{
 TexCoord = VertexTexCoord;
 gl_Position = vec4(VertexPosition,1.0);
}

The fragment shader contains the uniform block, and is responsible for drawing our fuzzy
circle:

#version 400

in vec3 TexCoord;
layout (location = 0) out vec4 FragColor;

Chapter 1

39

uniform BlobSettings {
 vec4 InnerColor;
 vec4 OuterColor;
 float RadiusInner;
 float RadiusOuter;
};

void main() {
 float dx = TexCoord.x - 0.5;
 float dy = TexCoord.y - 0.5;
 float dist = sqrt(dx * dx + dy * dy);
 FragColor =
 mix(InnerColor, OuterColor,
 smoothstep(RadiusInner, RadiusOuter, dist)
);
}

The uniform block is named BlobSettings. The variables within this block define the
parameters of our fuzzy circle. The variable OuterColor defines the color outside of the
circle. InnerColor is the color inside of the circle. RadiusInner is the radius defining the
part of the circle that is a solid color (inside the fuzzy edge), and the distance from the center
of the circle to the inner edge of the fuzzy boundary. RadiusOuter is the outer edge of the
fuzzy boundary of the circle (when the color is equal to OuterColor).

The code within the main function computes the distance of the texture coordinate to the center
of the quad located at (0.5, 0.5). It then uses that distance to compute the color by using the
smoothstep function. This function provides a value that smoothly varies between 0.0 and
1.0 when the value of the third argument is between the values of the first two arguments.
Otherwise it returns 0.0 or 1.0 depending on whether it is less than the first or greater than the
second, respectively. The mix function is then used to linearly interpolate between InnerColor
and OuterColor based on the value returned by the smoothstep function.

How to do it...
In the OpenGL program, after linking the shader program, use the following steps to send data
to the uniform block in the fragment shader:

1.	 Get the index of the uniform block using glGetUniformBlockIndex.
GLuint blockIndex = glGetUniformBlockIndex(programHandle,
 "BlobSettings");

2.	 Allocate space for the buffer to contain the data for the uniform block. We get the size
of the block using glGetActiveUniformBlockiv.
GLint blockSize;

Getting Started with GLSL 4.0

40

glGetActiveUniformBlockiv(programHandle, blockIndex,
 GL_UNIFORM_BLOCK_DATA_SIZE, &blockSize);

GLubyte * blockBuffer= (GLubyte *) malloc(blockSize);

3.	 Query for the offset of each variable within the block. To do so, we first find the index
of each variable within the block.
// Query for the offsets of each block variable
const GLchar *names[] = { "InnerColor", "OuterColor",
 "RadiusInner", "RadiusOuter" };
GLuint indices[4];
glGetUniformIndices(programHandle, 4, names, indices);

GLint offset[4];
glGetActiveUniformsiv(programHandle, 4, indices,
 GL_UNIFORM_OFFSET, offset);

4.	 Place the data into the buffer at the appropriate offsets.
GLfloat outerColor[] = {0.0f, 0.0f, 0.0f, 0.0f};
GLfloat innerColor[] = {1.0f, 1.0f, 0.75f, 1.0f};
GLfloat innerRadius = 0.25f, outerRadius = 0.45f;

memcpy(blockBuffer + offset[0], innerColor,
 4 * sizeof(GLfloat));
memcpy(blockBuffer + offset[1], outerColor,
 4 * sizeof(GLfloat));
memcpy(blockBuffer + offset[2], &innerRadius,
 sizeof(GLfloat));
memcpy(blockBuffer + offset[3], &outerRadius,
 sizeof(GLfloat));

5.	 Create the OpenGL buffer object and copy the data into it.
GLuint uboHandle;
glGenBuffers(1, &uboHandle);
glBindBuffer(GL_UNIFORM_BUFFER, uboHandle);
glBufferData(GL_UNIFORM_BUFFER, blockSize, blockBuffer,
 GL_DYNAMIC_DRAW);

6.	 Bind the buffer object to the uniform block.

glBindBufferBase(GL_UNIFORM_BUFFER, blockIndex, uboHandle);

Chapter 1

41

How it works...
Phew! This seems like a lot of work! However, the real advantage comes when using multiple
programs where the same buffer object can be used for each program. Let's take a look at
each step individually.

First, we get the index of the uniform block by calling glGetUniformBlockIndex, then we
query for the size of the block by calling glGetActiveUniformBlockiv. After getting the
size, we allocate a temporary buffer named blockBuffer to hold the data for our block.

The layout of data within a uniform block is implementation dependent, and implementations
may use different padding and/or byte alignment. So, in order to accurately layout our
data, we need to query for the offset of each variable within the block. This is done
in two steps. First, we query for the index of each variable within the block by calling
glGetUniformIndices. This accepts an array of variable names (third argument) and
returns the indices of the variables in the array indices (fourth argument). Then we use
the indices to query for the offsets by calling glGetActiveUniformsiv. When the fourth
argument is GL_UNIFORM_OFFSET, this returns the offset of each variable in the array
pointed to by the fifth argument. This function can also be used to query for the size and type;
however, in this case we choose not to do so, to keep the code simple (albeit less general).

The next step involves filling our temporary buffer blockBuffer with the data for the
uniforms at the appropriate offsets. Here we use the standard library function memcpy to
accomplish this.

Now that the temporary buffer is populated with the data with the appropriate layout, we can
create our buffer object and copy the data into the buffer object. We call glGenBuffers to
generate a buffer handle, and then bind that buffer to the GL_UNIFORM_BUFFER binding
point by calling glBindBuffer. The space is allocated within the buffer object and the data
is copied when glBufferData is called. We use GL_DYNAMIC_DRAW as the usage hint here,
because uniform data may be changed somewhat often during rendering. Of course, this is
entirely dependent on the situation.

Finally, we associate the buffer object with the uniform block by calling glBindBufferBase.
This function binds to an index within a buffer binding point. Certain binding points are also
so-called "indexed buffer targets". This means that the target is actually an array of targets,
and glBindBufferBase allows us to bind to one index within the array.

There's more...
If the data for a uniform block needs to be changed at some later time, one can call
glBufferSubData to replace all or part of the data within the buffer. If you do so, don't
forget to first bind the buffer to the generic binding point GL_UNIFORM_BUFFER.

Getting Started with GLSL 4.0

42

Using an instance name with a uniform block
A uniform block can have an optional instance name. For example, with our BlobSettings
block, we could have used the instance name Blob, as shown here:

uniform BlobSettings {
 vec4 InnerColor;
 vec4 OuterColor;
 float RadiusInner;
 float RadiusOuter;
} Blob;

In this case, the variables within the block are placed within a namespace qualified by the
instance name. Therefore our shader code needs to refer to them prefixed with the instance
name. For example:

FragColor =
 mix(Blob.InnerColor, Blob.OuterColor,
 smoothstep(Blob.RadiusInner, Blob.RadiusOuter, dist)
);

Additionally, we need to qualify the variable names within the OpenGL code when querying
for variable indices. The OpenGL specification says that they must be qualified with the block
name (BlobSettings). However, my tests using the ATI Catalyst (10.8) drivers required me
to use the instance name (Blob).

Using layout qualifiers with uniform blocks
Since the layout of the data within a uniform buffer object is implementation dependent, it
required us to query for the variable offsets. However, one can avoid this by asking OpenGL
to use the standard layout std140. This is accomplished by using a layout qualifier when
declaring the uniform block. For example:

layout(std140) uniform BlobSettings {
 …
};

The std140 layout is described in detail within the OpenGL specification document
(available at http://www.opengl.org).

Other options for the layout qualifier that apply to uniform block layouts include packed
and shared. The packed qualifier simply states that the implementation is free to optimize
memory in whatever way it finds necessary (based on variable usage or other criteria). With
the packed qualifier, we still need to query for the offsets of each variable. The shared
qualifier guarantees that the layout will be consistent between multiple programs and program
stages provided that the uniform block declaration does not change. If you are planning to use
the same buffer object between multiple programs and/or program stages, it is a good idea to
use the shared option.

Chapter 1

43

There are two other layout qualifiers that are worth mentioning: row_major and
column_major. These define the ordering of data within the matrix type variables
within the uniform block.

One can use multiple qualifiers for a block. For example, to define a block with both the
row_major and shared qualifiers, we would use the following syntax:

layout(row_major, shared) uniform BlobSettings {
 …
};

See also
ff Sending data to a shader using uniform variables

Building a C++ shader program class
If you are using C++, it can be very convenient to create classes to encapsulate some of the
OpenGL objects. A prime example is the shader program object. In this recipe, we'll look at a
design for a C++ class that can be used to manage a shader program.

Getting ready
There's not much to prepare for with this one, you just need to build an environment that
supports C++. Also, I'll assume that you are using GLM for matrix and vector support. If not,
just leave out the functions involving the GLM classes.

How to do it...
We'll use the following header file for our C++ class:

namespace GLSLShader {
 enum GLSLShaderType {
 VERTEX, FRAGMENT, GEOMETRY,TESS_CONTROL,
 TESS_EVALUATION
 };
};

class GLSLProgram
{
private:
 int handle;
 bool linked;
 string logString;

Getting Started with GLSL 4.0

44

 int getUniformLocation(const char * name);
 bool fileExists(const string & fileName);

public:
 GLSLProgram();

 bool compileShaderFromFile(const char * fileName,
 GLSLShader::GLSLShaderType type);
 bool compileShaderFromString(const string & source,
 GLSLShader::GLSLShaderType type);
 bool link();
 void use();

 string log();

 int getHandle();
 bool isLinked();

 void bindAttribLocation(GLuint location,
 const char * name);
 void bindFragDataLocation(GLuint location,
 const char * name);
 void setUniform(const char *name,float x,float y,
 float z);
 void setUniform(const char *name, const vec3 & v);
 void setUniform(const char *name, const vec4 & v);
 void setUniform(const char *name, const mat4 & m);
 void setUniform(const char *name, const mat3 & m);
 void setUniform(const char *name, float val);
 void setUniform(const char *name, int val);
 void setUniform(const char *name, bool val);

 void printActiveUniforms();
 void printActiveAttribs();
};

The techniques involved in the implementation of these functions are covered in previous
recipes in this chapter. Due to space limitations, I won't include the code here (it's available
from the book's website), but we'll discuss some of the design decisions in the next section.

How it works...
The state stored within a GLSLProgram object includes the handle to the OpenGL shader
program object (handle), a Boolean variable indicating whether or not the program has
been successfully linked (linked), and a string for storing the most recent log produced by
a compile or link action (logString).

Chapter 1

45

The two private functions are utilities used by other public functions. The
getUniformLocation function is used by the setUniform functions to find the location of
a uniform variable, and the fileExists function is used by compileShaderFromFile to
check for file existence.

The constructor simply initializes linked to false, handle to zero, and logString to the
empty string. The variable handle will be initialized by calling glCreateProgram when the
first shader is compiled.

The compileShaderFromFile and compileShaderFromString functions attempt
to compile a shader of the given type (the type is provided as the second argument). They
create the shader object, load the source code, and then attempt to compile the shader.
If successful, the shader object is attached to the OpenGL program object (by calling
glAttachShader) and a value of true is returned. Otherwise, the log is retrieved and
stored in logString, and a value of false is returned.

The link function simply attempts to link the program by calling glLinkProgram. It then
checks the link status, and if successful, sets the variable linked to true and returns
true. Otherwise, it gets the program log (by calling glGetProgramInfoLog), stores it in
logString, and returns false.

The use function simply calls glUseProgram if the program has already been successfully
linked; otherwise, it does nothing.

The log function returns the contents of logString, which should contain the log of the
most recent compile or link action.

The functions getHandle and isLinked are simply "getter" functions that return the handle
to the OpenGL program object and the value of the linked variable.

The functions bindAttribLocation and bindFragDataLocation are wrappers around
glBindAttribLocation and glBindFragDataLocation. Note that these functions
should only be called prior to linking the program.

The setUniform overloaded functions are straightforward wrappers around the appropriate
glUniform functions. Each of them calls getUniformLocation to query for the variable's
location before calling the glUniform function.

Finally, the printActiveUniforms and printActiveAttribs functions are useful
mainly for debugging purposes. They simply display a list of the active uniforms/attributes to
standard output. The following is a simple example of the use of the GLSLProgram class:

GLSLProgram prog;

if(! prog.compileShaderFromFile("myshader.vert",
 GLSLShader::VERTEX))
{
 printf("Vertex shader failed to compile!\n%s",

Getting Started with GLSL 4.0

46

 prog.log().c_str());
 exit(1);
}
if(! prog.compileShaderFromFile("myshader.frag",
 GLSLShader::FRAGMENT))
{
 printf("Fragment shader failed to compile!\n%s",
 prog.log().c_str());
 exit(1);
}

// Possibly call bindAttribLocation or bindFragDataLocation
// here…

if(! prog.link())
{
 printf("Shader program failed to link!\n%s",
 prog.log().c_str());
 exit(1);
}

prog.use();
prog.printActiveUniforms();
prog.printActiveAttribs();

prog.setUniform("ModelViewMatrix", matrix);
prog.setUniform("LightPosition", 1.0f, 1.0f, 1.0f);

…

See also
ff All of the recipes in this chapter!

2
The Basics of GLSL

Shaders

In this chapter, we will cover:

ff Implementing diffuse, per-vertex shading with a single point light source

ff Implementing per-vertex ambient, diffuse, and, specular (ADS) shading

ff Using functions in shaders

ff Implementing two sided shading

ff Implementing flat shading

ff Using subroutines to select shader functionality

ff Discarding fragments to create a perforated look

Introduction
Shaders were first introduced into OpenGL in version 2.0, introducing programmability into the
formerly fixed-function OpenGL pipeline. Shaders give us the power to implement alternative
rendering algorithms and a greater degree of flexibility in the implementation of those
techniques. With shaders, we can run custom code directly on the GPU, providing us with the
opportunity to leverage the high degree of parallelism available with modern GPUs.

The Basics of GLSL Shaders

48

Shaders are implemented using the OpenGL Shading Language (GLSL). The GLSL is
syntactically similar to C, which should make it easier for experienced OpenGL programmers
to learn. Due to the nature of this text, I won't present a thorough introduction to GLSL here.
Instead, if you're new to GLSL, reading through these recipes should help you to learn the
language by example. If you are already comfortable with GLSL, but don't have experience
with version 4.0, you'll see how to implement these techniques utilizing the newer API.
However, before we jump into GLSL programming, let's take a quick look at how vertex and
fragment shaders fit within the OpenGL pipeline.

Vertex and fragment shaders
In OpenGL version 4.0, there are five shader stages: vertex, geometry, tessellation control,
tessellation evaluation, and fragment. In this chapter we'll focus only on the vertex and
fragment stages. In Chapter 6, I'll provide some recipes for working with the geometry and
tessellation shaders.

Shaders replace parts of the OpenGL pipeline. More specifically, they make those parts of the
pipeline programmable. The following block diagram shows a simplified view of the OpenGL
pipeline with only the vertex and fragment shaders installed.

Vertex data is sent down the pipeline and arrives at the vertex shader via shader input
variables. The vertex shader's input variables correspond to vertex attributes (see Chapter 1,
Sending data to a shader using per-vertex attributes and vertex buffer objects). In general,
a shader receives its input via programmer-defined input variables, and the data for those
variables comes either from the main OpenGL application or previous pipeline stages (other
shaders). For example, a fragment shader's input variables might be fed from the output
variables of the vertex shader. Data can also be provided to any shader stage using uniform
variables (see Chapter 1: Sending data to a shader using uniform variables). These are used
for information that changes less often than vertex attributes (for example, matrices, light
position, and other settings). The following figure shows a simplified view of the relationships
between input and output variables when there are two shaders active (vertex and fragment).

Chapter 2

49

The vertex shader is executed once for each vertex, possibly in parallel. The data
corresponding to vertex position must be transformed into clip coordinates and assigned to
the output variable gl_Position before the vertex shader finishes execution. The vertex
shader can send other information down the pipeline using shader output variables. For
example, the vertex shader might also compute the color associated with the vertex. That
color would be passed to later stages via an appropriate output variable.

Between the vertex and fragment shader, the vertices are assembled into primitives, clipping
takes place, and the viewport transformation is applied (among other operations). The
rasterization process then takes place and the polygon is filled (if necessary). The fragment
shader is executed once for each fragment (pixel) of the polygon being rendered (typically in
parallel). Data provided from the vertex shader is (by default) interpolated in a perspective
correct manner, and provided to the fragment shader via shader input variables. The fragment
shader determines the appropriate color for the pixel and sends it to the frame buffer using
output variables. The depth information is handled automatically.

Replicating the old fixed functionality
Programmable shaders give us tremendous power and flexibility. However, in some cases we
might just want to re-implement the basic shading techniques that were used in the default
fixed-function pipeline, or perhaps use them as a basis for other shading techniques. Studying
the basic shading algorithm of the old fixed-function pipeline can also be a good way to get
started when learning about shader programming.

In this chapter, we'll look at the basic techniques for implementing shading similar to that of
the old fixed-function pipeline. We'll cover the standard ambient, diffuse, and specular (ADS)
shading algorithm, the implementation of two-sided rendering, and flat shading. Along the
way, we'll also see some examples of other GLSL features such as functions, subroutines, and
the discard keyword.

The Basics of GLSL Shaders

50

The algorithms presented within this chapter are largely unoptimized. I present them this way
to avoid additional confusion for someone who is learning the techniques for the first time.
We'll look at a few optimization techniques at the end of some recipes, and some more in the
next chapter.

Implementing diffuse, per-vertex
shading with a single point light source

One of the simplest shading techniques is to assume that the surface exhibits purely diffuse
reflection. That is to say that the surface is one that appears to scatter light in all directions
equally, regardless of direction. Incoming light strikes the surface and penetrates slightly
before being re-radiated in all directions. Of course, the incoming light interacts with the
surface before it is scattered, causing some wavelengths to be fully or partially absorbed
and others to be scattered. A typical example of a diffuse surface is a surface that has been
painted with a matte paint. The surface has a dull look with no shine at all.

The following image shows a torus rendered with diffuse shading.

The mathematical model for diffuse reflection involves two vectors: the direction from the
surface point to the light source (s), and the normal vector at the surface point (n). The
vectors are represented in the following diagram.

Chapter 2

51

The amount of incoming light (or radiance) that reaches the surface is partially dependent
on the orientation of the surface with respect to the light source. The physics of the situation
tells us that the amount of radiation that reaches a point on a surface is maximal when the
light arrives along the direction of the normal vector, and zero when the light is perpendicular
to the normal. In between, it is proportional to the cosine of the angle between the direction
towards the light source and the normal vector. So, since the dot product is proportional to the
cosine of the angle between two vectors, we can express the amount of radiation striking the
surface as the product of the light intensity and the dot product of s and n.

Where Ld is the intensity of the light source, and the vectors s and n are assumed to be
normalized. You may recall that the dot product of two unit vectors is equal to the cosine of
the angle between them.

As stated previously, some of the incoming light is absorbed before it is re-emitted. We can
model this interaction by using a reflection coefficient (Kd), which represents the fraction of
the incoming light that is scattered. This is sometimes referred to as the diffuse reflectivity,
or the diffuse reflection coefficient. The diffuse reflectivity becomes a scaling factor for the
incoming radiation, so the intensity of the outgoing light can be expressed as follows:

Because this model depends only on the direction towards the light source and the normal to
the surface, not on the direction towards the viewer, we have a model that represents uniform
(omnidirectional) scattering.

In this recipe, we'll evaluate this equation at each vertex in the vertex shader and interpolate
the resulting color across the face.

The Basics of GLSL Shaders

52

In this and the following recipes, light intensities and material reflectivity
coefficients are represented by 3-component (RGB) vectors. Therefore, the
equations should be treated as component-wise operations, applied to each
of the three components separately. Luckily, the GLSL will make this nearly
transparent because the needed operators will operate component-wise on
vector variables.

Getting ready
Start with an OpenGL application that provides the vertex position in attribute location 0,
and the vertex normal in attribute location 1 (see Chapter 1, Sending data to a shader
using per-vertex attributes and vertex buffer objects). The OpenGL application also should
provide the standard transformation matrices (projection, modelview, and normal) via
uniform variables.

The light position (in eye coordinates), Kd, and Ld should also be provided by the OpenGL
application via uniform variables. Note that Kd and Ld are type vec3. We can use a vec3
to store an RGB color as well as a vector or point.

How to do it...
To create a shader pair that implements diffuse shading, use the following code:

1.	 Use the following code for the vertex shader.
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;

out vec3 LightIntensity;

uniform vec4 LightPosition; // Light position in eye coords.
uniform vec3 Kd; // Diffuse reflectivity
uniform vec3 Ld; // Light source intensity

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP; // Projection * ModelView

void main()
{
 // Convert normal and position to eye coords
 vec3 tnorm = normalize(NormalMatrix * VertexNormal);
 vec4 eyeCoords = ModelViewMatrix *
 vec4(VertexPosition,1.0));

Chapter 2

53

 vec3 s = normalize(vec3(LightPosition - eyeCoords));

 // The diffuse shading equation
 LightIntensity = Ld * Kd * max(dot(s, tnorm), 0.0);

 // Convert position to clip coordinates and pass along
 gl_Position = MVP * vec4(VertexPosition,1.0);
}

2.	 Use the following code for the fragment shader.
#version 400

in vec3 LightIntensity;

layout(location = 0) out vec4 FragColor;

void main() {
 FragColor = vec4(LightIntensity, 1.0);
}

3.	 Compile and link both shaders within the OpenGL application, and install the shader
program prior to rendering. See Chapter 1 for details about compiling, linking, and
installing shaders.

How it works...
The vertex shader does all of the work in this example. The diffuse reflection is computed in
eye coordinates by first transforming the normal vector using the normal matrix, normalizing,
and storing the result in tnorm. Note that the normalization here may not be necessary if your
normal vectors are already normalized and the normal matrix does not do any scaling.

The normal matrix is typically the inverse transpose of the upper-left 3x3
portion of the model-view matrix. We use the inverse transpose because
normal vectors transform differently than the vertex position. For a more
thorough discussion of the normal matrix, and the reasons why, see any
introductory computer graphics textbook. (A good choice would be Computer
Graphics with OpenGL by Hearn and Baker.) If your model-view matrix does
not include any non-uniform scalings, then one can use the upper-left 3x3 of
the model-view matrix in place of the normal matrix to transform your normal
vectors. However, if your model-view matrix does include (uniform) scalings,
you'll still need to (re)normalize your normal vectors after transforming them.

The next step converts the vertex position to eye (camera) coordinates by transforming it via
the model-view matrix. Then we compute the direction towards the light source by subtracting
the vertex position from the light position and storing the result in s.

The Basics of GLSL Shaders

54

Next, we compute the scattered light intensity using the equation described above and store
the result in the output variable LightIntensity. Note the use of the max function here.
If the dot product is less than zero, then the angle between the normal vector and the light
direction is greater than 90 degrees. This means that the incoming light is coming from
inside the surface. Since such a situation is not physically possible (for a closed mesh), we
use a value of 0.0. However, you may decide that you want to properly light both sides of your
surface, in which case the normal vector needs to be reversed for those situations where the
light is striking the back side of the surface (see Implementing two-sided shading).

Finally, we convert the vertex position to clip coordinates by multiplying with the model-view
projection matrix, (which is: projection * view * model) and store the result in the
built-in output variable gl_Position.

gl_Position = MVP * vec4(VertexPosition,1.0);

The subsequent stage of the OpenGL pipeline expects that the vertex position
will be provided in clip coordinates in the output variable gl_Position. This
variable does not directly correspond to any input variable in the fragment
shader, but is used by the OpenGL pipeline in the primitive assembly, clipping,
and rasterization stages that follow the vertex shader. It is important that we
always provide a valid value for this variable.

Since LightIntensity is an output variable from the vertex shader, its value is interpolated
across the face and passed into the fragment shader. The fragment shader then simply
assigns the value to the output fragment.

There's more...
Diffuse shading is a technique that models only a very limited range of surfaces. It is best used
for surfaces that have a "matte" appearance. Additionally, with the technique used above, the
dark areas may look a bit too dark. In fact, those areas that are not directly illuminated are
completely black. In real scenes, there is typically some light that has been reflected about the
room that brightens these surfaces. In the following recipes, we'll look at ways to model more
surface types, as well as provide some light for those dark parts of the surface.

See also
ff Chapter 1, Sending data to a shader using uniform variables

ff Chapter 1, Compiling a shader

ff Chapter 1, Linking a shader program

ff Chapter 1, Sending data to a shader using per-vertex attributes and vertex
buffer objects

Chapter 2

55

Implementing per-vertex ambient,
diffuse, and specular (ADS) shading

The OpenGL fixed function pipeline implemented a default shading technique which is very
similar to the one presented here. It models the light-surface interaction as a combination
of three components: ambient, diffuse, and specular. The ambient component is intended
to model light that has been reflected so many times that it appears to be emanating
uniformly from all directions. The diffuse component was discussed in the previous recipe,
and represents omnidirectional reflection. The specular component models the shininess of
the surface and represents reflection around a preferred direction. Combining these three
components together can model a nice (but limited) variety of surface types. This shading
model is also sometimes called the Phong reflection model (or Phong shading model), after
Bui Tuong Phong.

An example of a torus rendered with the ADS shading model is shown in the
following screenshot:

The ADS model is implemented as the sum of the three components: ambient, diffuse, and
specular. The ambient component represents light that illuminates all surfaces equally and
reflects equally in all directions. It is often used to help brighten some of the darker areas within
a scene. Since it does not depend on the incoming or outgoing directions of the light, it can be
modeled simply by multiplying the light source intensity (La) by the surface reflectivity (Ka).

The Basics of GLSL Shaders

56

The diffuse component models a rough surface that scatters light in all directions (see
Implementing diffuse per-vertex shading with a single point light source). The intensity of the
outgoing light depends on the angle between the surface normal and the vector towards the
light source.

The specular component is used for modeling the shininess of a surface. When a surface has
a glossy shine to it, the light is reflected off of the surface in a mirror-like fashion. The reflected
light is strongest in the direction of perfect (mirror-like) reflection. The physics of the situation
tells us that for perfect reflection, the angle of incidence is the same as the angle of reflection
and that the vectors are coplanar with the surface normal, as shown in the following diagram:

In the preceding diagram, r represents the vector of pure-reflection corresponding to the
incoming light vector (-s), and n is the surface normal. We can compute r by using the
following equation:

To model specular reflection, we need to compute the following (normalized) vectors: the
direction towards the light source (s), the vector of perfect reflection (r), the vector towards the
viewer (v), and the surface normal (n). These vectors are represented in the following image:

Chapter 2

57

We would like the reflection to be maximal when the viewer is aligned with the vector r, and to
fall off quickly as the viewer moves further away from alignment with r. This can be modeled
using the cosine of the angle between v and r raised to some power (f).

(Recall that the dot product is proportional to the cosine of the angle between the vectors
involved.) The larger the power, the faster the value drops towards zero as the angle between
v and r increases. Again, similar to the other components, we also introduce a specular light
intensity term (Ls) and reflectivity term (Ks).

The specular component creates specular highlights (bright spots) that are typical of glossy
surfaces. The larger the power of f in the equation, the smaller the specular highlight and the
shinier the surface appears. The value for f is typically chosen to be somewhere between 1
and 200.

Putting all of this together, we have the following shading equation:

For more details about how this shading model was implemented in the fixed function
pipeline, take a look at Chapter 5, Image Processing and Screen Space Techniques.

In the following code, we'll evaluate this equation in the vertex shader, and interpolate the
color across the polygon.

The Basics of GLSL Shaders

58

Getting ready
In the OpenGL application, provide the vertex position in location 0 and the vertex
normal in location 1. The light position and the other configurable terms for our lighting
equation are uniform variables in the vertex shader and their values must be set from the
OpenGL application.

How to do it...
To create a shader pair that implements ADS shading, use the following code:

1.	 Use the following code for the vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;

out vec3 LightIntensity;

struct LightInfo {
 vec4 Position; // Light position in eye coords.
 vec3 La; // Ambient light intensity
 vec3 Ld; // Diffuse light intensity
 vec3 Ls; // Specular light intensity
};
uniform LightInfo Light;

struct MaterialInfo {
 vec3 Ka; // Ambient reflectivity
 vec3 Kd; // Diffuse reflectivity
 vec3 Ks; // Specular reflectivity
 float Shininess; // Specular shininess factor
};
uniform MaterialInfo Material;

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

void main()
{
 vec3 tnorm = normalize(NormalMatrix * VertexNormal);
 vec4 eyeCoords = ModelViewMatrix *
 vec4(VertexPosition,1.0);
 vec3 s = normalize(vec3(Light.Position - eyeCoords));
 vec3 v = normalize(-eyeCoords.xyz);

Chapter 2

59

 vec3 r = reflect(-s, tnorm);
 vec3 ambient = Light.La * Material.Ka;
 float sDotN = max(dot(s,tnorm), 0.0);
 vec3 diffuse = Light.Ld * Material.Kd * sDotN;
 vec3 spec = vec3(0.0);
 if(sDotN > 0.0)
 spec = Light.Ls * Material.Ks *
 pow(max(dot(r,v), 0.0), Material.Shininess);

 LightIntensity = ambient + diffuse + spec;
 gl_Position = MVP * vec4(VertexPosition,1.0);
}

2.	 Use the following code for the fragment shader:
#version 400

in vec3 LightIntensity;

layout(location = 0) out vec4 FragColor;

void main() {
 FragColor = vec4(LightIntensity, 1.0);
}

3.	 Compile and link both shaders within the OpenGL application, and install the shader
program prior to rendering.

How it works...
The vertex shader computes the shading equation in eye coordinates. It begins by transforming
the vertex normal into eye coordinates and normalizing, then storing the result in tnorm. The
vertex position is then transformed into eye coordinates and stored in eyeCoords.

Next, we compute the normalized direction towards the light source (s). This is done by
subtracting the vertex position in eye coordinates from the light position and normalizing
the result.

The direction towards the viewer (v) is the negation of the position (normalized) because
in eye coordinates the viewer is at the origin.

We compute the direction of pure reflection by calling the GLSL built-in function reflect,
which reflects the first argument about the second. We don't need to normalize the result
because the two vectors involved are already normalized.

The Basics of GLSL Shaders

60

The ambient component is computed and stored in the variable ambient. The dot product
of s and n is computed next. As in the preceding recipe, we use the built-in function max to
limit the range of values to between one and zero. The result is stored in the variable named
sDotN, and is used to compute the diffuse component. The resulting value for the diffuse
component is stored in the variable diffuse. Before computing the specular component,
we check the value of sDotN. If sDotN is zero, then there is no light reaching the surface, so
there is no point in computing the specular component, as its value must be zero. Otherwise,
if sDotN is greater than zero, we compute the specular component using the equation
presented earlier. Again, we use the built-in function max to limit the range of values of the dot
product to between one and zero, and the function pow raises the dot product to the power of
the Shininess exponent (corresponding to f in our lighting equation).

If we did not check sDotN before computing the specular component, it is
possible that some specular highlights could appear on faces that are facing
away from the light source. This is clearly a non-realistic and undesirable
result. Some people solve this problem by multiplying the specular component
by the diffuse component, which would decrease the specular component
substantially and alter its color. The solution presented here avoids this, at
the cost of a branch statement (the if statement).

The sum of the three components is then stored in the output variable LightIntensity.
This value will be associated with the vertex and passed down the pipeline. Before reaching
the fragment shader, its value will be interpolated in a perspective correct manner across the
face of the polygon.

Finally, the vertex shader transforms the position into clip coordinates, and assigns the result
to the built-in output variable gl_Position (see Implementing diffuse, per-vertex shading
with a single point light source).

The fragment shader simply applies the interpolated value of LightIntensity to the output
fragment by storing it in the shader output variable FragColor.

There's more...
This version of the ADS (Ambient, Diffuse, and Specular) reflection model is by no means
optimal. There are several improvements that could be made. For example, the computation
of the vector of pure reflection can be avoided via the use of the so-called "halfway vector".
This is discussed in Chapter 3, Using the halfway vector for improved performance.

Chapter 2

61

Using a non-local viewer
We can avoid the extra normalization needed to compute the vector towards the viewer (v),
by using a so-called non-local viewer. Instead of computing the direction towards the origin,
we simply use the constant vector (0, 0, 1) for all vertices. This is similar to assuming that the
viewer is located infinitely far away in the z direction. Of course, it is not accurate, but in practice
the visual results are very similar, often visually indistinguishable, saving us normalization.

In the old fixed-function pipeline, the non-local viewer was the default, and could be adjusted
(turned on or off) using the function glLightModel.

Per-vertex vs. Per-fragment
Since the shading equation is computed within the vertex shader, we refer to this as per-vertex
lighting. One of the disadvantages of per-vertex lighting is that specular highlights can be
warped or lost, due to the fact that the shading equation is not evaluated at each point across
the face. For example, a specular highlight that should appear in the middle of a polygon might
not appear at all when per-vertex lighting is used, because of the fact that the shading equation
is only computed at the vertices where the specular component is near zero. In Chapter 3,
Per-fragment shading, we'll look at the changes needed to move the shading computation into
the fragment shader, producing more realistic results.

Directional lights
We can also avoid the need to compute a light direction (s), for each vertex if we assume a
directional light. A directional light source is one that can be thought of as located infinitely
far away in a given direction. Instead of computing the direction towards the source for each
vertex, a constant vector is used, which represents the direction towards the remote light
source. We'll look at an example of this in Chapter 3, Using a directional light source.

Light attenuation with distance
You might think that this shading model is missing one important component. It doesn't take
into account the effect of the distance to the light source. In fact, it is known that the intensity
of radiation from a source falls off in proportion to the inverse square of the distance from the
source. So why not include this in our model?

It would be fairly simple to do so, however, the visual results are often less than appealing. It
tends to exaggerate the distance effects and create unrealistic looking images. Remember, our
equation is just an approximation of the physics involved and is not a truly realistic model, so it
is not surprising that adding a term based on a strict physical law produces unrealistic results.

In the OpenGL fixed-function pipeline, it was possible to turn on distance attenuation using
the glLight function. If desired, it would be straightforward to add a few uniform variables to
our shader to produce the same effect.

The Basics of GLSL Shaders

62

See also
ff Chapter 3, Using a directional light source

ff Chapter 3, Per-fragment shading

ff Chapter 3, Using the halfway vector for improved performance

Using functions in shaders
The GLSL supports functions that are syntactically similar to C functions. However, the calling
conventions are somewhat different. In this example, we'll revisit the ADS shader using
functions to help provide abstractions for the major steps.

Getting ready
As with previous recipes, provide the vertex position at attribute location 0 and the vertex
normal at attribute location 1. Uniform variables for all of the ADS coefficients should be
set from the OpenGL side, as well as the light position and the standard matrices.

How to do it...
To implement ADS shading using functions, use the following code:

1.	 Use the following vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;

out vec3 LightIntensity;

struct LightInfo {
 vec4 Position; // Light position in eye coords.
 vec3 La; // Ambient light intensity
 vec3 Ld; // Diffuse light intensity
 vec3 Ls; // Specular light intensity
};
uniform LightInfo Light;

struct MaterialInfo {
 vec3 Ka; // Ambient reflectivity
 vec3 Kd; // Diffuse reflectivity
 vec3 Ks; // Specular reflectivity
 float Shininess; // Specular shininess factor
};
uniform MaterialInfo Material;

Chapter 2

63

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

void getEyeSpace(out vec3 norm, out vec4 position)
{
 norm = normalize(NormalMatrix * VertexNormal);
 position = ModelViewMatrix * vec4(VertexPosition,1.0);
}

vec3 phongModel(vec4 position, vec3 norm)
{
 vec3 s = normalize(vec3(Light.Position - position));
 vec3 v = normalize(-position.xyz);
 vec3 r = reflect(-s, norm);
 vec3 ambient = Light.La * Material.Ka;
 float sDotN = max(dot(s,norm), 0.0);
 vec3 diffuse = Light.Ld * Material.Kd * sDotN;
 vec3 spec = vec3(0.0);
 if(sDotN > 0.0)
 spec = Light.Ls * Material.Ks *
 pow(max(dot(r,v), 0.0), Material.Shininess);

 return ambient + diffuse + spec;
}

void main()
{
 vec3 eyeNorm;
 vec4 eyePosition;

 // Get the position and normal in eye space
 getEyeSpace(eyeNorm, eyePosition);

 // Evaluate the lighting equation.
 LightIntensity = phongModel(eyePosition, eyeNorm);

 gl_Position = MVP * vec4(VertexPosition,1.0);
}

2.	 Use the following fragment shader:
#version 400

in vec3 LightIntensity;

layout(location = 0) out vec4 FragColor;

void main() {
 FragColor = vec4(LightIntensity, 1.0);
}

The Basics of GLSL Shaders

64

3.	 Compile and link both shaders within the OpenGL application, and install the shader
program prior to rendering.

How it works...
In GLSL functions, the evaluation strategy is "call by value-return" (also called "call by copy-
restore" or "call by value-result"). Parameter variables can be qualified with in, out, or inout.
Arguments corresponding to input parameters (those qualified with in or inout) are copied
into the parameter variable at call time, and output parameters (those qualified with out
or inout) are copied back to the corresponding argument before the function returns. If a
parameter variable does not have any of the three qualifiers, the default qualifier is in.

We've created two functions in the vertex shader. The first, named getEyeSpace, transforms
the vertex position and vertex normal into eye space, and returns them via output parameters.
In the main function, we create two uninitialized variables (eyeNorm and eyePosition) to
store the results, and then call the function with the variables as the function's arguments.
The function stores the results into the parameter variables (norm and position) which are
copied into the arguments before the function returns.

The second function, phongModel, uses only input parameters. The function receives the
eye-space position and normal, and computes the result of the ADS shading equation. The
result is returned by the function and stored in the shader output variable LightIntensity.

There's more...
Since it makes no sense to read from an output parameter variable, output parameters
should only be written to within the function. Their value is undefined.

Within a function, writing to an input only parameter (qualified with in) is allowed. The
function's copy of the argument is modified, and changes are not reflected in the argument.

The const qualifier
The additional qualifier const can be used with input-only parameters (not with out
or inout). This qualifier makes the input parameter read-only, so it cannot be written
to within the function.

Function overloading
Functions can be overloaded by creating multiple functions with the same name, but with
different number and/or type of parameters. As with many languages, two overloaded
functions may not differ in return type only.

Chapter 2

65

Passing arrays or structures to a function
It should be noted that when passing arrays or structures to functions, they are passed by
value. If a large array or structure is passed, it can incur a large copy operation which may not
be desired. It would be a better choice to declare these variables in the global scope.

See also
ff Implementing per-vertex ambient, diffuse, and specular (ADS) shading

Implementing two-sided shading
When rendering a mesh that is completely closed, the back faces of polygons are hidden.
However, if a mesh contains holes, it might be the case that the back faces would become
visible. In this case, the polygons may be shaded incorrectly due to the fact that the normal
vector is pointing in the wrong direction. To properly shade those back faces, one needs to
invert the normal vector and compute the lighting equations based on the inverted normal.

The following image shows a teapot with the lid removed. On the left, the ADS lighting model
is used. On the right, the ADS model is augmented with the two-sided rendering technique
discussed in this recipe.

In this recipe, we'll look at an example that uses the ADS model discussed in the previous
recipes, augmented with the ability to correctly shade back faces.

Getting ready
The vertex position should be provided in attribute location 0 and the vertex normal in
attribute location 1. As in previous examples, the lighting parameters must be provided
to the shader via uniform variables.

The Basics of GLSL Shaders

66

How to do it...
To implement a shader pair that uses the ADS shading model with two-sided lighting, use the
following code:

1.	 Use the following code for the vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;

out vec3 FrontColor;
out vec3 BackColor;

struct LightInfo {
 vec4 Position; // Light position in eye coords.
 vec3 La; // Ambient light intensity
 vec3 Ld; // Diffuse light intensity
 vec3 Ls; // Specular light intensity
};
uniform LightInfo Light;

struct MaterialInfo {
 vec3 Ka; // Ambient reflectivity
 vec3 Kd; // Diffuse reflectivity
 vec3 Ks; // Specular reflectivity
 float Shininess; // Specular shininess factor
};
uniform MaterialInfo Material;

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

vec3 phongModel(vec4 position, vec3 normal) {
 // The ADS shading calculations go here (see: "Using
 // functions in shaders," and "Implementing
 // per-vertex ambient, diffuse and specular (ADS) shading")
 …
}

void main()
{
 vec3 tnorm = normalize(NormalMatrix * VertexNormal);
 vec4 eyeCoords = ModelViewMatrix *
 vec4(VertexPosition,1.0);

 FrontColor = phongModel(eyeCoords, tnorm);

Chapter 2

67

 BackColor = phongModel(eyeCoords, -tnorm);

 gl_Position = MVP * vec4(VertexPosition,1.0);
}

2.	 Use the following for the fragment shader:
#version 400

in vec3 FrontColor;
in vec3 BackColor;

layout(location = 0) out vec4 FragColor;

void main() {

 if(gl_FrontFacing) {
 FragColor = vec4(FrontColor, 1.0);
 } else {
 FragColor = vec4(BackColor, 1.0);
 }
}

3.	 Compile and link both shaders within the OpenGL application, and install the shader
program prior to rendering.

How it works...
In the vertex shader, we compute the lighting equation using both the vertex normal and the
inverted version, and pass each resultant color to the fragment shader. The fragment shader
chooses and applies the appropriate color depending on the orientation of the face.

The vertex shader is a slightly modified version of the vertex shader presented in the recipe
Implementing per-vertex ambient, diffuse, and specular (ADS) shading. The evaluation of the
shading model is placed within a function named phongModel. The function is called twice,
first using the normal vector (transformed into eye coordinates), and second using the inverted
normal vector. The combined results are stored in FrontColor and BackColor, respectively.

Note that there are a few aspects of the shading model that are independent
of the orientation of the normal vector (such as the ambient component). One
could optimize this code by rewriting it so that the redundant calculations are
only done once. However, in this recipe we compute the entire shading model
twice in the interest of making things clear and readable.

The Basics of GLSL Shaders

68

In the fragment shader, we determine which color to apply based on the value of the built-in
variable gl_FrontFacing. This is a Boolean value that indicates whether the fragment is
part of a front or back facing polygon. Note that this determination is based on the winding of
the polygon, and not the normal vector. (A polygon is said to have counter-clockwise winding
if the vertices are specified in counter-clockwise order as viewed from the front side of the
polygon.) By default when rendering, if the order of the vertices appear on the screen in a
counter-clockwise order, it indicates a front facing polygon, however, we can change this by
calling glFrontFace from the OpenGL program.

There's more...
In the vertex shader we determine the front side of the polygon by the direction of the normal
vector, and in the fragment shader, the determination is based on the polygon's winding. For
this to work properly, the normal vector must be defined appropriately for the face determined
by the setting of glFrontFace.

Using two-sided rendering for debugging
It can sometimes be useful to visually determine which faces are front facing and which are
back facing. For example, when working with arbitrary meshes, polygons may not be specified
using the appropriate winding. As another example, when developing a mesh procedurally,
it can sometimes be helpful to determine which faces are oriented in the proper direction in
order to help with debugging. We can easily tweak our fragment shader to help us solve these
kinds of problems by mixing a solid color with all back (or front) faces. For example, we could
change the else clause within our fragment shader to the following:

FragColor = mix(vec4(BackColor,1.0),
 vec4(1.0,0.0,0.0,1.0), 0.7);

This would mix a solid red color with all back faces, helping them to stand out, as shown
in the following image. In the image, back faces are mixed with 70% red as shown in the
preceding code.

Chapter 2

69

See also
ff Implementing per-vertex ambient, diffuse, and specular (ADS) shading

Implementing flat shading
Per-vertex shading involves computation of the shading model at each vertex and associating
the result (a color) with that vertex. The colors are then interpolated across the face of the
polygon to produce a smooth shading effect. This is also referred to as Gouraud shading. In
earlier versions of OpenGL, this per-vertex shading with color interpolation was the default
shading technique.

It is sometimes desirable to use a single color for each polygon so that there is no variation
of color across the face of the polygon, causing each polygon to have a flat appearance.
This can be useful in situations where the shape of the object warrants such a technique,
perhaps because the faces really are intended to look flat, or to help visualize the locations
of the polygons in a complex mesh. Using a single color for each polygon is commonly called
flat shading.

The images below show a mesh rendered with the ADS shading model. On the left, Gouraud
shading is used. On the right, flat shading is used.

In earlier versions of OpenGL, flat shading was enabled by calling the function
glShadeModel with the argument GL_FLAT. In which case, the computed color of
the last vertex of each polygon was used across the entire face.

In OpenGL 4.0, flat shading is facilitated by the interpolation qualifiers available for shader
input/output variables.

The Basics of GLSL Shaders

70

How to do it...
To modify the ADS shading model to implement flat shading, use the following steps:

1.	 Use the same vertex shader as in the ADS example provided earlier. Change the
output variable LightIntensity as follows:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;

flat out vec3 LightIntensity;

// the rest is identical to the ADS shader…

2.	 Use the following code for the fragment shader:
#version 400

flat in vec3 LightIntensity;

layout(location = 0) out vec4 FragColor;

void main() {
 FragColor = vec4(LightIntensity, 1.0);
}

3.	 Compile and link both shaders within the OpenGL application, and install the shader
program prior to rendering.

How it works...
Flat shading is enabled by qualifying the vertex output variable (and its corresponding
fragment input variable) with the flat qualifier. This qualifier indicates that no interpolation
of the value is to be done before it reaches the fragment shader. The value presented to the
fragment shader will be the one corresponding to the result of the invocation of the vertex
shader for either the first or last vertex of the polygon. This vertex is called the provoking
vertex, and can be configured using the OpenGL function glProvokingVertex. For
example, the call:

glProvokingVertex(GL_FIRST_VERTEX_CONVENTION);

This indicates that the first vertex should be used as the value for the flat shaded variable. The
argument GL_LAST_VERTEX_CONVENTION indicates that the last vertex should be used.

Chapter 2

71

See also
ff Implementing per-vertex ambient, diffuse, and specular (ADS) shading

Using subroutines to select shader
functionality

In GLSL, a subroutine is a mechanism for binding a function call to one of a set of possible
function definitions based on the value of a variable. In many ways it is similar to function
pointers in C. A uniform variable serves as the pointer and is used to invoke the function.
The value of this variable can be set from the OpenGL side, thereby binding it to one of a few
possible definitions. The subroutine's function definitions need not have the same name, but
must have the same number and type of parameters and the same return type.

Subroutines therefore provide a way to select alternate implementations at runtime
without swapping shader programs and/or recompiling, or using if statements along
with a uniform variable. For example, a single shader could be written to provide several
shading algorithms intended for use on different objects within the scene. When rendering
the scene, rather than swapping shader programs (or using a conditional statement), we
can simply change the subroutine's uniform variable to choose the appropriate shading
algorithm as each object is rendered.

Since performance is crucial in shader programs, avoiding a conditional
statement or a shader swap can be very valuable. With subroutines, we
can implement the functionality of a conditional statement or shader swap
without the computational overhead.

In this example, we'll demonstrate the use of subroutines by rendering a teapot twice. The
first teapot will be rendered with the full ADS shading model described earlier. The second
teapot will be rendered with diffuse shading only. A subroutine uniform will be used to choose
between the two shading techniques.

The Basics of GLSL Shaders

72

In the following image, we see an example of a rendering that was created using
subroutines. The teapot on the left is rendered with the full ADS shading model, and the
teapot on the right is rendered with diffuse shading only. A subroutine is used to switch
between shader functionality.

Getting ready
As with previous recipes, provide the vertex position at attribute location 0 and the vertex
normal at attribute location 1. Uniform variables for all of the ADS coefficients should be
set from the OpenGL side, as well as the light position and the standard matrices.

We'll assume that, in the OpenGL application, the variable programHandle contains the
handle to the shader program object.

How to do it...
To create a shader program that uses a subroutine to switch between pure-diffuse and ADS
shading, use the following code:

1.	 Use the following code for the vertex shader:
#version 400

subroutine vec3 shadeModelType(vec4 position, vec3 normal);
subroutine uniform shadeModelType shadeModel;

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;

out vec3 LightIntensity;

struct LightInfo {

Chapter 2

73

 vec4 Position; // Light position in eye coords.
 vec3 La; // Ambient light intensity
 vec3 Ld; // Diffuse light intensity
 vec3 Ls; // Specular light intensity
};
uniform LightInfo Light;

struct MaterialInfo {
 vec3 Ka; // Ambient reflectivity
 vec3 Kd; // Diffuse reflectivity
 vec3 Ks; // Specular reflectivity
 float Shininess; // Specular shininess factor
};
uniform MaterialInfo Material;

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

void getEyeSpace(out vec3 norm, out vec4 position)
{
 norm = normalize(NormalMatrix * VertexNormal);
 position = ModelViewMatrix * vec4(VertexPosition,1.0);
}

subroutine(shadeModelType)
vec3 phongModel(vec4 position, vec3 norm)
{
 // The ADS shading calculations go here (see: "Using
 // functions in shaders," and "Implementing
 // per-vertex ambient, diffuse and specular (ADS) shading")
 …
}

subroutine(shadeModelType)
vec3 diffuseOnly(vec4 position, vec3 norm)
{
 vec3 s = normalize(vec3(Light.Position - position));
 return
 Light.Ld * Material.Kd * max(dot(s, norm), 0.0);
}

void main()
{
 vec3 eyeNorm;
 vec4 eyePosition;

 // Get the position and normal in eye space

The Basics of GLSL Shaders

74

 getEyeSpace(eyeNorm, eyePosition);

 // Evaluate the shading equation. This will call one of
 // the functions: diffuseOnly or phongModel.
 LightIntensity = shadeModel(eyePosition, eyeNorm);

 gl_Position = MVP * vec4(VertexPosition,1.0);
}

2.	 Use the following code for the fragment shader:
#version 400

in vec3 LightIntensity;

layout(location = 0) out vec4 FragColor;

void main() {
 FragColor = vec4(LightIntensity, 1.0);
}

3.	 In the OpenGL application, compile and link the above shaders into a shader
program, and install the program into the OpenGL pipeline.

4.	 Within the render function of the OpenGL application, use the following code:

GLuint adsIndex =
glGetSubroutineIndex(programHandle,
 GL_VERTEX_SHADER,"phongModel");
GLuint diffuseIndex =
 glGetSubroutineIndex(programHandle,
 GL_VERTEX_SHADER, "diffuseOnly");

glUniformSubroutinesuiv(GL_VERTEX_SHADER, 1, &adsIndex);
... // Render the left teapot

glUniformSubroutinesuiv(GL_VERTEX_SHADER, 1, &diffuseIndex);
... // Render the right teapot

How it works...
In this example, the subroutine is defined within the vertex shader. The first step involves
declaring the subroutine type.

subroutine vec3 shadeModelType(vec4 position,
 vec3 normal);

This defines a new subroutine type with the name shadeModelType. The syntax is very
similar to a function prototype, in that it defines a name, a parameter list, and a return type.
As with function prototypes, the parameter names are optional.

Chapter 2

75

After creating the new subroutine type, we declare a uniform variable of that type
named shadeModel.

subroutine uniform shadeModelType shadeModel;

This variable serves as our function pointer and will be assigned to one of the two possible
functions in the OpenGL application.

We declare two functions to be part of the subroutine by prefixing their definition with the
subroutine qualifier:

subroutine (shadeModelType)

This indicates that the function matches the subroutine type, and therefore its header
must match the one in the subroutine type definition. We use this prefix for the definition
of the functions phongModel and diffuseOnly. The diffuseOnly function computes
the diffuse shading equation, and the phongModel function computes the complete ADS
shading equation.

We call one of the two subroutine functions by utilizing the subroutine uniform shadeModel
within the main function.

LightIntensity = shadeModel(eyePosition, eyeNorm);

Again, this call will be bound to one of the two functions depending on the value of the
subroutine uniform shadeModel, which we will set within the OpenGL application.

Within the render function of the OpenGL application, we assign a value to the subroutine
uniform with the following steps. First, we query for the index of each subroutine function
using glGetSubroutineIndex. The first argument is the program handle. The second is
the shader stage. In this case, the subroutine is defined within the vertex shader, so we
use GL_VERTEX_SHADER here. The third argument is the name of the subroutine. We
query for each function individually and store the indexes in the variables adsIndex
and diffuseIndex.

To select the appropriate subroutine function, we need to set the value of the subroutine
uniform shadeModel. To do so, we call glUniformSubroutinesuiv. This function is
designed for setting multiple subroutine uniforms at once. In our case, of course, we are
setting only a single uniform. The first argument is the shader stage (GL_VERTEX_SHADER),
the second is the number of uniforms being set, and the third is a pointer to an array of
subroutine function indexes. Since we are setting a single uniform, we simply provide the
address of the GLuint variable containing the index, rather than a true array of values. Of
course, we would use an array if multiple uniforms were being set. In general, the array of
values provided as the third argument is assigned to subroutine uniform variables in the
following way. The ith element of the array is assigned to the subroutine uniform variable with
index i. Since we have provided only a single value, we are setting the subroutine uniform at
index zero.

The Basics of GLSL Shaders

76

You may be wondering, "How do we know that our subroutine uniform is located at index zero?
We didn't query for the index before calling glUniformSubroutinesuiv!" The reason that
this code works is that we are relying on the fact that OpenGL will always number the indexes
of the subroutines consecutively starting at zero. If we had multiple subroutine uniforms, we
could (and should) query for their indexes using glGetSubroutineUniformLocation, and
then order our array appropriately.

Finally, we select the phongModel function by setting the uniform to adsIndex and then
render the left teapot. We then select the diffuseOnly function by setting the uniform to
diffuseIndex and render the right teapot.

There's more...
A subroutine function defined in a shader can match multiple subroutine types. In that case,
the subroutine qualifier can contain a comma-separated list of subroutine types. For example,
if a subroutine matched the types type1 and type2, we could use the following qualifier:

subroutine(type1, type2)

This would allow us to use subroutine uniforms of differing types to refer to the same
subroutine function.

See also
ff Implementing per-vertex ambient, diffuse, and specular (ADS) shading

ff Implementing diffuse, per-vertex shading with a single point light source

Discarding fragments to create a
perforated look

Fragment shaders can make use of the discard keyword to "throw away" fragments. Use of
this keyword causes the fragment shader to stop execution, without writing anything (including
depth) to the output buffer. This provides a way to create holes in polygons without using
blending. In fact, since fragments are completely discarded, there is no dependence on the
order in which objects are drawn, saving us the trouble of doing any depth sorting that might
have been necessary if blending was used.

In this recipe, we'll draw a teapot, and use the discard keyword to remove fragments
selectively based on texture coordinates. The result will look like the following image:

Chapter 2

77

Getting ready
The vertex position, normal, and texture coordinates must be provided to the vertex shader
from the OpenGL application. The position should be provided at location 0, the normal at
location 1, and the texture coordinates at location 2. As in previous examples, the lighting
parameters must be set from the OpenGL application via the appropriate uniform variables.

How to do it...
To create a shader program that discards fragments based on a square lattice (as in the
preceding image), use the following code:

1.	 Use the following code for the vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;
layout (location = 2) in vec2 VertexTexCoord;

out vec3 FrontColor;
out vec3 BackColor;
out vec2 TexCoord;

struct LightInfo {
 vec4 Position; // Light position in eye coords.
 vec3 La; // Ambient light intensity
 vec3 Ld; // Diffuse light intensity
 vec3 Ls; // Specular light intensity

The Basics of GLSL Shaders

78

};
uniform LightInfo Light;

struct MaterialInfo {
 vec3 Ka; // Ambient reflectivity
 vec3 Kd; // Diffuse reflectivity
 vec3 Ks; // Specular reflectivity
 float Shininess; // Specular shininess factor
};

uniform MaterialInfo Material;

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

void getEyeSpace(out vec3 norm, out vec4 position)
{
 norm = normalize(NormalMatrix * VertexNormal);
 position = ModelViewMatrix * vec4(VertexPosition,1.0);
}

vec3 phongModel(vec4 position, vec3 norm)
{
 // The ADS shading calculations go here (see: "Using
 // functions in shaders," and "Implementing
 // per-vertex ambient, diffuse and specular (ADS) shading")
 …
}

void main()
{
 vec3 eyeNorm;
 vec4 eyePosition;

 TexCoord = VertexTexCoord;

 // Get the position and normal in eye space
 getEyeSpace(eyeNorm, eyePosition);

 FrontColor = phongModel(eyePosition, eyeNorm);
 BackColor = phongModel(eyePosition, -eyeNorm);

 gl_Position = MVP * vec4(VertexPosition,1.0);
}

2.	 Use the following code for the fragment shader:
#version 400

in vec3 FrontColor;
in vec3 BackColor;

Chapter 2

79

in vec2 TexCoord;

layout(location = 0) out vec4 FragColor;

void main() {
 const float scale = 15.0;

 bvec2 toDiscard = greaterThan(fract(TexCoord * scale),
 vec2(0.2,0.2));

 if(all(toDiscard))
 discard;

 if(gl_FrontFacing)
 FragColor = vec4(FrontColor, 1.0);
 else
 FragColor = vec4(BackColor, 1.0);
}

3.	 Compile and link both shaders within the OpenGL application, and install the shader
program prior to rendering.

How it works...
Since we will be discarding some parts of the teapot, we will be able to see through the
teapot to the other side. This will cause the back sides of some polygons to become visible.
Therefore, we need to compute the lighting equation appropriately for both sides of each face.
We'll use the same technique presented earlier in the two-sided shading recipe.

The vertex shader is essentially the same as in the two-sided shading recipe, with the main
difference being the addition of the texture coordinate. The differences are highlighted in
the above listing. To manage the texture coordinate, we have an additional input variable,
VertexTexCoord, that corresponds to attribute location 2. The value of this input variable is
passed directly on to the fragment shader unchanged via the output variable TexCoord. The
ADS shading model is calculated twice, once using the given normal vector, storing the result
in FrontColor, and again using the reversed normal, storing that result in BackColor.

In the fragment shader, we calculate whether or not the fragment should be discarded based
on a simple technique designed to produce the lattice-like pattern shown in the preceding
image. We first scale the texture coordinate by the arbitrary scaling factor scale. This
corresponds to the number of lattice rectangles per unit (scaled) texture coordinate. We
then compute the fractional part of each component of the scaled texture coordinate using
the built-in function fract. Each component is compared to 0.2 using the built-in function
greaterThan, and the result is stored in the bool vector toDiscard. The greaterThan
function compares the two vectors component-wise, and stores the Boolean results in the
corresponding components of the return value.

The Basics of GLSL Shaders

80

If both components of the vector toDiscard are true, then the fragment lies within the inside
of each lattice frame, and therefore we wish to discard this fragment. We can use the built-in
function all to help with this check. The function all will return true if all of the components
of the parameter vector are true. If the function returns true, we execute the discard
statement to reject the fragment.

In the else branch, we color the fragment based on the orientation of the polygon, as in the
two-sided shading recipe presented earlier.

See also
ff Implementing two-sided shading

3
Lighting, Shading

Effects, and
Optimizations

In this chapter, we will cover:

ff Shading with multiple positional lights

ff Shading with a directional light source

ff Using per-fragment shading for improved realism

ff Using the halfway vector for improved performance

ff Simulating a spotlight

ff Creating a cartoon shading effect

ff Simulating fog

Introduction
In Chapter 2, we covered a number of techniques for implementing some of the shading
effects that were produced by the former fixed-function pipeline. We also looked at some
basic features of GLSL such as functions and subroutines. In this chapter, we'll move beyond
the shading model introduced in Chapter 2 and see how to produce shading effects such as
spotlights, fog, and cartoon style shading. We'll cover how to use multiple light sources, and
how to improve the realism of the results with a technique called per-fragment shading.

We'll also see techniques for improving the efficiency of the shading calculations by using the
so-called "halfway vector" and directional light sources.

Lighting, Shading Effects, and Optimizations

82

Shading with multiple positional lights
When shading with multiple light sources, we need to evaluate the shading equation for each
light and sum the results to determine the total light intensity reflected by a surface location.
The natural choice is to create uniform arrays to store the position and intensity of each light.
We'll use an array of structures so that we can store the values for multiple lights within a
single uniform variable.

The following image shows a "pig" mesh rendered with 5 light sources of different colors.
Note the multiple specular highlights.

Getting ready
Set up your OpenGL program with the vertex position in attribute location zero, and the
normal in location one.

How to do it...
To create a shader program that renders using the ADS (Phong) shading model with multiple
light sources, use the following steps:

1.	 Use the following vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;

out vec3 Color;

struct LightInfo {

Chapter 3

83

 vec4 Position; // Light position in eye coords.
 vec3 Intensity; // Light intensity
};
uniform LightInfo lights[5];

// Material parameters
uniform vec3 Kd; // Diffuse reflectivity
uniform vec3 Ka; // Ambient reflectivity
uniform vec3 Ks; // Specular reflectivity
uniform float Shininess; // Specular shininess factor

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 MVP;

vec3 ads(int lightIndex, vec4 position, vec3 norm)
{
 vec3 s = normalize(vec3(lights[lightIndex].Position –
 position));
 vec3 v = normalize(vec3(-position));
 vec3 r = reflect(-s, norm);
 vec3 I = lights[lightIndex].Intensity;
 return
 I * (Ka +
 Kd * max(dot(s, norm), 0.0) +
 Ks * pow(max(dot(r,v), 0.0), Shininess));
}

void main()
{
 vec3 eyeNorm = normalize(NormalMatrix * VertexNormal);
 vec4 eyePosition = ModelViewMatrix *
 vec4(VertexPosition,1.0);

 // Evaluate the lighting equation for each light
 Color = vec3(0.0);
 for(int i = 0; i < 5; i++)
 Color += ads(i, eyePosition, eyeNorm);

 gl_Position = MVP * vec4(VertexPosition,1.0);
}

2.	 Use the following simple fragment shader:
#version 400

in vec3 Color;

layout(location = 0) out vec4 FragColor;

void main() {

Lighting, Shading Effects, and Optimizations

84

 FragColor = vec4(Color, 1.0);
}

3.	 In the OpenGL application, set the values for the lights array in the vertex shader.
For each light, use something similar to the following code. This example uses the
C++ shader program class (prog is a GLSLProgram object).

prog.setUniform("lights[0].Intensity", vec3(0.0f,0.8f,0.8f));
prog.setUniform("lights[0].Position", position);

Update the array index as appropriate for each light.

How it works...
Within the vertex shader, the lighting parameters are stored in the uniform array lights.
Each element of the array is a struct of type LightInfo. This example uses five lights. The
light intensity is stored in the Intensity field, and the position in eye coordinates is stored
in the Position field.

The rest of the uniform variables are essentially the same as in the ADS (ambient, diffuse,
and specular) shader presented in Chapter 2.

The function ads is responsible for computing the shading equation for a given light source.
The index of the light is provided as the first parameter lightIndex. The equation is
computed based on the values in the lights array at that index.

In the main function, a for loop is used to compute the shading equation for each light, and
the results are summed into the shader output variable Color.

The fragment shader simply applies the interpolated color to the fragment.

See also
ff Chapter 2, Implementing per-vertex ambient, diffuse, and specular (ADS) shading

ff Shading with a directional light source

Shading with a directional light source
A core component of a shading equation is the vector that points from the surface location
towards the light source (s in previous examples). For lights that are extremely far away, there
is very little variation in this vector over the surface of an object. In fact, for very distant light
sources, the vector is essentially the same for all points on a surface. (Another way of thinking
about this is that the light rays are nearly parallel.) Such a model would be appropriate for a
distant, but powerful, light source such as the sun. Such a light source is commonly called a
directional light source because it does not have a specific position, only a direction.

Chapter 3

85

Of course, we are ignoring the fact that, in reality, the intensity
of the light decreases with the square of the distance from the
source. However, it is not uncommon to ignore this aspect for
directional light sources.

If we are using a directional light source, the direction towards the source is the same for
all points in the scene. Therefore, we can increase the efficiency of our shading calculations
because we no longer need to recompute the direction towards the light source for each
location on the surface.

Of course, there is a visual difference between a positional light source and a directional one.
The following images show a torus rendered with a positional light (left) and a directional light
(right). In the left image, the light is located somewhat close to the torus. The directional light
covers more of the surface of the torus due to the fact that all of the rays are parallel.

In previous versions of OpenGL, the fourth component of the light position was used to
determine whether or not a light was considered directional. A zero in the fourth component
indicated that the light source was directional and the position was to be treated as a
direction towards the source (a vector). Otherwise, the position was treated as the actual
location of the light source. In this example, we'll emulate the same functionality.

Getting ready
Set up your OpenGL program with the vertex position in attribute location zero, and the
vertex normal in location one.

Lighting, Shading Effects, and Optimizations

86

How to do it...
To create a shader program that implements ADS shading using a directional light source,
use the following code:

1.	 Use the following vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;

out vec3 Color;

uniform vec4 LightPosition;
uniform vec3 LightIntensity;

uniform vec3 Kd; // Diffuse reflectivity
uniform vec3 Ka; // Ambient reflectivity
uniform vec3 Ks; // Specular reflectivity
uniform float Shininess; // Specular shininess factor

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

vec3 ads(vec4 position, vec3 norm)
{
 vec3 s;
 if(LightPosition.w == 0.0)
 s = normalize(vec3(LightPosition));
 else
 s = normalize(vec3(LightPosition - position));
 vec3 v = normalize(vec3(-position));
 vec3 r = reflect(-s, norm);

 return
 LightIntensity * (Ka +
 Kd * max(dot(s, norm), 0.0) +
 Ks * pow(max(dot(r,v), 0.0), Shininess));
}

void main()
{
 vec3 eyeNorm = normalize(NormalMatrix * VertexNormal);
 vec4 eyePosition = ModelViewMatrix *
 vec4(VertexPosition,1.0);

 // Evaluate the lighting equation
 Color = ads(eyePosition, eyeNorm);

Chapter 3

87

 gl_Position = MVP * vec4(VertexPosition,1.0);
}

2.	 Use the same simple fragment shader from the previous recipe:
#version 400

in vec3 Color;

layout(location = 0) out vec4 FragColor;

void main() {
 FragColor = vec4(Color, 1.0);
}

How it works...
Within the vertex shader, the fourth coordinate of the uniform variable LightPosition is
used to determine whether or not the light is to be treated as a directional light. Inside the
ads function, which is responsible for computing the shading equation, the value of the vector
s is determined based on whether or not the fourth coordinate of LightPosition is zero.
If the value is zero, LightPosition is normalized and used as the direction towards the
light source. Otherwise, LightPosition is treated as a location in eye coordinates, and
we compute the direction towards the light source by subtracting the vertex position from
LightPosition and normalizing the result.

There's more...
There is a slight efficiency gain when using directional lights due to the fact that there is no
need to re-compute the light direction for each vertex. This saves a subtraction operation,
which is a small gain, but could accumulate when there are several lights, or when the lighting
is computed per-fragment.

See also
ff Chapter 2, Implementing per-vertex ambient, diffuse, and specular (ADS) shading

using a point light source

ff Using per-fragment shading for improved realism

Lighting, Shading Effects, and Optimizations

88

Using per-fragment shading for
improved realism

When the shading equation is evaluated within the vertex shader (as we have done in
previous recipes), we end up with a color associated with each vertex. That color is then
interpolated across the face, and the fragment shader assigns that interpolated color to
the output fragment. As mentioned previously (Chapter 2, Implementing flat shading), this
technique is often called Gouraud shading. Gouraud shading is (like all shading techniques)
an approximation, and can lead to some less than desirable results when, for example, the
reflection characteristics at the vertices have little resemblance to those in the center of the
polygon. For example, a bright specular highlight may reside in the center of a polygon, but
not at its vertices. Simply evaluating the shading equation at the vertices would prevent the
specular highlight from appearing in the rendered result. Other undesirable artifacts, such as
edges of polygons, may also appear when Gouraud shading is used, due to the fact that color
interpolation is less physically accurate.

To improve the accuracy of our results, we can move the computation of the shading equation
from the vertex shader to the fragment shader. Instead of interpolating color across the
polygon, we interpolate the position and normal vector, and use these values to evaluate the
shading equation at each fragment. This technique is often called Phong shading or Phong
interpolation. The results from Phong shading are much more accurate and provide more
pleasing results, but some undesirable artifacts may still appear.

The following images show the difference between Gouraud and Phong shading. The scene
on the left is rendered with Gouraud (per-vertex) shading, and on the right is the same scene
rendered using Phong (per-fragment) shading. Underneath the teapot is a partial plane, drawn
with a single quad. Note the difference in the specular highlight on the teapot, as well as the
variation in the color of the plane beneath the teapot.

In this example, we'll implement Phong shading by passing the position and normal from the
vertex shader to the fragment shader, and then evaluate the ADS shading model within the
fragment shader.

Chapter 3

89

Getting ready
Set up your OpenGL program with the vertex position in attribute location zero, and the
normal in location one. Your OpenGL application must also provide the values for the uniform
variables Ka, Kd, Ks, Shininess, LightPosition, and LightIntensity, the first four
of which are the standard material properties (reflectivities) of the ADS shading model. The
latter two are the position of the light in eye coordinates, and the intensity of the light source,
respectively. Finally, the OpenGL application must also provide the values for the uniforms
ModelViewMatrix, NormalMatrix, ProjectionMatrix, and MVP.

How to do it...
To create a shader program that can be used for implementing per-fragment (or Phong)
shading using the ADS shading model, use the following steps:

1.	 Use the following code for the vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;

out vec3 Position;
out vec3 Normal;

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

void main()
{
 Normal = normalize(NormalMatrix * VertexNormal);
 Position = vec3(ModelViewMatrix *
 vec4(VertexPosition,1.0));
 gl_Position = MVP * vec4(VertexPosition,1.0);
}

2.	 Use the following code for the fragment shader:
#version 400

in vec3 Position;
in vec3 Normal;

uniform vec4 LightPosition;
uniform vec3 LightIntensity;
uniform vec3 Kd; // Diffuse reflectivity
uniform vec3 Ka; // Ambient reflectivity
uniform vec3 Ks; // Specular reflectivity

Lighting, Shading Effects, and Optimizations

90

uniform float Shininess; // Specular shininess factor

layout(location = 0) out vec4 FragColor;

vec3 ads()
{
 vec3 n = normalize(Normal);
 vec3 s = normalize(vec3(LightPosition) - Position);
 vec3 v = normalize(vec3(-Position));
 vec3 r = reflect(-s, n);
 return
 LightIntensity *
 (Ka +
 Kd * max(dot(s, n), 0.0) +
 Ks * pow(max(dot(r,v), 0.0), Shininess));
}

void main() {
 FragColor = vec4(ads(), 1.0);
}

How it works...
The vertex shader has two output variables: Position and Normal. In the main function,
we convert the vertex normal to eye coordinates by transforming with the normal matrix, and
then store the converted value in Normal. Similarly, the vertex position is converted to eye
coordinates by transforming it by the model-view matrix, and the converted value is stored
in Position.

The values of Position and Normal are automatically interpolated and provided to the
fragment shader via the corresponding input variables. The fragment shader then computes
the standard ADS shading equation using the values provided. The result is then stored in the
output variable FragColor.

There's more...
Evaluating the shading equation within the fragment shader produces more accurate
renderings. However, the price we pay is in the evaluation of the shading model for each
pixel of the polygon, rather than at each vertex. The good news is that with modern graphics
cards, there may be enough processing power to evaluate all of the fragments for a polygon in
parallel. This can essentially provide nearly equivalent performance for either per-fragment or
per-vertex shading.

Chapter 3

91

See also
ff Chapter 2, Implementing per-vertex ambient, diffuse, and specular (ADS) shading

Using the halfway vector for improved
performance

As covered in the recipe Implementing per-vertex ambient, diffuse, and specular (ADS)
shading in Chapter 2, the specular term in the ADS shading equation involves the dot
product of the vector of pure reflection (r), and the direction towards the viewer (v).

In order to evaluate the above equation, we need to find the vector of pure reflection (r),
which is the reflection of the vector towards the light source (s) about the normal vector (n).

This equation is implemented by the GLSL function: reflect.

The above equation requires a dot product, an addition, and a couple of multiplication
operations. We can gain a slight improvement in the efficiency of the specular calculation by
making use of the following observation. When v is aligned with r, the normal vector (n) must
be halfway between v and s.

Let's define the halfway vector (h) as the vector that is halfway between v and s, where h is
normalized after the addition:

Lighting, Shading Effects, and Optimizations

92

The following picture shows the relative positions of the halfway vector and the others.

We could then replace the dot product in the equation for the specular component, with the
dot product of h and n.

Computing h requires fewer operations than it takes to compute r, so we should expect some
efficiency gain by using the halfway vector. The angle between the halfway vector and the
normal vector is proportional to the angle between the vector of pure reflection (r) and the
vector towards the viewer (v) when all vectors are coplanar. Therefore, we expect that the
visual results will be similar, although not exactly the same.

Getting ready
Start by utilizing the same shader program that was presented in the recipe Using per-
fragment shading for improved realism, and set up your OpenGL program as described there.

How to do it...
Using the same shader pair as in the recipe Using per-fragment shading for improved realism,
replace the ads function in the fragment shader with the following code:

vec3 ads()
{
 vec3 n = normalize(Normal);
 vec3 s = normalize(vec3(LightPosition) - Position);
 vec3 v = normalize(vec3(-Position));
 vec3 h = normalize(v + s);

 return

Chapter 3

93

 LightIntensity *
 (Ka +
 Kd * max(dot(s, Normal), 0.0) +
 Ks * pow(max(dot(h,n),0.0), Shininess));

}

How it works...
We compute the halfway vector by summing the direction towards the viewer (v), and the
direction towards the light source (s), and normalizing the result. The value for the halfway
vector is then stored in h.

The specular calculation is then modified to use the dot product between h and the normal
vector (Normal). The rest of the calculation is unchanged.

There's more...
The halfway vector provides a slight improvement in the efficiency of our specular calculation,
and the visual results are quite similar. The following images show the teapot rendered using
the halfway vector (right), versus the same rendering using the equation provided in Chapter
2, Implementing per-vertex ambient, diffuse, and specular (ADS) shading (left). The halfway
vector produces a larger specular highlight, but the visual impact is not substantially different.
If desired, we could compensate for the difference in the size of the specular highlight by
increasing the value of the exponent Shininess.

See also
ff Using per-fragment shading for improved realism

Lighting, Shading Effects, and Optimizations

94

Simulating a spotlight
The fixed function pipeline had the ability to define light sources as spotlights. In such a
configuration, the light source was considered to be one that only radiated light within a cone,
the apex of which was located at the light source. Additionally, the light was attenuated so
that it was maximal along the axis of the cone and decreased towards the outside edges. This
allowed us to create light sources that had a similar visual effect to a real spotlight.

The following image shows a teapot and a torus rendered with a single spotlight. Note the
slight decrease in the intensity of the spotlight from the center towards the outside edge.

In this recipe, we'll use a shader to implement a spotlight effect similar to that produced by
the fixed-function pipeline.

Chapter 3

95

The spotlight's cone is defined by a spotlight direction (d in the preceding figure), a cutoff
angle (c in the preceding figure), and a position (P in the preceding figure). The intensity of the
spotlight is considered to be strongest along the axis of the cone, and decreases as you move
towards the edges.

Getting ready
Start with the same vertex shader from the recipe Using per-fragment shading for improved
realism. Your OpenGL program must set the values for all uniform variables defined in that
vertex shader as well as the fragment shader shown below.

How to do it...
To create a shader program that uses the ADS shading model with a spotlight, use the
following code for the fragment shader.

#version 400

in vec3 Position;
in vec3 Normal;

struct SpotLightInfo {
 vec4 position; // Position in eye coords.
 vec3 intensity; // Amb., Diff., and Specular intensity
 vec3 direction; // Normalized direction of the spotlight
 float exponent; // Angular attenuation exponent
 float cutoff; // Cutoff angle (between 0 and 90)
};
uniform SpotLightInfo Spot;

uniform vec3 Kd; // Diffuse reflectivity
uniform vec3 Ka; // Ambient reflectivity
uniform vec3 Ks; // Specular reflectivity
uniform float Shininess; // Specular shininess factor

layout(location = 0) out vec4 FragColor;

vec3adsWithSpotlight()
{
 vec3 s = normalize(vec3(Spot.position) - Position);
 float angle = acos(dot(-s, Spot.direction));
 float cutoff = radians(clamp(Spot.cutoff, 0.0, 90.0));
 vec3 ambient = Spot.intensity * Ka;

 if(angle < cutoff) {
 float spotFactor = pow(dot(-s, Spot.direction),
 Spot.exponent);
 vec3 v = normalize(vec3(-Position));

Lighting, Shading Effects, and Optimizations

96

 vec3 h = normalize(v + s);
return
 ambient +
 spotFactor * Spot.intensity * (
 Kd * max(dot(s, Normal), 0.0) +
 Ks * pow(max(dot(h,Normal), 0.0),Shininess));
 } else {
 return ambient;
 }
}

void main() {
 FragColor = vec4(adsWithSpotlight(), 1.0);
}

How it works...
The structure SpotLightInfo defines all of the configuration options for the spotlight.
We declare a single uniform variable named Spot to store the data for our spotlight. The
position field defines the location of the spotlight in eye coordinates. The intensity field
is the intensity (ambient, diffuse, and specular) of the spotlight. If desired, you could break
this into three variables. The direction field will contain the direction that the spotlight is
pointing, which defines the center axis of the spotlight's cone. This vector should be specified
in eye coordinates. Within the OpenGL program it should be transformed by the normal
matrix in the same way that normal vectors would be transformed. We could do so within the
shader; however, within the shader, the normal matrix would be specified for the object being
rendered. This may not be the appropriate transform for the spotlight's direction.

The exponent field defines the exponent that is used when calculating the angular
attenuation of the spotlight. The intensity of the spotlight is decreased in proportion to the
cosine of the angle between the vector from the light to the surface location (the negation of
the variable s) and the direction of the spotlight. That cosine term is then raised to the power
of the variable exponent. The larger the value of this variable, the faster the intensity of the
spotlight is decreased. This is quite similar to the exponent in the specular shading term.

The cutoff field defines the angle between the central axis and the outer edge of the
spotlight's cone of light. We specify this angle in degrees, and clamp its value between 0
and 90.

Chapter 3

97

The function adsWithSpotlight computes the standard ambient, diffuse, and specular (ADS)
shading equation, using a spotlight as the light source. The first line computes the vector from
the surface location to the spotlight's position (s). Next, the spotlight's direction is normalized
and stored within spotDir. The angle between spotDir and the negation of s is then
computed and stored in the variable angle. The variable cutoff stores the value of
Spot.cutoff after it has been clamped between 0 and 90, and converted from degrees to
radians. Next, the ambient lighting component is computed and stored in the variable ambient.

We then compare the value of the variable angle with that of the variable cutoff. If angle
is less than cutoff, then the surface point is within the spotlight's cone. Otherwise the
surface point only receives ambient light, so we return only the ambient component.

If angle is less than cutoff, we compute the variable spotFactor by raising the dot
product of –s and spotDir to the power of Spot.exponent. The value of spotFactor
is used to scale the intensity of the light so that the light is maximal in the center of the cone,
and decreases as you move towards the edges. Finally, the ADS shading equation is computed
as usual, but the diffuse and specular terms are scaled by spotFactor.

See also
ff Using per-fragment shading for improved realism

ff Chapter 2, Implementing ambient, diffuse, and, specular shading (ADS) with point
light source

Creating a cartoon shading effect
Toon shading (also called Celshading) is a non-photorealistic technique that is intended to
mimic the style of shading often used in hand-drawn animation. There are many different
techniques that are used to produce this effect. In this recipe, we'll use a very simple
technique that involves a slight modification to the ambient and diffuse shading model.

Lighting, Shading Effects, and Optimizations

98

The basic effect is to have large areas of constant color with sharp transitions between them.
This simulates the way that an artist might shade an object using strokes of a pen or brush.
The following image shows an example of a teapot and torus rendered with toon shading.

The technique presented here involves computing only the ambient and diffuse components
of the typical ADS shading model, and quantizing the cosine term of the diffuse component.
In other words, the value of the dot product normally used in the diffuse term is restricted to a
fixed number of possible values. The following table illustrates the concept for four levels:

Cosine of the Angle between s and n Value used
Between 1 and 0.75 0.75
Between 0.75 and 0.5 0.5
Between 0.5 and 0.25 0.25
Between 0.25 and 0.0 0.0

In the preceding table, s is the vector towards the light source and n is the normal vector
at the surface. By restricting the value of the cosine term in this way, the shading displays
strong discontinuities from one level to another (see the preceding image), simulating the pen
strokes of hand-drawn cel animation.

Getting ready
Start with the same vertex shader from the recipe Using per-fragment shading for improved
realism. Your OpenGL program must set the values for all uniform variables defined in that
vertex shader as well as the fragment shader code described below.

Chapter 3

99

How to do it...
To create a shader program that produces a toon shading effect, use the following fragment
shader:

#version 400

in vec3 Position;
in vec3 Normal;

struct LightInfo {
 vec4 position;
 vec3 intensity;
};
uniform LightInfo Light;

uniform vec3 Kd; // Diffuse reflectivity
uniform vec3 Ka; // Ambient reflectivity

const int levels = 3;
const float scaleFactor = 1.0 / levels;

layout(location = 0) out vec4 FragColor;

vec3 toonShade()
{
 vec3 s = normalize(Light.position.xyz - Position.xyz);
 float cosine = max(0.0, dot(s, Normal));
 vec3 diffuse = Kd * floor(cosine * levels) *
 scaleFactor;

 return Light.intensity * (Ka + diffuse);
}

void main() {
 FragColor = vec4(toonShade(), 1.0);
}

How it works...
The constant variable levels defines how many distinct values will be used in the diffuse
calculation. This could also be defined as a uniform variable to allow for configuration from the
main OpenGL application. We will use this variable to quantize the value of the cosine term in
the diffuse calculation.

Lighting, Shading Effects, and Optimizations

100

The function toonShade is the most significant part of this shader. We start by computing
s, the vector towards the light source. Next, we compute the cosine term of the diffuse
component by evaluating the dot product of s and Normal. The next line quantizes that value
in the following way. Since the two vectors are normalized, and we have removed negative
values with the max function, we are sure that the value of cosine is between zero and one.
By multiplying this value by levels and taking the floor, the result will be an integer between
0 and levels–1. When we divide that value by levels (by multiplying by scaleFactor), we
scale these integral values to be between zero and one again. The result is a value that can
be one of levels possible values spaced between zero and one. This result is then multiplied
by Kd, the diffuse reflectivity term.

Finally, we combine the diffuse and ambient components together to get the final color for
the fragment.

There's more...
When quantizing the cosine term, we could have used ceil instead of floor. Doing so would
have simply shifted each of the possible values up by one level. This would make the levels of
shading slightly brighter.

The typical cartoon style seen in most cel animation includes black outlines around the
silhouettes and along other edges of a shape. The shading model presented here does not
produce those black outlines. There are several techniques for producing them, and we'll look
at one later on in this book.

See also
ff Using per-fragment shading for improved realism

ff Chapter 2, Implementing ambient, diffuse, and specular (ADS) shading using
a point light source

ff Chapter 6, Drawing silhouette lines using the geometry shader

Simulating fog
A simple fog effect can be achieved by mixing the color of each fragment with a constant fog
color. The amount of influence of the fog color is determined by the distance from the camera.
We could use either a linear relationship between the distance and the amount of fog color, or
we could use a non-linear relationship such as an exponential one.

The following image shows four teapots rendered with a fog effect produced by mixing the fog
color in a linear relationship with distance.

Chapter 3

101

To define this linear relationship we can use the following equation:

In the preceding equation, dmin is the distance from the eye where the fog is minimal (no fog
contribution), and dmax is the distance where the fog color obscures all other colors in the
scene. The variable z represents the distance from the eye. The value f is the fog factor. A fog
factor of zero represents 100% fog, and a factor of one represents no fog. Since fog typically
looks thickest at large distances, the fog factor is minimal when |z| is equal to dmax, and
maximal when |z| is equal to dmin.

Since the fog is applied by the fragment shader, the effect will only be visible
on the objects that are rendered. It will not appear on any "empty" space
in the scene (the background). To help make the fog effect consistent, you
should use a background color that matches the maximum fog color.

Getting ready
Start with the same vertex shader from the recipe Using per-fragment shading for improved
realism. Your OpenGL program must set the values for all uniform variables defined in that
vertex shader as well as the fragment shader shown below.

Lighting, Shading Effects, and Optimizations

102

How to do it...
To create a shader that produces a fog-like effect, use the following code for the
fragment shader.

#version 400

in vec3 Position;
in vec3 Normal;

struc tLightInfo {
 vec4 position;
 vec3 intensity;
};
uniform LightInfo Light;

struct FogInfo {
 float maxDist;
 float minDist;
 vec3 color;
};
uniform FogInfo Fog;

uniform vec3 Kd; // Diffuse reflectivity
uniform vec3 Ka; // Ambient reflectivity
uniform vec3 Ks; // Specular reflectivity
uniform float Shininess; // Specular shininess factor

layout(location = 0) out vec4 FragColor;

vec3 ads()
{
 vec3 s = normalize(Light.position.xyz - Position.xyz);
 vec3 v = normalize(vec3(-Position));
 vec3 h = normalize(v + s);
 vec3 ambient = Ka * Light.intensity;
 vec3 diffuse = Light.intensity * Kd *
 max(0.0, dot(s, Normal));
 vec3 spec = Light.intensity * Ks *
 pow(max(0.0, dot(h, Normal)), Shininess);

 return ambient + diffuse + spec;
}

void main() {
 float dist = abs(Position.z);
 float fogFactor = (Fog.maxDist - dist) /
 (Fog.maxDist - Fog.minDist);
 fogFactor = clamp(fogFactor, 0.0, 1.0);

Chapter 3

103

 vec3 shadeColor = ads();
 vec3 color = mix(Fog.color, shadeColor, fogFactor);

 FragColor = vec4(color, 1.0);
}

How it works...
In this shader, the ads function is almost exactly the same as the one used in the recipe
Using the halfway vector for improved performance. The differences are only in the choice
of variable names. The part of this shader that deals with the fog effect lies within the
main function.

The uniform variable Fog contains the parameters that define the extent and color of the fog.
The field minDist is the distance from the eye to the fog's starting point, and maxDist is the
distance to the point where the fog is maximal. The field color is the color of the fog.

The variable dist is used to store the distance from the surface point to the eye position.
The z coordinate of the position is used as an estimate of the actual distance. The variable
fogFactor is computed using the preceding equation. Since dist may not be between
minDist and maxDist, we clamp the value of fogFactor to be between zero and one.

We then call the function ads to evaluate the basic ADS shading model. The result of this is
stored in the variable shadeColor.

Finally, we mix shadeColor and Fog.color together based on the value of fogFactor,
and the result is used as the fragment color.

There's more...
In this recipe we used a linear relationship between the amount of fog color and the distance
from the eye. Another choice would be to use an exponential relationship. For example, the
following equation could be used:

In the above equation, d represents the density of the fog. Larger values would create
"thicker" fog. We could also square the exponent to create a slightly different relationship
(a faster increase in the fog with distance).

Lighting, Shading Effects, and Optimizations

104

Computing distance from the eye
In the above code, we used the absolute value of the z coordinate as the distance from the
camera. This may cause the fog to look a bit unrealistic in certain situations. To compute a
more precise distance, we could replace the line:

float dist = abs(Position.z);

with the following.

float dist = length(Position.xyz);

Of course, the latter version requires a square root, and therefore would be a bit slower
in practice.

See also
ff Using per-fragment shading for improved realism

ff Chapter 2, Implementing ambient, diffuse, and specular (ADS) shading using a point
light source

4
Using Textures

In this chapter, we will cover:

ff Applying a 2D texture

ff Applying multiple textures

ff Using alpha maps to discard pixels

ff Using normal maps

ff Simulating reflection with cube maps

ff Simulating refraction with cube maps

ff Image-based lighting

ff Applying a projected texture

ff Rendering to a texture

Introduction
Textures are an important and fundamental aspect of real-time rendering in general,
and OpenGL in particular. The use of textures within a shader opens up a huge range of
possibilities. Beyond just using textures as sources of color information, they can be used
for things like additional sources of data (such as depth information), shading parameters,
displacement maps, normal vectors, or other vertex data. The list is virtually endless. Textures
are among the most widely used tool for advanced effects in OpenGL programs, and that isn't
likely to change anytime soon.

In fact, the term "texture" as it is used in OpenGL 4.0 could be considered
as somewhat of a misnomer. Textures are used for many different purposes
beyond just the storage of image data, and might be more accurately
described as just an arbitrary chunk of memory.

Using Textures

106

In this chapter, we'll look at some basic and advanced texturing techniques. We'll start with
the basics, just applying color textures, and move on to using textures as normal maps
and environment maps. With environment maps, we can simulate things like reflection
and refraction. We'll see an example of projecting a texture onto several objects in a scene
similar to the way that a slide projector projects an image. Finally, we'll wrap up with an
example of rendering directly to a texture (using framebuffer objects (FBOs)) and then
applying that texture to an object.

Applying a 2D texture
In GLSL, applying a texture to a surface involves accessing texture memory to retrieve a color
associated with a texture coordinate, and then applying that color to the output fragment.
The application of the color to the output fragment could involve mixing the color with the
color produced by a shading model, simply applying the color directly, using the color in the
reflection model, or some other mixing process. In GLSL, textures are accessed via sampler
variables. A sampler variable is a "handle" to a texture unit. It is typically declared as a uniform
variable within the shader and initialized within the main OpenGL application to point to the
appropriate texture unit.

In this recipe, we'll look at a simple example involving the application of a 2D texture to a
surface as shown in the following image. We'll use the texture color to scale the color provided
by the Phong (ADS) reflection model. The following image shows the results of a brick texture
applied to a cube. The texture is shown on the right and the rendered result is on the left.

Getting ready
Set up your OpenGL application to provide the vertex position in attribute location 0, the
vertex normal in attribute location 1, and the texture coordinate in attribute location 2. The
parameters for the Phong reflection model are declared again as uniform variables within the
shader and must be initialized from the OpenGL program.

Chapter 4

107

How to do it...
To render a simple shape with a 2D texture, use the following steps:

1.	 In your initialization of the OpenGL application, use the following code to load the
texture. (The following makes use of the Qt libraries, and assumes that the handle to
the shader program is stored in programHandle.)
// Load texture file
const char * texName = "texture/brick1.jpg";
QImage timg =
 QGLWidget::convertToGLFormat(QImage(texName,"JPG"));

// Copy file to OpenGL
glActiveTexture(GL_TEXTURE0);
GLuint tid;
glGenTextures(1, &tid);
glBindTexture(GL_TEXTURE_2D, tid);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, timg.width(),
 timg.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE,
 timg.bits());
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);

// Set the Tex1 sampler uniform to refer to texture unit 0
int loc = glGetUniformLocation(programHandle, "Tex1");
if(loc >= 0)
 glUniform1i(loc, 0);
else
 fprintf(stderr, "Uniform variable Tex1 not found!\n");

2.	 Use the following code for the vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;
layout (location = 2) in vec2 VertexTexCoord;

out vec3 Position;
out vec3 Normal;
out vec2 TexCoord;

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

Using Textures

108

void main()
{
 TexCoord = VertexTexCoord;
 Normal = normalize(NormalMatrix * VertexNormal);
 Position = vec3(ModelViewMatrix *
 vec4(VertexPosition,1.0));

 gl_Position = MVP * vec4(VertexPosition,1.0);
}

3.	 Use the following code for the fragment shader:
#version 400

in vec3 Position;
in vec3 Normal;
in vec2 TexCoord;

uniform sampler2D Tex1;

struct LightInfo {
 vec4 Position; // Light position in eye coords.
 vec3 Intensity; // A,D,S intensity
};
uniform LightInfo Light;

struct MaterialInfo {
 vec3 Ka; // Ambient reflectivity
 vec3 Kd; // Diffuse reflectivity
 vec3 Ks; // Specular reflectivity
 float Shininess; // Specular shininess factor
};
uniform MaterialInfo Material;

layout(location = 0) out vec4 FragColor;

void phongModel(vec3 pos, vec3 norm,
 out vec3 ambAndDiff, out vec3 spec) {
 // Compute the ADS shading model here, return
ambient
 // and diffuse color in ambAndDiff, and return specular
 // color in spec
 …
}

void main() {
 vec3 ambAndDiff, spec;
 vec4 texColor = texture(Tex1, TexCoord);
 phongModel(Position, Normal, ambAndDiff, spec);
 FragColor = vec4(ambAndDiff, 1.0) * texColor +
 vec4(spec, 1.0);
}

Chapter 4

109

How it works...
The first code segment demonstrates the steps needed to load the texture from a file, copy
the texture data to OpenGL memory, and initialize the sampler variable within the GLSL
program. The first step, loading the texture image file, is very much dependent on your
programming environment. As I prefer to use the Qt libraries, this example uses the classes
QtGLWidget and QImage to assist with the process. The QImage class constructor takes
care of loading the image file. The name of the texture image is passed as the first argument,
and the second argument is a string indicating the image file format. The QImage object is
immediately passed to the static method convertToGLFormat, which does exactly what
it says. It converts the image data to a format that is compatible with OpenGL (format GL_
RGBA). The final result is stored in a QImage object named timg.

If Qt is not available, there are a variety of other options for loading image
files. Check out DevIL (http://openil.sourceforge.net/),
Freeimage (http://freeimage.sourceforge.net/), or SOIL
(http://www.lonesock.net/soil.html).

Experienced OpenGL programmers should be familiar with the next part of the code. First,
we call glActiveTexture to set the current active texture unit to GL_TEXTURE0 (the first
texture unit). The subsequent texture state calls will be effective on texture unit zero. The next
two lines involve creating a new texture object by calling glGenTextures. The handle for the
new texture object is stored in the variable tid. Then, we call glBindTexture to bind the
new texture object to the GL_TEXTURE_2D target. Once the texture is bound to that target,
we can copy the data for that texture into the texture object using glTexImage2D. Note that
the last argument to this function is a pointer to the raw data for the image. As this example
uses the QImage class from the Qt libraries, we can get access to that pointer by calling the
function bits.

The next steps involve setting the magnification and minimization filters for the texture object
using glTexParameterf. For this example, we'll use GL_LINEAR.

The texture filter setting determines whether any interpolation will be done
prior to returning the color from the texture. This setting can have a strong
effect on the quality of the results. In this example, GL_LINEAR indicates
that it will return a weighted average of the four texels that are nearest to the
texture coordinates. For details on the other filtering options, see the OpenGL
documentation for glTexParameterf.

Finally, we set the uniform variable Tex1 in the GLSL program to zero. This is our sampler
variable. Note that it is declared within the fragment shader with type sampler2D. Setting its
value to zero indicates to the OpenGL system that the variable should refer to texture unit zero
(the same one selected previously with glActiveTexture).

Using Textures

110

The vertex shader is very similar to the one used in previous examples except for the addition
of the texture coordinate input variable VertexTexCoord, which is bound to attribute
location 2. Its value is simply passed along to the fragment shader by assigning it to the
shader output variable TexCoord.

As just stated, we need to provide the texture coordinates as
vertex attribute 2. For more information about sending data to
a shader via vertex attributes see Chapter 1, Sending data to a
shader using per-vertex attributes and vertex buffer objects.

The fragment shader is also very similar to those used in previous recipes. The important parts
for the purpose of this recipe involve the variable Tex1. Tex1 is a sampler2D variable that
was assigned by the OpenGL program to refer to texture unit zero. In the main function, we use
that variable; along with the texture coordinate (TexCoord) to access the texture. We do so by
calling the built-in function texture. This is a general purpose function that is used to access a
texture. The first parameter is a sampler variable indicating which texture unit is to be accessed,
and the second parameter is the texture coordinate used to access the texture. The return value
is a vec4 containing the color obtained by the texture access (stored in texColor), which in
this case is an interpolated value with the four nearest texture values (texels).

Next, the shading model is evaluated by calling phongModel and the results are returned in
the parameters ambAndDiff and spec. The variable ambAndDiff contains only the ambient
and diffuse components of the shading model. A color texture is often only intended to affect
the diffuse component of the shading model and not the specular. So we multiply the texture
color by the ambient and diffuse components and then add the specular. The final sum is
then applied to the output fragment FragColor.

There's more...
There are several choices that could be made when deciding how to combine the texture color
with other colors associated with the fragment. In this example, we decided to multiply the
colors, but one could have chosen to use the texture color directly, or to mix them in some way
based on the alpha value.

Another choice would be to use the texture value as the value of the diffuse and/or specular
reflectivity coefficient(s) in the Phong reflection model. The choice is up to you!

See also
ff Per-fragment shading

Chapter 4

111

Applying multiple textures
The application of multiple textures to a surface can be used to create a wide variety of
effects. The base layer texture might represent the "clean" surface and the second layer could
provide additional detail such as shadow, blemishes, roughness, or damage. In many games,
so-called light maps are applied as an additional texture layer to provide the information
about light exposure, effectively producing shadows and shading without the need to
explicitly calculate the reflection model. These kinds of textures are sometimes referred to as
"prebaked" lighting.

In this recipe, we'll demonstrate the technique by applying two layers of texture. The base
layer will be a fully opaque brick image, and the second layer will be one that is partially
transparent. The non-transparent parts look like moss that has grown on the bricks beneath.

The following image shows an example of multiple textures. The textures on the left are
applied to the cube on the right. The base layer is the brick texture, and the moss texture is
applied on top. The transparent parts of the moss texture reveal the brick texture underneath.

Getting ready
Set up your OpenGL application to provide the vertex position in attribute location 0, the
vertex normal in attribute location 1, and the texture coordinate in attribute location 2. The
parameters for the Phong reflection model are declared as uniform variables within the
shader and must be initialized from the OpenGL program.

There are two sampler variables within the fragment shader that must be initialized to refer to
the appropriate texture units: BrickTex and MossTex. We'll cover that in the first part of the
next section.

Using Textures

112

How to do it...
To render objects with multiple textures, use the following steps:

1.	 In the initialization section of your OpenGL program, load the two images into texture
memory in the same way as indicated in the previous recipe Applying a 2D texture.
Make sure that the brick texture is loaded into texture unit 0 and the moss texture is
in texture unit 1. Use the following code to do this:
GLuint texIDs[2];
glGenTextures(2, texIDs);

// Load brick texture file
const char * texName = "texture/brick1.jpg";
QImage brickImg =
 QGLWidget::convertToGLFormat(QImage(texName,"JPG"));

// Copy brick texture to OpenGL
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texIDs[0]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, brickImg.width(),
 brickImg.height(), 0,GL_RGBA, GL_UNSIGNED_BYTE,
 brickImg.bits());
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);

// Set the BrickTex sampler uniform to texture unit 0
int uniloc = glGetUniformLocation(programHandle, "BrickTex");
if(uniloc >= 0)
 glUniform1i(uniloc, 0);

// Load moss texture file
texName = "texture/moss.png";
QImage mossImg =
 QGLWidget::convertToGLFormat(QImage(texName,"PNG"));

// Copy moss texture to OpenGL
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, texIDs[1]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, mossImg.width(),
 mossImg.height(), 0,GL_RGBA, GL_UNSIGNED_BYTE,
 mossImg.bits());
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);

// Set the MossTex sampler uniform to texture unit 1
uniloc = glGetUniformLocation(programHandle, "MossTex");

Chapter 4

113

if(uniloc >= 0)
 glUniform1i(uniloc, 1);

2.	 Use the vertex shader from the previous recipe Applying a 2D texture.

3.	 Starting with the fragment shader from the recipe Applying a 2D texture, replace the
declaration of the sampler variable Tex1 with the following code:
uniform sampler2D BrickTex;
uniform sampler2D MossTex;

4.	 Replace the main function in the fragment shader with the following code:
void main() {
 vec3 ambAndDiff, spec;
 vec4 brickTexColor = texture(BrickTex, TexCoord);
 vec4 mossTexColor = texture(MossTex, TexCoord);
 phongModel(Position, Normal, ambAndDiff, spec);
 vec3 texColor = mix(brickTexColor, mossTexColor,
 mossTexColor.a);
 FragColor = vec4(ambAndDiff, 1.0) * texColor + vec4(spec,1.0);
}

How it works...
The preceding code that loads the two textures into the OpenGL program is very similar to the
code from the previous recipe Applying a 2D texture. The main difference is that we load each
texture into a different texture unit. When loading the brick texture, we set the OpenGL state
such that the active texture unit is unit zero.

glActiveTexture(GL_TEXTURE0);

And when loading the second texture, we set the OpenGL state to texture unit one.

glActiveTexture(GL_TEXTURE1);

Once the two textures are loaded, we set the uniform variables to point to the appropriate
texture units using glUniform1i. The first call sets the variable BrickTex to texture unit 0,
and the second sets the variable MossTex to texture unit 1.

Within the fragment shader, we access the two textures using the corresponding uniform
variables, and store the results in brickTexColor and mossTexColor. The two colors are
blended together using the built-in function mix. The third parameter to the mix function
is the percentage used when mixing the two colors. The alpha value of the moss texture is
used for that parameter. This causes the result to be a linear interpolation of the two colors
based on the value of the alpha in the moss texture. For those familiar with OpenGL blending
functions, this is the same as the following blending function:

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Using Textures

114

In this case, the moss color would be the source color, and the brick color would be the
destination color.

Finally, we multiply the result of the mix function by the ambient and diffuse components of the
Phong reflection model, add the specular component, and apply the result to the fragment.

There's more...
In this example, we mixed the two texture colors together using the alpha value of the second
texture. This is just one of many options for mixing the texture colors. There are a number of
different choices here, and your choice will be dependent on the kind of texture data available
and the desired effect.

A popular technique is to use an additional vertex attribute to augment the amount of blending
between the textures. This additional vertex attribute would allow us to vary the blending factor
throughout a model. For example, we could vary the amount of moss that grows on a surface by
defining another vertex attribute, which would control the amount of blending between the moss
texture and the base texture. A value of zero might correspond to zero moss, up to a value of one
that would enable blending based on the texture's alpha value alone.

See also
ff Applying a 2D texture

Using alpha maps to discard pixels
To create the effect of an object that has holes, we could use a texture with an appropriate
alpha channel that contains information about the transparent parts of the object. However, that
requires us to make sure to make the depth buffer read-only, and render all of our polygons from
back to front in order to avoid blending problems. We would need to sort our polygons based on
the camera position and then render them in the correct order. What a pain!

Again, shaders come to the rescue. With GLSL shaders, we can avoid all of the above by using
the discard keyword to completely discard fragments when the alpha value of the texture
map is below a certain value. By completely discarding the fragments, there's no need to
modify the depth buffer because when discarded, they aren't evaluated against the depth
buffer at all. We don't need to depth-sort our polygons because there is no blending.

The following image on the right shows the teapot with fragments discarded based upon the
texture on the left. The fragment shader discards fragments that correspond to texels that
have an alpha value below a certain threshold.

Chapter 4

115

If we create a texture map that has an alpha channel, we can use the value of the alpha
channel to determine whether or not the fragment should be discarded. If the alpha value is
below a certain value, then the pixel is discarded.

As this will allow the viewer to see within the object, possibly making some back faces visible,
we'll need to use two-sided lighting when rendering the object.

Getting ready
Start with the same shader pair and set up from the previous recipe, Applying multiple textures.
Load the base texture for the object into texture unit 0, and your alpha map into texture unit 1.
Assign a value of zero to the uniform BaseTex and assign a value of one to AlphaTex.

How to do it...
To discard fragments based on alpha data from a texture, use the following steps:

1.	 Use the same vertex and fragment shaders from the recipe Applying multiple
textures. However, make the following modifications to the fragment shader.

2.	 Replace the sampler2D uniform variables with the following:
uniform sampler2D BaseTex;
uniform sampler2D AlphaTex;

3.	 Replace the contents of the main function with the following code:
void main() {
 vec4 baseColor = texture(BaseTex, TexCoord);
 vec4 alphaMap = texture(AlphaTex, TexCoord);

 if(alphaMap.a < 0.15)
 discard;
 else {
 if(gl_FrontFacing) {
 FragColor = vec4(phongModel(Position,Normal),1.0) *
 baseColor;

Using Textures

116

 } else {
 FragColor = vec4(phongModel(Position,-Normal),1.0) *
 baseColor;
 }
 }
}

How it works...
Within the main function of the fragment shader, we access the base color texture, and store
the result in baseColor. We access the alpha map texture and store the result in alphaMap.
If the alpha component of alphaMap is less than a certain value (0.15 in this example), then
we discard the fragment using the discard keyword.

Otherwise, we compute the Phong lighting model using the normal vector oriented
appropriately, depending on whether or not the fragment is a front facing fragment. The result
of the Phong model is multiplied by the base color from BaseTex.

There's more...
This technique is fairly simple and straightforward, and is a nice alternative to traditional
blending techniques. It is a great way to make holes in objects or to present the appearance
of decay. If your alpha map has a gradual change in the alpha throughout the map, (for
example, an alpha map where the alpha values make a smoothly varying height field) then
it can be used to animate the decay of an object. We could vary the alpha threshold (0.15 in
the preceding example) from 0.0 to 1.0 to create an animated effect of the object gradually
decaying away to nothing.

See also
ff Applying multiple textures

Using normal maps
Normal mapping is a technique for "faking" variations in a surface that doesn't really exist
in the geometry of the surface. It is useful for producing surfaces that have bumps, dents,
roughness, or wrinkles without actually providing enough position information (vertices) to
fully define those deformations. The underlying surface is actually smooth, but is made to
appear rough by varying the normal vectors using a texture (the normal map). The technique
is closely related to bump mapping where the geometry of the surface is actually deformed
based on a texture. With normal maps, instead of actually deforming the position, we modify
the normal vectors. This creates the appearance of a bumpy surface without actually providing
the geometry of the bumps.

Chapter 4

117

A normal map is a texture in which the data stored within the texture is interpreted as normal
vectors instead of colors. The normal vectors are typically encoded into the RGB information
of the normal map such that the red channel contains the x coordinate, the green channel
contains the y, and the blue channel contains the z coordinate. The normal map can then
be used as a "texture" in the sense that the texture values affect the normal vector used in
the reflection model rather than the color of the surface. This can be used to make a surface
look like it contains variations (bumps or wrinkles) that do not actually exist in the geometry
of the mesh.

The following images show an ogre mesh (courtesy of Keenan Crane) with and without a
normal map. The upper-left corner shows the base color texture for the ogre. In this example,
we use this texture as the diffuse reflectivity in the Phong reflection model. The upper right
shows the ogre with the color texture and default normal vectors. The bottom left is the
normal map texture. The bottom right shows the ogre with the color texture and normal map.
Note the additional detail in the wrinkles provided by the normal map.

A normal map can be produced in a number of ways. Many 3D modeling programs such
as Maya, Blender, or 3D Studio Max can generate normal maps. Normal maps can also be
generated directly from grayscale hightmap textures. There is a NVIDIA plugin for Adobe
Photoshop that provides this functionality (see http://developer.nvidia.com/
object/photoshop_dds_plugins.html).

Using Textures

118

Normal maps are interpreted as vectors in tangent space (also called the object local
coordinate system). In the tangent coordinate system, the origin is located at the surface
point and the normal to the surface is aligned with the z axis (0, 0, 1). Therefore, the x and y
axes are at a tangent to the surface. The following image shows an example of the tangent
frames at two different positions on a surface.

The advantage of using such a coordinate system lies in the fact that the normal vectors
stored within the normal map can be treated as perturbations to the true normal, and
are independent of the object coordinate system. This saves us the need to transform the
normals, add the perturbed normal, and renormalize. Instead, we can use the value in the
normal map directly in the reflection model without any modification.

To make all of this work, we need to evaluate the reflection model in tangent space. In order to
do so, we transform the vectors used in our reflection model into tangent space in the vertex
shader, and then pass them along to the fragment shader where the reflection model will be
evaluated. To define a transformation from the camera (eye) coordinate system to the tangent
space coordinate system, we need three normalized, co-orthogonal vectors (defined in eye
coordinates) that define the tangent space system. The z axis is defined by the normal vector
(n), the x axis is defined by a vector called the tangent vector (t), and the y axis is often called
the binormal vector (b). A point P, defined in eye coordinates, could then be transformed into
tangent space by multiplying by the following matrix:

Chapter 4

119

In the preceding equation, S is the point in tangent space and P is the point in eye
coordinates. In order to apply this transformation within the vertex shader, the OpenGL
program must provide at least two of the three vectors that define the object local system
along with the vertex position. The usual situation is to provide the normal vector (n) and the
tangent vector (t). If the tangent vector is provided, the binormal vector can be computed as
the cross product of the tangent and normal vectors.

Tangent vectors are sometimes included as additional data in mesh data structures. If the
tangent data is not available, we can approximate the tangent vectors by deriving them from
the variation of the texture coordinates across the surface (see "Computing Tangent Space
Basis Vectors for an Arbitrary Mesh", Eric Lengyel, Terathon Software 3D Graphics Library,
2001. http://www.terathon.com/code/tangent.html).

One must take care that the tangent vectors are consistently
defined across the surface. In other words, the direction of the
tangent vectors should not vary greatly from one vertex to its
neighboring vertex. Otherwise, it can lead to ugly shading artifacts.

In the following example, we'll read the vertex position, normal vector, tangent vector, and
texture coordinate in the vertex shader. We'll transform the position, normal, and tangent to eye
space, and then compute the binormal vector (in eye space). Next, we'll compute the viewing
direction (v) and the direction towards the light source (s) in eye space, and then transform them
to tangent space. We'll pass the tangent space v and s vectors and the (unchanged) texture
coordinate to the fragment shader, where we'll evaluate the Phong reflection model, using the
tangent space vectors and the normal vector retrieved from the normal map.

Getting ready
Set up your OpenGL program to provide the position in attribute location 0, the normal in
attribute location 1, the texture coordinate in location 2, and the tangent vector in location 3.
For this example, the fourth coordinate of the tangent vector should contain the "handedness"
of the tangent coordinate system (either -1 or +1). This value will be multiplied by the result of
the cross product.

Load the normal map into texture unit one and the color texture into texture unit zero.

How to do it...
To render an image using normal mapping, use the following shaders:

1.	 Use the following code for the vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;

Using Textures

120

layout (location = 2) in vec2 VertexTexCoord;
layout (location = 3) in vec4 VertexTangent;

struct LightInfo {
 vec4 Position; // Light position in eye coords.
 vec3 Intensity; // A,D,S intensity
};
uniform LightInfo Light;

out vec3 LightDir;
out vec2 TexCoord;
out vec3 ViewDir;

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

void main()
{
 // Transform normal and tangent to eye space
 vec3 norm = normalize(NormalMatrix * VertexNormal);
 vec3 tang = normalize(NormalMatrix * vec3(VertexTangent));
 // Compute the binormal
 vec3 binormal = normalize(cross(norm, tang)) *
 VertexTangent.w;

 // Matrix for transformation to tangent space
 mat3 toObjectLocal = mat3(
 tang.x, binormal.x, norm.x,
 tang.y, binormal.y, norm.y,
 tang.z, binormal.z, norm.z) ;

 // Get the position in eye coordinates
 vec3 pos = vec3(ModelViewMatrix *
 vec4(VertexPosition,1.0));

 // Transform light dir. and view dir. to tangent space
 LightDir = normalize(toObjectLocal *
 (Light.Position.xyz - pos));
 ViewDir = toObjectLocal * normalize(-pos);

 // Pass along the texture coordinate
 TexCoord = VertexTexCoord;

 gl_Position = MVP * vec4(VertexPosition,1.0);
}

Chapter 4

121

2.	 Use the following code for the fragment shader:
#version 400

in vec3 LightDir;
in vec2 TexCoord;
in vec3 ViewDir;

uniform sampler2D ColorTex;
uniform sampler2D NormalMapTex;

struct LightInfo {
 vec4 Position; // Light position in eye coords.
 vec3 Intensity; // A,D,S intensity
};
uniform LightInfo Light;

struct MaterialInfo {
 vec3 Ka; // Ambient reflectivity
 vec3 Ks; // Specular reflectivity
 float Shininess; // Specular shininess factor
};
uniform MaterialInfo Material;

layout(location = 0) out vec4 FragColor;

vec3 phongModel(vec3 norm, vec3 diffR) {
 vec3 r = reflect(-LightDir, norm);
 vec3 ambient = Light.Intensity * Material.Ka;
 float sDotN = max(dot(LightDir, norm), 0.0);
 vec3 diffuse = Light.Intensity * diffR * sDotN;

 vec3 spec = vec3(0.0);
 if(sDotN > 0.0)
 spec = Light.Intensity * Material.Ks *
 pow(max(dot(r,ViewDir), 0.0),
 Material.Shininess);

 return ambient + diffuse + spec;
}

void main() {
 // Lookup the normal from the normal map
 vec4 normal = texture(NormalMapTex, TexCoord);

 // The color texture is used as the diffuse reflectivity
 vec4 texColor = texture(ColorTex, TexCoord);

 FragColor = vec4(phongModel(normal.xyz, texColor.rgb),
 1.0);
}

Using Textures

122

How it works...
The vertex shader starts by transforming the vertex normal and the tangent vectors into eye
coordinates by multiplying by the normal matrix (and re-normalizing). The binormal vector
is then computed as the cross product of the normal and tangent vectors. The result is
multiplied by the w coordinate of the vertex tangent vector, which determines the handedness
of the tangent space coordinate system. Its value will be either -1 or +1.

Next, we create the transformation matrix used to convert from eye coordinates to tangent
space and store the matrix in toObjectLocal. The position is converted to eye space and
stored in pos, and we compute the light direction by subtracting pos from the light position.
The result is multiplied by toObjectLocal to convert it into tangent space, and the final
result is normalized and stored in the output variable LightDir. This value is the direction
to the light source in tangent space, and will be used by the fragment shader in the Phong
reflection model.

Similarly, the view direction is computed and converted to tangent space by normalizing –pos
and multiplying by toObjectLocal. The result is stored in the output variable ViewDir.

The texture coordinate is passed to the fragment shader unchanged by just assigning it to the
output variable TexCoord.

In the fragment shader, the tangent space values for the light direction and view direction
are received in the variables LightDir and ViewDir. The phongModel function is slightly
modified from what has been used in previous recipes. The first parameter is the normal
vector, and the second is the diffuse reflectivity coefficient. The value for this will be taken
from the color texture. The function computes the Phong reflection model with the parameter
diffR, used as the diffuse reflectivity, and uses LightDir and ViewDir for the light and
view directions rather than computing them.

In the main function, the normal vector is retrieved from the normal map texture and stored in
the variable normal. The color texture is accessed to retrieve the color to be used as the diffuse
reflectivity coefficient, and the result is stored in texColor. Finally, the phongModel function is
called, and is provided normal and texColor. The phongModel function evaluates the Phong
reflection model using LightDir, ViewDir, and norm, all of which are defined in tangent
space. The result is applied to the output fragment by assigning it to FragColor.

See also
ff Applying multiple textures

ff Implementing per-vertex ambient, diffuse, and specular (ADS) shading in Chapter 2,
The Basics of GLSL Shaders (The Phong reflection model)

Chapter 4

123

Simulating reflection with cube maps
Textures can be used to simulate a surface that has a component which is purely reflective (a
mirror-like surface such as chrome). In order to do so, we need a texture that is representative
of the environment surrounding the reflective object. This texture could then be mapped onto
the surface of the object in a way that represents how it would look when reflected off of the
surface. This general technique is known as environment mapping. In general, environment
mapping involves creating a texture that is representative of the environment and mapping it
onto the surface of an object. It is typically used to simulate the effects of reflection or refraction.

A cube map is one of the more common varieties of textures used in environment mapping. A
cube map is a set of six separate images that represent the environment projected onto each
of the six faces of a cube. The six images represent a view of the environment from the point
of view of a viewer located at the center of the cube. An example of a cube map is shown in
the following image (source: unknown). The images are laid out as if the cube was "unfolded"
and laid flat. The four images across the middle would make up the sides of the cube, and the
top and bottom images correspond to the top and bottom of the cube.

http://www.codemonsters.de/home/content.php?show=cubemaps

OpenGL 4.0 provides built-in support for cube map textures (using the GL_TEXTURE_CUBE_MAP
target). The texture is accessed using a 3-dimensional texture coordinate (s, t, r). The texture
coordinate is interpreted as a direction vector from the center of the cube. The line defined by
the vector and the center of the cube is extended to intersect one of the faces of the cube. The
image that corresponds to that face is then accessed at the location of the intersection.

Using Textures

124

Truth be told, the conversion between the 3-dimensional texture coordinate
used to access the cube map, and the 2-dimensional texture coordinate
used to access the individual face image is somewhat complicated. It
can be non-intuitive and confusing. A very good explanation can be found
on NVIDIA's developer website: http://developer.nvidia.com/
content/cube-map-ogl-tutorial. However, the good news is that
if you are careful to orient your textures correctly within the cube map, the
details of the conversion can be ignored, and the texture coordinate can be
visualized as a 3-dimensional vector as described some time back.

In this example, we'll demonstrate using a cube map to simulate a reflective surface. We'll
also use the cube map to draw the environment around the reflective object (sometimes
called a skybox).

Getting ready
Prepare the six images of the cube map. In this example, the images will have the following
naming convention. There is a base name (stored in variable baseFileName) followed by an
underscore, followed by one of the six possible suffixes ("posx", "negx", "posy", "negy", "posz",
or "negz"), followed by the file extension (.png). The suffixes "posx", "posy", and so on, indicate
the axis that goes through the center of the face (positive x, positive y, and so on).

Make sure that they are all square images (preferably with dimensions that are a power of 2),
and that they are all the same size. You will need to orient them appropriately for the way that
OpenGL accesses them. As mentioned above, this can be a bit tricky. One way to do this is
to load the textures in their default orientation and draw the sky box (more on how to do that
follows). Then re-orient the textures (by trial and error) until they line up correctly. Alternatively,
take a close look at the conversion described in the NVIDIA link mentioned above and
determine the proper orientation based on the texture coordinate conversions.

Set up your OpenGL program to provide the vertex position in attribute location 0, and the
vertex normal in attribute location 1.

This vertex shader requires the modeling matrix (the matrix that converts from object
coordinates to world coordinates) to be separated from the model-view matrix and provided to
the shader as a separate uniform. Your OpenGL program should provide the modeling matrix
in the uniform variable ModelMatrix.

The vertex shader also requires the location of the camera in world coordinates. Make sure that
your OpenGL program sets the uniform WorldCameraPosition to the appropriate value.

How to do it...
To render an image with reflection based on a cube map, and also render the cube map itself,
carry out the following steps:

Chapter 4

125

1.	 Load the six images of the cube map into a single texture target using the following
code within the main OpenGL program:
glActiveTexture(GL_TEXTURE0);

GLuint texID;
glGenTextures(1, &texID);
glBindTexture(GL_TEXTURE_CUBE_MAP, texID);

const char * suffixes[] = { "posx", "negx", "posy",
 "negy", "posz", "negz" };
GLuint targets[] = {
 GL_TEXTURE_CUBE_MAP_POSITIVE_X,
 GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
 GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
 GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
 GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
 GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
};

for(int i = 0; i < 6; i++) {
 string texName = string(baseFileName) +
 "_" + suffixes[i] + ".png";
 QImage img = QGLWidget::convertToGLFormat(
 QImage(texName.c_str(),"PNG"));
 glTexImage2D(targets[i], 0, GL_RGBA,
 img.width(), img.height(),
 0, GL_RGBA, GL_UNSIGNED_BYTE, img.bits());
}

// Typical cube map settings
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S,
 GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T,
 GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R,
 GL_CLAMP_TO_EDGE);

// Set the CubeMapTex uniform to texture unit 0
uniloc = glGetUniformLocation(programHandle, "CubeMapTex");
if(uniloc >= 0)
 glUniform1i(uniloc, 0);

Using Textures

126

2.	 Use the following code for the vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;
layout (location = 2) in vec2 VertexTexCoord;

out vec3 ReflectDir; // The direction of the reflected ray

uniform bool DrawSkyBox; // Are we drawing the sky box?
uniform vec3 WorldCameraPosition;

uniform mat4 ModelViewMatrix;
uniform mat4 ModelMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

void main()
{
 if(DrawSkyBox) {
 ReflectDir = VertexPosition;
 } else {

 // Compute the reflected direction in world coords.
 vec3 worldPos = vec3(ModelMatrix *
 vec4(VertexPosition,1.0));
 vec3 worldNorm = vec3(ModelMatrix *
 vec4(VertexNormal, 0.0));
 vec3 worldView = normalize(WorldCameraPosition –
 worldPos);

 ReflectDir = reflect(-worldView, worldNorm);
 }

 gl_Position = MVP * vec4(VertexPosition,1.0);
}

3.	 Use the following code for the fragment shader:
#version 400

in vec3 ReflectDir; // The direction of the reflected ray

uniform samplerCube CubeMapTex; // The cube map

uniform bool DrawSkyBox; // Are we drawing the sky box?
uniform float ReflectFactor; // Amount of reflection
uniform vec4 MaterialColor; // Color of the object's "Tint"

layout(location = 0) out vec4 FragColor;

void main() {

Chapter 4

127

 // Access the cube map texture
 vec4 cubeMapColor = texture(CubeMapTex,ReflectDir);

 if(DrawSkyBox)
 FragColor = cubeMapColor;
 else
 FragColor = mix(MaterialColor, CubeMapColor,
 ReflectFactor);

}

4.	 In the render portion of the OpenGL program, set the uniform DrawSkyBox to true,
and then draw a cube surrounding the entire scene, centered at the origin. This will
become the sky box. Following that, set DrawSkyBox to false, and draw the object(s)
within the scene.

How it works...
In OpenGL, a cube map texture is actually six separate images. To fully initialize a cube map
texture, we need to bind to the cube map texture, and then load each image individually into
the six "slots" within that texture. In the preceding code (within the main OpenGL application),
we start by binding to texture unit zero with glActiveTexture. Then we create a new
texture object by calling glGenTextures, and store its handle within the variable texID, and
then bind that texture object to the GL_TEXTURE_CUBE_MAP target using glBindTexture.
The following loop loads each texture file using the Qt framework's image support, and copies
the texture data into OpenGL memory using glTexImage2D. Note that the first argument
to this function is the texture target, which corresponds to GL_TEXTURE_CUBE_MAP_
POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, and so on. After the loop is finished,
the cube map texture should be fully initialized with the six images.

Following this, we set up the cube map texture environment. We use linear filtering, and
we also set the texture wrap mode to GL_CLAMP_TO_EDGE for all three of the texture
coordinate's components. This tends to work the best, avoiding the possibility of a border color
appearing between the cube edges.

Finally, the uniform CubeMapTex is set to zero, corresponding to texture unit zero which
contains our cube map.

Within the vertex shader, the main goal is to compute the direction of reflection and pass that
to the vertex shader to be used to access the cube map. The output variable ReflectDir will
store this result. If we are not drawing the sky box (the value of DrawSkyBox is false), then
we can compute the reflected direction (in world coordinates) by reflecting the vector towards
the viewer about the normal vector.

Using Textures

128

We choose to compute the reflection direction in world coordinates
because, if we were to use eye coordinates, the reflection would
not change as the camera moved within the scene.

In the else branch within the main function, we start by converting the position to world
coordinates and storing in worldPos. We then do the same for the normal, storing the result
in worldNorm. Note that the ModelMatrix is used to transform the vertex normal. It is
important when doing this to use a value of 0.0 for the fourth coordinate of the normal, to
avoid the translation component of the model matrix affecting the normal. Also, the model
matrix must not contain any non-uniform scaling component; otherwise the normal vector will
be transformed incorrectly.

The direction towards the viewer is computed in world coordinates and stored in worldView.

Finally, we reflect worldView about the normal and store the result in the output variable
ReflectDir. The fragment shader will use this direction to access the cube map texture and
apply the corresponding color to the fragment. One can think of this as a light ray that begins
at the viewer's eye, strikes the surface, reflects off of the surface, and hits the cube map. The
color that the ray "sees" when it strikes the cube map is the color that we need for the object.

If we are drawing the sky box, (DrawSkyBox is true), then we use the vertex position as
the reflection direction. Why? Well, when the sky box is rendered, we want the location on
the sky box to correspond to the equivalent location in the cube map (the sky box is really
just a rendering of the cube map). In the fragment shader, ReflectDir will be used as the
texture coordinate to access the cube map. Therefore, if we want to access a position on the
cube map corresponding to a location on a cube centered at the origin, we need a vector that
points at that location. The vector we need is the position of that point minus the origin (which
is (0,0,0)). Hence, we just need the position of the vertex.

Sky boxes are often rendered with the viewer at the center of the sky box and
the sky box moving along with the viewer (so the viewer is always at the center
of the sky box). We have not done so in this example; however, we could do so
by transforming the sky box using the rotational component of the view matrix
(not the translational).

Within the fragment shader, we simply use the value of ReflectDir to access the cube
map texture.

vec4 cubeMapColor = texture(CubeMapTex, ReflectDir)

Chapter 4

129

If we are drawing the sky box, we simply use the color unchanged. However, if we are not
drawing the sky box, then we'll mix the sky box color with some material color. This allows
us to provide some slight "tint" to the object. The amount of tint is adjusted by the variable
ReflectFactor. A value of 1.0 would correspond to zero tint (all reflection), and a value of
0.0 corresponds to no reflection. The following images show the teapot rendered with different
values of ReflectFactor. The teapot on the left uses a reflection factor of 0.5, the one on
the right uses a value of 0.85. The base material color is grey. (Cube map used is an image of
St. Peter's Basilica, Rome. ©Paul Debevec.)

There's more...
There are two important points to keep in mind about this technique. First, the objects will
only reflect the environment map. They will not reflect the image of any other objects within
the scene. In order to do so, we would need to generate an environment map from the point of
view of each object by rendering the scene six times with the view point located at the center
of the object and the view direction in each of the six coordinate directions. Then we could use
the appropriate environment map for the appropriate object's reflections. Of course, if any of
the objects were to move relative to one another, we'd need to regenerate the environment
maps. All of this effort may be prohibitive in an interactive application.

The second point involves the reflections that appear on moving objects. In the above shaders,
we compute the reflection direction and treat it as a vector emanating from the center of the
environment map. This means that regardless of where the object is located, the reflections
will appear as if the object is in the center of the environment. In other words, the environment
is treated as if it were "infinitely" far away. Chapter 19 of the book "GPU Gems", Randima
Fernando, Addison-Wesley Professional, 2009 has an excellent discussion of this issue and
provides some possible solutions for localizing the reflections.

See also
ff Applying a 2D texture

ff Applying a 3D texture

Using Textures

130

Simulating refraction with cube maps
Objects that are transparent cause the light rays that pass through them to bend slightly
at the interface between the object and the surrounding environment. This effect is called
refraction. When rendering transparent objects, we simulate that effect by using an
environment map, and mapping the environment onto the object is such a way as to mimic
the way that light would pass through the object. In other words, we can trace the rays from
the viewer, through the object (bending in the process), and along to the environment. Then
we can use that ray intersection as the color for the object.

As in the previous recipe, we'll do this using a cube map for the environment. We'll trace rays
from the viewer position, through the object, and finally intersect with the cube map.

The process of refraction is described by Snell's law, which defines the relationship between
the angle of incidence and the angle of refraction.

Snell's law describes the angle of incidence (ai) as the angle between the incoming light
ray and the normal to the surface, and the angle of refraction (at) as the angle between the
transmitted ray and the extended normal. The material through which the incident light ray
travels and the material containing the transmitted light ray are each described by an index of
refraction (n1 and n2 in the figure). The ratio between the two indices of refraction defines the
amount that the light ray will be bent at the interface.

Starting with Snell's law, and with a bit of mathematical effort, we can derive a formula for
the transmitted vector, given the ratio of the indices of refraction, the normal vector, and the
incoming vector. However, there's no real need to do so, because GLSL provides a built-in
function for computing this transmitted vector called refract. We'll make use of that function
within this example.

It is usually the case that for transparent objects, not all of the light is transmitted through the
surface. Some of the light is reflected. In this example, we'll model that in a very simple way,
and at the end of this recipe we'll discuss a more accurate representation.

Chapter 4

131

Getting ready
Set up your OpenGL program to provide the vertex position in attribute location 0 and the
vertex normal in attribute location 1. As with the previous recipe, we'll need to provide the
model matrix in the uniform variable ModelMatrix.

Load the cube map using the technique shown in the previous recipe. Place it in texture unit
zero, and set the uniform variable CubeMapTex to zero.

Set the uniform variable WorldCameraPosition to the location of your viewer in world
coordinates. Set the value of the uniform variable Material.Eta to the ratio between the
index of refraction of the environment n1 and the index of refraction of the material n2 (n1 /
n2). Set the value of the uniform Material.ReflectionFactor to the fraction of light that
is reflected at the interface (a small value is probably what you want).

As with the preceding example, if you want to draw the environment, set the uniform
variable DrawSkyBox to true, then draw a large cube surrounding the scene, and then set
DrawSkyBox to false.

How to do it...
To render an object with reflection and refraction as well as the cube map itself, carry out the
following steps:

1.	 Use the following code within the vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;

out vec3 ReflectDir; // Reflected direction
out vec3 RefractDir; // Transmitted direction

struct MaterialInfo {
 float Eta; // Ratio of indices of refraction
 float ReflectionFactor; // Percentage of reflected light
};
uniform MaterialInfo Material;

uniform bool DrawSkyBox;

uniform vec3 WorldCameraPosition;
uniform mat4 ModelViewMatrix;
uniform mat4 ModelMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

void main()

Using Textures

132

{
 if(DrawSkyBox) {
 ReflectDir = VertexPosition;
 } else {
 vec3 worldPos = vec3(ModelMatrix *
 vec4(VertexPosition,1.0));
 vec3 worldNorm = vec3(ModelMatrix *
 vec4(VertexNormal, 0.0));
 vec3 worldView = normalize(WorldCameraPosition –
 worldPos);

 ReflectDir = reflect(-worldView, worldNorm);
 RefractDir = refract(-worldView, worldNorm,
 Material.Eta);
 }
 gl_Position = MVP * vec4(VertexPosition,1.0);
}

2.	 Use the following code within the fragment shader:
#version 400

in vec3 ReflectDir;
in vec3 RefractDir;

uniform samplerCube CubeMapTex;

uniform bool DrawSkyBox;

struct MaterialInfo {
 float Eta; // Ratio of indices of refraction
 float ReflectionFactor; // Percentage of reflected light
};
uniform MaterialInfo Material;

layout(location = 0) out vec4 FragColor;

void main() {
 // Access the cube map texture
 vec4 reflectColor = texture(CubeMapTex, ReflectDir);
 vec4 refractColor = texture(CubeMapTex, RefractDir);

 if(DrawSkyBox)
 FragColor = reflectColor;
 else
 FragColor = mix(refractColor, reflectColor,
 Material.ReflectionFactor);
}

Chapter 4

133

3.	 In the render portion of the OpenGL program, set the uniform DrawSkyBox to true,
and then draw a cube surrounding the entire scene, centered at the origin. This
will become the sky box. Following that, set DrawSkyBox to false, and draw the
object(s) within the scene.

How it works...
Both shaders are quite similar to the shaders in the previous recipe. The part relating to the
sky box is the same, so I won't describe it again here.

The vertex shader computes the position, normal, and view direction in world coordinates
(worldPos, worldNorm, and worldView). They are then used to compute the reflected
direction using the reflect function, and the result is stored in the output variable
ReflectDir. The transmitted direction is computed using the built-in function refract
(which requires the ratio of the indices of refraction Material.Eta). This function makes
use of Snell's law to compute the direction of the transmitted vector which is then stored in
the output variable RefractDir.

In the fragment shader, we use the two vectors ReflectDir and RefractDir to access
the cube map texture. The color retrieved by the reflected ray is stored in reflectColor
and the color retrieved by the transmitted ray is stored in refractColor. We then mix those
two colors together based on the value of Material.ReflectionFactor. The result is a
mixture between the color of the reflected ray and the color of the transmitted ray.

The following image shows the teapot rendered with 10% reflection and 90% refraction.
(Cubemap © Paul Debevec.)

There's more...
This technique has the same drawbacks that were discussed in the There's more... section of
the preceding recipe, Simulating reflection with cube maps.

Using Textures

134

Like most real-time techniques, this is a simplification of the real physics of the situation.
There are a number of things about the technique that could be improved to provide more
realistic looking results.

The Fresnel equations
The amount of reflected light actually depends on the angle of incidence of the incoming
light. For example, when looking at the surface of a lake from the shore, much of the light
is reflected and it is easy to see reflections of the surrounding environment on the surface.
However, when floating on a boat on the surface of the lake and looking straight down, there
is less reflection and it is easier to see what lies below the surface. This effect is described by
the Fresnel equations (after Augustin-Jean Fresnel).

The Fresnel equations describe the amount of light that is reflected as a function of the angle of
incidence, the polarization of the light, and the ratio of the indices of refraction. If we ignore the
polarization, it is easy to incorporate the Fresnel equations into the preceding shaders. A very
good explanation of this can be found in the book "The OpenGL Shading Language", 3rd Edition,
Randi J Rost, Addison-Wesley Professional, 2009.

Chromatic aberration
White light is of course composed of many different individual wavelengths (or colors). The
amount that a light ray is refracted is actually wavelength dependent. This causes the effect
where a spectrum of colors can be observed at the interface between materials. The most
well-known example of this is the rainbow that is produced by a prism.

We can model this effect by using slightly different values of Eta for the red, green, and blue
components of the light ray. We would store three different values for Eta, compute three
different reflection directions (red, green, and blue), and use those three directions to look up
colors in the cube map. We take the red component from the first color, the green component
from the second, and the blue component for the third, and combine the three components
together to create the final color for the fragment.

Both sides of the object?
It is important to note that we have simplified things by only modeling the interaction of
the light with one of the boundaries of the object. In reality the light would be bent once
when entering the transparent object, and again when leaving the other side. However, this
simplification generally does not result in unrealistic looking results. As is often the case in
real-time graphics, we are more interested in a result that looks good than one that models
the physics accurately.

See also
ff Simulating reflection with cube maps

Chapter 4

135

Image-based lighting
Environment maps are images of the surrounding environment for a scene. Embedded
within the environment map is information about the lighting environment. For example, an
environment map may contain an interior scene with several windows, each of which are lit
with a bright source from outside. It would substantially enhance the realism of the scene if
the objects could be shaded in such a way as to represent these light sources.

The technique of using an environment image as a source of lighting information is referred to
as image-based lighting. This technique was pioneered by Paul Debevec, who has published
many papers on the subject (see debevec.org).

The basic idea here is to encode information about the lighting environment into a cube map
texture. We pre-process the original environment map in such a way as to encode information
about the lighting provided by the environment map into a second cube map. Then when
rendering, we simply look up the appropriate location in this second environment map and
use the value as the incoming light intensity (or irradiance).

To understand this in more detail, let's consider the diffuse component of the Phong reflection
model. If there are multiple (point) lights in the scene, then the reflection from a surface point
is just the sum of the diffuse contributions of each light source.

In the preceding equation, N is the number of point light sources, si is the direction toward the
ith light source, n is the normal to the surface, Li is the intensity of the ith light source, and Kd
is the diffuse reflectivity of the surface.

If we treat our environment map as a collection of point light sources (each texel is a light
source), then we can pre-compute the above sum (in parenthesis in the preceding equation)
and store the results in a second environment map called the diffuse irradiance environment
map. Each texel in the diffuse environment map would contain the result of the sum for
normal vector n, where n is the vector that would be used to access that texel in a cube map.
To evaluate the sum, we would loop over all texels in the environment map. For each texel, use
the direction toward that texel as the value of si, and the value of the texel as Li. The result is
a diffuse irradiance environment map indexed by the normal vector. A similar process can be
used to produce yet another environment map for the specular component. In this specular
irradiance environment map we need to store the result of the following sum:

Using Textures

136

In the preceding equation ri is the reflected direction of the ith light source, Li is the intensity of
the ith light source, and v is the direction towards the viewer. As with the diffuse environment
map, we can store the result of this sum in a texel in the specular environment map
corresponding to the value of v, where v is the vector used to access the texel. To evaluate
this sum, we would again use every texel in the environment map as a mini point light source.
We loop over all texels in the environment map and compute ri by taking the direction used to
access the texel and reflecting it about the normal. As with the diffuse map, the value of the
texel would correspond to Li. The resulting map is a set of irradiance values indexed by the
viewing direction vector.

Paul Debevec and others have produced a software package called HDR Shop (projects.
ict.usc.edu/graphics/HDRShop) which can be used to create diffuse and specular
irradiance maps given an environment map.

Once the irradiance maps are generated, the shader code is simple. It just involves
accessing the irradiance maps using the appropriate vector and applying the results
to the output fragment.

Getting ready
Generate your irradiance maps based on your environment map using HDRShop or by "hand".
Set up your program by creating a vertex shader that computes the view direction and the
normal in world coordinates and sends those values to the fragment shader in the variables
ViewDir and Normal. See previous recipes in this chapter for examples.

Load three cube map textures. Load the base environment texture, the diffuse irradiance
map, and the specular irradiance map into OpenGL texture units. Set the uniform variables
CubeMapTex, DiffuseMap, and SpecMap to the appropriate texture units.

As with previous recipes, when drawing the sky box, make sure to set the variable
DrawSkyBox to true, and back to false before drawing the rest of the scene.

Set the uniform Material.BaseColor to a base color for your object. Set the variable
Material.DiffuseFactor to a value between zero and one for the amount of the diffuse
contribution, and set the variable Material.SpecFactor to a number between zero and
one representing the percentage of the specular component.

How to do it...
To render a scene using environment mapping, use the following fragment shader:

#version 400

in vec3 ViewDir; // View direction in world coordinates
in vec3 Normal; // Normal in world coordinates

uniform samplerCube CubeMapTex; // The env. map

Chapter 4

137

uniform samplerCube DiffuseMap; // The diffuse env. map
uniform samplerCube SpecMap; // The specular env. map

uniform bool DrawSkyBox;

struct MaterialInfo {
 vec3 BaseColor;
 float DiffuseFactor;
 float SpecFactor;
};
uniform MaterialInfo Material;

layout(location = 0) out vec4 FragColor;

void main() {

 // Access the irradiance maps
 vec4 diffuseIrr = texture(DiffuseMap, Normal);
 vec4 specIrr = texture(SpecMap, ViewDir);

 if(DrawSkyBox)
 FragColor = texture(CubeMapTex,
 normalize(reflect(-ViewDir,Normal)));
 else {

 // Compute the diffuse component by mixing with the
 // base color
 vec3 color = mix(Material.BaseColor,
 Material.BaseColor * diffuseIrr,
 Material.DiffuseFactor);

 // The specular comp. is added to the diffuse color
 color = color + specIrr * Material.SpecFactor;

 FragColor = vec4(color, 1.0);
 }
}

How it works...
In the fragment shader, we use the normal vector to access the diffuse irradiance map, and
store the result in diffuseIrr. We then use the view direction (ViewDir) to access the
specular irradiance map, and store the result in specIrr. We then multiply diffuseIrr
with the base color and mix that with the base color. Finally, we add the specular contribution
to the final color, after multiplying by the Material.SpecFactor. The final color is applied
to the output fragment.

Using Textures

138

There's more...
This technique produces very realistic results, although it may require some trial and error to
get the settings to look good. The mixing of colors within the fragment shader is just a rough
approximation of the real physics, so one needs to find a set of values that work well visually.

As with previous recipes, this suffers from the drawback that the environment is treated
as if it is infinitely far away, so as an object moves throughout the environment, the lighting
doesn't change. Also if the positions of the lights in the environment map were to change, the
irradiance maps would need to be re-created.

If you'd rather compute your irradiance maps in real-time, Chapter 10 of "GPU
Gems 2", Randima Fernando, Addison-Wesley Professional, 2009. has a very
good discussion of how to do so using spherical harmonic convolution.

See also
ff Simulating reflection using cube maps

Applying a projected texture
We can apply a texture to all of the objects in a scene as if the texture was a projection from
a hypothetical "slide projector" located somewhere within the scene. This technique is often
called projective texture mapping and produces a very nice effect.

The following images show an example of projective texture mapping. The flower texture on
the left (Stan Shebs via Wikimedia Commons) is projected onto the teapot and plane beneath.

Chapter 4

139

To project a texture onto a surface, all we need to do is determine the texture coordinates
based on the relative position of the surface location and the source of the projection (the
"slide projector"). An easy way to do this is to think of the projector as a camera located
somewhere within the scene. In the same way that we would define an OpenGL camera, we
define a coordinate system centered at the projector's location, and a view matrix (V) that
converts coordinates to the projector's coordinate system. Next, we'll define a perspective
projection matrix (P) that converts the view frustum (in the projector's coordinate system) into
a cubic volume of size 2, centered at the origin. Putting these two things together, and adding
an additional matrix for rescaling and translating the volume to a volume of size one (shifted
so that the volume is centered at (0.5, 0.5, 0.5), we have the following transformation matrix:

The goal here is basically to convert the view frustum to a range between 0 and 1 in x and
y. The preceding matrix can be used to do just that! It will convert world coordinates that lie
within the view frustum of the projector to a range between 0 and 1 (homogeneous), which
can then be used to access the texture. Note that the coordinates are homogeneous and
need to be divided by the w coordinate before they can be used as a real position.

For more details on the mathematics of this technique, take a look at
the following white paper, written by Cass Everitt from NVIDIA.
http://developer.nvidia.com/content/projective-
texture-mapping

In this example, we'll apply a single texture to a scene using projective texture mapping.

Getting ready
Set up your OpenGL application to provide the vertex position in attribute location 0 and
the normal in attribute location 1. The OpenGL application must also provide the material
and lighting properties for the Phong reflection model (see the fragment shader below).
Make sure to provide the model matrix (for converting to world coordinates) in the uniform
variable ModelMatrix.

The uniform ProjectorTex will be used to access the projected texture. Set it to zero within
the OpenGL program.

Using Textures

140

How to do it...
To apply a projected texture to a scene, use the following steps:

1.	 In the OpenGL application, load the texture into texture unit zero. While the texture
object is bound to the GL_TEXTURE_2D target, use the following code to set the
texture's settings:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
 GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
 GL_CLAMP_TO_BORDER);

2.	 Also within the OpenGL application, set up your transformation matrix for the "slide
projector", and assign it to the uniform ProjectorMatrix. Use the following code to
do this. Note that this code makes use of the GLM libraries discussed in Chapter 1.
vec3 projPos = vec3(2.0f,5.0f,5.0f);
vec3 projAt = vec3(-2.0f,-4.0f,0.0f);
vec3 projUp = vec3(0.0f,1.0f,0.0f);

mat4 projView = glm::lookAt(projPos, projAt, projUp);
mat4 projProj = glm::perspective(30.0f, 1.0f, 0.2f, 1000.0f);
mat4 projScaleTrans = glm::translate(vec3(0.5f)) *
 glm::scale(vec3(0.5f));

mat4 m = projScaleTrans * projProj * projView;

// Set the uniform variable
int loc = glGetUniformLocation(progHandle,"ProjectorMatrix");
glUniformMatrix4fv(loc, 1, GL_FALSE, &m[0][0]);

3.	 Use the following code for the vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;

out vec3 EyeNormal; // Normal in eye coordinates
out vec4 EyePosition; // Position in eye coordinates
out vec4 ProjTexCoord;

uniform mat4 ProjectorMatrix;

uniform vec3 WorldCameraPosition;
uniform mat4 ModelViewMatrix;
uniform mat4 ModelMatrix;

Chapter 4

141

uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

void main()
{
 vec4 pos4 = vec4(VertexPosition,1.0);

 EyeNormal = normalize(NormalMatrix * VertexNormal);
 EyePosition = ModelViewMatrix * pos4;
 ProjTexCoord = ProjectorMatrix * (ModelMatrix * pos4);
 gl_Position = MVP * pos4;
}

4.	 Use the following code for the fragment shader:
#version 400

in vec3 EyeNormal; // Normal in eye coordinates
in vec4 EyePosition; // Position in eye coordinates
in vec4 ProjTexCoord;

uniform sampler2D ProjectorTex;

struct MaterialInfo {
 vec3 Kd;
 vec3 Ks;
 vec3 Ka;
 float Shininess;
};
uniform MaterialInfo Material;

struct LightInfo {
 vec3 Intensity;
 vec4 Position; // Light position in eye coordinates
};
uniform LightInfo Light;

layout(location = 0) out vec4 FragColor;

vec3 phongModel(vec3 pos, vec3 norm) {
 vec3 s = normalize(vec3(Light.Position) - pos);
 vec3 v = normalize(-pos.xyz);
 vec3 r = reflect(-s, norm);
 vec3 ambient = Light.Intensity * Material.Ka;
 float sDotN = max(dot(s,norm), 0.0);
 vec3 diffuse = Light.Intensity * Material.Kd * sDotN;
 vec3 spec = vec3(0.0);
 if(sDotN > 0.0)
 spec = Light.Intensity * Material.Ks *
 pow(max(dot(r,v), 0.0), Material.Shininess);

Using Textures

142

 return ambient + diffuse + spec;
}

void main() {
 vec3 color = phongModel(vec3(EyePosition), EyeNormal);

 vec4 projTexColor = vec4(0.0);
 if(ProjTexCoord.z > 0.0)
 projTexColor = textureProj(ProjectorTex,ProjTexCoord);

 FragColor = vec4(color,1.0) + projTexColor * 0.5;
}

How it works...
When loading the texture into the OpenGL application, we make sure to set the wrap mode
for the s and t directions to GL_CLAMP_TO_BORDER. We do this because if the texture
coordinates are outside of the range of zero to one, we do not want any contribution from
the projected texture. With this mode, using the default border color, the texture will return
(0,0,0,0) when the texture coordinates are outside of the range between 0 and 1 inclusive.

The transformation matrix for the slide projector is set up in the OpenGL application. We start
by using the GLM function glm::lookAt to produce a view matrix for the projector. In this
example, we locate the projector at (5,5,5), looking towards the point (-2,-4,0), with an "up
vector" of (0,1,0). This function works in a similar way to the gluLookAt function. It returns
a matrix for converting to the coordinate system located at (5,5,5), and oriented based on the
second and third arguments.

Next, we create the projection matrix using glm::perspective, and the scale/translate
matrix shown above. These two matrices are stored in projProj and projScaleTrans
respectively. The final matrix is the product of projScaleTrans, projProj, and projView,
which is stored in m and assigned to the uniform variable ProjectorTex.

In the vertex shader, we have three output variables EyeNormal, EyePosition, and
ProjTexCoord. The first two are the vertex normal and vertex position in eye coordinates.
We transform the input variables appropriately, and assign the results to the output variables
within the main function.

We compute ProjTexCoord by first transforming the position to world coordinates (by
multiplying by ModelMatrix), and then applying the projector's transformation.

In the fragment shader, within the main function, we start by computing the Phong reflection
model and storing the result in the variable color. The next step is to look up the color from
the texture. First, however, we check the z coordinate of ProjTexCoord. If this is negative
then the location is behind the projector, so we avoid doing the texture lookup. Otherwise we
use textureProj to look up the texture value and store it in projTexColor.

Chapter 4

143

The function textureProj is designed for accessing textures with coordinates that have
been projected. It will divide the coordinates of the second argument by its last coordinate
before accessing the texture. In our case, that is exactly what we want. We mentioned earlier
that after transforming by the projector's matrix we will be left with homogeneous coordinates,
so we need to divide by the w coordinate before accessing the texture. The textureProj
function will do exactly that for us.

Finally, we add the projected texture's color to the base color from the Phong model. We scale
the projected texture color slightly so that it is not overwhelming.

There's more...
There's one big drawback to the technique presented here. There is no support for shadows
yet, so the projected texture will shine right through any objects in the scene and appear on
objects that are behind them (with respect to the projector). In later recipes, we will look at
some examples of techniques for handling shadows that could help to solve this problem.

See also
ff Implementing per-vertex ambient, diffuse, and specular (ADS) shading in Chapter 2,

The Basics of GLSL Shaders (The Phong reflection model)
ff Applying a 2D texture

Rendering to a texture
Sometimes it makes sense to generate textures "on the fly" during the execution of the
program. The texture could be a pattern that is generated from some internal algorithm (a
so-called procedural texture), or it could be that the texture is meant to represent another
portion of the scene. An example of the latter case might be a video screen where one
can see another part of the "world", perhaps via a security camera in another room. The
video screen could be constantly updated as objects move around in the other room, by re-
rendering the view from the security camera to the texture that is applied to the video screen!

In the following image, the texture appearing on the cube was generated by rendering a teapot
to an internal texture and then applying that texture to the faces of the cube.

Using Textures

144

In recent versions of OpenGL, rendering directly to textures has been greatly simplified with
the introduction of framebuffer objects (FBOs). We can create a separate rendering target
buffer (the FBO), attach our texture to that FBO, and render to the FBO in exactly the same
way that we would render to the default framebuffer. All that is required is to swap in the FBO,
and swap it out when we are done.

Basically, the process involves the following steps when rendering:

1.	 Bind to the FBO.

2.	 Render the texture.

3.	 Unbind from the FBO (back to the default framebuffer).

4.	 Render the scene using the texture.

There's actually not much that we need to do on the GLSL side in order to use this kind of
texture. In fact, the shaders will see it as any other texture. However, there are some important
points that we'll talk about regarding fragment output variables.

In this example, we'll cover the steps needed to create the FBO and its backing texture, and
how to set up a shader to work with the texture.

Getting ready
For this example, we'll use the shaders from the previous recipe Applying a 2D texture, with
some minor changes. Set up your OpenGL program as described in that recipe. The only
change that we'll make to the shaders is changing the name of the sampler2D variable from
Tex1 to Texture.

How to do it...
To render to a texture and then apply that texture to a scene in a second pass, use the
following steps:

1.	 Within the main OpenGL program, use the following code to set up the framebuffer
object:
GLuint fboHandle; // The handle to the FBO

// Generate and bind the framebuffer
glGenFramebuffers(1, &fboHandle);
glBindFramebuffer(GL_FRAMEBUFFER, fboHandle);

// Create the texture object
GLuint renderTex;
glGenTextures(1, &renderTex);
glActiveTexture(GL_TEXTURE0); // Use texture unit 0
glBindTexture(GL_TEXTURE_2D, renderTex);

Chapter 4

145

glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,512,512,0,GL_RGBA,
 GL_UNSIGNED_BYTE,NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR);

// Bind the texture to the FBO
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
 GL_TEXTURE_2D, renderTex, 0);

// Create the depth buffer
GLuint depthBuf;
glGenRenderbuffers(1, &depthBuf);
glBindRenderbuffer(GL_RENDERBUFFER, depthBuf);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT,
 512, 512);

// Bind the depth buffer to the FBO
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
 GL_RENDERBUFFER, depthBuf);

// Set the target for the fragment shader outputs
GLenum drawBufs[] = {GL_COLOR_ATTACHMENT0};
glDrawBuffers(1, drawBufs);

// Unbind the framebuffer, and revert to default framebuffer
glBindFramebuffer(GL_FRAMEBUFFER, 0);

2.	 Use the following code to create a simple 1x1 texture that can be used as a "non-
texture texture". Note that we place this one in texture unit 1:
// One pixel white texture
GLuint whiteTexHandle;
GLubyte whiteTex[] = { 255, 255, 255, 255 };
glActiveTexture(GL_TEXTURE1);
glGenTextures(1, &whiteTexHandle);
glBindTexture(GL_TEXTURE_2D,whiteTexHandle);
glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,1,1,0,GL_RGBA,
 GL_UNSIGNED_BYTE,whiteTex);

3.	 In your render function within the OpenGL program, use the following code, or
something similar:
// Bind to texture's FBO
glBindFramebuffer(GL_FRAMEBUFFER, fboHandle);
glViewport(0,0,512,512); // Viewport for the texture

// Use the "white" texture here
int loc = glGetUniformLocation(programHandle, "Texture");

Using Textures

146

glUniform1i(loc, 1);

// Setup the projection matrix and view matrix
// appropriately for the scene to be rendered to the texture here.
// (Don't forget to match aspect ratio of the viewport.)
…

renderTextureScene();

// Unbind texture's FBO (back to default FB)
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glViewport(0,0,width,height); // Viewport for main window

// Use the texture that is associated with the FBO
int loc = glGetUniformLocation(programHandle, "Texture");
glUniform1i(loc, 0);

// Reset projection and view matrices here
…

renderScene();

How it works...
Let's start by looking at the code for creating the framebuffer object (the preceding step
1). Our FBO will be 512 pixels square because we intend to use it as a texture. We begin by
generating the FBO using glGenFramebuffers and binding the framebuffer to the GL_
FRAMEBUFFER target with glBindFramebuffer. Next, we create the texture object to which
we will be rendering, and use glActiveTexture to select texture unit zero. The rest is very
similar to creating any other texture; however, instead of providing an array with the texture
data to glTexImage2D, the last argument is NULL. When glTexImage2D gets NULL as the
last argument, it allocates memory for the texture, but does not initialize that memory. We'll
be writing to that memory later when rendering to the FBO.

Next, we link the texture to the FBO. We do this by calling the function
glFramebufferTexture2D. This function attaches a texture object to an attachment point
in the currently bound framebuffer object. The first argument (GL_FRAMEBUFFER) indicates
that the texture is to be attached to the FBO currently bound to the GL_FRAMEBUFFER target.
The second argument is the attachment point. Framebuffer objects have several attachment
points for color buffers, one for the depth buffer, and a few others. This allows us to have
several color buffers to target from our fragment shaders. We'll see more about this later.
We use GL_COLOR_ATTACHMENT0 to indicate that this texture is linked to color attachment
0 of the FBO. The third argument (GL_TEXTURE_2D) is the texture target, and the fourth
(renderTex) is the handle to our texture. The last argument (0) is the mip-map level of the
texture that is being attached to the FBO. In this case, we only have a single level, so we use a
value of zero.

Chapter 4

147

As we want to render to the FBO with depth testing, we need to also attach a depth buffer.
The next few lines of code create the depth buffer. The function glGenRenderbuffer
creates a renderbuffer object, and glRenderbufferStorage allocates space for the
renderbuffer. The second argument to glRenderbufferStorage indicates the internal
format for the buffer, and as we are using this as a depth buffer, we use the special format
GL_DEPTH_COMPONENT.

Next, the depth buffer is attached to the GL_DEPTH_ATTACHMENT attachment point of the
FBO using glFramebufferRenderbuffer.

The shader's output variables are assigned to the attachments of the FBO using
glDrawBuffers. The second argument to glDrawBuffers is an array indicating the FBO
buffers to be associated with the output variables. The ith element of the array corresponds to
the fragment shader output variable at location i. In our case, we only have one shader output
variable (FragColor) at location zero. This statement associates that output variable with
GL_COLOR_ATTACHMENT0.

The last statement in step 1 unbinds the FBO to revert back to the default framebuffer.

Step 2 creates a 1x1 white texture in texture unit one. We use this texture when rendering the
texture so that we don't need to change anything about our shader. As our shader multiplies
the texture color by the result of the Phong reflection model, this texture will effectively
work as a "non-texture" because multiplying will not change the color. When rendering the
texture, we want to use this "non-texture", but when rendering the scene, we'll use the texture
attached to the FBO.

This use of a 1x1 texture is certainly not necessary in general.
We use it here just so that we can draw to the FBO without a
texture being applied to the scene. If you have a texture that
should be applied, then that would be more appropriate here.

In step 3 (within the render function), we bind to the FBO, use the "non-texture" in unit one,
and render the texture. Note that we need to be careful to set up the viewport (glViewport),
and the view and projection matrices appropriately for our FBO. As our FBO is 512x512,
we use glViewport(0,0,512,512). Similar changes should be made to the view and
projection matrices to match the aspect ratio of the viewport and set up the scene to be
rendered to the FBO.

Once we've rendered to the texture, we unbind from the FBO, reset the viewport, and the view
and projection matrices, use the FBO's texture (texture unit 0), and draw the scene!

Using Textures

148

There's more...
As FBOs have multiple color attachment points, we can have several output targets from our
fragment shaders. Note that so far, all of our fragment shaders have only had a single output
variable assigned to location zero. Hence, we set up our FBO so that its texture corresponds to
color attachment zero. In later recipes, we'll look at examples where we use more than one of
these attachments for things like deferred shading.

See also
ff Applying a 2D texture

5
Image Processing
and Screen Space

Techniques

In this chapter, we will cover:

ff Applying an edge detection filter

ff Applying a Gaussian blur filter

ff Creating a "bloom" effect

ff Using gamma correction to improve image quality

ff Using multisample anti-aliasing

ff Using deferred shading

Introduction
In this chapter, we focus on techniques that work directly with the pixels in a framebuffer.
These techniques typically involve multiple passes. An initial pass produces the pixel data and
subsequent passes apply effects or further process those pixels. To implement this we make
use of the ability provided in OpenGL for rendering directly to a texture or set of textures (see
Chapter 4, Rendering to a texture).

Image Processing and Screen Space Techniques

150

The ability to render to a texture, combined with the power of the fragment shader, opens
up a huge range of possibilities. We can implement image processing techniques such as
brightness, contrast, saturation, and sharpness by applying an additional process in the
fragment shader prior to output. We can apply convolution filters such as edge detection,
smoothing (blur), or sharpening. We'll take a closer look at convolution filters in the recipe on
edge detection.

A related set of techniques involves rendering additional information to textures beyond
the traditional color information and then, in a subsequent pass, further processing that
information to produce the final rendered image. These techniques fall under the general
category that is often called deferred shading.

In this chapter, we'll look at some examples of each of the preceding techniques. We'll start
off with examples of convolution filters for edge detection, blur, and bloom. Then we'll move on
to the important topics of gamma correction and multisample anti-aliasing. Finally, we'll finish
with a full example of deferred shading.

Most of the recipes in this chapter involve multiple passes. In order to apply a filter that
operates on the pixels of the final rendered image, we start by rendering the scene to an
intermediate buffer (a texture). Then, in a final pass, we will render the texture to the screen
by drawing a single full-screen quad, applying the filter in the process. You'll see several
variations on this theme in the following recipes.

Applying an edge detection filter
Edge detection is an image processing technique that identifies regions where there is a
significant change in the brightness of the image. It provides a way to detect the boundaries
of objects and changes in the topology of the surface. It has applications in the field of
computer vision, image processing, image analysis, and image pattern recognition. For
more information, see D. Ziou and S. Tabbone' book (1998), Edge detection techniques:
An overview International Journal of Computer Vision, Vol 24, Issue 3.

It can also be used to create some visually interesting effects. For example, it can make a 3D
scene look similar to a 2D pencil sketch as shown in the following image. To create this image,
a teapot and torus were rendered normally, and then an edge detection filter was applied in a
second pass.

Chapter 5

151

The edge detection filter that we'll use here involves the use of a convolution filter, or
convolution kernel (also called a filter kernel). A convolution filter is a matrix that defines how
to transform a pixel by replacing it with the sum of the products between the values of nearby
pixels and a set of pre-determined weights. As a simple example, consider the following
convolution filter:

1 0 1 25 26 27
Filter: 0 2 0 Pixels: 28 29 30

1 0 1 31 32 33

The 3x3 filter is shown on the left, and a hypothetical grid of pixels is shown on the right.
The values of the pixels could represent gray-scale intensity or the value of one of the RGB
components. Applying the filter to the set of pixels on the right involves multiplying the
corresponding cells together and summing the results. The result would be the new value for
the center pixel (29). In this case, the value would be (25 + 27 + 2 * 29 + 31 + 33) or 174.

Of course, in order to apply a convolution filter, we need access to the pixels of the original
image and a separate buffer to store the results of the filter. We'll achieve this here by using
a two-pass algorithm. In the first pass, we'll render the image to a texture; and then in the
second pass, we'll apply the filter by reading from the texture and send the filtered results to
the screen.

Image Processing and Screen Space Techniques

152

One of the simplest, convolution-based techniques for edge detection is the so-called Sobel
operator. The Sobel operator is designed to approximate the gradient of the image intensity
at each pixel. It does so by applying two 3x3 filters. The results of the two are the vertical and
horizontal components of the gradient. We can then use the magnitude of the gradient as
our edge trigger. When the magnitude of the gradient is above a certain threshold, then we
assume that the pixel is on an edge.

The 3x3 filter kernels used by the Sobel operator are shown in the following equation:

If the result of applying Sx is sx and the result of applying Sy is sy, then an approximation of
the magnitude of the gradient is given by the following equation:

If the value of g is above a certain threshold, we consider the pixel to be an edge pixel, and
we highlight it in the resulting image.

In this example, we'll implement this filter as the second pass of a two-pass algorithm. In the
first pass, we'll render the scene using an appropriate lighting model, but we'll send the result
to a texture. In the second pass, we'll render the entire texture as a screen-filling quad, and
apply the filter to the texture.

Getting ready

Set up a framebuffer object (see Chapter 4, Rendering to a texture) that has the same
dimensions as the main window. Connect the first color attachment of the FBO to a texture
object in texture unit zero. During the first pass, we'll render directly to this texture. Make
sure that the mag and min filters for this texture are set to GL_NEAREST. We don't want any
interpolation for this algorithm.

Provide vertex information in vertex attribute zero, normals in vertex attribute one, and texture
coordinates in vertex attribute two.

The following uniform variables need to be set from the OpenGL application:

ff Width: The width of the screen window in pixels

ff Height: The height of the screen window in pixels

Chapter 5

153

ff EdgeThreshold: The minimum value of g squared required to be considered
"on an edge"

ff RenderTex: The texture associated with the FBO

Any other uniforms associated with the shading model should also be set from the
OpenGL application.

How to do it...
To create a shader program that applies the Sobel edge detection filter, use the
following steps:

1.	 Use the following code for the vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;
layout (location = 2) in vec2 VertexTexCoord;

out vec3 Position;
out vec3 Normal;
out vec2 TexCoord;

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

void main()
{
 TexCoord = VertexTexCoord;
 Normal = normalize(NormalMatrix * VertexNormal);
 Position = vec3(ModelViewMatrix *
 vec4(VertexPosition,1.0));

 gl_Position = MVP *
vec4(VertexPosition,1.0);
}

2.	 Use the following code for the fragment shader:
#version 400

in vec3 Position;
in vec3 Normal;
in vec2 TexCoord;

// The texture containing the results of the first pass
uniform sampler2D RenderTex;

uniform float EdgeThreshold; // The squared threshold value

Image Processing and Screen Space Techniques

154

uniform int Width; // The pixel width
uniform int Height; // The pixel height

// This subroutine is used for selecting the functionality
// of pass1 and pass2.
subroutine vec4 RenderPassType();
subroutine uniform RenderPassType RenderPass;

// Other uniform variables for the Phong reflection model can
// be placed here…

layout(location = 0) out vec4 FragColor;

vec3 phongModel(vec3 pos, vec3 norm)
{
 // The code for the basic ADS shading model goes here…
}

// Approximates the brightness of a RGB value.
float luma(vec3 color) {
 return 0.2126 * color.r + 0.7152 * color.g +
 0.0722 * color.b;

}

// Pass #1
subroutine (RenderPassType)
vec4 pass1()
{
 return vec4(phongModel(Position, Normal),1.0);
}

// Pass #2
subroutine(RenderPassType)
vec4 pass2()
{
 float dx = 1.0 / float(Width);
 float dy = 1.0 / float(Height);

 float s00 = luma(texture(RenderTex,
 TexCoord + vec2(-dx,dy)).rgb);
 float s10 = luma(texture(RenderTex,
 TexCoord + vec2(-dx,0.0)).rgb);
 float s20 = luma(texture(RenderTex,
 TexCoord + vec2(-dx,-dy)).rgb);
 float s01 = luma(texture(RenderTex,
 TexCoord + vec2(0.0,dy)).rgb);
 float s21 = luma(texture(RenderTex,
 TexCoord + vec2(0.0,-dy)).rgb);
 float s02 = luma(texture(RenderTex,

Chapter 5

155

 TexCoord + vec2(dx, dy)).rgb);
 float s12 = luma(texture(RenderTex,
 TexCoord + vec2(dx, 0.0)).rgb);
 float s22 = luma(texture(RenderTex,
 TexCoord + vec2(dx, -dy)).rgb);

 float sx = s00 + 2 * s10 + s20 - (s02 + 2 * s12 + s22);
 float sy = s00 + 2 * s01 + s02 - (s20 + 2 * s21 + s22);

 float dist = sx * sx + sy * sy;

 if(dist>EdgeThreshold)
 return vec4(1.0);
 else
 return vec4(0.0,0.0,0.0,1.0);
}

void main()
{
 // This will call either pass1() or pass2()
 FragColor = RenderPass();
}

In the render function of your OpenGL application, follow these steps for pass #1:

1.	 Select the framebuffer object (FBO), and clear the color/depth buffers.

2.	 Select the pass1 subroutine function (see Chapter 2, Using subroutines
to select shader functionality).

3.	 Set up the model, view, and projection matrices, and draw the scene.

For pass #2, carry out the following steps:

1.	 Deselect the FBO (revert to the default framebuffer), and clear the
color/depth buffers.

2.	 Select the pass2 subroutine function.

3.	 Set the model, view, and projection matrices to the identity matrix.

4.	 Draw a single quad (or two triangles) that fills the screen (-1 to +1 in x and y), with
texture coordinates that range from 0 to 1 in each dimension.

How it works...
The first pass renders all of the scene's geometry sending the output to a texture. We select the
subroutine function pass1, which simply computes and applies the Phong reflection model (see
Chapter 2, Implementing per-vertex ambient, diffuse, and specular (ADS) shading).

Image Processing and Screen Space Techniques

156

In the second pass, we select the subroutine function pass2, and render only a single quad
that covers the entire screen. The purpose of this is to invoke the fragment shader once for
every pixel in the image. In the pass2 function, we retrieve the values of the eight neighboring
pixels of the texture containing the results from the first pass, and compute their brightness
by calling the luma function. The horizontal and vertical Sobel filters are then applied and the
results are stored in sx and sy.

The luma function determines the brightness of an RGB value by computing a
weighted sum of the intensities. The weights are from the ITU-R Recommendation
Rec. 709. For more details on this, see the Wikipedia entry for "luma".

We then compute the squared value of the magnitude of the gradient (in order to avoid the
square root) and store the result in g. If the value of g is greater than EdgeThreshold, we
consider the pixel to be on an edge, and we output a white pixel. Otherwise, we output a solid
black pixel.

There's more...
The Sobel operator is somewhat crude, and tends to be sensitive to high frequency variations
in the intensity. A quick look at Wikipedia will guide you to a number of other edge detection
techniques that may be more accurate. It is also possible to reduce the amount of high
frequency variations by adding a "blur pass" between the render and edge detection passes.
The "blur pass" will smooth out the high frequency fluctuations and may improve the results of
the edge detection pass.

Optimization techniques
The technique discussed here requires eight texture fetches. Texture accesses can be
somewhat slow, and reducing the number of accesses can result in substantial speed
improvements. Chapter 24 of GPU Gems: Programming Techniques, Tips and Tricks for Real-
Time Graphics, edited by Randima Fernando (Addison-Wesley Professional 2004) has an
excellent discussion of ways to reduce the number of texture fetches in a filter operation by
making use of so-called "helper" textures.

See also

ff Chapter 2, Using subroutines to select shader functionality

ff Chapter 4, Rendering to a texture

ff Implementing per-vertex ambient, diffuse, and specular (ADS) shading in Chapter
2, The Basics of GLSL Shaders (The Phong reflection model)

Chapter 5

157

Applying a Gaussian blur filter
A blur filter can be useful in many different situations where the goal is to reduce the amount
of noise in the image. As mentioned in the previous recipe, applying a blur filter prior to the
edge detection pass may improve the results by reducing the amount of high frequency
fluctuation across the image. The basic idea of any blur filter is to mix the color of a pixel with
that of nearby pixels using a weighted sum. The weights typically decrease with the distance
from the pixel (in 2D screen space) so that pixels that are far away contribute less than those
closer to the pixel being blurred.

A Gaussian blur uses the 2-dimensional Gaussian function to weight the contributions of the
nearby pixels.

The sigma squared term is the variance of the Gaussian, and determines the width of the
Gaussian curve. The Gaussian function is maximum at (0,0), which corresponds to the
location of the pixel being blurred and its value decreases as x or y increases. The following
graph shows the two-dimensional Gaussian function with a sigma squared value of 4.0.

Image Processing and Screen Space Techniques

158

The following images show a portion of an image before (left) and after (right) the Gaussian
blur operation:

To apply a Gaussian blur, for each pixel, we need to compute the weighted sum of all pixels
in the image scaled by the value of the Gaussian function at that pixel (where the x and y
coordinates of each pixel are based on an origin located at the pixel being blurred). The result
of that sum is the new value for the pixel. However, there are two problems with the algorithm
so far:

ff As this is a O(n2) process, it is likely to be too slow for real-time use

ff The weights must sum to one in order to avoid changing the overall brightness
of the image

As we sampled the Gaussian function at discrete locations, and didn't sum over the entire
(infinite) bounds of the function, the weights almost certainly do not sum to one.

We can deal with both of the preceding problems by limiting the number of pixels that we
blur with a given pixel, and by normalizing the values of the Gaussian function. In this
example, we'll use a 9x9 Gaussian blur filter. That is, we'll only compute the contributions
of the 81 pixels in the neighborhood of the pixel being blurred.

Such a technique would require 81 texture fetches in the fragment shader, which is executed
once for each pixel. The total number of texture fetches for an image of size 800x600 would be
800 * 600 * 81 = 38,880,000. This seems like a lot, doesn't it? The good news is that we can
substantially reduce the number of texture fetches by doing the Gaussian blur in two passes.

The two-dimensional Gaussian function is actually just the product of two one-dimensional
Gaussians:

Chapter 5

159

Where the one-dimensional Gaussian function is given by the following equation:

So if Cij is the color of the pixel at pixel location (i,j), the sum that we need to compute is given
by the following equation:

This can be re-written using the fact that the two-dimensional Gaussian is a product of two
one-dimensional Gaussians.

This implies that we can compute the Gaussian blur in two passes. In the first pass, we can
compute the sum over j (the vertical sum) in the preceding equation and store the results in a
temporary texture. In the second pass, we compute the sum over i (the horizontal sum) using
the results from the previous pass.

Now, before we look at the code, there is one important point that has to be addressed. As we
mentioned previously, the Gaussian weights must sum to one in order to be a true weighted
average. Therefore, we need to normalize our Gaussian weights as in the following equation:

The value of k in the preceding equation is just the sum of the raw Gaussian weights.

Phew! Ok, with that, let's move on to the code.

Image Processing and Screen Space Techniques

160

We'll implement this technique using three passes and two textures. In the first pass, we'll
render the entire scene to a texture. Then, in the second pass, we'll apply the first (vertical)
sum to the texture from the first pass and store the results in another texture. Finally, in the
third pass, we'll apply the horizontal sum to the texture from the second pass, and send the
results to the default framebuffer.

Getting ready

Set up two framebuffer objects (see Chapter 4, Rendering to a texture), and two
corresponding textures. The first FBO should have a depth buffer because it will be used for
the first pass. The second FBO need not have a depth buffer because, in the second and third
passes, we'll only render a single screen-filling quad in order to execute the fragment shader
once for each pixel.

As with the previous recipe, we'll use a subroutine to select the functionality of each pass.
The OpenGL program should also set the following uniform variables:

ff Width: The width of the screen in pixels

ff Height: The height of the screen in pixels

ff Weight[]: The array of normalized Gaussian weights

ff Texture0: Set this to texture unit zero

ff PixOffset[]: The array of offsets from the pixel being blurred

How to do it...
To create a shader program that implements Gaussian blur, use the following code:

1.	 Use the same vertex shader as was used in the previous recipe Applying an edge
detection filter.

2.	 Use the following code for the fragment shader:
#version 400

in vec3 Position; // Vertex position
in vec3 Normal; // Vertex normal
in vec2 TexCoord; // Texture coordinate

uniform sampler2D Texture0;

uniform int Width; // Width of the screen in pixels
uniform int Height; // Height of the screen in pixels

subroutine vec4 RenderPassType();
subroutine uniform RenderPassType RenderPass;

// Other uniform variables for the Phong reflection model can
// be placed here…

Chapter 5

161

layout(location = 0) out vec4 FragColor;

uniform float PixOffset[5] = float[](0.0,1.0,2.0,3.0,4.0);
uniform float Weight[5];

vec3 phongModel(vec3 pos, vec3 norm)
{
 // The code for the Phong reflection model goes here…
}

subroutine (RenderPassType)
vec4 pass1()
{
 return vec4(phongModel(Position, Normal),1.0);
}

subroutine(RenderPassType)
vec4 pass2()
{
 float dy = 1.0 / float(Height);

 vec4 sum = texture(Texture0, TexCoord) * Weight[0];
 for(int i = 1; i < 5; i++)
 {
 sum += texture(Texture0,
 TexCoord +vec2(0.0,PixOffset[i]) * dy)
 * Weight[i];
 sum += texture(Texture0,
 TexCoord - vec2(0.0,PixOffset[i]) * dy)
 * Weight[i];
 }
 return sum;
}

subroutine(RenderPassType)
vec4 pass3()
{
 float dx = 1.0 / float(Width);

 vec4 sum = texture(Texture0, TexCoord) * Weight[0];
 for(int i = 1; i < 5; i++)
 {
 sum += texture(Texture0,
 TexCoord + vec2(PixOffset[i],0.0) * dx)
 * Weight[i];
 sum += texture(Texture0,
 TexCoord - vec2(PixOffset[i],0.0) * dx)
 * Weight[i];
 }

Image Processing and Screen Space Techniques

162

 return sum;
}

void main()
{
 // This will call either pass1(), pass2(), or pass3()
 FragColor = RenderPass();
}

3.	 In the OpenGL application, compute the Gaussian weights for the offsets found in the
uniform variable PixOffset, and store the results in the array Weight. You could
use the following code to do so:
char uniName[20];
float weights[5], sum, sigma2 = 4.0f;

// Compute and sum the weights
weights[0] = gauss(0,sigma2); // The 1-D Gaussian function
sum = weights[0];
for(int i = 1; i < 5; i++) {
 weights[i] = gauss(i, sigma2);
 sum += 2 * weights[i];
}

// Normalize the weights and set the uniform
for(int i = 0; i < 5; i++) {
 snprintf(uniName, 20, "Weight[%d]", i);
 prog.setUniform(uniName, weights[i] / sum);
}

In the main render function, implement the following steps for pass #1:

1.	 Select the render framebuffer, enable the depth test, and clear the
color/depth buffers.

2.	 Select the pass1 subroutine function.

3.	 Draw the scene.

Use the following steps for pass #2.

1.	 Select the intermediate framebuffer, disable the depth test, and clear the
color buffer.

2.	 Select the pass2 subroutine function.

3.	 Set the view, projection, and model matrices to the identity matrix.

4.	 Bind the texture from pass #1 to texture unit zero.

5.	 Draw a full-screen quad.

Chapter 5

163

Use the following steps for pass #3:

1.	 Deselect the framebuffer (revert to the default), and clear the color buffer.

2.	 Select the pass3 subroutine function.

3.	 Bind the texture from pass #2 to texture unit zero.

4.	 Draw a full-screen quad.

How it works...
In the preceding code for computing the Gaussian weights (code segment 3), the function
named gauss computes the one-dimensional Gaussian function where the first argument is
the value for x and the second argument is sigma squared. Note that we only need to compute
the positive offsets because the Gaussian is symmetric about zero. As we are only computing
the positive offsets, we need to carefully compute the sum of the weights. We double all of the
non-zero values because they will be used twice (for the positive and negative offset).

The first pass (subroutine function pass1) renders the scene to a texture using the Phong
reflection model (see Chapter 2, Implementing per-vertex ambient, diffuse, and specular
(ADS) shading).

The second pass (subroutine function pass2) applies the weighted vertical sum of the
Gaussian blur operation, and stores the results in yet another texture. We read pixels from
the texture created in the first pass, offset in the vertical direction by the amounts in the
PixOffset array. We sum using weights from the Weight array. (The dy term is the height of
a texel in texture coordinates.) We sum in both directions at the same time, a distance of four
pixels in each vertical direction.

The third pass (subroutine pass3) is very similar to the second pass. We accumulate the
weighted, horizontal sum using the texture from the second pass. By doing so, we are
incorporating the sums produced in the second pass into our overall weighted sum as described
earlier. Thereby, we are creating a sum over a 9x9 pixel area around the destination pixel. For
this pass, the output color goes to the default framebuffer to make up the final result.

There's more...
We can further optimize the preceding technique to reduce the number of texture accesses
by half. If we make clever use of the automatic linear interpolation that takes place when
accessing a texture (when GL_LINEAR is the mag/min mode), we can actually get information
about two texels with one texture access! A great blog post by Daniel Rákos describes
the technique in detail (see http://rastergrid.com/blog/2010/09/efficient-
gaussian-blur-with-linear-sampling/).

Image Processing and Screen Space Techniques

164

Of course, we can also adapt the preceding technique to blur a larger range of texels by
increasing the size of the arrays Weight and PixOffset and re-computing the weights,
and/or we could use different values of sigma2 to vary the shape of the Gaussian.

See also

ff Chapter 4, Rendering to a texture

ff Applying an edge detection filter

ff Chapter 2, Using subroutines

Creating a "bloom" effect
The "bloom" effect is a visual effect where the bright parts of an image seem to have fringes
that extend beyond the boundaries into the darker parts of the image. This effect has its
basis in the way that cameras and the human visual system perceive areas of high contrast.
Sources of bright light "bleed" into other areas of the image due to the so-called Airy disc
which is a diffraction pattern produced by light that passes through an aperture.

The following image shows a bloom effect in the animated film Elephant's Dream ((c) 2006,
Blender Foundation / Netherlands Media Art Institute / www.elephantsdream.org). The
bright white color from the light behind the door "bleeds" into the darker parts of the image.

Producing such an effect within an artificial CG rendering requires determining which
parts of the image are bright enough, extracting those parts, blurring, and re-combining
with the original image. Typically, the bloom effect is associated with HDR (High Dynamic
Range) rendering. With HDR rendering, we can represent a larger range of intensities for
each pixel (without quantizing artifacts). The bloom effect is more accurate when used in
conjunction with HDR rendering due to the fact that a wider range of brightness values can
be represented.

Chapter 5

165

With traditional framebuffers, we typically store each color component using
eight bits, allowing each component to take on an integer value between 0
and 255. An HDR framebuffer might use more bits per pixel to store a higher
dynamic range of values. For example, an HDR buffer might use 16 or 32 bit
floating point numbers to represent each color component.

Despite the fact that HDR produces higher quality results, it is still possible to produce a
bloom effect when using standard (non-HDR) color values. The result may not be as effective,
but the principles involved are similar for either situation.

In this example, we'll implement a bloom effect using four passes. The first pass will render
the scene to a texture. The second pass will extract the parts of the image that are brighter
than a certain threshold value. The third and fourth passes will apply the Gaussian blur to the
bright parts (see the section on Applying a Gaussian blur earlier in this chapter) and combine
the results with the original image.

The following images show the four stages of this bloom effect. The upper-left shows the
scene without the bloom effect. The upper-right shows the buffer containing the portions of
the scene with brightness above a certain threshold (0.75 in this example). The lower-left is
the upper-right image after a Gaussian blur is applied. The lower-right is the final result, which
is the sum of the upper-left and the lower-left. The final effect is somewhat subtle; you might
need to look closely.

Image Processing and Screen Space Techniques

166

Getting ready
For this recipe, we'll need three framebuffer objects, each associated with a texture. The first
will be used for the original render, the second and third will be used for the two passes of
the Gaussian blur operation. In the fragment shader, we'll access the original render via the
variable renderTex, and the two stages of the Gaussian blur will be accessed via BlurTex.

The uniform variable LumThresh is the minimum luminance value used in the second pass.
Any pixels greater than that value will be extracted and blurred in the following passes.

As in the previous recipe, we'll use a subroutine to select functionality for each pass.

How to do it...
To create a shader program that generates a basic bloom effect, use the following code:

1.	 Use the vertex shader from the recipe Applying an edge detection filter.

2.	 Use the following code for the fragment shader:
#version 400

in vec3 Position;
in vec3 Normal;
in vec2 TexCoord;

uniform sampler2D RenderTex;
uniform sampler2D BlurTex;

uniform int Width;
uniform int Height;
uniform float LumThresh; // Luminance threshold

subroutine vec4 RenderPassType();
subroutine uniform RenderPassType RenderPass;

// Uniform variables for the Phong reflection model
// should be added here…

layout(location = 0) out vec4 FragColor;

// Weights and offsets for the Gaussian blur
uniform float PixOffset[10] =
 float[](0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0);
uniform float Weight[10];

float luma(vec3 color) {
 return 0.2126 * color.r + 0.7152 * color.g +
 0.0722 * color.b;
}

Chapter 5

167

// See Chapter 2 for the ADS shading model code
vec3 phongModel(vec3 pos, vec3 norm) { … }

// The render pass
subroutine (RenderPassType)
vec4 pass1()
{
 return vec4(phongModel(Position, Normal),1.0);
}

// Pass to extract the bright parts
subroutine(RenderPassType)
vec4 pass2()
{
 vec4 val = texture(RenderTex, TexCoord);
 return val *
 clamp(luma(val.rgb) –LumThresh, 0.0, 1.0) *
 (1.0 / (1.0 – LumThresh));
}

// First blur pass
subroutine(RenderPassType)
vec4 pass3()
{
 float dy = 1.0 / float(Height);

 vec4 sum = texture(BlurTex, TexCoord) * Weight[0];
 for(int i = 1; i < 10; i++)
 {
 sum += texture(BlurTex, TexCoord +
 vec2(0.0,PixOffset[i]) * dy) * Weight[i];
 sum += texture(BlurTex, TexCoord –
 vec2(0.0,PixOffset[i]) * dy) * Weight[i];
 }
 return sum;
}

// Second blur and add to original
subroutine(RenderPassType)
vec4 pass4()
{
 float dx = 1.0 / float(Width);

 vec4 val = texture(RenderTex, TexCoord);
vec4 sum = texture(BlurTex, TexCoord) * Weight[0];
 for(int i = 1; i < 10; i++)
 {
 sum += texture(BlurTex, TexCoord +

Image Processing and Screen Space Techniques

168

 vec2(PixOffset[i],0.0) * dx) * Weight[i];
 sum += texture(BlurTex, TexCoord –
 vec2(PixOffset[i],0.0) * dx) * Weight[i];
 }
 return val + sum;
}

void main()
{
 // This will call pass1(), pass2(), pass3(), or pass4()
 FragColor = RenderPass();
}

Within the main render function of the OpenGL program, use the following steps:

1.	 Bind to the render framebuffer (containing the texture associated with RenderTex),
select the pass1 subroutine function, and render the scene normally.

2.	 Bind to the first blur framebuffer, select the pass2 subroutine function, and render
a screen-filling quad.

3.	 Bind to the second blur framebuffer, select the pass3 subroutine function, bind the
texture from the first blur framebuffer to the texture unit associated with BlurTex,
and render a screen-filling quad.

4.	 Bind to the default framebuffer, select the pass4 subroutine function, bind the
texture from the second blur framebuffer to BlurTex, and render a screen-filling
quad.

How it works...
The first pass renders the scene normally to a texture. We call the phongModel function
to apply our ADS shading model, and send the results to the framebuffer. During this pass,
the active framebuffer object (FBO) is the one associated with the texture corresponding to
RenderTex, so output is sent directly to that texture.

The second pass reads from RenderTex, and writes out only pixels that have a luminance
above the threshold value LumThresh. The return value of the pass2 function is (0,0,0,0) for
pixels that have a brightness (luma) value below LumThresh, and for others, the value of the
pixel is scaled by the amount that the brightness is above the threshold. We accomplish this
with the following steps:

1.	 We subtract LumThresh from the luma of the pixel, and clamp the result to be
between zero and one. (For more details on the luma function, see Applying an edge
detection filter.)

Chapter 5

169

2.	 Scale the result from step 1, immediately above, by the factor (1.0 / (1.0 –
LumThresh)). This should produce a value that ranges from zero to one (the luma
function returns a value between zero and one for in-gamut colors).

3.	 We scale the pixel (val) by the result from step 2.

The scale factor that is used here (1/(1-LumThresh)) may
cause "blow-out" in certain areas. A smaller value can be used to
reduce this effect.

The third and fourth passes apply the basic Gaussian blur operation (see Applying a Gaussian
blur filter). They both read from BlurTex, so we must be careful to swap the appropriate
texture into that texture unit so that each pass is reading the texture from the previous pass.

The pass4 function is the final pass of the Gaussian blur filter; however, it also reads a value
from the original render (RenderTex), adds the blurred value to it, and returns the result. This
combines the blurred image with the original image causing the brighter areas to appear to
"smear" outside their boundaries.

There's more...
The bloom effect is one that produces better results when HDR rendering is used. However,
the technique presented here can be used with standard dynamic range colors to "fake"
similar visual results.

We should keep in mind that the bloom effect can also be visually distracting if it is overused.
A little goes a long way.

Using low-res textures
The textures used during the blur passes could be of a lower resolution than the main render.
Since the data is being blurred and the goal of the effect is to create a fuzzy boundary, there's
no need to use high-res textures. We could gain a substantial speedup by using a low-res
texture for BlurTex. In fact, such a multi-resolution approach may even produce better
looking results, providing a larger blur of the boundaries around bright objects.

See also

ff Chapter 4, Rendering to a texture

ff Applying an edge detection filter

ff Chapter 2, Using subroutines

Image Processing and Screen Space Techniques

170

Using gamma correction to improve
image quality

It is common for many books about OpenGL and 3D graphics to somewhat neglect the subject
of gamma correction. Lighting and shading calculations are performed, and the results are sent
directly to the output buffer without modification. However, when we do this, we may produce
results that don't quite end up looking the way we might expect they should. This may be due
to the fact that computer monitors (both the old CRT and the newer LCD) have a non-linear
response to pixel intensity. For example, without gamma correction, a grayscale value of 0.5 will
not appear half as bright as a value of 1.0. Instead, it will appear to be darker than it should.

The lower curve in the following graph shows the response curves of a typical monitor (gamma
of 2.2). The x axis is the intensity, and the y axis is the perceived intensity. The dashed line
represents a linear set of intensities. The upper curve represents gamma correction applied to
linear values. The lower curve represents the response of a typical monitor. A grayscale value
of 0.5 would appear to have a value of 0.218 on a screen that
had a similar response curve.

The non-linear response of a typical monitor can usually be modeled using a simple power
function. The perceived intensity (P) is proportional to the pixel intensity (I) raised to a power
that is usually called "gamma".

Depending on the display device, the value of gamma is usually somewhere between 2.0 and
2.4. Some kind of monitor calibration is often needed to determine a precise value.

Chapter 5

171

In order to compensate for this non-linear response, we can apply gamma correction before
sending our results to the output framebuffer. Gamma correction involves raising the pixel
intensities to a power that will compensate for the monitor's non-linear response to achieve a
perceived result that appears linear. Raising the linear-space values to the power of 1/gamma
will do the trick.

When rendering, we can do all of our lighting and shading computations ignoring the fact
that the monitor's response curve is non-linear. This is sometimes referred to as "working in
linear space". When the final result is to be written to the output framebuffer, we can apply the
gamma correction by raising the pixel to the power of 1/gamma just before writing. This is an
important step that will help to improve the look of the rendered result.

As an example, consider the following images. The image on the left is the mesh rendered
without any consideration of gamma at all. The reflection model is computed and the results
are directly sent to the framebuffer. On the right is the same mesh with gamma correction
applied to the color just prior to output.

The obvious difference is that the left image appears much darker than the image on the
right. However, the more important distinction is the variations from light to dark across the
face. While the transition at the shadow terminator seems stronger than before, the variations
within the lighted areas are less extreme.

Applying gamma correction is an important technique, and can be effective in improving the
results of a lighting model.

Image Processing and Screen Space Techniques

172

How to do it...
Adding gamma correction to an OpenGL program can be as simple as carrying out the
following steps:

1.	 Set up a uniform variable named Gamma and set it to an appropriate value for
your system.

2.	 Use the following code or something similar in a fragment shader:

vec3 color = lightingModel(…);
FragColor = vec4(pow(color, vec3(1.0/Gamma)), 1.0);

If your shader involves texture data, care must be taken to make sure that the texture data is
not already gamma-corrected so that you don't apply gamma correction twice (see the There's
more… section of this recipe).

How it works...
The color determined by the lighting/shading model is computed and stored in the variable
color. We think of this as computing the color in "linear space". There is no consideration of
the monitor's response during the calculation of the shading model (assuming that we don't
access any texture data that might already be gamma corrected).

To apply the correction, in the fragment shader, we raise the color of the pixel to the power
of 1.0 / Gamma, and apply the result to the output variable FragColor. Of course, the inverse
of Gamma could be computed outside the fragment shader to avoid the division operation.

We do not apply the gamma correction to the alpha component because it is typically
not desired.

There's more...
The application of gamma correction is a good idea in general; however, some care must
be taken to make sure that computations are done within the correct "space". For example,
textures could be photographs or images produced by other imaging applications that apply
gamma correction before storing the data within the image file. Therefore, if we use a texture
in our application as a part of the lighting model and then apply gamma correction, we will be
effectively applying gamma correction twice to the data from the texture. Instead, we need to
be careful to "decode" the texture data, by raising to the power of gamma prior to using the
texture data in our lighting model.

There is a very detailed discussion about these and other issues surrounding gamma
correction in Chapter 24 of the book GPU Gems 3, edited by Hubert Nguyen (Addison-Wesley
Professional 2007) and this is highly recommended supplemental reading.

Chapter 5

173

Using multisample anti-aliasing
Anti-aliasing is the technique of removing or reducing the visual impact of aliasing artifacts
that are present whenever high resolution or continuous information, is presented at a lower
resolution. In real-time graphics, aliasing often reveals itself in the jagged appearance of
polygon edges, or the visual distortion of textures that have a high degree of variation.

The following images show an example of aliasing artifacts at the edge of an object. On the
left, we see that the edge appears jagged. This occurs because each pixel is determined to
lie either completely inside the polygon, or completely outside it. If the pixel is determined to
be inside, it is shaded, otherwise it is not. Of course, this is not entirely accurate. Some pixels
lie directly on the edge of the polygon. Some of the screen area that the pixel encompasses
actually lies within the polygon and some lies outside. Better results could be achieved if
we were to modify the shading of a pixel based upon the amount of the pixel's area that lies
within the polygon. The result could be a mixture of the shaded surface's color with the color
outside the polygon, where the area that is covered by the pixel determines the proportions.
You might be thinking that this sounds like it would be prohibitively expensive to do. That may
be true; however, we can approximate the results by using multiple samples per pixel.

Multisample anti-aliasing involves evaluating multiple samples per pixel and combining the
results of those samples to determine the final value for the pixel. The samples are located
at various points within the pixel's extent. Most of these samples will fall inside the polygon;
but for pixels near a polygon's edge, some will fall outside. The fragment shader will typically
execute only once for each pixel as usual. For example, with 4x multisample anti-aliasing
(MSAA), rasterization happens at four times the frequency. For each pixel, the fragment
shader is executed once and the result is scaled based on how many of the four samples fall
within the polygon.

Image Processing and Screen Space Techniques

174

The following image on the right shows the results when multisample anti-aliasing is used.
The inset image is a zoomed portion of the inside edge of a torus. On the left, the torus is
rendered without MSAA. The right-hand image shows the results with MSAA enabled.

OpenGL has supported multisampling for some time now, and it is nearly transparent to
use. It is simply a matter of turning it on or off. It works by using additional buffers to store
the subpixel samples as they are processed. Then the samples are combined together to
produce a final color for the fragment. Nearly all of this is automatic, and there is little that a
programmer can do to fine-tune the results. However, at the end of this recipe, we'll discuss
the interpolation qualifiers that can affect the results.

In this recipe, we'll see the code needed to enable multisample anti-aliasing in an
OpenGL application.

Getting ready
The technique for enabling multisampling is unfortunately dependent on the window system
API. In this example, we'll demonstrate how it is done using Qt. The steps will be similar in
GLUT or other APIs that support OpenGL.

How to do it...
To make sure that the multisample buffers are created and available, use the following steps:

1.	 When creating your OpenGL window, you need to select an OpenGL context that
supports MSAA. The following is how one would do so in Qt:
QGLFormat format;
format.setVersion(4,0);
format.setProfile(QGLFormat::CoreProfile);

Chapter 5

175

format.setSampleBuffers(true);
format.setSamples(4);
QGLWidget *glView = new QGLWidget(format);

2.	 To determine whether multisample buffers are available and how many samples
per-pixel are actually being used, you can use the following code (or something
similar):
GLint bufs, samples;
glGetIntegerv(GL_SAMPLE_BUFFERS, &bufs);
glGetIntegerv(GL_SAMPLES, &samples);
printf("MSAA: buffers = %d samples = %d\n", bufs, samples);

3.	 To enable multisampling, use the following:
glEnable(GL_MULTISAMPLE);

4.	 To disable multisampling, use the following:

glDisable(GL_MULTISAMPLE);

How it works...
As just mentioned, the technique for creating an OpenGL context with multisample buffers is
dependent on the API used for interacting with the window system. The preceding example
demonstrates how it might be done using Qt. Once the OpenGL context is created, it is easy to
enable multisampling by simply using the glEnable call shown in the preceding example.

Stay tuned, because in the next section, I'll discuss a subtle issue surrounding interpolation of
shader variables when multisample anti-aliasing is enabled.

There's more...
There are two interpolation qualifiers within the GLSL that allow the programmer to fine-tune
some aspects of multisampling. They are: sample and centroid.

Image Processing and Screen Space Techniques

176

Before we can get into how sample and centroid work, we need a bit of background.
Let's consider the way that polygon edges are handled without multisampling. A fragment is
determined to be inside or outside of a polygon by determining where the center of that pixel
lies. If the center is within the polygon, the pixel is shaded, otherwise it is not. The following
image represents this behavior. It shows pixels near a polygon edge without MSAA. The line
represents the edge of the polygon. Gray pixels are considered to be inside the polygon. White
pixels are outside and are not shaded. The dots represent the pixel centers.

The values for the interpolated variables (the fragment shader's input variables) are
interpolated with respect to the center of each fragment, which will always be inside
the polygon.

When multisample anti-aliasing is enabled, multiple samples are computed per fragment at
various locations within the fragment's extent. If any of those samples lie within the polygon,
then the shader is executed at least once for that pixel (but not necessarily for each sample).
As a visual example, the following image represents pixels near a polygon's edge. The dots
represent the samples. The dark samples lie within the polygon and the white samples lie
outside the polygon. If any sample lies within the polygon, the fragment shader is executed
(usually only once) for that pixel. Note that for some pixels, the pixel centers lie outside the
polygon. So with MSAA, the fragment shader may execute slightly more often near the edges
of polygons.

Chapter 5

177

Now, here's the important point. The value of the fragment shader's input variables are
normally interpolated to the center of the pixel rather than to the location of any particular
sample. In other words, the value that is used by the fragment shader is determined by
interpolating to the location of the fragment's center, which may lie outside the polygon! If
we are relying on the fact that the fragment shader's input variables be interpolated strictly
between their values at the vertices (and not outside that range) then this might lead to
unexpected results.

As an example, consider the following portion of a fragment shader:

in vec2 TexCoord;

layout(location = 0) out vec4 FragColor;

void main()
{
 vec3 yellow = vec3(1.0,1.0,0.0);
 vec3 color = vec3(0.0); // black
 if(TexCoord.s > 1.0)
 color = yellow;
 FragColor = vec4(color , 1.0);
}

Image Processing and Screen Space Techniques

178

This shader is designed to color the polygon black unless the s component of the texture
coordinate is greater than one. In that case, the fragment gets a yellow color. If we render
a square with texture coordinates that range from zero to one in each direction, we may get
the results shown in the following image on the left. The images show the enlarged edge of
a polygon where the s texture coordinate is about 1.0. Both images were rendered using the
preceding shader. The right-hand image was created using the centroid qualifier (more on
this below).

The left image shows that some pixels along the edge have a lighter color (yellow if the image
was in full color). This is due to the fact that the texture coordinate is interpolated to the pixel's
center, rather than to any particular sample's location. Some of the fragments along the edge
have a center that lies outside of the polygon, and therefore end up with a texture coordinate
that is greater than one!

We can ask OpenGL to instead compute the value for the input variable by interpolating to
some location that is not only within the pixel, but also within the polygon. We can do so by
using the centroid qualifier as shown in the following code:

centroid in vec2 TexCoord;

(The qualifier needs to also be included with the corresponding output variable in the vertex
shader.) When centroid is used with the preceding shader, we get the preceding image
shown on the right.

In general, we should use centroid or sample when we know that the
interpolation of the input variables should not extend beyond the values of
those variables at the vertices.

The sample qualifier forces OpenGL to interpolate the shader's input variables to the actual
location of the sample itself.

sample in vec2 TexCoord;

Chapter 5

179

This, of course, requires that the fragment shader be executed once for each sample. This will
produce the most accurate results, but the performance hit may not be worthwhile, especially
if the visual results produced by centroid (or without the default) are good enough.

Using deferred shading
Deferred shading is a technique that involves postponing the lighting/shading step to a
second pass. We do this (among other reasons) in order to avoid shading a pixel more than
once. The basic idea is as follows:

1.	 In the first pass, we render the scene, but instead of evaluating the reflection model
to determine a fragment color, we simply store all of the geometry information
(position, normal, texture coordinate, reflectivity, and so on) in an intermediate set of
buffers, collectively called the g-buffer (g for geometry).

2.	 In the second pass, we simply read from the g-buffer, evaluate the reflection model,
and produce a final color for each pixel.

When deferred shading is used, we avoid evaluating the reflection model for a fragment
that will not end up being visible. For example, consider a pixel located in an area where two
polygons overlap. The fragment shader may be executed once for each polygon that covers
that pixel; however, the resulting color of only one of the two executions will end up being the
final color for that pixel (assuming that blending is not enabled). The cycles spent in evaluating
the reflection model for one of the two fragments are effectively wasted. With deferred
shading, the evaluation of the reflection model is postponed until all the geometry has been
processed, and the visible geometry is known at each pixel location. Hence, the reflection
model is evaluated only once for each pixel on the screen.

Deferred shading is fairly simple to understand and work with. It can therefore help with the
implementation of complex lighting/reflection models.

In this recipe, we'll go through a simple example of deferred shading. We'll store the following
information in our g-buffer: the position, normal, and diffuse color (the diffuse reflectivity).
In the second pass, we'll simply evaluate the diffuse lighting model using the data stored
in the g-buffer.

This recipe is meant to be a starting point for deferred shading. If
we were to use deferred shading in a more substantial (real-world)
application, we'd probably need more components in our g-buffer. It
should be straightforward to extend this example to use more complex
lighting/shading models.

Image Processing and Screen Space Techniques

180

Getting ready
The g-buffer will contain three textures for storing the position, normal, and diffuse color.
There are three uniform variables that correspond to these three textures: PositionTex,
NormalTex, and ColorTex; these textures should be assigned to texture units 0, 1, and
2, respectively. Likewise, the vertex shader assumes that position information is provided
in vertex attribute 0, the normal is provided in attribute 1, and the texture coordinate in
attribute 2.

The fragment shader has several uniform variables related to light and material properties
that must be set from the OpenGL program. Specifically, the structures Light and Material
apply to the shading model used here.

You'll need a variable named deferredFBO (type GLuint) to store the handle to the FBO.

How to do it...
To create a shader program that implements deferred shading (with diffuse shading only),
use the following code:

1.	 To create the framebuffer object that contains our g-buffer use the following code (or
something similar) :
GLuint depthBuf, posTex, normTex, colorTex;

// Create and bind the FBO
glGenFramebuffers(1, &deferredFBO);
glBindFramebuffer(GL_FRAMEBUFFER, deferredFBO);

// The depth buffer
glGenRenderbuffers(1, &depthBuf);
glBindRenderbuffer(GL_RENDERBUFFER, depthBuf);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT,
 width, height);

// The position buffer
glActiveTexture(GL_TEXTURE0); // Use texture unit 0 for position
glGenTextures(1, &posTex);
glBindTexture(GL_TEXTURE_2D, posTex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB32F, width, height, 0,
 GL_RGB, GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);

// The normal buffer
glActiveTexture(GL_TEXTURE1); // Use texture unit 1 for normal

Chapter 5

181

glGenTextures(1, &normTex);
glBindTexture(GL_TEXTURE_2D, normTex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB32F, width, height, 0,
 GL_RGB, GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);

// The diffuse color (reflectivity) buffer
glActiveTexture(GL_TEXTURE2); // Texture unit 2 for diffuse color
glGenTextures(1, &colorTex);
glBindTexture(GL_TEXTURE_2D, colorTex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0,
 GL_RGB, GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);

// Attach the images to the framebuffer
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
 GL_RENDERBUFFER, depthBuf);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
 GL_TEXTURE_2D, posTex, 0);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1,
 GL_TEXTURE_2D, normTex, 0);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT2,
 GL_TEXTURE_2D, colorTex, 0);

GLenumdrawBuffers[] = {GL_NONE, GL_COLOR_ATTACHMENT0,
 GL_COLOR_ATTACHMENT1,GL_COLOR_ATTACHMENT2};
glDrawBuffers(4, drawBuffers);

2.	 Use the following code for the vertex shader:
#version 400

layout(location = 0) in vec3 VertexPosition;
layout(location = 1) in vec3 VertexNormal;
layout(location = 2) in vec2 VertexTexCoord;

out vec3 Position;
out vec3 Normal;
out vec2 TexCoord;

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

Image Processing and Screen Space Techniques

182

void main()
{
 Normal = normalize(NormalMatrix * VertexNormal);
 Position = vec3(ModelViewMatrix *
 vec4(VertexPosition,1.0));
 TexCoord = VertexTexCoord;
 gl_Position = MVP * vec4(VertexPosition,1.0);
}

3.	 Use the following code for the fragment shader:

#version 400

struct LightInfo {
 vec4 Position; // Light position in eye coords.
 vec3 Intensity; // Diffuse intensity
};
uniform LightInfo Light;

struct MaterialInfo {
 vec3 Kd; // Diffuse reflectivity
};
uniform MaterialInfo Material;

subroutine void RenderPassType();
subroutine uniform RenderPassType RenderPass;

// The g-buffer textures
uniform sampler2D PositionTex, NormalTex, ColorTex;

in vec3 Position;
in vec3 Normal;
in vec2 TexCoord;

layout (location = 0) out vec4 FragColor;
layout (location = 1) out vec3 PositionData;
layout (location = 2) out vec3 NormalData;
layout (location = 3) out vec3 ColorData;

vec3 diffuseModel(vec3 pos, vec3 norm, vec3 diff)
{
 vec3 s = normalize(vec3(Light.Position) - pos);
 float sDotN = max(dot(s,norm), 0.0);
 vec3 diffuse = Light.Intensity * diff * sDotN;

 return diffuse;
}

subroutine (RenderPassType)
void pass1()
{

Chapter 5

183

 // Store position, normal, and diffuse color in g-buffer
 PositionData = Position;
 NormalData = Normal;
 ColorData = Material.Kd;
}

subroutine(RenderPassType)
void pass2()
{
 // Retrieve position, normal and color information from
 // the g-buffer textures
 vec3 pos = vec3(texture(PositionTex, TexCoord));
 vec3 norm = vec3(texture(NormalTex, TexCoord));
 vec3 diffColor = vec3(texture(ColorTex, TexCoord));

 FragColor = vec4(diffuseModel(pos,norm,diffColor), 1.0);
}

void main() {
 // This will call either pass1 or pass2
 RenderPass();
}

In the render function of the OpenGL application, use the following steps for pass #1:

1.	 Bind to the framebuffer object deferredFBO.

2.	 Clear the color/depth buffers, select the pass1 subroutine function, and enable
the depth test (if necessary).

3.	 Render the scene normally.

Use the following steps for pass #2:

1.	 Revert to the default FBO (bind to framebuffer 0).

2.	 Clear the color buffer, select the pass2 subroutine function, and disable the depth
test (if desired).

3.	 Render a screen-filling quad (or two triangles) with texture coordinates that range
from zero to one in each direction.

How it works...
When setting up the framebuffer object (FBO) for the g-buffer, we use textures with internal
format GL_RGB32F for the position and normal components. As we are storing geometry
information, rather than simply color information, there is a need to use a higher resolution
(that is more bits per pixel). The buffer for the diffuse reflectivity just uses GL_RGB since we
don't need the extra resolution for these values.

Image Processing and Screen Space Techniques

184

The three textures are then attached to the framebuffer at color attachments 0, 1, and 2
using glFramebufferTexture2D. They are then connected to the fragment shader's
output variables with the call to glDrawBuffers.

glDrawBuffers(4, drawBuffers);

The array drawBuffers indicates the relationship between the framebuffer's components
and the fragment shader's output variable locations. The ith item in the array corresponds to
the ith output variable location. This call sets color attachments 0, 1, and 2 to output variable
locations 1, 2, and 3, respectively. (Note that the fragment shader's corresponding variables
are PositionData, NormalData, and ColorData.)

The vertex shader is a basic "pass-through" shader. It just converts the position and normal
to eye (camera) coordinates and passes them along to the fragment shader. The texture
coordinate is passed through unchanged.

Note that during pass 2, it is not strictly necessary to convert and pass
through the normal, and position, as they will not be used in the fragment
shader at all. However, to keep things simple, I did not include this
optimization. It would be a simple matter to add a subroutine to the vertex
shader in order to "switch off" the conversion during pass 2. (Of course, we
need to set gl_Position regardless.)

In the fragment shader, the functionality depends on the value of the subroutine variable
RenderPass. It will either call pass1 or pass2, depending on its value. In the pass1
function, we store the values of Position, Normal, and Material.Kd in the appropriate
output variables, effectively storing them in the textures that we just talked about.

In the pass2 function, the values of the position, normal, and color are retrieved from
the textures, and used to evaluate the diffuse lighting model. The result is then stored in
the output variable FragColor. In this pass, FragColor should be bound to the default
framebuffer, so the results of this pass will appear on the screen.

There's more...
In the graphics community, the relative advantages and disadvantages of deferred shading
are a source of much debate. Deferred shading is not ideal for all situations. It depends
greatly on the specific requirements of your application, and one needs to carefully evaluate
the benefits and drawbacks before deciding whether or not to use deferred shading.

Chapter 5

185

One important drawback with deferred shading is that hardware enabled multisample
anti-aliasing (as discussed in the recipe Using multisample anti-aliasing) doesn't work at
all. The multiple samples would be needed in the second pass, because that's where the
shading takes place. However, in the second pass, we only have geometry information for
a single sample per pixel. To make this work, we'd need multiple textures and the ability to
choose the appropriate texture for each sample. This is not currently available in OpenGL.
However, one could use a combination of edge detection with a blur filter to provide some
(rough) anti-aliasing.

Another consideration is that deferred shading can't do blending/transparency very well.
In fact, blending is impossible with the basic implementation we saw some time ago.
Additional buffers with depth-peeling can help by storing additional layered geometry
information in the g-buffer.

One notable advantage of deferred shading is that one can retain the depth information from
the first pass and access it as a texture during the shading pass. Having access to the entire
depth buffer as a texture can enable algorithms such as depth of field (depth blur), screen
space ambient occlusion, volumetric particles, and other similar techniques.

For much more information about deferred shading, see Chapter 9 in GPU Gems 2 edited by
Matt Pharr and Randima Fernando (Addison-Wesley Professional 2005) and Chapter 19 of
GPU Gems 3 edited by Hubert Nguyen (Addison-Wesley Professional 2007). Both combined,
provide an excellent discussion of the benefits and drawbacks of deferred shading, and how
to make the decision of whether or not to use it in your application.

See also

ff Chapter 4, Rendering to a texture

ff Using multisample anti-aliasing

6
Using Geometry and
Tessellation Shaders

In this chapter, we will cover:

ff Point sprites with the geometry shader

ff Drawing a wireframe on top of a shaded mesh

ff Drawing silhouette lines using the geometry shader

ff Tessellating a curve

ff Tessellating a 2D quad

ff Tessellating a 3D surface

ff Tessellating based on depth

Introduction
Tessellation and geometry shaders are relatively new additions to the OpenGL pipeline, and
provide programmers with additional ways to modify geometry as it progresses through the
shader pipeline. Geometry shaders can be used to add, modify, or delete geometry, and
tessellation shaders can be configured to automatically generate geometry in such a way as to
facilitate interpolation based on arbitrary input (patches).

In this chapter, we'll look at several examples of geometry and tessellation shaders in various
contexts. However, before we get into the recipes, let's investigate how all of this fits together.

Using Geometry and Tessellation Shaders

188

The shader pipeline extended
The following diagram shnows a simplified view of the shader pipeline when the shader
program includes geometry and tessellation shaders.

The tessellation portion of the shader pipeline includes two stages: the tessellation control
shader (TCS), and the tessellation evaluation shader (TES). The geometry shader follows the
tessellation stages and precedes the fragment shader. The tessellation shaders and geometry
shader are optional; however, when a shader program includes a tessellation or geometry
shader, a vertex shader must be included.

Other than the preceding requirement, all shaders are optional. However,
when a shader program does not include a vertex or fragment shader,
the results are undefined. When using a geometry shader, there is no
requirement that you also include a tessellation shader and vice versa. It
is rare to have a shader program that does not include at least a fragment
shader and a vertex shader.

The geometry shader
The geometry shader (GS) is designed to execute once for each primitive. It has access to all
of the vertices of the primitive, as well as the values of any input variables associated with
each vertex. In other words, if a previous stage (such as the vertex shader) provides an output
variable, the geometry shader has access to the value of that variable for all vertices in the
primitive. As a result, the input variables within the geometry shader are always arrays.

Chapter 6

189

The geometry shader can output zero, one, or more primitives. Those primitives need not be
the same kind of primitive that was received by the geometry shader. However, the GS cannot
output more than one primitive type. For example, a GS could receive a triangle, and output
several line segments as a line strip. Or a GS could receive a triangle and output zero or many
triangles as a triangle strip.

This enables the GS to act in many different ways. The following are a few examples. A GS
could be responsible for culling (removing) geometry based on some criteria, such as visibility
based on occlusions. A GS could generate additional geometry to augment the shape of
the object being rendered. The GS could simply compute additional information about the
primitive and pass the primitive along unchanged. Or the GS could produce primitives that are
entirely different from the input geometry.

The functionality of the GS is centered around the two built-in functions EmitVertex and
EndPrimitive. These two functions allow the GS to send multiple vertices and primitives
down the pipeline. The GS defines the output variables for a particular vertex, and then calls
EmitVertex. After that, the GS can proceed to re-define the output variables for the next
vertex, call EmitVertex again, and so on. After emitting all of the vertices for the primitive,
the GS can call EndPrimitive to let the OpenGL system know that all the vertices of the
primitive have been emitted. The EndPrimitive function is implicitly called when the
GS finishes execution. If a GS does not call EmitVertex at all, then the input primitive is
effectively dropped (it is not rendered).

In the following recipes, we'll examine a few examples of the geometry shader. In Point sprites
with the geometry shader, we'll see an example where the input primitive type is entirely
different than the output type. In Drawing a wireframe on top of a shaded mesh, we'll pass the
geometry along unchanged, but also produce some additional information about the primitive
to help in drawing wireframe lines. In Drawing silhouette lines with the geometry shader,
we'll see an example where the GS passes along the input primitive, but generates additional
primitives as well.

The tessellation shaders
When tessellation shaders are active, we can only render one kind of primitive: the patch
(GL_PATCHES). Rendering any other kind of primitive (such as triangles, or lines) while
a tessellation shader is active is an error. The patch primitive is an arbitrary "chunk" of
geometry (or any information) that is completely defined by the programmer. It has no
geometrical interpretation beyond how it is interpreted within the TCS and TES. The number of
vertices within the patch primitive is also configurable. The maximum number of vertices per
patch is implementation dependent, and can be queried via the following command:

glGetIntegerv(GL_MAX_PATCH_VERTICES, &maxVerts);

Using Geometry and Tessellation Shaders

190

We can define the number of vertices per patch with the following function:

glPatchParameteri(GL_PATCH_VERTICES, numPatchVerts);

A very common application of this is when the patch primitive consists of a set of control
points that define an interpolated surface or curve (such as a Bezier curve or surface).
However, there is no reason why the information within the patch primitive couldn't be used
for other purposes.

The patch primitive is never actually rendered. Instead, the patch is used as additional
information for the TCS and TES. The primitives that actually make their way further down
the pipeline are created by the tessellation primitive generator (TPG), which lies between the
TCS and the TES. Think of the tessellation primitive generator as a configurable engine that
produces primitives based on a set of standard tessellation algorithms. The TCS and the TES
have access to the entire input patch, but have fundamentally different responsibilities. The
TCS is responsible for setting up the TPG, defining how the primitives should be generated by
the TPG (how many and what algorithm to use), and producing per-vertex output attributes.
The TES has the job of determining the position (and any other information) of each vertex
of the primitives that are produced by the TPG. For example, the TCS might tell the TPG
to generate a line strip consisting of 100 line segments, and the TES is responsible for
determining the position of each vertex of those 100 line segments. The TES would likely
make use of the information within the entire patch primitive in order to do so.

The TCS is executed once for each vertex in the output patch (specified in the TCS code).
It can compute additional information about the patch and pass it along to the TES using
output variables. However, the most important task of the TCS is to tell the TPG how many
primitives it should produce. It does this by defining tessellation levels via the arrays gl_
TessLevelInner and gl_TessLevelOuter. These arrays define the granularity of the
tessellation produced by the TPG.

The TPG generates primitives based on a particular algorithm (quads, isolines, or triangles).
Each algorithm produces primitives in a slightly different fashion, and we will see examples
of isolines and quads in the recipes in this chapter. Each vertex of the generated primitives
is associated with a position in parameter space (u, v, w). Each coordinate of this position
is a number that can range from zero to one. This coordinate can be used for evaluating the
location of the vertex, often by interpolation of the patch primitive's vertices. The primitive
generation algorithms produce vertices (and the associated parametric coordinates) in a
slightly different fashion. The tessellation algorithms for quads and isolines make use of only
the first two parametric coordinates: u and v. The following diagram illustrates the process for
an input and output patch consisting of four vertices. In the image, the TPG uses the quad
tessellation algorithm with inner and outer tessellation levels set at four.

Chapter 6

191

The number of vertices in the input patch need not be the same as the
number of vertices in the output patch, although that will be the case in all of
the examples in this chapter.

The TES is executed once for each parameter-space vertex that is generated by the TPG.
Somewhat strangely, the TES is actually the shader that defines the algorithm used by the
TPG. It does so via its input layout qualifier. As stated above, its main responsibility is to
determine the position of the vertex (possibly along with other information such as normal
vector, texture coordinate, and so on). Typically, the TES uses the parametric coordinate (u,v)
provided by the TPG along with the positions of all of the input patch vertices to do so. For
example, when drawing a curve, the patch might consist of 4 vertices which are the control
points for the curve. The TPG would then generate 101 vertices to create a line strip (if the
tessellation level was set to 100), and each vertex might have a u coordinate that ranged
appropriately between zero and one. The TES would then use that u coordinate along with the
positions of the four patch vertices to determine the position of the vertex associated with the
shader's execution.

Using Geometry and Tessellation Shaders

192

The following diagram illustrates this concept when quad tessellation is used.

v

1

1 u0

Tessellation coorinates
(parameter space).

Output
vertices

TES

Patch

If all of this seems confusing, start with the recipe Tessellating a curve, and work your way
through the following recipes.

In Tessellating a curve, we'll go through a basic example where we use tessellation shaders to
draw a Bezier curve with four control points. In Tessellating a 2D quad we'll try to understand
how the quad tessellation algorithm works by rendering a simple quad and visualizing the
triangles produced by the TPG. In Tessellating a 3D surface we'll use quad tessellation
to render a 3D Bezier surface. Finally, in Tessellating based on depth, we'll see how the
tessellation shaders make it easy to implement level-of-detail (LOD) algorithms.

Point sprites with the geometry shader
Point sprites are simple quads (usually texture mapped) that are aligned such that they
are always facing the camera. They are very useful for particle systems in 3D (see Chapter
9) or 2D games. The point sprites are specified by the OpenGL application as single point
primitives, via the GL_POINTS rendering mode. This simplifies the process, because the quad
itself and the texture coordinates for the quad are determined automatically. The OpenGL side
of the application can effectively treat them as point primitives, avoiding the need to compute
the positions of the quad vertices.

Chapter 6

193

The following screenshot shows a group of point sprites. Each sprite is rendered as a point
primitive. The quad and texture coordinates are generated automatically (within the geometry
shader) and aligned to face the camera.

OpenGL already has built-in support for point sprites in the GL_POINTS rendering mode.
When rendering point primitives using this mode, the points are rendered as screen-space
squares that have a diameter (side length) as defined by the glPointSize function. In
addition, OpenGL will automatically generate texture coordinates for the fragments of the
square. These coordinates run from 0 to 1 in each direction (left-to-right for s, bottom-to-top
for t), and are accessible in the fragment shader via the gl_PointCoord built-in variable.

There are various ways to fine-tune the rendering of point sprites within OpenGL. One
can define the origin of the automatically generated texture coordinates using the
glPointParameter functions. The same set of functions also can be used to tweak
the way that OpenGL defines the alpha value for points when multisampling is enabled.

The built-in support for point sprites does not allow the programmer to rotate the
screen-space squares, or define them as different shapes such as rectangles or triangles.
However, one can achieve similar effects with creative use of textures and transformations
of the texture coordinates. For example, we could transform the texture coordinates using
a rotation matrix to create the look of a rotating object even though the geometry itself is
not actually rotating. In addition, the size of the point sprite is a screen-space size. In other
words, the point size must be adjusted with the depth of the point sprite if we want to get a
perspective effect (sprites get smaller with distance).

If these (and possibly other) issues make the default support for point sprites too limiting,
we can use the geometry shader to generate our point sprites. In fact, this technique is a
good example of using the geometry shader to generate different kinds of primitives than
it receives. The basic idea here is that the geometry shader will receive point primitives (in
camera coordinates) and will output a quad centered at the point and aligned so that it is
facing the camera. The geometry shader will also automatically generate texture coordinates
for the quad.

Using Geometry and Tessellation Shaders

194

If desired, we could generate other shapes such as hexagons, or we could rotate the quads
before they are output from the geometry shader. The possibilities are endless. Implementing
the primitive generation within the geometry shader gives us a great deal of flexibility, but
possibly at the cost of some efficiency. The default OpenGL support for point sprites is highly
optimized and is likely to be faster in general.

Before jumping directly into the code, let's take a look at some of the mathematics. In the
geometry shader, we'll need to generate the vertices of a quad that is centered at a point
and aligned with the camera's coordinate system (eye coordinates). Given the point location
(P) in camera coordinates, we can generate the vertices of the corners of the quad by simply
translating P in a plane parallel to the x-y plane of the camera's coordinate system as shown
in the following image:

The geometry shader will receive the point location in camera coordinates, and output the
quad as a triangle strip with texture coordinates. The fragment shader will then just apply
the texture to the quad.

Getting ready
For this example, we'll need to render a number of point primitives. The positions can be sent
via attribute location 0. There's no need to provide normal vectors or texture coordinates for
this one.

The following uniform variables are defined within the shaders, and need to be set within the
OpenGL program:

ff Size2: This should be half the width of the sprite's square

ff SpriteTex: This is the texture unit containing the point sprite texture

As usual, uniforms for the standard transformation matrices are also defined within the
shaders, and need to be set within the OpenGL program.

Chapter 6

195

How to do it...
To create a shader program that can be used to render point primitives as quads, use the
following steps:

1.	 Use the following code for the vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;

void main()
{
 gl_Position = ModelViewMatrix * vec4(VertexPosition,1.0);
}

2.	 Use the following code for the geometry shader:
#version 400

layout(points) in;
layout(triangle_strip, max_vertices = 4) out;

uniform float Size2; // Half the width of the quad

uniform mat4 ProjectionMatrix;

out vec2 TexCoord;

void main()
{
 mat4 m = ProjectionMatrix; // Reassign for brevity

 gl_Position = m * (vec4(-Size2,-Size2,0.0,0.0) +
 gl_in[0].gl_Position);
 TexCoord = vec2(0.0,0.0);
 EmitVertex();

 gl_Position = m * (vec4(Size2,-Size2,0.0,0.0) +
 gl_in[0].gl_Position);
 TexCoord = vec2(1.0,0.0);
 EmitVertex();

 gl_Position = m * (vec4(-Size2,Size2,0.0,0.0) +
 gl_in[0].gl_Position);
 TexCoord = vec2(0.0,1.0);
 EmitVertex();

 gl_Position = m * (vec4(Size2,Size2,0.0,0.0) +
 gl_in[0].gl_Position);

Using Geometry and Tessellation Shaders

196

 TexCoord = vec2(1.0,1.0);
 EmitVertex();

 EndPrimitive();
}

3.	 Use the following code for the fragment shader:
#version 400

in vec2 TexCoord; // From the geometry shader

uniform sampler2D SpriteTex;

layout(location = 0) out vec4 FragColor;

void main()
{
 FragColor = texture(SpriteTex, TexCoord);
}

4.	 Within the OpenGL render function, render a set of point primitives.

How it works...
The vertex shader is almost as simple as it can get. It converts the point's position to camera
coordinates by multiplying by the model-view matrix, and assigns the result to the built-in
output variable gl_Position.

In the geometry shader, we start by defining the kind of primitive that this geometry shader
expects to receive. The first layout statement indicates that this geometry shader will receive
point primitives.

layout(points) in;

The next layout statement indicates the kind of primitives produced by this geometry shader,
and the maximum number of vertices that will be output.

layout(triangle_strip, max_vertices = 4) out;

In this case, we want to produce a single quad for each point received, so we indicate that the
output will be a triangle strip with a maximum of four vertices.

The input primitive is available to the geometry shader via the built-in input variable gl_in.
Note that it is an array of structures. You might be wondering why this is an array since a point
primitive is only defined by a single position. Well, in general the geometry shader can receive
triangles, lines, or points (and possibly adjacency information). So the number of values
available may be more than one. If the input were triangles, the geometry shader would have
access to three input values (associated with each vertex). In fact, it could have access to as
many as 6 values when triangles_adjacency is used (more on that in a later recipe).

Chapter 6

197

The gl_in variable is an array of structs. Each struct contains the following
fields: gl_Position, gl_PointSize, and gl_ClipDistance[]. In this
example, we are only interested in gl_Position. However, the others can
be set in the vertex shader to provide additional information to the geometry
shader.

Within the main function of the geometry shader, we produce the quad (as a triangle strip)
in the following way. For each vertex of the triangle strip we execute the following steps:

1.	 Compute the attributes for the vertex (in this case the position and texture
coordinate), and assign their values to the appropriate output variables (gl_
Position and TexCoord). Note that the position is also transformed by the
projection matrix. We do this because the variable gl_Position must be provided
in clip coordinates to later stages of the pipeline.

2.	 Emit the vertex (send it down the pipeline) by calling the built-in
function EmitVertex().

Once we have emitted all vertices for the output primitive, we call EndPrimitive() to
finalize the primitive and send it along.

It is not strictly necessary to call EndPrimitive() in this case because it is
implicitly called when the geometry shader finishes. However, like closing files,
it is good practice to do so anyway.

The fragment shader is also very simple. It just applies the texture to the fragment using the
(interpolated) texture coordinate provided by the geometry shader.

There's more...
This example is fairly straightforward and is intended as a gentle introduction to geometry
shaders. We could expand on this by allowing the quad to rotate or to be oriented in different
directions. We could also use the texture to discard fragments (in the fragment shader) in
order to create point sprites of arbitrary shapes. The power of the geometry shader opens up
plenty of possibilities!

Using Geometry and Tessellation Shaders

198

Drawing a wireframe on top of a shaded
mesh

The preceding recipe demonstrated the use of a geometry shader to produce a different
variety of primitive than it received. Geometry shaders can also be used to provide additional
information to later stages. They are quite well suited to do so because they have access to all
of the vertices of the primitive at once, and can do computations based on the entire primitive
rather than a single vertex.

This example involves a geometry shader that does not modify the triangle at all. It essentially
passes the primitive along unchanged. However, it computes additional information about the
triangle that will be used by the fragment shader to highlight the edges of the polygon. The
basic idea here is to draw the edges of each polygon directly on top of the shaded mesh.

The following image shows an example of this technique. The mesh edges are drawn on top
of the shaded surface by using information computed within the geometry shader.

There are many techniques for producing wireframe structures on top of shaded surfaces.
This technique comes from an NVIDIA whitepaper published in 2007. We make use of the
geometry shader to produce the wireframe and shaded surface in a single pass. We also
provide some simple anti-aliasing of the mesh lines that are produced, and the results are
quite nice (see the preceding image).

To render the wireframe on top of the shaded mesh, we'll compute the distance from each
fragment to the nearest triangle edge. When the fragment is within a certain distance from
the edge, it will be shaded and mixed with the edge color. Otherwise, the fragment will be
shaded normally.

Chapter 6

199

To compute the distance from a fragment to the edge, we use the following technique. In the
geometry shader, we compute the minimum distance from each vertex to the opposite edge (also
called the triangle altitude). In the following figure, the desired distances are ha, hb, and hc.

We can compute these altitudes using the interior angles of the triangle, which can be
determined using the law of cosines. For example, to find ha, we use the interior angle
at vertex C (β).

��� cos
-1()a + c - b

2 2 2

2ac

ha = c sin�

�

ha

B

c

A b C

a

The other altitudes can be computed in a similar way. (Note that β could be greater than 90
degrees, in which case, we would want the sine of 180-β. However, the sine of 180-β is the
same as the sine of β.)

Once we have computed these triangle altitudes, we can create an output vector (an
"edge-distance" vector) within the geometry shader for interpolation across the triangle.
The components of this vector represent the distances from the fragment to each edge of
the triangle. The x component represents the distance from edge a, the y component is
the distance from edge b and the z component is the distance from edge c. If we assign
the correct values to these components at the vertices, the hardware will automatically
interpolate them for us to provide the appropriate distances at each fragment. At vertex A the
value of this vector should be (ha, 0, 0) because the vertex A is ha from edge a and directly on
edges b and c. Similarly, the value for vertex B is (0, hb, 0) and for vertex C is (0, 0, hc). When
these three values are interpolated across the triangle, we should have the distance from the
fragment to each of the three edges.

Using Geometry and Tessellation Shaders

200

We will calculate all of this in screen space. That is, we'll transform the vertices to screen
space within the geometry shader before computing the altitudes. Since we are working
in screen space, there's no need (and it would be incorrect) to interpolate the values in a
perspective correct manner. So we need to be careful to tell the hardware to interpolate
linearly.

Within the fragment shader, all we need to do is find the minimum of the three distances,
and if that distance is less than the line width, we mix the fragment color with the line color.
However, we'd also like to apply a bit of anti-aliasing while we're at it. To do so, we'll fade the
edge of the line using the GLSL smoothstep function.

We'll scale the intensity of the line in a two-pixel range around the edge of the line. Pixels that
are at a distance of one or less from the true edge of the line get 100% of the line color, and
pixels that are at a distance of one or more from the edge of the line get 0% of the line color.
In between, we'll use the smoothstep function to create a smooth transition. Of course the
edge of the line itself is a configurable distance (we'll call it Line.Width) from the edge of
the polygon.

Getting ready
The typical setup is needed for this example. The vertex position and normal should be
provided in attributes zero and one respectively, and you need to provide the appropriate
parameters for your shading model. As usual, the standard matrices are defined as uniform
variables and should be set within the OpenGL application. However, note that this time we
also need the viewport matrix (uniform variable ViewportMatrix) in order to transform into
screen space.

There are a few uniforms related to the mesh lines that need to be set:

ff Line.Width: This should be half the width of the mesh lines

ff Line.Color: This is the color of the mesh lines

How to do it...
To create a shader program that utilizes the geometry shader to produce a wireframe on top
of a shaded surface, use the following steps:

1.	 Use the following vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;

out vec3 VNormal;
out vec3 VPosition;

uniform mat4 ModelViewMatrix;

Chapter 6

201

uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

void main()
{
 VNormal = normalize(NormalMatrix * VertexNormal);
 VPosition = vec3(ModelViewMatrix *
 vec4(VertexPosition,1.0));
 gl_Position = MVP * vec4(VertexPosition,1.0);
}

2.	 Use the following geometry shader:
#version 400

layout(triangles) in;
layout(triangle_strip, max_vertices = 3) out;

out vec3 GNormal;
out vec3 GPosition;
noperspective out vec3 GEdgeDistance;

in vec3 VNormal[];
in vec3 VPosition[];

uniform mat4 ViewportMatrix; // Viewport matrix

void main()
{
 // Transform each vertex into viewport space
 vec3 p0 = vec3(ViewportMatrix * (gl_in[0].gl_Position /
 gl_in[0].gl_Position.w));
 vec3 p1 = vec3(ViewportMatrix * (gl_in[1].gl_Position /
 gl_in[1].gl_Position.w));
 vec3 p2 = vec3(ViewportMatrix * (gl_in[2].gl_Position /
 gl_in[2].gl_Position.w));

 // Find the altitudes (ha, hb and hc)
 float a = length(p1 - p2);
 float b = length(p2 - p0);
 float c = length(p1 - p0);
 float alpha = acos((b*b + c*c - a*a) / (2.0*b*c));
 float beta = acos((a*a + c*c - b*b) / (2.0*a*c));
 float ha = abs(c * sin(beta));
 float hb = abs(c * sin(alpha));
 float hc = abs(b * sin(alpha));

 // Send the triangle along with the edge distances

 GEdgeDistance = vec3(ha, 0, 0);

Using Geometry and Tessellation Shaders

202

 GNormal = VNormal[0];
 GPosition = VPosition[0];
 gl_Position = gl_in[0].gl_Position;
 EmitVertex();

 GEdgeDistance = vec3(0, hb, 0);
 GNormal = VNormal[1];
 GPosition = VPosition[1];
 gl_Position = gl_in[1].gl_Position;
 EmitVertex();

 GEdgeDistance = vec3(0, 0, hc);
 GNormal = VNormal[2];
 GPosition = VPosition[2];
 gl_Position = gl_in[2].gl_Position;
 EmitVertex();

 EndPrimitive();
}

3.	 Use the following fragment shader:

#version 400

// *** Insert appropriate uniforms for the Phong model ***

// The mesh line settings
uniform struct LineInfo {
 float Width;
 vec4 Color;
} Line;

in vec3 GPosition;
in vec3 GNormal;
noperspective in vec3 GEdgeDistance;

layout(location = 0) out vec4 FragColor;

vec3 phongModel(vec3 pos, vec3 norm)
{
 // *** Phong model evaluation code goes here ***
}

void main() {

 // The shaded surface color.
 vec4 color = vec4(phongModel(GPosition, GNormal), 1.0);

 // Find the smallest distance
 float d = min(GEdgeDistance.x, GEdgeDistance.y);
 d = min(d, GEdgeDistance.z);

 // Determine the mix factor with the line color

Chapter 6

203

 float mixVal = smoothstep(Line.Width – 1,
 Line.Width + 1, d);

 // Mix the surface color with the line color
 FragColor = mix(Line.Color, color, mixVal);
}

How it works...
The vertex shader is pretty simple. It passes the normal and position along to the geometry
shader after converting them into camera coordinates. The built-in variable gl_Position
gets the position in clip coordinates. We'll use this value in the geometry shader to determine
the screen space coordinates.

In the geometry shader, we begin by defining the input and output primitive types for
this shader.

layout(triangles) in;
layout(triangle_strip, max_vertices = 3) out;

We don't actually change anything about the geometry of the triangle, so the input and
output types are essentially the same. We will output exactly the same triangle that was
received as input.

The output variables for the geometry shader are GNormal, GPosition, and GEdgeDistance.
The first two are simply the values of the normal and position in camera coordinates, passed
through unchanged. The third is the vector that will store the distance to each edge of the
triangle (described above). Note that it is defined with the noperspective qualifier.

noperspective out vec3 GEdgeDistance;

The noperspective qualifier indicates that the values are to be interpolated linearly, instead
of the default perspective correct interpolation. As mentioned previously, these distances are
in screen space, so it would be incorrect to interpolate them in a non-linear fashion.

Within the main function, we start by transforming the position of each of the three vertices of
the triangle from clip coordinates to screen space coordinates by multiplying with the viewport
matrix. (Note that it is also necessary to divide by the w coordinate as the clip coordinates are
homogeneous and may need to be converted back to true Cartesian coordinates.)

Next, we compute the three altitudes ha, hb, and hc using the law of cosines as
described earlier.

Using Geometry and Tessellation Shaders

204

Once we have the three altitudes, we set GEdgeDistance appropriately for the first vertex;
pass along GNormal, GPosition, and gl_Position unchanged; and emit the first vertex
by calling EmitVertex(). This finishes the vertex and emits the vertex position and all of
the per-vertex output variables. We then proceed similarly for the other two vertices of the
triangle, finishing the polygon by calling EndPrimitive().

In the fragment shader, we start by evaluating the basic shading model and storing the
resulting color in color. At this stage in the pipeline, the three components of the variable
GEdgeDistance should contain the distance from this fragment to each of the three edges
of the triangle. We are interested in the minimum distance, so we find the minimum of the
three components and store that in the variable d. The smoothstep function is then used to
determine how much to mix the line color with the shaded color (mixVal).

float mixVal = smoothstep(Line.Width – 1,
 Line.Width + 1, d);

If the distance is less than Line.Width – 1, then smoothstep will return a value of 0, and
if it is greater than Line.Width + 1, it will return 1. For values of d that are in between the
two, we'll get a smooth transition. This gives us a value of 0 when inside the line, a value of
1 when outside the line, and in a 2 pixel area around the edge, we'll get a smooth variation
between 0 and 1. Therefore, we can use the result directly to mix the color with the line color.

Finally, the fragment color is determined by mixing the shaded color with the line color using
mixVal as the interpolation parameter.

There's more...
This technique produces very nice looking results and has relatively few drawbacks. It is a
good example of how geometry shaders can be useful for tasks other than modification of
the actual geometry. In this case, we used the geometry shader simply to compute additional
information about the primitive as it was being sent down the pipeline.

This shader can be dropped in and applied to any mesh without any modification to the
OpenGL side of the application. It can be useful when debugging mesh issues or when
implementing a mesh modeling program.

Other common techniques for accomplishing this effect typically involve rendering the shaded
object and wireframe in two passes with a polygon offset (via the glPolygonOffset function)
applied to avoid the "z-fighting" which takes place between the wireframe and the shaded
surface beneath. This technique is not always effective because the modified depth values
might not always be correct, or as desired, and it can be difficult to find the "sweet-spot" for
the polygon offset value. For a good survey of techniques, see Section 11.4.2 in Real Time
Rendering, third edition, by T Akenine-Moller, E Haines, and N Hoffman, AK Peters, 2008.

Chapter 6

205

See also
ff This technique was originally published in an NVIDIA whitepaper in 2007 (Solid

Wireframe, NVIDIA Whitepaper WP-03014-001_v01 available at developer.
nvidia.com). The whitepaper was listed as a Direct3D example, but of course
our implementation here is provided in OpenGL.

ff Chapter 2, Implementing per-vertex ambient, diffuse, and specular (ADS) shading.

Drawing silhouette lines using the
geometry shader

When a cartoon or hand-drawn effect is desired, we often want to draw black outlines around
the edges of a model and along ridges or creases (silhouette lines). In this recipe, we'll discuss
one technique for doing this using the geometry shader to produce the additional geometry
for the silhouette lines. The geometry shader will approximate these lines by generating small,
skinny quads aligned with the edges that make up the silhouette of the object.

The following image shows the ogre mesh with black silhouette lines generated by the
geometry shader. The lines are made up of small quads that are aligned with certain
mesh edges.

The technique shown in this recipe is based on a technique published in a recent blog post by
Philip Rideout (prideout.net/blog/?p=54). His implementation uses two passes (base
geometry and silhouette), and includes many optimizations such as anti-aliasing and custom
depth testing (with g-buffers). To keep things simple, as our main goal is to demonstrate the
features of the geometry shader, we'll implement the technique using a single pass without
anti-aliasing or custom depth testing. If you are interested in adding these additional features,
refer to Philip's excellent blog posting.

Using Geometry and Tessellation Shaders

206

One of the most important features of the geometry shader is that it allows us to provide
additional vertex information beyond just the primitive being rendered. When geometry
shaders were introduced into OpenGL, several additional primitive rendering modes were
also introduced. These "adjacency" modes allow additional vertex data to be associated with
each primitive. Typically, this additional information is related to the nearby primitives within a
mesh, but there is no requirement that this be the case (we could actually use the additional
information for other purposes if desired). The following list includes the adjacency modes
along with a short description:

ff GL_LINES_ADJACENCY: This mode defines lines with adjacent vertices (4 vertices
per line segment)

ff GL_LINE_STRIP_ADJACENCY: This mode defines a line strip with adjacent vertices
(for n lines, there are n+3 vertices)

ff GL_TRIANGLES_ADJACENCY: This mode defines triangles along with vertices of
adjacent triangles (6 vertices per primitive)

ff GL_TRIANGLE_STRIP_ADJACENCY: This mode defines a triangle strip along with
vertices of adjacent triangles (for n triangles, there are 2(n+2) vertices provided)

For full details on each of these modes, check out the official OpenGL documentation. In
this recipe, we'll use the GL_TRIANGLES_ADJACENCY mode to provide information about
adjacent triangles in our mesh. With this mode, we provide 6 vertices per primitive. The
following diagram illustrates the locations of these vertices:

0

5
4

3

21

In the preceding diagram, the solid line represents the triangle itself, and the dotted lines
represent adjacent triangles. The first, third, and fifth vertices (0, 2, and 4 above) make up the
triangle itself. The second, fourth, and sixth are vertices that make up the adjacent triangles.

Mesh data is not usually provided in this form, so we need to preprocess our mesh to include
the additional vertex information. Typically, this only means expanding the element index array
by a factor of two. The position, normal, and texture coordinate arrays can remain unchanged.

Chapter 6

207

When a mesh is rendered with adjacency information, the geometry shader has access to
all six vertices associated with a particular triangle. We can then use the adjacent triangles
to determine whether or not a triangle edge is part of the silhouette of the object. The
basic assumption is that an edge is a silhouette edge if the triangle is front facing and the
corresponding adjacent triangle is not front facing.

We can determine whether or not a triangle is front facing within the geometry shader by
computing the triangle's normal vector (using a cross product). If we are working within eye
coordinates (or clip coordinates), the z coordinate of the normal vector will be positive for front
facing triangles. Therefore, we only need to compute the z coordinate of the normal vector,
which should save a few cycles. For a triangle with vertices A, B, and C, the z coordinate of the
normal vector is given by the following equation:

Once we determine which edges are silhouette edges, the geometry shader will produce
additional skinny quads aligned with the silhouette edge. These quads, taken together, will
make up the desired dark lines (see the preceding picture). After generating all the silhouette
quads, the geometry shader will output the original triangle.

In order to render the mesh in a single pass with appropriate shading for the base mesh, and
no shading for the silhouette lines, we'll use an additional output variable. This variable will let
the fragment shader know when we are rendering the base mesh and when we are rendering
the silhouette edge.

Getting ready
Set up your mesh data so that adjacency information is included. As just mentioned, this will
probably requires expanding the element index array to include the additional information.
This can be done by passing through your mesh and looking for shared edges. Due to space
limitations, we won't go through the details here, but the blog post mentioned some time back
has some information about how this might be done. Also, the source code for this example
contains a simple (albeit not very efficient) technique.

The important uniform variables for this example are the following:

ff EdgeWidth: The width of the silhouette edge in clip (normalized device) coordinates

ff PctExtend: A percentage to extend the quads beyond the edge

ff LineColor: The color of the silhouette edge lines

As usual, there are also the appropriate uniforms for the shading model, and the
standard matrices.

Using Geometry and Tessellation Shaders

208

How to do it...
To create a shader program that utilizes the geometry shader to render silhouette edges, use
the following steps:

1.	 Use the following vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;

out vec3 VNormal;
out vec3 VPosition;

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 ProjectionMatrix;
uniform mat4 MVP;

void main()
{
 VNormal = normalize(NormalMatrix * VertexNormal);
 VPosition = vec3(ModelViewMatrix *
 vec4(VertexPosition,1.0));
 gl_Position = MVP * vec4(VertexPosition,1.0);
}

2.	 Use the following geometry shader:
#version 400

layout(triangles_adjacency) in;
layout(triangle_strip, max_vertices = 15) out;

out vec3 GNormal;
out vec3 GPosition;

// Which output primitives are silhouette edges
flat out bool GIsEdge;

in vec3 VNormal[]; // Normal in camera coords.
in vec3 VPosition[]; // Position in camera coords.

uniform float EdgeWidth; // Width of sil. edge in clip cds.
uniform float PctExtend; // Percentage to extend quad

bool isFrontFacing(vec3 a, vec3 b, vec3 c)
{
 return ((a.x * b.y - b.x * a.y) + (b.x * c.y - c.x * b.y)
 + (c.x * a.y - a.x * c.y)) > 0;
}

Chapter 6

209

void emitEdgeQuad(vec3 e0, vec3 e1)
{
 vec2 ext = PctExtend * (e1.xy - e0.xy);
 vec2 v = normalize(e1.xy – e0.xy);
 vec2 n = vec2(-v.y, v.x) * EdgeWidth;

 // Emit the quad
 GIsEdge = true; // This is part of the sil. edge

 gl_Position = vec4(e0.xy - ext, e0.z, 1.0);
 EmitVertex();
 gl_Position = vec4(e0.xy - n - ext, e0.z, 1.0);
 EmitVertex();
 gl_Position = vec4(e1.xy + ext, e1.z, 1.0);
 EmitVertex();
 gl_Position = vec4(e1.xy - n + ext, e1.z, 1.0);
 EmitVertex();

 EndPrimitive();
}

void main()
{
 vec3 p0 = gl_in[0].gl_Position.xyz /
 gl_in[0].gl_Position.w;
 vec3 p1 = gl_in[1].gl_Position.xyz /
 gl_in[1].gl_Position.w;
 vec3 p2 = gl_in[2].gl_Position.xyz /
 gl_in[2].gl_Position.w;
 vec3 p3 = gl_in[3].gl_Position.xyz /
 gl_in[3].gl_Position.w;
 vec3 p4 = gl_in[4].gl_Position.xyz /
 gl_in[4].gl_Position.w;
 vec3 p5 = gl_in[5].gl_Position.xyz /
 gl_in[5].gl_Position.w;

 if(isFrontFacing(p0, p2, p4)) {
 if(! isFrontFacing(p0,p1,p2)) emitEdgeQuad(p0,p2);
 if(! isFrontFacing(p2,p3,p4)) emitEdgeQuad(p2,p4);
 if(! isFrontFacing(p4,p5,p0)) emitEdgeQuad(p4,p0);
 }

 // Output the original triangle

 GIsEdge = false; // This triangle is not part of an edge.

 GNormal = VNormal[0];
 GPosition = VPosition[0];
 gl_Position = gl_in[0].gl_Position;
 EmitVertex();

Using Geometry and Tessellation Shaders

210

 GNormal = VNormal[2];
 GPosition = VPosition[2];
 gl_Position = gl_in[2].gl_Position;
 EmitVertex();

 GNormal = VNormal[4];
 GPosition = VPosition[4];
 gl_Position = gl_in[4].gl_Position;
 EmitVertex();

 EndPrimitive();
}

3.	 Use the following fragment shader:
#version 400

//*** Light and material uniforms go here ****

uniform vec4 LineColor; // The sil. edge color

in vec3 GPosition; // Position in camera coords
in vec3 GNormal; // Normal in camera coords.

flat in bool GIsEdge; // Whether or not we're drawing an edge

layout(location = 0) out vec4 FragColor;

vec3 toonShade()
{
 // *** toon shading algorithm from Chapter 3 ***
}

void main()
{
 // If we're drawing an edge, use constant color,
 // otherwise, shade the poly.
 if(GIsEdge) {
 FragColor = LineColor;
 } else {
 FragColor = vec4(toonShade(), 1.0);
 }

}

Chapter 6

211

How it works...
The vertex shader is a simple "pass-through" shader. It converts the vertex position and
normal to camera coordinates and sends them along, via VPosition and VNormal. These
will be used for shading within the fragment shader and will be passed along (or ignored) by
the geometry shader. The position is also converted to clip coordinates (or normalized device
coordinates) by transforming with the model-view projection matrix, and it is then assigned to
the built-in gl_Position.

The geometry shader begins by defining the input and output primitive types using the
layout directive.

layout(triangles_adjacency) in;
layout(triangle_strip, max_vertices = 15) out;

This indicates that the input primitive type is triangles with adjacency information, and the
output type is triangle strips. This geometry shader will produce a single triangle (the original
triangle) and at most one quad for each edge. This corresponds to a maximum of 15 vertices
that could be produced, and we indicate that maximum within the output layout directive.

The output variable GIsEdge is used to indicate to the fragment shader whether or not the
polygon is an edge quad. The fragment shader will use this value to determine whether or
not to shade the polygon. There is no need to interpolate the value and since it is a Boolean,
interpolation doesn't quite make sense, so we use the flat qualifier.

The first few lines within the main function take the position for each of the six vertices (in clip
coordinates) and divides it by the fourth coordinate in order to convert from its homogeneous
representation to the true Cartesian value. This is necessary if we are using a perspective
projection, but is not necessary for orthographic projections.

Next, we determine whether the main triangle (defined by points 0, 2, and 4) is front facing.
The function isFrontFacing returns whether or not the triangle defined by its three
parameters is front facing using the equation described previously. If the main triangle is front
facing, then we will emit a silhouette edge quad only if the adjacent triangle is not front facing.

The function emitEdgeQuad produces a quad that is aligned with an edge defined by the
points e0 and e1. It begins by computing ext, which is the vector from e0 to e1, scaled by
PctExtend (in order to slightly lengthen the edge quad). We lengthen the edge quad in order
to cover gaps that may appear between quads (we'll discuss this further in There's more…).

Note also that we drop the z coordinate here. As the points are defined in clip coordinates, and
we are going to produce a quad that is aligned with the x-y plane (facing the camera), we want to
compute the positions of the vertices by translating within the x-y plane. Therefore we can ignore
the z coordinate for now. We'll use its value unchanged in the final position of each vertex.

Using Geometry and Tessellation Shaders

212

Next, the variable v is assigned to the normalized vector from e0 to e1. The variable n gets
a vector that is perpendicular to v (in 2D this can be achieved by swapping the x and y
coordinates and negating the new x coordinate). This is just a counter-clockwise 90 degree
rotation in 2D. We scale the vector n by EdgeWidth because we want the length of the vector
to be the same as the width of the quad. The two vectors ext and n will be used to determine
the vertices of the quad as shown in the following figure:

ext

e1

v
e0

-ext
-n

The four corners of the quad are given by: e0 – ext, e0 – n – ext, e1 + ext, and e1 –n + ext.
The z coordinate for the lower two vertices is the same as the z coordinate for e0, and the
z coordinate for the upper two vertices is the z coordinate for e1.

We then finish up the emitEdgeQuad function by setting GIsEdge to true in order to let
the fragment shader know that we are rendering a silhouette edge, and then emitting the
four vertices of the quad. The function ends with a call to EndPrimitive to terminate the
processing of the triangle strip for the quad.

Back within the main function, after producing the silhouette edges, we proceed by emitting
the original triangle unchanged. VNormal, VPosition, and gl_Position for vertices 0,
2, and 4 are passed along without any modification to the fragment shader. Each vertex is
emitted with a call to EmitVertex, and the primitive is completed with EndPrimitive.

Within the fragment shader we either shade the fragment (using the toon shading algorithm), or
simply give the fragment a constant color. The GIsEdge input variable will indicate which option
to choose. If GIsEdge is true, then we are rendering a silhouette edge so the fragment is given
the line color. Otherwise, we are rendering a mesh polygon, so we shade the fragment using the
toon shading technique from Chapter 3, Lighting, Shading Effects, and Optimizations.

There's more...
One of the problems with the preceding technique is that "feathering" can occur due to the
gaps between consecutive edge quads.

Chapter 6

213

The preceding image shows the feathering of a silhouette edge. The gaps between the
polygons can be filled with triangles, but in our example, we simply extend the length of each
quad to fill in the gap. This can, of course, cause artifacts if the quads are extended too far,
but in practice they haven't been very distracting in my experience.

A second issue is related to depth testing. If an edge polygon extends into another area of the
mesh, it can be clipped due to the depth test. The following is an example:

The edge polygon should extend vertically throughout the middle of the preceding image,
but is clipped because it falls behind the part of the mesh that is nearby. This issue can be
solved by using custom depth testing when rendering the silhouette edges. See the blog post
mentioned earlier for details on this technique. It may also be possible to turn depth testing
off when rendering the edges, being careful not to render any edges from the opposite side of
the model.

See also

ff Chapter 3, Creating a cartoon shading effect

Using Geometry and Tessellation Shaders

214

Tessellating a curve
In this recipe, we'll take a look at the basics of tessellation shaders by drawing a cubic Bezier
curve. A Bezier curve is a parametric curve defined by four control points. The control points
define the overall shape of the curve. The first and last of the four points define the start and
end of the curve, and the middle points guide the shape of the curve, but do not necessarily
lie directly on the curve itself. The curve is defined by interpolating the four control points
using a set of blending functions. The blending functions define how much each control point
contributes to the curve for a given position along the curve. For Bezier curves, the blending
functions are known as the Bernstein polynomials.

In the preceding equation, the first term is the binomial coefficient function (shown in the
following equation), n is the degree of the polynomial, i is the polynomial number, and t is
the parametric parameter.

The general parametric form for the Bezier curve is then given as a sum of the products of the
Bernstein polynomials with the control points (Pi).

In this example, we will draw a cubic Bezier curve, which involves four control points (n = 3).

And the cubic Bernstein polynomials are:

Chapter 6

215

As stated in the introduction to this chapter, the tessellation functionality within OpenGL
involves 2 shader stages. They are the tessellation control shader (TCS) and the tessellation
evaluation shader (TES). In this example, we'll define the number of line segments for our
Bezier curve within the TCS (by defining the outer tessellation levels), and evaluate the
Bezier curve at each particular vertex location within the TES. The following screenshot
shows the output of this example for three different tessellation levels. The left image uses
3 line segments (level 3), the middle uses level 5, and the right-hand image is created with
tessellation level 30. The small squares are the control points.

The control points for the Bezier curve are sent down the pipeline as a patch primitive
consisting of four vertices. A patch primitive is a programmer-defined primitive type. Basically,
it is a set of vertices that can be used for anything that the programmer chooses. The TCS is
executed once for each vertex within the patch, and the TES is executed a variable number
of times depending on the number of vertices produced by the TPG. The final output of the
tessellation stages is a set of primitives. In our case, it will be a line strip.

Part of the job for the TCS is to define the tessellation level. In very rough terms, the tessellation
level is related to the number of vertices that will be generated. In our case, the TCS will be
generating a line strip, so the tessellation level is the number of line segments in the line strip.
Each vertex that is generated for this line strip will be associated with a tessellation coordinate
that will vary between zero and one. We'll refer to this as the u coordinate, and it will correspond
to the parametric parameter t in the preceding Bezier curve equation.

What we've looked at so far is not, in fact, the whole story. Actually, the TCS
will trigger a generation of a set of line strips called isolines. Each vertex in
this set of isolines will have a u and a v coordinate. The u coordinate will vary
from zero to one along a given isoline, and v will be constant for each isoline.
The number of distinct values of u and v is associated with two separate
tessellation levels, the so-called "outer" levels. For this example, however, we'll
only generate a single line strip, so the second tessellation level (for v) will
always be one.

Within the TES, the main task is to determine the position of the vertex associated with this
execution of the shader. We have access to the u and v coordinates associated with the
vertex, and we also have (read-only) access to all of the vertices of the patch. We can then
determine the appropriate position for the vertex by using the parametric equation described
above, with u as the parametric coordinate (t in the preceding equation).

Using Geometry and Tessellation Shaders

216

Getting ready
The following are the important uniform variables for this example:

ff NumSegments: The number of line segments to be produced

ff NumStrips: The number of isolines to be produced. For this example, this should be
set to one

ff LineColor: The color for the resulting line strip

Set the uniform variables within the main OpenGL application. There are a total of 4 shaders
to be compiled and linked. They are the vertex, fragment, tessellation control, and tessellation
evaluation shaders.

How to do it...
To create a shader program that will generate a Bezier curve from a patch of four control
points, use the following steps:

1.	 Use the following simple vertex shader:
#version 400

layout (location = 0) in vec2 VertexPosition;

void main()
{
 gl_Position = vec4(VertexPosition, 0.0, 1.0);
}

2.	 Use the following as the tessellation control shader:
#version 400

layout(vertices=4) out;

uniform int NumSegments;
uniform int NumStrips;

void main()
{
 // Pass along the vertex position unmodified
 gl_out[gl_InvocationID].gl_Position =
 gl_in[gl_InvocationID].gl_Position;

 // Define the tessellation levels (this works on
 // ATI Catalyst drivers as of this writing, you may
 // need to swap these)
 gl_TessLevelOuter[0] = float(NumSegments);
 gl_TessLevelOuter[1] = float(NumStrips);
}

Chapter 6

217

3.	 Use the following as the tessellation evaluation shader:
#version 400

layout(isolines) in;
uniform mat4 MVP; // projection * view * model

void main()
{
 // The tessellation u coordinate
 float u = gl_TessCoord.x;

 // The patch vertices (control points)
 vec3 p0 = gl_in[0].gl_Position.xyz;
 vec3 p1 = gl_in[1].gl_Position.xyz;
 vec3 p2 = gl_in[2].gl_Position.xyz;
 vec3 p3 = gl_in[3].gl_Position.xyz;

 float u1 = (1.0 - u);
 float u2 = u * u;

 // Bernstein polynomials evaluated at u
 float b3 = u2 * u;
 float b2 = 3.0 * u2 * u1;
 float b1 = 3.0 * u * u1 * u1;
 float b0 = u1 * u1 * u1;

 // Cubic Bezier interpolation
 vec3 p = p0 * b0 + p1 * b1 + p2 * b2 + p3 * b3;

 gl_Position = MVP * vec4(p, 1.0);

}

4.	 Use the following fragment shader:
#version 400

uniform vec4 LineColor;

layout (location = 0) out vec4 FragColor;

void main()
{
 FragColor = LineColor;
}

5.	 It is important to define the number of vertices per patch within the OpenGL
application. You can do so using the glPatchParameter function:
glPatchParameteri(GL_PATCH_VERTICES, 4);

Using Geometry and Tessellation Shaders

218

6.	 Render the four control points as a patch primitive within the OpenGL application's
render function:

glDrawArrays(GL_PATCHES, 0, 4);

How it works...
The vertex shader is just a "pass-through" shader. It sends the vertex position along to the next
stage without any modification.

The tessellation control shader begins by defining the number of vertices in the output patch:

layout (vertices = 4) out;

Note that this is not the same as the number of vertices that will be produced by the tessellation
process. In this case, the patch is our four control points, so we use a value of four.

The main method within the TCS passes the input position (of the patch vertex) to the output
position without modification. The arrays gl_out and gl_in contain the input and output
information associated with each vertex in the patch. Note that we assign and read from
location gl_InvocationID in these arrays. The variable gl_InvocationID defines the
output patch vertex for which this invocation of the TCS is responsible. The TCS can access
all of the array gl_in, but should only write to the location in gl_out corresponding to
gl_InvocationID.

Next, the TCS sets the tessellation levels by assigning to the array gl_TessLevelOuter.
Note that the values for gl_TessLevelOuter are floating point numbers rather than
integers. They will be rounded up to the nearest integer and clamped automatically by the
OpenGL system.

The first element in the array defines the number of line segments that will be produced
in the line strip. Each vertex in the strip will have a value for the parametric u coordinate
that will vary from zero to one. The second defines the number of isolines that will be
generated. Each isoline will have a constant value for v. In this example, the value of
gl_TessLevelOuter[1]should be one. However, this actually depends on the driver
you're using (see the following note).

Chapter 6

219

At the time of writing, there was inconsistency between drivers when
it came to gl_TessLevelOuter for isolines. On ATI Catalyst
drivers, gl_TessLevelOuter[0] defines the number of segments
in each isoline, however on the NVIDIA drivers that I've tested, it is
gl_TessLevelOuter[1] that defines this. Unfortunately, the
official specification document is also ambiguous because the text
differs from the diagram. Hopefully, this issue will be worked out
soon, but for now, be aware that you may need to swap the purposes
of gl_TessLevelOuter[0] and gl_TessLevelOuter[1].

In the tessellation evaluation shader (TES), we start by defining the input primitive type using
a layout declaration:

layout (isolines) in;

This indicates the type of subdivision that is performed by the tessellation primitive generator.
Other possibilities here include quads and triangles.

Within the main function of the TES, the variable gl_TessCoord contains the tessellation
u and v coordinates for this invocation. As we are only tessellating in one dimension, we only
need the u coordinate, which corresponds to the x coordinate of gl_TessCoord.

The next step accesses the positions of the four control points (all the points in our patch
primitive). These are available in the gl_in array.

The cubic Bernstein polynomials are then evaluated at u and stored in b0, b1, b2, and b3.
Next, we compute the interpolated position using the Bezier curve equation described some
time back. The final position is converted to clip coordinates and assigned to the output
variable gl_Position.

The fragment shader simply applies LineColor to the fragment.

There's more...
There's a lot more to be said about tessellation shaders, but this example is intended to be a
simple introduction so we'll leave that for the following recipes. Next, we'll look at tessellation
across surfaces in two dimensions.

Using Geometry and Tessellation Shaders

220

Tessellating a 2D quad
One of the best ways to understand OpenGL's hardware tessellation is to visualize the
tessellation of a 2D quad. When linear interpolation is used, the triangles that are produced
are directly related to the tessellation coordinates (u,v) that are produced by the tessellation
primitive generator. It can be extremely helpful to draw a few quads with different inner and
outer tessellation levels, and study the triangles produced. We will do exactly that in this recipe.

When using quad tessellation, the tessellation primitive generator subdivides (u,v) parameter
space into a number of subdivisions based on six parameters. These are the inner tessellation
levels for u and v (inner level 0 and inner level 1), and the outer tessellation levels for u and
v along both edges (outer levels 0–3).These determine the number of subdivisions along the
edges of parameter space and internally. Let's look at each of these individually:

ff Outer level 0 (OL0): The number of subdivisions along the v direction where u = 0

ff Outer level 1 (OL1): The number of subdivisions along the u direction where v = 0

ff Outer level 2 (OL2): The number of subdivisions along the v direction where u = 1

ff Outer level 3 (OL3): The number of subdivisions along the u direction where v = 1

ff Inner level 0 (IL0): The number of subdivisions along the u direction for all internal
values of v

ff Inner level 1 (IL1): The number of subdivisions along the v direction for all internal
values of u

The following diagram represents the relationship between the tessellation levels and the
areas of parameter space that are affected by each. The outer levels define the number of
subdivisions along the edges, and the inner levels define the number of subdivisions internally.

Chapter 6

221

The six tessellation levels described some time back can be configured via the arrays gl_
TessLevelOuter and gl_TessLevelInner. For example, gl_TessLevelInner[0]
corresponds to IL0, gl_TessLevelOuter[2] corresponds to OL2, and so on.

If we draw a patch primitive that consists of a single quad (four vertices), and use linear
interpolation, the triangles that result can help us to understand how OpenGL does quad
tessellation. The following diagram shows the results for various tessellation levels.

When we use linear interpolation, the triangles that are produced represent a visual
representation of parameter (u,v) space. The x axis corresponds to the u coordinate and the
y axis corresponds to the v coordinate. The vertices of the triangles are the (u,v) coordinates
generated by the tessellation primitive generator. The number of subdivisions can be clearly
seen in the mesh of triangles. For example, when the outer levels are set to 2 and the inner
levels are set to 8, you can see that the outer edges have two subdivisions, but within the
quad, u and v are subdivided into 8 intervals.

Using Geometry and Tessellation Shaders

222

Before jumping into the code, let's discuss linear interpolation. If the four corners of the quad
are as shown in the following figure, then any point within the quad can be determined by
linearly interpolating the four corners with respect to parameters u and v.

We'll let the tessellation primitive generator create a set of vertices with appropriate
parametric coordinates, and we'll determine the corresponding positions by interpolating
the corners of the quad using the above equation.

Getting ready
The outer and inner tessellation levels will be determined by the uniform variables Inner and
Outer. In order to display the triangles, we will use the geometry shader described earlier in
this chapter.

Set up your OpenGL application to render a patch primitive consisting of four vertices in
counter clockwise order as shown in the preceding figure.

How to do it...
To create a shader program that will generate a set of triangles using quad tessellation from
a patch of four vertices, use the following steps:

1.	 Use the following vertex shader:
#version 400

layout (location = 0) in vec2 VertexPosition;

void main()
{
 gl_Position = vec4(VertexPosition, 0.0, 1.0);
}

2.	 Use the following as the tessellation control shader:
#version 400

layout(vertices=4) out;

uniform int Outer;
uniform int Inner;

Chapter 6

223

void main()
{
 // Pass along the vertex position unmodified
 gl_out[gl_InvocationID].gl_Position =
 gl_in[gl_InvocationID].gl_Position;

 gl_TessLevelOuter[0] = float(Outer);
 gl_TessLevelOuter[1] = float(Outer);
 gl_TessLevelOuter[2] = float(Outer);
 gl_TessLevelOuter[3] = float(Outer);

 gl_TessLevelInner[0] = float(Inner);
 gl_TessLevelInner[1] = float(Inner);
}

3.	 Use the following code as the tessellation evaluation shader:
#version 400

layout(quads, equal_spacing, ccw) in;

uniform mat4 MVP;

void main()
{
 float u = gl_TessCoord.x;
 float v = gl_TessCoord.y;

 vec4 p0 = gl_in[0].gl_Position;
 vec4 p1 = gl_in[1].gl_Position;
 vec4 p2 = gl_in[2].gl_Position;
 vec4 p3 = gl_in[3].gl_Position;

 // Linear interpolation
 gl_Position =
 p0 * (1-u) * (1-v) +
 p1 * u * (1-v) +
 p3 * v * (1-u) +
 p2 * u * v;

 // Transform to clip coordinates
 gl_Position = MVP * gl_Position;
}

4.	 Use the geometry shader from the recipe, Drawing a wireframe on top of a
shaded mesh.

5.	 Use following code as the fragment shader:
#version 400

uniform float LineWidth;
uniform vec4 LineColor;

Using Geometry and Tessellation Shaders

224

uniform vec4 QuadColor;

noperspective in vec3 EdgeDistance; // From geometry shader

layout (location = 0) out vec4 FragColor;

float edgeMix()
{
 // ** insert code here to determine how much of the edge
 // color to include (see recipe "Drawing a wireframe on
 // top of a shaded mesh"). **
}

void main()
{
 float mixVal = edgeMix();

 FragColor = mix(QuadColor, LineColor, mixVal);

}

6.	 Within the render function of your main OpenGL program, define the number of
vertices within a patch:
glPatchParameteri(GL_PATCH_VERTICES, 4);

7.	 Render the patch as four 2D vertices in counter clockwise order.

How it works...
The vertex shader passes the position along to the TCS unchanged.

The TCS defines the number of vertices in the patch using the layout directive:

layout (vertices=4) out;

In the main function, it passes along the position of the vertex without modification, and sets
the inner and outer tessellation levels. All four of the outer tessellation levels are set to the
value of Outer, and both of the inner tessellation levels are set to Inner.

In the tessellation evaluation shader, we define the tessellation mode and other tessellation
parameters with the input layout directive:

layout (quads, equal_spacing, ccw) in;

The parameter quads indicates that the tessellation primitive generator should tessellate
the parameter space using quad tessellation as described some time back. The parameter
equal_spacing says that the tessellation should be performed such that all subdivisions
have equal length. The last parameter, ccw, indicates that the primitives should be generated
with counter clockwise winding.

Chapter 6

225

The main function in the TES starts by retrieving the parametric coordinates for this vertex
by accessing the variable gl_TessCoord. Then we move on to read the positions of the four
vertices in the patch from the gl_in array. We store them in temporary variables to be used
in the interpolation calculation.

The built-in output variable gl_Position then gets the value of the interpolated point using
the preceding equation. Finally, we convert the position into clip coordinates by multiplying by
the model-view projection matrix.

Within the fragment shader, we give all fragments a color that is possibly mixed with a line
color in order to highlight the edges.

See also
ff Drawing a wireframe on top of a shaded mesh

Tessellating a 3D surface
As an example of tessellating a 3D surface, let's render (yet again) the "teapotahedron". It
turns out that the teapot's data set is actually defined as a set of 4-by-4 patches of control
points, suitable for cubic Bezier interpolation. Therefore, drawing the teapot really boils down
to drawing a set of cubic Bezier surfaces.

Of course, this sounds like a perfect job for tessellation shaders! We'll render each patch of
16 vertices as a patch primitive, use quad tessellation to subdivide the parameter space, and
implement the Bezier interpolation within the tessellation evaluation shader.

The following figure shows an example of the desired output. The left teapot is
rendered with inner and outer tessellation level 2, the middle uses level 4 and the
right-hand teapot uses tessellation level 16. The tessellation evaluation shader
computes the Bezier surface interpolation.

Using Geometry and Tessellation Shaders

226

First, let's take a look at how cubic Bezier surface interpolation works. If our surface is defined
by a set of 16 control points (laid out in a 4x4 grid) Pij, with i and j ranging from 0 to 3, then
the parametric Bezier surface is given by the following equation:

The Bs in the above equation are the cubic Bernstein polynomials (see the previous recipe,
Tessellating a 2D curve).

We also need to compute the normal vector at each interpolated location. To do so, we have to
compute the cross product of the partial derivatives of the preceding equation:

The partial derivatives of the Bezier surface boil down to the partial derivatives of the
Bernstein polynomials:

We'll compute the partials within the TES and compute the cross product to determine the
normal to the surface at each tessellated vertex.

Getting ready
Set up your shaders with a vertex shader that simply passes the vertex position along without
any modification (you can use the same vertex shader as was used in the recipe Tessellating
a 2D quad). Create a fragment shader that implements whatever shading model you choose.
The fragment shader should receive the input variables TENormal and TEPosition, which
will be the normal and position in camera coordinates.

The uniform variable TessLevel should be given the value of the tessellation level desired.
All of the inner and outer levels will be set to this value.

Chapter 6

227

How to do it...
To create a shader program that creates Bezier patches from input patches of 16 control
points, use the following steps:

1.	 Use the vertex shader from Tessellating a 2D quad.

2.	 Use the following code for the tessellation control shader:
#version 400

layout(vertices=16) out;

uniform int TessLevel;

void main()
{
 // Pass along the vertex position unmodified
 gl_out[gl_InvocationID].gl_Position =
 gl_in[gl_InvocationID].gl_Position;

 gl_TessLevelOuter[0] = float(TessLevel);
 gl_TessLevelOuter[1] = float(TessLevel);
 gl_TessLevelOuter[2] = float(TessLevel);
 gl_TessLevelOuter[3] = float(TessLevel);

 gl_TessLevelInner[0] = float(TessLevel);
 gl_TessLevelInner[1] = float(TessLevel);
}

3.	 Use the following code for the tessellation evaluation shader:
#version 400

layout(quads) in;

out vec3 TENormal; // Vertex normal in camera coords.
out vec4 TEPosition; // Vertex position in camera coords

uniform mat4 MVP;
uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;

void basisFunctions(out float[4] b, out float[4] db, float t)
{
 float t1 = (1.0 - t);
 float t12 = t1 * t1;

 // Bernstein polynomials
 b[0] = t12 * t1;
 b[1] = 3.0 * t12 * t;
 b[2] = 3.0 * t1 * t * t;
 b[3] = t * t * t;

Using Geometry and Tessellation Shaders

228

 // Derivatives
 db[0] = -3.0 * t1 * t1;
 db[1] = -6.0 * t * t1 + 3.0 * t12;
 db[2] = -3.0 * t * t + 6.0 * t * t1;
 db[3] = 3.0 * t * t;
}

void main()
{
 float u = gl_TessCoord.x;
 float v = gl_TessCoord.y;

 // The sixteen control points
 vec4 p00 = gl_in[0].gl_Position;
 vec4 p01 = gl_in[1].gl_Position;
 vec4 p02 = gl_in[2].gl_Position;
 vec4 p03 = gl_in[3].gl_Position;
 vec4 p10 = gl_in[4].gl_Position;
 vec4 p11 = gl_in[5].gl_Position;
 vec4 p12 = gl_in[6].gl_Position;
 vec4 p13 = gl_in[7].gl_Position;
 vec4 p20 = gl_in[8].gl_Position;
 vec4 p21 = gl_in[9].gl_Position;
 vec4 p22 = gl_in[10].gl_Position;
 vec4 p23 = gl_in[11].gl_Position;
 vec4 p30 = gl_in[12].gl_Position;
 vec4 p31 = gl_in[13].gl_Position;
 vec4 p32 = gl_in[14].gl_Position;
 vec4 p33 = gl_in[15].gl_Position;

 // Compute basis functions
 float bu[4], bv[4]; // Basis functions for u and v
 float dbu[4], dbv[4]; // Derivitives for u and v
 basisFunctions(bu, dbu, u);
 basisFunctions(bv, dbv, v);

 // Bezier interpolation
 TEPosition =
 p00*bu[0]*bv[0] + p01*bu[0]*bv[1] + p02*bu[0]*bv[2] +
 p03*bu[0]*bv[3] +
 p10*bu[1]*bv[0] + p11*bu[1]*bv[1] + p12*bu[1]*bv[2] +
 p13*bu[1]*bv[3] +
 p20*bu[2]*bv[0] + p21*bu[2]*bv[1] + p22*bu[2]*bv[2] +
 p23*bu[2]*bv[3] +
 p30*bu[3]*bv[0] + p31*bu[3]*bv[1] + p32*bu[3]*bv[2] +
 p33*bu[3]*bv[3];

 // The partial derivatives

Chapter 6

229

 vec4 du =
 p00*dbu[0]*bv[0] + p01*dbu[0]*bv[1] + p02*dbu[0]*bv[2] +
 p03*dbu[0]*bv[3] +
 p10*dbu[1]*bv[0] + p11*dbu[1]*bv[1] + p12*dbu[1]*bv[2] +
 p13*dbu[1]*bv[3] +
 p20*dbu[2]*bv[0] + p21*dbu[2]*bv[1] + p22*dbu[2]*bv[2] +
 p23*dbu[2]*bv[3] +
 p30*dbu[3]*bv[0] + p31*dbu[3]*bv[1] + p32*dbu[3]*bv[2] +
 p33*dbu[3]*bv[3];

 vec4 dv =
 p00*bu[0]*dbv[0] + p01*bu[0]*dbv[1] + p02*bu[0]*dbv[2] +
 p03*bu[0]*dbv[3] +
 p10*bu[1]*dbv[0] + p11*bu[1]*dbv[1] + p12*bu[1]*dbv[2] +
 p13*bu[1]*dbv[3] +
 p20*bu[2]*dbv[0] + p21*bu[2]*dbv[1] + p22*bu[2]*dbv[2] +
 p23*bu[2]*dbv[3] +
 p30*bu[3]*dbv[0] + p31*bu[3]*dbv[1] + p32*bu[3]*dbv[2] +
 p33*bu[3]*dbv[3];

 // The normal vector is the cross product of the partials
 vec3 n = normalize(cross(du.xyz, dv.xyz));

 // Transform to clip coordinates
 gl_Position = MVP * TEPosition;

 // Convert to camera coordinates
 TEPosition = ModelViewMatrix * TEPosition;
 TENormal = normalize(NormalMatrix * n);
}

4.	 Implement your favorite shading model within the fragment shader utilizing the
output variables from the TES.

5.	 Render the Bezier control points as a 16-vertex patch primitive. Don't forget to set
the number of vertices per patch within the OpenGL application:

glPatchParameteri(GL_PATCH_VERTICES, 16);

How it works...
The tessellation control shader starts by defining the number of vertices in the patch using
the layout directive:

layout(vertices=16) out;

It then simply sets the tessellation levels to the value of TessLevel. It passes the vertex
position along, without any modification.

Using Geometry and Tessellation Shaders

230

The tessellation evaluation shader starts by using a layout directive to indicate the type of
tessellation to be used. As we are tessellating a 4x4 Bezier surface patch, quad tessellation
makes the most sense.

The function basisFunctions evaluates the Bernstein polynomials and their derivatives for
a given value of the parameter t. The results are returned in the output parameters b and db.

Within the main function, we start by assigning the tessellation coordinates to variables u and
v, and reassigning all 16 of the patch vertices to variables with shorter names (to shorten the
code that appears later).

We then call basisFunctions to compute the Bernstein polynomials and their derivatives
at u and at v, storing the results in bu, dbu, bv, and dbv.

The next step is the evaluation of the sums from the preceding equations for the position
(TEPosition), the partial derivative with respect to u (du), and the partial derivative with
respect to v (dv).

We compute the normal vector as the cross product of du and dv.

Finally, we convert the position (TEPosition) to clip coordinates and assign the result to
gl_Position. We also convert it to camera coordinates before it is passed along to the
fragment shader.

The normal vector is converted to camera coordinates by multiplying with the NormalMatrix,
and the result is normalized and passed along to the fragment shader via TENormal.

See also
ff Tessellating a 2D quad.

Tessellating based on depth
One of the greatest things about tessellation shaders is how easy it is to implement level-
of-detail (LOD) algorithms. LOD is a general term in computer graphics that refers to the
process of increasing/decreasing the complexity of an object's geometry with respect to the
distance from the viewer (or other factors). As an object moves farther away from the camera,
less geometric detail is needed to represent the shape because the overall size of the
object becomes smaller. However, as the object moves closer to the camera, the object fills
more and more of the screen, and more geometric detail is needed to maintain the desired
appearance (smoothness or lack of other geometric artifacts).

The following image shows a few teapots rendered with tessellation levels that depend on
distance from the camera. Each teapot is rendered using exactly the same code on the
OpenGL side. The TCS automatically varies the tessellation levels based on depth.

Chapter 6

231

When tessellation shaders are used, the tessellation level is what determines the geometric
complexity of the object. As the tessellation levels can be set within the tessellation control
shader, it is a simple matter to vary the tessellation levels with respect to the distance from
the camera.

In this example, we'll vary the tessellation levels linearly (with respect to distance) between
a minimum level and a maximum level. We'll compute the "distance from the camera" as
the absolute value of the z coordinate in camera coordinates. (Of course, this is not the true
distance, but should work fine for the purposes of this example.) The tessellation level will then
be computed based on that value. We'll also define two additional values (as uniform variables)
MinDepth and MaxDepth. Objects that are closer to the camera than MinDepth get the
maximum tessellation level, and any objects that are further from the camera than MaxDepth
will get the minimum tessellation level. The tessellation level for objects in-between will be
linearly interpolated.

Getting ready
This program is nearly identical to the one in the recipe Tessellating a 3D surface. The only
difference lies within the TCS. We'll remove the uniform variable TessLevel, and add a
few new ones as described below:

ff MinTessLevel: The lowest desired tessellation level

ff MaxTessLevel: The highest desired tessellation level

ff MinDepth: The minimum "distance" from the camera, where the tessellation level
is maximal

ff MaxDepth: The maximum "distance" from the camera, where the tessellation level
is at a minimum

Render your objects as 16-vertex patch primitives as indicated in the recipe Tessellating a
3D surface.

Using Geometry and Tessellation Shaders

232

How to do it...
To create a shader program that varies the tessellation level based on the depth, use the
following steps:

1.	 Use the vertex shader and tessellation evaluation shader from the recipe
Tessellating a 3D surface.

2.	 Use the following code for the tessellation control shader:
#version 400

layout(vertices=16) out;

uniform int MinTessLevel;
uniform int MaxTessLevel;
uniform float MaxDepth;
uniform float MinDepth;

uniform mat4 ModelViewMatrix;

void main()
{
 // Position in camera coordinates
 vec4 p = ModelViewMatrix *
 gl_in[gl_InvocationID].gl_Position;

 // "Distance" from camera scaled between 0 and 1
 float depth = clamp((abs(p.z) - MinDepth) /
 (MaxDepth – MinDepth),
0.0, 1.0);

 // Interpolate between min/max tess levels
 float tessLevel = mix(MaxTessLevel, MinTessLevel, depth);

 gl_TessLevelOuter[0] = float(tessLevel);
 gl_TessLevelOuter[1] = float(tessLevel);
 gl_TessLevelOuter[2] = float(tessLevel);
 gl_TessLevelOuter[3] = float(tessLevel);

 gl_TessLevelInner[0] = float(tessLevel);
 gl_TessLevelInner[1] = float(tessLevel);

 gl_out[gl_InvocationID].gl_Position =
 gl_in[gl_InvocationID].gl_Position;
}

2.	 As with the previous recipe, implement your favorite shading model within the
fragment shader.

Chapter 6

233

How it works...
The TCS takes the position and converts it to camera coordinates and stores the result in the
variable p. The absolute value of the z coordinate is then scaled and clamped such that the
result is between zero and one. If the z coordinate is equal to MaxDepth, the value of depth
will be 1.0, if it is equal to MinDepth, then depth will be 0.0. If z is between MinDepth and
MaxDepth, then depth will get a value between zero and one. If z is outside that range, it will
be clamped to 0.0 or 1.0 by the clamp function.

The value of depth is then used to linearly interpolate between MaxTessLevel and
MinTessLevel using the mix function. The result (tessLevel) is used to set the inner
and outer tessellation levels.

There's more...
There is a somewhat subtle aspect to this example. Recall that the TCS is executed once
for each output vertex in the patch. Therefore, assuming that we are rendering cubic Bezier
surfaces, this TCS will be executed 16 times for each patch. Each time it is executed, the value
of depth will be slightly different because it is evaluated based on the z coordinate of the
vertex. You might be wondering, which of the 16 possible different tessellation levels will be
the one that is used? It doesn't make sense for the tessellation level to be interpolated across
the parameter space. What's going on?

The output arrays gl_TessLevelInner and gl_TessLevelOuter are per-patch output
variables. This means that only a single value will be used per-patch, similar to the way that
the flat qualifier works for fragment shader input variables. The OpenGL specification seems
to indicate that any of the values from each of the invocations of the TCS could be the value
that ends up being used.

See also
ff Tessellating a 3D surface

7
Shadows

In this chapter, we will cover:

ff Rendering shadows with shadow maps

ff Anti-aliasing shadow edges with PCF

ff Creating soft shadow edges with random sampling

ff Improving realism with pre-baked ambient occlusion

Introduction
Shadows add a great deal of realism to a scene. Without shadows, it can be easy to misjudge
the relative location of objects, and the lighting can appear unrealistic, as light rays seem to
pass right through objects.

Shadows are important visual cues for realistic scenes, but can be challenging to produce
in an efficient manner in interactive applications. One of the most popular techniques for
creating shadows in real-time graphics is the shadow mapping algorithm (also called depth
shadows). In this chapter, we'll look at several recipes surrounding the shadow mapping
algorithm. We'll start with the basic algorithm, and discuss it in detail in the first recipe. Then
we'll look at a couple of techniques for improving the look of the shadows produced by the
basic algorithm.

Shadows

236

We'll finish up the chapter with a look at ambient occlusion (AO). Ambient occlusion is a
technique that takes into account light attenuation due to occlusion. In other words, with
AO, the parts of the scene that are "sheltered" (occluded) by nearby objects, such as corners
or creases, receive less contribution from the shading model and appear to be shadowed.
Ambient occlusion is a technique that is quite popular because of its ability to provide a
substantial improvement in the realism of the shading. While it is not strictly a shadowing
technique, as it is more closely related to global illumination, it does enhance the look of
the scene by providing important visual cues that improve realism. We'll look at the simplest
technique for AO, which involves precomputation of the accessibility factors offline (we'll
define the accessibility factors in the recipe). However, before we are done, I'll refer you to
a few techniques for computing AO in real time.

Rendering shadows with shadow maps
One of the most common and popular techniques for producing shadows is called shadow
mapping. In its basic form, the algorithm involves two passes. In the first pass, the scene is
rendered from the point of view of the light source. The depth information from this pass is
saved into a texture called the shadow map. This map will help provide information about the
visibility of objects from the light's perspective. In other words, the shadow map stores the
distance (actually the pseudo-depth) from the light to whatever the light can "see". Anything
that is closer to the light than the corresponding depth stored in the map is lit; anything else
must be in shadow.

In the second pass, the scene is rendered normally, but each fragment's depth (from the
light's perspective) is first tested against the shadow map to determine whether or not the
fragment is in shadow. The fragment is then shaded differently depending on the result of
this test. If the fragment is in shadow, it is shaded with ambient lighting only; otherwise, it is
shaded normally.

Chapter 7

237

The following image shows an example of shadows produced by the basic shadow
mapping technique:

Let's look at each step of the algorithm in a bit more detail.

The first step is the creation of the shadow map. We set up our view matrix so that we are
rendering the scene as if the camera is located at the position of the light source, and is
oriented towards the shadow casting objects. We set up a projection matrix such that the view
frustum encloses all objects that may cast shadows as well as the area where the shadows
will appear. We then render the scene normally and store the information from the depth
buffer in a texture. This texture is called the shadow map (or simply depth map). We can think
of it (roughly) as a set of distances from the light source to various surface locations.

Technically, these are depth values, not distances. A depth value is not a true
distance (from the origin), but can be roughly treated as such for the purposes
of depth testing.

Shadows

238

The following images represent an example of the basic shadow mapping setup. The left
image shows the light's position and its associated perspective frustum. The right-hand
image shows the corresponding shadow map. The grey scale intensities in the shadow map
correspond to the depth values (darker is closer).

Once we have created the shadow map and stored the map to a texture, we render the scene
again from the point of view of the camera. This time, we use a fragment shader that shades
each fragment based on the result of a depth test with the shadow map. The position of the
fragment is first converted into the coordinate system of the light source and projected using
the light source's projection matrix. The result is then biased (in order to get valid texture
coordinates) and tested against the shadow map. If the depth of the fragment is greater than
the depth stored in the shadow map, then there must be some surface that is between the
fragment and the light source. Therefore, the fragment is in shadow and is shaded using
ambient lighting only. Otherwise, the fragment must have a clear "view" to the light source,
and so it is shaded normally.

The key aspect here is the conversion of the fragment's 3D coordinates to the coordinates
appropriate for a lookup into the shadow map. As the shadow map is just a 2D texture, we
need coordinates that range from zero to one for points that lie within the light's frustum. The
light's view matrix will take points in world coordinates to points within the light's coordinate
system. The light's projection matrix will transform points that are within the light's frustum to
homogeneous clip coordinates.

Chapter 7

239

These are called clip coordinates because the built-in clipping functionality
takes place when the position is defined in these coordinates. Points within
the perspective (or orthographic) frustum are transformed by the projection
matrix to the (homogeneous) space that is contained within a cube centered
at the origin, with side length of 2. This space is called the canonical
viewing volume. The term "homogeneous" means that these coordinates
should not necessarily be considered to be true Cartesian positions until they
are divided by their fourth coordinate. For full details about homogeneous
coordinates, refer to your favorite textbook on computer graphics.

The x and y components of the position in clip coordinates are roughly what we need to
access the shadow map. The z coordinate contains the depth information that we can use to
compare with the shadow map. However, before we can use these values we need to do two
things. First, we need to bias them so that they range from zero to one (instead of -1 to 1), and
second, we need to apply perspective division (more on this later).

To convert the value from clip coordinates to a range appropriate for use with a shadow map,
we need the x, y, and z coordinates to range from zero to one (for points within the light's
view frustum). The depth that is stored in an OpenGL depth buffer (and also our shadow
map) is simply a fixed or floating point value between zero and one (typically). A value of zero
corresponds to the near plane of the perspective frustum, and a value of one corresponds to
points on the far plane. Therefore, if we are to use our z coordinate to accurately compare with
this depth buffer, we need to scale and translate it appropriately.

In clip coordinates (after perspective division) the z coordinate ranges from
-1 to 1. It is the viewport transformation that (among other things) converts
the depth to a range between zero and one. Incidentally, if so desired, we can
configure the viewport transformation to use some other range for the depth
values (say between 0 and 100) via the function glDepthRange.

Of course, the x and y components also need to be biased between zero and one because
that is the appropriate range for texture access.

We can use the following "bias" matrix to alter our clip coordinates.

Shadows

240

This matrix will scale and translate our coordinates such that the x, y, and z components range
from 0 to 1 (after perspective division) for points within the light's frustum. Now, combining
the bias matrix with the light's view (Vl) and projection (Pl) matrices, we have the following
equation for converting positions in world coordinates (W) to homogeneous positions that can
be used for shadow map access (Q).

Finally, before we can use the value of Q directly, we need to divide the first three components
by the fourth (w) component. This step is sometimes called "perspective division". This
converts the position from a homogeneous value to a true Cartesian position, and is always
required when using a perspective projection matrix.

In the following equation, we'll define a shadow matrix (S) that also includes the model matrix
(M), so that we can convert directly from the modeling coordinates (C).

Here, S is the "shadow matrix", the product of the modeling matrix with all of the
preceding matrices.

In this recipe, in order to keep things simple and clear, we'll cover only the basic shadow
mapping algorithm, without any of the usual improvements. We'll build upon this basic
algorithm in the following recipes. Before we get into the code, we should note that the
results will likely be less than satisfying. This is because the basic shadow mapping algorithm
suffers from significant aliasing artifacts. Nevertheless, it is still an effective technique
when combined with one of many techniques for anti-aliasing. We'll look at some of those
techniques in the recipes that follow.

Getting ready
The position should be supplied in vertex attribute zero and the normal in vertex attribute one.
Uniform variables for the Phong shading model should be declared and assigned, as well as
uniforms for the standard transformation matrices. The variable ShadowMatrix should be
set to the matrix for converting from modeling coordinates to shadow map coordinates (S in
the preceding equation).

The uniform variable ShadowMap is a handle to the shadow map texture, and should be
assigned to texture unit zero.

Chapter 7

241

How to do it...
To create an OpenGL application that creates shadows using the shadow mapping technique,
use the following steps. We'll start by setting up a FBO to contain the shadow map texture,
and then move on to the required shader code:

1.	 In the main OpenGL program, set up a FBO with a depth buffer only. Declare a
GLuint variable named shadowFBO to store the handle to this framebuffer. The
depth buffer storage should be a texture object. You can use something similar to the
following code to accomplish this:
GLfloat border[]={1.0f,0.0f,0.0f,0.0f};

//The shadow maptexture

GLuint depthTex;

glGenTextures(1,&depthTex);

glBindTexture(GL_TEXTURE_2D,depthTex);

glTexImage2D(GL_TEXTURE_2D,0,GL_DEPTH_COMPONENT,

 shadowMapWidth,shadowMapHeight,0,

 GL_DEPTH_COMPONENT,GL_UNSIGNED_BYTE,NULL);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,

 GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,

 GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,

 GL_CLAMP_TO_BORDER);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,

 GL_CLAMP_TO_BORDER);

glTexParameterfv(GL_TEXTURE_2D,GL_TEXTURE_BORDER_COLOR,

 border);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_COMPARE_MODE,

 GL_COMPARE_REF_TO_TEXTURE);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_COMPARE_FUNC,

 GL_LESS);

//Assign the shadow map to texture channel 0

glActiveTexture(GL_TEXTURE0);

glBindTexture(GL_TEXTURE_2D,depthTex);

//Create and set up the FBO

glGenFramebuffers(1,&shadowFBO);

glBindFramebuffer(GL_FRAMEBUFFER,shadowFBO);

glFramebufferTexture2D(GL_FRAMEBUFFER,GL_DEPTH_ATTACHMENT,

 GL_TEXTURE_2D,depthTex,0);

Shadows

242

GLenum drawBuffers[]={GL_NONE};

glDrawBuffers(1,drawBuffers);

// Revert to the default framebuffer for now

glBindFramebuffer(GL_FRAMEBUFFER,0);

2.	 Use the following code for the vertex shader:
#version 400

layout (location=0) in vec3 VertexPosition;

layout (location=1) in vec3 VertexNormal;

out vec3 Normal;

out vec3 Position;

// Coordinate to be used for shadow map lookup

out vec4 ShadowCoord;

uniform mat4 ModelViewMatrix;

uniform mat3 NormalMatrix;

uniform mat4 MVP;

uniform mat4 ShadowMatrix;

void main()

{

 Position = (ModelViewMatrix *

 vec4(VertexPosition,1.0)).xyz;

 Normal = normalize(NormalMatrix * VertexNormal);

 // ShadowMatrix converts from modeling coordinates

 // to shadow map coordinates.

 ShadowCoord =ShadowMatrix * vec4(VertexPosition,1.0);

 gl_Position = MVP * vec4(VertexPosition,1.0);

}

3.	 Use the following code for the fragment shader:

#version 400

// Declare any uniforms needed for the Phong shading model

uniform sampler2DShadow ShadowMap;

in vec3 Position;

in vec3 Normal;

in vec4 ShadowCoord;

layout (location = 0) out vec4 FragColor;

vec3 phongModelDiffAndSpec()

Chapter 7

243

{

 // Compute only the diffuse and specular components of

 // the Phong shading model.

}

subroutine void RenderPassType();

subroutine uniform RenderPassType RenderPass;

subroutine (RenderPassType)

void shadeWithShadow()

{

 vec3 ambient = …;// compute ambient component here

 vec3 diffAndSpec = phongModelDiffAndSpec();

 // Do the shadow-map look-up

 float shadow = textureProj(ShadowMap, ShadowCoord);

 // If the fragment is in shadow, use ambient light only.

 FragColor = vec4(diffAndSpec * shadow + ambient, 1.0);

}

subroutine (RenderPassType)

void recordDepth()

{

 // Do nothing, depth will be written automatically

}

void main() {

 // This will call either shadeWithShadow or recordDepth

 RenderPass();

}

Within the main OpenGL program, perform the following steps when rendering.

Pass 1

1.	 Set the viewport, view, and projection matrices to those that are appropriate for the
light source.

2.	 Bind to the framebuffer containing the shadow map (shadowFBO).

3.	 Clear the depth buffer.

4.	 Select the subroutine function recordDepth.

5.	 Enable front-face culling.

6.	 Draw the scene.

Shadows

244

Pass 2

1.	 Select the viewport, view, and projection matrices appropriate for the scene.

2.	 Bind to the default framebuffer.

3.	 Disable culling (or switch to back-face culling).

4.	 Select the subroutine function shadeWithShadow.

5.	 Draw the scene.

How it works...
The first block of the preceding code demonstrates how to create a framebuffer object
(FBO) for our shadow map texture. The FBO contains only a single texture connected to its
depth buffer attachment. The first few lines of code create the shadow map texture. The
texture is created using the glTexImage2D function with an internal format of GL_DEPTH_
COMPONENT. Note that NULL is provided as the last argument. This tells OpenGL to allocate
space for the texture, but to leave the data uninitialized.

We use GL_NEAREST for GL_TEXTURE_MAG_FILTER and GL_TEXTURE_MIN_FILTER here,
although GL_LINEAR could also be used, and might provide slightly better looking results. We
use GL_NEAREST here so that we can see the aliasing artifacts clearly, and the performance
will be slightly faster.

Next, the GL_TEXTURE_WRAP_* modes are set to GL_CLAMP_TO_BORDER. When a fragment
is found to lie completely outside of the shadow map (outside of the light's frustum), then
the texture coordinates for that fragment will be greater than one or less than zero. When
that happens, we need to make sure that those points are not treated as being in shadow.
When GL_CLAMP_TO_BORDER is used, the value that is returned from a texture lookup
(for coordinates outside the 0..1 range) will be the border value. The default border value is
(0,0,0,0). When the texture contains depth components, the first component is treated as the
depth value. A value of zero will not work for us here because a depth of zero corresponds to
points on the near plane. Therefore all points outside of the light's frustum will be treated as
being in shadow! Instead, we set the border color to (1,0,0,0) using the glTexParameterfv
function, which corresponds to the maximum possible depth.

The next two calls to glTexParameteri affect settings that are specific to depth textures.
The first call sets GL_TEXTURE_COMPARE_MODE to GL_COMPARE_REF_TO_TEXTURE. When
this setting is enabled, the result of a texture access is the result of a comparison, rather than
a color value retrieved from the texture. The third component of the texture coordinate (the
r component) is compared against the value in the texture at location (s,t). The result of the
comparison is returned as a single floating point value. The comparison function that is used
is determined by the value of GL_TEXTURE_COMPARE_FUNC, which is set on the next line.
In this case, we set it to GL_LESS which means that the result will be 1.0 if the r value of the
texture coordinate is less than the value stored at (s,t). (Other options include GL_LEQUAL,
GL_ALWAYS, GL_GEQUAL, and so on.)

Chapter 7

245

The next few lines create and set up the FBO. The shadow map texture is attached to the FBO
as the depth attachment with the function glFramebufferTexture2D. For more details
about FBOs, check out the recipe in Chapter 3, Rendering to a texture.

The vertex shader is fairly simple. It converts the vertex position and normal to camera
coordinates and passes them along to the fragment shader via the output variables
Position and Normal. The vertex position is also converted into shadow map coordinates
using ShadowMatrix. This is the matrix S that we referred to some time back. It converts a
position from modeling coordinates to shadow coordinates. The result is sent to the fragment
shader via the output variable ShadowCoord.

As usual, the position is also converted to clip coordinates and assigned to the built-in output
variable gl_Position.

In the fragment shader, we provide different functionality for each pass. In the main function,
we call RenderPass, which is a subroutine uniform that will call either recordDepth or
shadeWithShadow. For the first pass (shadow map generation), the subroutine function
recordDepth is executed. This function does nothing at all! This is because we only need to
write the depth to the depth buffer. The OpenGL fixed functionality will do this automatically
(assuming that gl_Position was set correctly by the vertex shader), so there is nothing for
the fragment shader to do.

During the second pass, the function shadeWithShadow is executed. We compute the ambient
component of the shading model and store the result in the variable ambient. We then
compute the diffuse and specular components and store that in the variable diffuseAndSpec.

The next step is the key to the shadow mapping algorithm. We use the built-in texture access
function textureProj to access the shadow map texture ShadowMap. Before using the texture
coordinate to access the texture, the textureProj function will divide the first three coordinates
of the texture coordinate by the fourth coordinate. Remember that this is exactly what is needed
to convert the homogeneous position (ShadowCoord) to a true Cartesian position.

After this perspective division, the textureProj function will use the result to access the
texture. As this texture's type is sampler2DShadow, it is treated as texture containing depth
values, and rather than returning a value from the texture, it returns the result of a comparison.
The first two coordinates of ShadowCoord are used to access a depth value within the texture.
That value is then compared against the value of the third component of ShadowCoord. When
GL_NEAREST is the interpolation mode (as it is in our case) the result will be 1.0 or 0.0. As we
set the comparison function to GL_LESS, this will return 1.0, if the value of the third component
of ShadowCoord is less than the value within the depth texture at the sampled location. This
result is then stored in the variable shadow. Finally, we assign a value to the output variable
FragColor. The result of the shadow map comparison (shadow) is multiplied by the diffuse
and specular components, and the result is added to the ambient component. If shadow is 0.0,
that means that the comparison failed, meaning that there is something between the fragment
and the light source. Therefore, the fragment is only shaded with ambient light. Otherwise,
shadow is 1.0, and the fragment is shaded with all three shading components.

Shadows

246

When rendering the shadow map, note that we culled the front faces. This is to avoid the
"z-fighting" that can occur when front faces are included in the shadow map. Note that this
only works if our mesh is completely closed. If back faces are exposed, you may need to use
another technique (such as glPolygonOffset) to avoid this. I'll talk a bit more about this in
the next section.

There's more...
There's a vast amount of information available on the subject of shadow mapping. Let's look
at just a few of the most immediate issues.

Aliasing
As mentioned earlier, this algorithm often suffers from severe aliasing artifacts at the
shadow's edges. This is due to the fact that the shadow map itself has a finite resolution,
and is being applied to a region that quite often has significantly higher resolution.

The following image shows the aliasing of the shadow's edges.

The easiest solution is to simply increase the size of the shadow map. However, that may
not be possible due to memory, computation, or other constraints. There are a large number
of techniques for improving the quality of the shadows produced by the shadow mapping
algorithm. The Wikipedia article on shadow mapping has a good list of the various techniques
as well as links to some literature. In the following recipes, we'll look at some ways to help
soften and anti-alias the edges of the shadows.

Chapter 7

247

Rendering back faces only for the shadow map
When creating the shadow map, we only rendered back faces. This is because of the fact that
if we were to render front faces, points on certain faces will have nearly the same depth as the
shadow map's depth, which can cause fluctuations between light and shadow across faces
that should be completely lit. The following image shows an example of this effect.

Since the majority of faces that cause this issue are those that are facing the light source, we
avoid much of the problem by only rendering back faces during the shadow map pass. This
of course will only work correctly if your meshes are completely closed. If that is not the case,
glPolygonOffset can be used to help the situation. In fact, even when back faces are
only rendered when generating the shadow map, similar artifacts can appear on faces that
are facing away from the light (back faces in the shadow map, but front from the camera's
perspective). Therefore, it is quite often the case that a combination of front-face culling and
glPolygonOffset is used when generating the shadow map.

See also

ff Chapter 4, Rendering to a texture

ff Anti-aliasing shadow edges with PCF

ff Creating soft shadow edges with random sampling

Anti-aliasing shadow edges with PCF
One of the simplest and most common techniques for dealing with the aliasing of shadow
edges is called percentage-closer filtering (PCF). The name comes from the concept of
sampling the area around the fragment and determining the percentage of the area that is
closer to the light source (in shadow). The percentage is then used to scale the amount of
(diffuse and specular) shading that the fragment receives. The overall effect is a blurring of
the shadow's edges.

Shadows

248

The basic technique was first published by Reeves et al in a 1987 paper (SIGGRAPH
Proceedings, Volume 21, Number 4, July 1987). The concept involved transforming the
fragment's extents into shadow space, sampling several locations within that region, and
computing the percent that is closer than the depth of the fragment. The result is then used
to attenuate the shading. If the size of this filter region is increased, it can have the effect of
blurring the shadow's edges.

A common variant of the PCF algorithm involves just sampling a constant number of nearby
texels within the shadow map. The percent of those texels that are closer to the light is used
to attenuate the shading. This has the effect of blurring the shadow's edges. While the result
may not be physically accurate, the result is not objectionable to the eye.

The following images show shadows rendered with PCF (right) and without PCF (left). Note
that the shadows in the right-hand image have fuzzier edges and the aliasing is less visible.

In this recipe, we'll use the latter technique, and sample a constant number of texels around
the fragment's position in the shadow map. We'll calculate an average of the resulting
comparisons and use that result to scale the diffuse and specular components.

We'll make use of OpenGL's built in support for PCF, by using linear filtering on the depth
texture. When linear filtering is used with this kind of texture, the hardware can automatically
sample four nearby texels (execute four depth comparisons) and average the results (the
details of this are implementation dependent). Therefore, when linear filtering is enabled, the
result of the textureProj function can be somewhere between 0.0 and 1.0.

We'll also make use of the built-in functions for texture accesses with offsets. OpenGL
provides the texture access function textureProjOffset, which has a third parameter
that is added to the texel coordinates before the lookup/comparison.

Chapter 7

249

Getting ready
Start with the shaders and FBO presented in the previous recipe, Rendering shadows with
shadow maps. We'll just make a few minor changes to the code presented there.

How to do it...
To add the PCF technique to the shadow mapping algorithm, we'll just make a few changes to
the shaders from the recipe Rendering shadows with shadow maps:

1.	 When setting up the FBO for the shadow map, make sure to use linear filtering on the
depth texture. Replace the corresponding lines with the following code:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

 GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

 GL_LINEAR);

2.	 Use the following code for the shadeWithShadow function within the
fragment shader:

subroutine (RenderPassType)

void shadeWithShadow()

{

 vec3 ambient = Light.Intensity * Material.Ka;

 vec3 diffAndSpec = phongModelDiffAndSpec();

 // The sum of the comparisons with nearby texels

 float sum = 0;

 // Sum contributions from texels around ShadowCoord

 sum += textureProjOffset(ShadowMap, ShadowCoord,

 ivec2(-1,-1));

 sum += textureProjOffset(ShadowMap, ShadowCoord,

 ivec2(-1,1));

 sum += textureProjOffset(ShadowMap, ShadowCoord,

 ivec2(1,1));

 sum += textureProjOffset(ShadowMap, ShadowCoord,

 ivec2(1,-1));

 float shadow = sum * 0.25;

 FragColor = vec4(ambient + diffAndSpec * shadow,1.0);

}

Shadows

250

How it works...
The first step enables linear filtering on the shadow map texture. When this is enabled, the
OpenGL driver can repeat the depth comparison on the four nearby texels within the texture.
The results of the four comparisons will be averaged and returned.

Within the fragment shader, we use the textureProjOffset function to sample the four
texels (diagonally) surrounding the texel nearest to ShadowCoord. The third argument is the
offset. It is added to the texel's coordinates (not the texture coordinates) before the lookup
takes place.

As linear filtering is enabled, each lookup will sample an additional four texels, for a total of
16 texels. The results are then averaged together and stored within the variable shadow.

As before, the value of shadow is used to attenuate the diffuse and specular components of
the lighting model.

There's more...
An excellent survey of the PCF technique was written by Fabio Pellacini of Pixar, and can
be found in Chapter 11 of GPU Gems, edited by Randima Fernando, Addison-Wesley
Professional, 2004. If more details are desired, I highly recommend reading this short, but
informative, chapter.

Because of its simplicity and efficiency, the PCF technique is an extremely common method
for anti-aliasing the edges of shadows produced by shadow mapping. Since it has the effect
of blurring the edges, it can also be used to simulate soft shadows. However, the number of
samples must be increased with the size of the blurred edge (the penumbra) to avoid certain
artifacts. This can, of course, be a computational roadblock. In the next recipe, we'll look at a
technique for producing soft shadows by randomly sampling a larger region.

See also
ff Shadow maps

Chapter 7

251

Creating soft shadow edges with
random sampling

The basic shadow mapping algorithm combined with PCF can produce shadows with soft
edges. However, if we desire blurred edges that are substantially wide (to approximate true
soft shadows) then a large number of samples are required. Additionally, there is a good deal
of wasted effort when shading fragments lie in the center of large shadows, or completely
outside of the shadow. For those fragments, all of the nearby shadow map texels will evaluate
to the same value. Therefore, the work of accessing and averaging these texels is essentially
wasted effort.

The technique presented in this recipe is based on a chapter published in GPU Gems 2, edited
by Matt Pharr and Randima Fernando, Addison-Wesley Professional, 2005. (Chapter 17 by
Yury Uralsky). It provides an approach that can address both of the preceding issues to create
shadows with soft edges of various widths, while avoiding some unneeded texture accesses in
areas inside and outside of the shadow.

The basic idea is as follows:

ff Instead of sampling texels around the fragment's position (in shadow map space)
using a constant set of offsets, we use a random, circular pattern of offsets

ff In addition, we sample only the outer edges of the circle first in order to determine
whether or not the fragment is in an area that is completely inside or outside of the
shadow

The following figure is a visualization of a possible set of shadow map samples. The center of
the "cross-hairs" is the fragment's location in the shadow map, and each "x" is a sample. The
samples are distributed randomly within a "circular grid" around the fragment's location (one
sample per grid cell).

Shadows

252

Additionally, we vary the sample locations through a set of precomputed sample patterns. We
compute random sample offsets and store them in a texture prior to rendering. Then, in the
fragment shader, the samples are determined by first accessing the offset texture to grab a
set of offsets and use them to vary the fragment's position in the shadow map. The results are
then averaged together in a similar manner to the basic PCF algorithm.

The following images show the difference between shadows using the PCF algorithm (left),
and the random sampling technique described in this recipe (right).

We'll store the offsets in a three-dimensional texture (n x n x d) where each (s,t) location
contains a set of 2D random offsets. Each RGBA "color" in the texture contains two 2D offsets.
The R and G channels contain the first offset, and the B and A channels contain the second. For
example, location (1, 1, 3) contains the sixth and seventh offset at location (1,1). The entire set
of values at a given (s,t) comprise a full set of offsets as shown in the preceding screenshot.

We'll rotate through the texture based on the fragment's screen coordinates. The location
within the offset texture will be determined by taking the remainder of the screen coordinates
divided by the texture's size. For example, if the fragment's coordinates are (10.0,10.0)
and the texture's size is (4,4), then we use the set of offsets located in the offset texture at
location (2,2).

Getting ready
Start with the code presented in the recipe Shadow maps.

There are 3 additional uniforms that need to be set:

ff OffsetTexSize: The width, height, and depth of the offset texture. Note that the
depth is the same as the number of samples per fragment divided by two.

ff OffsetTex: A handle to the texture unit containing the offset texture.

Chapter 7

253

ff Radius: The blur radius in pixels divided by the size of the shadow map texture
(assuming a square shadow map). This could be considered as the "softness"
of the shadow.

How to do it...
To modify the shadow mapping algorithm to use this random sampling technique, use the
following steps. We'll build the offset texture within the main OpenGL program, and make
use of it within the fragment shader:

1.	 Use the following code within the main OpenGL program to create the offset texture.
This only needs to be executed once during program initialization:
void buildOffsetTex(inttexSize, intsamplesU, intsamplesV)

{

 int size = texSize;

 int samples = samplesU * samplesV;

 int bufSize = size * size * samples * 2;

 float *data = new float[bufSize];

 for(int i = 0; i< size; i++) {

 for(int j = 0; j < size; j++) {

 for(int k = 0; k < samples; k += 2) {

 int x1,y1,x2,y2;

 x1 = k % (samplesU);

 y1 = (samples - 1 - k) / samplesU;

 x2 = (k+1) % samplesU;

 y2 = (samples - 1 - k - 1) / samplesU;

 vec4 v;

 // Center on grid and jitter

 v.x = (x1 + 0.5f) + jitter();

 v.y = (y1 + 0.5f) + jitter();

 v.z = (x2 + 0.5f) + jitter();

 v.w = (y2 + 0.5f) + jitter();

 // Scale between 0 and 1

 v.x /= samplesU;

 v.y /= samplesV;

 v.z /= samplesU;

 v.w /= samplesV;

 // Warp to disk

 int cell = ((k/2) * size * size + j *

 size + i) * 4;

Shadows

254

 data[cell+0] = sqrtf(v.y) * cosf(TWOPI*v.x);

 data[cell+1] = sqrtf(v.y) * sinf(TWOPI*v.x);

 data[cell+2] = sqrtf(v.w) * cosf(TWOPI*v.z);

 data[cell+3] = sqrtf(v.w) * sinf(TWOPI*v.z);

 }

 }

 }

 glActiveTexture(GL_TEXTURE1);

 GLuint texID;

 glGenTextures(1, &texID);

 glBindTexture(GL_TEXTURE_3D, texID);

 glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA32F, size, size,

 samples/2, 0, GL_RGBA, GL_FLOAT, data);

 glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER,

 GL_NEAREST);

 glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER,

 GL_NEAREST);

 delete [] data;

}

// Return random float between -0.5 and 0.5

float jitter() {

 return ((float)rand() / RAND_MAX) - 0.5f;

}

2.	 Add the following uniform variables to the fragment shader:
uniform sampler3D OffsetTex;

uniform vec3 OffsetTexSize; // (width, height, depth)

uniform float Radius;

3.	 Use the following code for the shadeWithShadow function in the fragment shader:
subroutine (RenderPassType)

void shadeWithShadow()

{

 vec3 ambient = Light.Intensity * Material.Ka;

 vec3 diffAndSpec = phongModelDiffAndSpec();

 ivec3 offsetCoord;

 offsetCoord.xy = ivec2(mod(gl_FragCoord.xy,

 OffsetTexSize.xy));

 float sum = 0.0;

Chapter 7

255

 int samplesDiv2 = int(OffsetTexSize.z);

 vec4 sc = ShadowCoord;

 for(int i = 0 ; i< 4; i++) {

 offsetCoord.z = i;

 vec4 offsets = texelFetch(OffsetTex,offsetCoord,0) *

 Radius * ShadowCoord.w;

 sc.xy = ShadowCoord.xy + offsets.xy;

 sum += textureProj(ShadowMap, sc);

 sc.xy = ShadowCoord.xy + offsets.zw;

 sum += textureProj(ShadowMap, sc);

 }

 float shadow = sum / 8.0;

 if(shadow != 1.0 && shadow != 0.0) {

 for(int i = 4; i< samplesDiv2; i++) {

 offsetCoord.z = i;

 vec4 offsets =

 texelFetch(OffsetTex, offsetCoord,0) *

 Radius * ShadowCoord.w;

 sc.xy = ShadowCoord.xy + offsets.xy;

 sum += textureProj(ShadowMap, sc);

 sc.xy = ShadowCoord.xy + offsets.zw;

 sum += textureProj(ShadowMap, sc);

 }

 shadow = sum / float(samplesDiv2 * 2.0);

 }

 FragColor = vec4(diffAndSpec * shadow + ambient, 1.0);

}

Shadows

256

How it works...
The function buildOffsetTex creates our three dimensional texture of random offsets.
The first parameter, texSize, defines the width and height of the texture. To create the
preceding images, I used a value of 8. The second and third parameters, samplesU and
samplesV, define the number of samples in the u and v directions. I used a value of 4 and 8,
respectively, for a total of 32 samples. The u and v directions are arbitrary axes that are used
to define a grid of offsets. To help understand this, take a look at the following figure:

The offsets are initially defined to be centered on a grid of size samplesU x samplesV (4
x 4 in the preceding figure). The coordinates of the offsets are scaled such that the entire
grid fits in a cube of side length 1 with the origin in the lower left corner. Then each sample
is randomly "jittered" from its position to a random location inside the grid cell. Finally, the
jittered offsets are warped such that they surround the origin and lie within the circular "grid"
shown on the right.

The last step can be accomplished by using the v coordinate as the distance from the origin
and the u coordinate as the angle scaled from 0 to 360. The following equations should do
the trick:

Here, w is the warped coordinate. What we are left with is a set of offsets around the origin
that are a maximum distance of 1.0 from the origin. Additionally, we generate the data such
that the first samples are the ones around the outer edge of the circle, moving inside towards
the center. This will help us avoid taking too many samples when we are working completely
inside or outside of the shadow.

Chapter 7

257

Of course, we also pack the samples in such a way that a single texel contains two samples.
This is not strictly necessary, but is done to conserve memory space. However, it does make
the code a bit more complex.

Within the fragment shader, we start by computing the ambient component of the shading
model separately from the diffuse and specular components. We access the offset texture at a
location based on the fragment's screen coordinates (gl_FragCoord). We do so by taking the
modulus of the fragment's position and the size of the offset texture. The result is stored in the
first two components of offsetCoord. This will give us a different set of offsets for each nearby
pixel. The third components of offsetCoord will be used to access a pair of samples. The
number of samples is the depth of the texture divided by two. This is stored in samplesDiv2.
We access the sample using the texelFetch function. This function allows us to access a texel
using the integer texel coordinates rather than the usual 0.1 texture coordinates.

The offset is retrieved and multiplied by Radius and the w component of ShadowCoord.
Multiplying by Radius simply scales the offsets so that they range from 0.0 to Radius. We
multiply by the w component because ShadowCoord is still a homogeneous coordinate, and
our goal is to use offsets to translate the ShadowCoord. In order to do so properly, we
need to multiply the offset by the w component. Another way of thinking of this is that the w
component will be cancelled when perspective division takes place.

Next, we use offsets to translate the ShadowCoord and access the shadow map to do the
depth comparison using textureProj. We do so for each of the two samples stored in the
texel, once for the first two components of offsets and again for the last two. The result is
added to sum.

The first loop repeats this for the first 8 samples. If the first 8 samples are all 0.0 or 1.0, then
we assume that all of the samples will be the same (the sample area is completely in or out of
the shadow). In which case, we skip the evaluation of the rest of the samples. Otherwise, we
evaluate the following samples and compute the overall average.

Finally the resulting average (shadow) is used to attenuate the diffuse and specular
components of the lighting model.

There's more...
The use of a small texture containing a set of random offsets helps to blur the edges of the
shadow better than we might achieve with the standard PCF technique that uses a constant
set of offsets. However, artifacts can still appear as repeated patterns within the shadow
edges because the texture is finite and offsets are repeated every few pixels. We could
improve this by also using a random rotation of the offsets within the fragment shader, or
simply compute the offsets randomly within the shader.

Shadows

258

It should also be noted that this blurring of the edges may not be desired for all shadow
edges. For example, edges that are directly adjacent to the occluder, that is, creating the
shadow, should not be blurred. These may not always be visible, but can become so in certain
situations, such as when the occluder is a narrow object. The effect is to make the object
appear as if it is hovering above the surface. Unfortunately, there isn't an easy fix for this one.

See also
ff Shadow maps

Improving realism with prebaked
ambient occlusion

The Phong shading model uses a very simplistic model of ambient light. It simply adds a
constant value to the shading model everywhere in the scene. This is not very realistic, and
leads to a very flat look. In reality, the amount of ambient light that reaches a point on a
surface depends on the environment. For example, consider a point in the corner of an empty
room versus a point on a flat surface in the middle of a room. Think of ambient light as a light
source that emanates from all directions. If the point is in a corner, then the nearby walls
block much of the ambient light from reaching that point (if we ignore reflection). Alternatively,
if the point is on a flat surface, then almost all of the ambient light reaches the point without
being blocked.

Ambient occlusion (AO) is a technique for approximating this effect. The basic idea involves
computing the accessibility of each point on the surface and attenuating the shading model
based on the accessibility. The accessibility is a measure of how much ambient light can
reach a surface point without being occluded by nearby surfaces.

The accessibility factor can be computed by tracing a set of rays originating from the surface
point and being distributed within the hemisphere aligned with the surface normal. The
fraction of the rays that do not intersect with any surface (within a certain distance) is
proportional to the accessibility factor. For example, in the following figure, the nearby wall
blocks half of the rays emanating from the point in the corner, while none of the rays coming
from the point on the flat surface are blocked.

Chapter 7

259

Tracing all of these rays can be a very time consuming process, and is somewhat impractical
for real-time graphics. However, significant progress has been made by making use of the
depth buffer (we'll look at more on this later). The good news is that ambient occlusion
accessibility factors can be precomputed, and are independent of the position of the light
source. The precomputed values will be valid as long as the object is not deformed and does
not have occlusion factors that are highly dependent on other objects that move relative to
the object.

The accessibility factors can be stored in a texture and used as part of the lighting model
calculation within a shader. For example, the following figure shows a texture containing
ambient occlusion information applied to a mesh.

Shadows

260

The top image is the ambient occlusion texture. The bottom left shows the mesh with diffuse
shading only. The bottom right is diffuse lighting attenuated with the accessibility factors from
the ambient occlusion texture. Note that the bottom left image looks very flat compared to the
one on the right. Including ambient occlusion gives the object a much more realistic look, and
provides additional depth to the shading.

There are many tools available to create a precomputed ambient occlusion texture. For example,
the free 3D modeling and animation package Blender can be used to create such a texture. The
process is called baking. There are a number of tutorials available on baking ambient occlusion
values into an image. Just do a search for "baking ambient occlusion in Blender".

Once we have a texture with prebaked ambient occlusion accessibility factors, then it is
straightforward to use the accessibility in the shading model. A common technique is just to
simply multiply the accessibility factor by the diffuse (or ambient) component of the shading
model. Here, we'll multiply by the diffuse component.

Getting ready
Design your OpenGL program to provide the vertex position in vertex attribute 0, the normal
vector in vertex attribute 1, and the texture coordinate in vertex attribute 2.

There aren't any special uniform variables here, just one for the AO texture named AOTex.
Load the texture into texture unit zero, and set the AOTex to zero.

How to do it...
To create a set of shaders that can be used to apply the AO texture, use the following steps:

1.	 Use the following code for the vertex shader:
#version 400

layout (location = 0) in vec3 VertexPosition;

layout (location = 1) in vec3 VertexNormal;

layout (location = 2) in vec2 TexCoord0;

out vec3 Position;

out vec3 Normal;

out vec2 TexCoord;

uniform mat4 ModelViewMatrix;

uniform mat3 NormalMatrix;

uniform mat4 ProjectionMatrix;

uniform mat4 MVP;

void main()

Chapter 7

261

{

 Position = vec3(ModelViewMatrix *

 vec4(VertexPosition,1.0));

 Normal = NormalMatrix * VertexNormal;

 TexCoord = TexCoord0;

 gl_Position = MVP * vec4(VertexPosition,1.0);

}

2.	 Use the following code for the fragment shader:
#version 400

// Declare any uniforms needed for the Phong shading model.

in vec3 Position;

in vec3 Normal;

in vec2 TexCoord;

layout (location = 0) out vec4 FragColor;

uniform sampler2D AOTex;

vec3 phongModelDiffuse()

{

 // Compute and return the diffuse component of the Phong

 // shading model…

}

void main() {

 vec3 diffuse = phongModelDiffuse();

 vec4 aoFactor = texture(AOTex, TexCoord);

 FragColor = vec4(diffuse * aoFactor.r , 1.0);

}

How it works...
The vertex shader is the "pass-through" shader that we've seen several times before. It
simply converts the position and normal to camera coordinates and sends them along to
the fragment shader. Additionally, the texture coordinate is passed along unchanged.

Within the fragment shader, we start within the main function by computing the diffuse
component of the shading model. Then we look up the accessibility from the AO texture, and
store the result in aoFactor. AO textures are generally grayscale textures, so the red, green,
and blue components should all be equal. We use the red component to scale the diffuse
color before applying the result to the output fragment.

Shadows

262

There's more...
As mentioned some time back, precomputing the AO accessibility factors works quite well
under certain circumstances. The object needs to be static (non-deformable), and the
occlusion factors shouldn't be dependent on other objects that may move relative to the
object. If either of these considerations do not hold, then the AO values can become incorrect
as the objects move.

Of course, it would be better to compute AO accessibility in real time, and there has been
substantial progress in that area recently.

Screen-space ambient occlusion
One of the most popular classes of algorithms for real-time AO is called screen-space
ambient occlusion (SSAO).

The basic idea of SSAO involves using the depth buffer to compute the accessibility factors.
This can be done by tracing rays against the depth buffer, or simply computing an accessibility
factor based on comparisons with nearby depths.

Sections 6.1, 6.2 and 6.7 in the recent book Shader X7: Advanced Rendering Techniques,
cover the details of the basic algorithm and its implementation.

Another technique for dynamic ambient occlusion
Another technique for computing AO in real time was published by Michael Bunnell in Dynamic
Ambient Occlusion and Indirect Lighting. The idea involves approximating all of the polygonal
data as oriented disks (centered at the vertices), and determining the occlusion of a given
disk by all other disks.

An improvement on the technique was later published in GPU Gems 3, edited by Hubert Nguyen,
Addison-Wesley Professional, 2007. See Chapter 12 by Jared Hoberock and Juntao Jia.

8
Using Noise in

Shaders

In this chapter, we will cover:

ff Creating a noise texture using libnoise

ff Creating a seamless noise texture

ff Creating a cloud-like effect

ff Creating a wood grain effect

ff Creating a disintegration effect

ff Creating a paint-spatter effect

ff Creating a night-vision effect

Introduction
It's easy to use shaders to create a smooth looking surface, but that is not always the desired
goal. If we want to create realistic looking objects, we need to simulate the imperfections
of real surfaces. That includes things such as scratches, rust, dents, and erosion. It is
somewhat surprising how challenging it can be to make surfaces look like they have really
been subjected to these natural processes. Similarly, we sometimes want to represent natural
surfaces such as wood grain or natural phenomena such as clouds.

Using Noise in Shaders

264

All of the preceding effects have qualities that are random in nature. Therefore, you might
imagine that we could generate them by simply using random data. However, random data
such as the kind that is generated from a pseudorandom number generator is not very useful
in computer graphics. There are two main reasons:

ff First, we need data that is repeatable, so that the object will render in the same way
during each frame of the animation. (We could achieve this by using an appropriate
seed value for each frame, but that only solves half of the problem.)

ff Second, in order to model most of these natural phenomena, we actually need data
that is continuous, but still gives the appearance of randomness. Continuous data
more accurately represents many of these natural materials and phenomena. Purely
random data does not have this continuity property. Each value has no dependence
on the previous value.

Thanks to the groundbreaking work of Ken Perlin, we have the concept of noise (as it applies
to computer graphics). His work defined noise as a function that has certain qualities such as
the following:

ff It is a continuous function

ff It is repeatable (generates the same output from the same input)

ff It can be defined for any number of dimensions

ff It does not have any regular patterns and gives the appearance of randomness

Such a noise function is a valuable tool for computer graphics and it can be used to create an
endless array of interesting effects.

Perlin noise is the noise function defined by Ken Perlin. It is a variety of gradient noise.
A full discussion of the details behind Perlin noise is outside the scope of this book, but I
recommend Texturing and Modeling: A Procedural Approach, by Ken Musgrave et al. for
further reading.

To use Perlin noise (or a similar source of noise data) within a shader, we have three main
choices, namely, we can use the built-in GLSL noise functions, we can create our own GLSL
noise functions, or we could use a texture map to store pre-computed noise data. At the time
of writing, the GLSL noise functions are not implemented in some of the commercial OpenGL
drivers, and therefore cannot be relied upon to be available, so I have decided not to use them
in this chapter. As creating our own noise functions is a bit beyond the scope of this book, and
because the third option in the preceding list gives the best performance on modern hardware,
the recipes in this chapter will use the third approach (using a pre-computed noise texture).

Chapter 8

265

Many books use a 3D rather than a 2D noise texture, to provide another
dimension of noise that is available to the shaders. To keep things simple,
and to focus on using surface texture coordinates, I've chosen to use a
2D noise texture in the recipes within this chapter. If desired, it should be
straightforward to extend these recipes to use a 3D source of noise.

We'll start out with two recipes that demonstrate how to generate a noise texture using the
free, open source library libnoise. Then we'll move on to several examples that use noise
textures to produce natural and artificial effects such as wood grain, clouds, electrical
interference, splattering, and erosion.

The recipes in this chapter are meant to be a starting point for you to experiment with. They
are certainly not intended to be the definitive way of implementing any of these effects. One of
the best things about computer graphics is the element of creativity. Try tweaking the shaders
in these recipes to produce similar results and then try creating your own effects. Most of all;
have fun!

Creating a noise texture using libnoise
To create a texture for use as a source of noise, we need some way to generate noise values.
Implementing a proper noise generator from scratch can be a fairly daunting task. However,
we can avoid that by making use of the very nice, open source library libnoise, available from
http://libnoise.sourceforge.net. Libnoise is a C++ based library that is released
under the Gnu LGPL. It provides a very simple and modular interface to coherent noise
generation routines via noise modules. The modules can be chained and linked together in
various ways to generate a wide variety of interesting generators. The website has a set of
simple tutorials that can help get you started.

Downloading and compiling libnoise is fairly straightforward, and there is good documentation
on the website just listed. However, if you are compiling for Windows using MinGW, you will
need to make some adjustments to the Makefile in order to properly link the DLL.

In this recipe, we'll use libnoise to generate a 2D texture of noise values created using a
Perlin noise generator.

Using Noise in Shaders

266

Perlin noise is defined as a sum of several coherent noise functions with increasing frequencies
and decreasing amplitudes. Each function is referred to as an octave. The libnoise library
can generate Perlin noise as a sum of any number of octaves. The more octaves involved; the
more variation in the generated noise. Summed noise involving higher octaves will have more
high-frequency variation than noise involving only lower octaves. The following figure shows
Perlin noise generated with one, two, three, and four octaves, from left to right, respectively.

In this recipe, we'll store all four values in a single 2D texture. We'll store Perlin noise with one
octave in the first component (red channel), two octaves in the green channel, three octaves
in the blue, and four octaves in the alpha channel.

Getting ready
Download and compile the libnoise library (compiling is necessary if you are using the MinGW
compiler), and incorporate it into your build system.

How to do it...
To create a 2D noise texture with libnoise, use the following steps:

1.	 Include the header file for libnoise:
#include<noise/noise.h>

2.	 Use the following code to create the texture and store it in an OpenGL texture object:

int width = 128;
int height = 128;

noise::module::Perlin perlinNoise;

// Base frequency for octave 1.
perlinNoise.SetFrequency(4.0);

GLubyte *data = new GLubyte[width * height * 4];

double xRange = 1.0;
double yRange = 1.0;
double xFactor = xRange / width;
double yFactor = yRange / height;

Chapter 8

267

for(int oct = 0; oct < 4; oct++) {

 perlinNoise.SetOctaveCount(oct+1);

 for(int i = 0; i < width; i++) {
 for(int j = 0 ; j < height; j++) {
 double x = xFactor * i;
 double y = yFactor * j;
 double z = 0.0;

 float val = (float)perlinNoise.GetValue(x,y,z);

 // Scale and translate to roughly between 0 and 1
 val = (val + 1.0f) * 0.5f;

 // Clamp strictly between 0 and 1
 val = val> 1.0f ? 1.0f :val;
 val = val< 0.0f ? 0.0f :val;

 // Store in texture
 data[((j * width + i) * 4) + oct] =
 (GLubyte) (val * 255.0f);
 }
 }
}

GLuint texID;
glGenTextures(1, &texID);

glBindTexture(GL_TEXTURE_2D, texID);

glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,width,height,0,GL_RGBA,
 GL_UNSIGNED_BYTE,data);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

delete [] data;

Using Noise in Shaders

268

How it works...
The libnoise library is based on the concept of noise modules. To generate Perlin noise, we
start by creating a Perlin noise module by declaring an instance of the Perlin module named
perlinNoise.

noise::module::Perlin perlinNoise;

The SetFrequency function defines the frequency used for the first octave that is generated
by the module. Each successive octave decreases the frequency by one half. (The amount can
be configured using the SetPersistence function.) For this example, we want to start with a
frequency of 4.0.

perlinNoise.SetFrequency(4.0);

The following loops generate the values to be stored within the texture. The outermost loop
(over oct) iterates over the four octaves. We define the octave count for the noise module
using the SetOctaveCount function.

perlinNoise.SetOctaveCount(oct+1);

The inner two loops iterate over all of the texels. For each texel, we generate a noise value
that corresponds to the texture coordinates of the texel. Perlin noise is a 3D noise function, so
we choose to take a slice of the 3D function at z = 0. The x and y coordinates are basically
mapped to the texture coordinates, and the z coordinate is set to zero. You should feel free to
use another value to produce a different slice of the 3D noise function. We generate the noise
value by calling the GetValue function.

float val = (float)perlinNoise.GetValue(x,y,z);

The value returned by GetValue should be roughly within the range from -1 to 1. However,
the value may be slightly outside this range. In the next few steps, we scale, translate, and
clamp the value so that it is strictly between 0 and 1.

We store the value in the array named data corresponding to the appropriate texel and
component. The component is determined by the value of oct. The value is stored as an
unsigned byte, so we multiply it by 255 and then cast to GLubyte.

The next few lines of code should be familiar. The data is loaded in to OpenGL memory using
glTexImage2D, and we set the texture parameters that are appropriate for this texture. We
use GL_REPEAT as the texture wrap mode so that the texture can be tiled if necessary, and
we use linear filtering.

Finally, the array named data is deleted, as it is no longer needed.

Chapter 8

269

There's more...
You should feel free to change various parts of this code and see what happens to the result.
Try using a different "slice" of the 3D noise space or use a different persistence value by using
the SetPersistence function. The libnoise library provides plenty of options and additional
modules that you can use to modify the results. Read through the documentation and play
around with the preceding code!

Rather than using unsigned byte values, we could get more resolution in our noise data by
using a floating point texture. The preceding code needs relatively few changes to achieve this.
Just use an internal format of GL_RGBA32F instead of GL_RGBA, and don't multiply by 255
when storing the noise values in the array.

See also
ff The libnoise website: http://libnoise.sourceforge.net.

ff For general information about coherent noise, take a look at the book Graphics
Shaders, by Mike Bailey and Steve Cunningham.

ff Chapter 4, Applying a 2D texture.

Creating a seamless noise texture
It can be particularly useful to have a noise texture that tiles well. If we simply create a noise
texture as a finite slice of 3D noise values, then the values will not wrap smoothly across
the boundaries of the texture. This can cause hard edges (seams) to appear in the rendered
surface if the texture coordinates extend outside of the range of zero to one.

We can create a noise texture that is seamless by making use of the fact that the noise
functions are defined on an infinite domain. Instead of simply storing the noise values directly
within the texture, we store a linear interpolation of the noise value with three other noise
values located at the corners of a rectangle with the same dimensions as the texture itself.

Using Noise in Shaders

270

In the following figure, the solid line represents the boundaries of the texture within the
noise function's space. The value that we store in the texture at point A will be the linear
interpolation of the raw noise values at A, B, C, and D. The interpolation is based on the
position of A within the boundaries of the texture.

In the preceding figure, e represents the horizontal distance of A from the left boundary, and d
represents the vertical distance from the lower boundary. Define q to be the percentage of the
total horizontal extent (e / w), and p to be the percentage of the total vertical extent (d / h).
Then the value (r) that we will store in the texture at the location corresponding to A is given
by the following equation.

Here, vA is the value of the noise function at A, and similar for B, C, and D. The "lerp" function
represents linear interpolation as in the GLSL mix function.

When A is close to the lower-left corner of the texture boundary, the value is strongly
influenced by the value at B, C, and D. As we move closer to the upper-right corner, the values
at B, C, and D provide less and less influence over the value that we store at A. This causes
values along the left and bottom edges to be very close to the values along the right and top
edges respectively, creating a texture that when tiled, has no visible seam.

Chapter 8

271

Getting ready
For this recipe, we'll start with the code from the previous recipe, namely, Creating a noise
texture using libnoise. You'll need to install the libnoise library and enter the code from that
recipe.

The following code also makes use of the GLM library, so that will need to be installed as
well (see Chapter 1, Using the GLM library for mathematics).

How to do it...
Replace the three for loops in the code in the preceding recipe with the following code. The
changes are highlighted in the following code segment:

for(int oct = 0; oct< 4; oct++) {

 perlinNoise.SetOctaveCount(oct+1);

 for(int i = 0; i < width; i++) {
 for(int j = 0 ; j < height; j++) {
 double x = xFactor * i;
 double y = yFactor * j;
 double z = 0.0;

 float val = 0.0f;
 double a, b, c, d;
 a = perlinNoise.GetValue(x ,y ,z);
 b = perlinNoise.GetValue(x+xRange,y ,z);
 c = perlinNoise.GetValue(x ,y+yRange,z);
 d = perlinNoise.GetValue(x+xRange,y+yRange,z);

 double xmix = 1.0 - x / xRange;
 double ymix = 1.0 - y / yRange;
 double x1 = glm::mix(a, b, xmix);
 double x2 = glm::mix(c, d, xmix);

 val = glm::mix(x1, x2, ymix);

 // Scale to roughly between 0 and 1
 val = (val + 1.0f) * 0.5f;

 // Clamp strictly between 0 and 1
 val = val> 1.0 ? 1.0 :val;
 val = val< 0.0 ? 0.0 :val;

 // Store in texture
 data[((j * width + i) * 4) + oct] =
 (GLubyte) (val * 255.0f);
 }
 }
}

Using Noise in Shaders

272

How it works...
Within the main loop, we sample the noise function at the texture location (a) and the
three other locations (b, c, and d) that are offset from a as in the preceding figure. We then
compute one minus the percentage along the horizontal extent and store the result in xmix.
One minus the percentage along the vertical extent is stored in ymix.

We then interpolate between a and b using xmix and store the result in x1. The same
interpolation between c and d is then stored in x2. Finally, we interpolate between x1
and x2 using ymix, and store that result in val.

Interpolation is done using the mix function from the GLM library. This function works in the
same way as its GLSL counterpart.

As before, the value is scaled, translated, and clamped to a range between 0 and 1, and
then multiplied by 255 before it is stored within the texture.

There's more...
The preceding code assumes that you are creating a texture where the lower-left corner of
the texture is at the origin of the noise domain. If that is not the case, then some of the code
needs to be modified to compute the percentages (xmix and ymix) and ranges (xRange and
yRange) correctly.

See also
ff Creating a noise texture with libnoise

Creating a cloud-like effect
To create a texture that resembles a sky with clouds, we can use the noise values as a
blending factor between the sky color and the cloud color. As clouds usually have large scale
structure, it makes sense to use low octave noise. However, the large scale structure often
has higher frequency variations, so some contribution from higher octave noise may be
desired. As our noise texture has summed octaves 1, 2, 3, and 4 in each channel, we'll use
the second channel (the sum of octaves one and two).

The following images show the clouds generated by a seamless texture of two octave noise.
(See Creating a seamless noise texture.)

Chapter 8

273

The left-hand image tiles the noise values once in the horizontal direction. The right-hand
image tiles the noise values in the vertical direction. The center image does not tile.

Getting ready
Set up your program to generate a seamless noise texture and make it available to the
shaders through the uniform variable NoiseTex.

There are two uniforms in the fragment shader that can be assigned from the OpenGL program:

ff SkyColor: The background sky color

ff CloudColor: The color of the clouds

How to do it...
To create a shader program that uses a noise texture to create a cloud-like effect, use the
following steps:

1.	 Set up your vertex shader to pass the texture coordinate to the fragment shader via
the variable TexCoord.

2.	 Use the following code for the fragment shader:
#version 400

#define PI 3.14159265

uniform sampler2D NoiseTex;

uniform vec4 SkyColor = vec4(0.3, 0.3, 0.9, 1.0);
uniform vec4 CloudColor = vec4(1.0, 1.0, 1.0, 1.0);

in vec2 TexCoord;

layout (location = 0) out vec4 FragColor;

void main()
{
 vec4 noise = texture(NoiseTex, TexCoord);

Using Noise in Shaders

274

 float t = (cos(noise.g * PI) + 1.0) / 2.0;

 vec4 color = mix(SkyColor, CloudColor, t);

 FragColor = vec4(color.rgb , 1.0);
}

How it works...
We start by retrieving the noise value from the noise texture (variable noise). The green
channel contains two octave noises, so we use the value stored in that channel (noise.g).

We use a cosine function to make a sharper transition between the cloud and sky color. The
noise value will be between zero and one, and the cosine of that value will range between
-1 and 1, so we add 1.0 and divide by 2.0. The result that is stored in t should again range
between zero and one. Without this cosine transformation, the clouds look a bit too spread
out over the sky. However, if that is the desired effect, one could remove the cosine and just
use the noise value directly.

Next, we mix the sky color and the cloud color using the value of t. The result is applied to
the fragment.

There's more...
If you desire less clouds and more sky, you could translate and clamp the value of t prior to
using it to mix the cloud and sky colors. For example, you could use the following code:

float t = (cos(noise.g * PI) + 1.0) / 2.0;
t = clamp(t – 0.25, 0.0, 1.0);

This causes the cosine term to shift down (toward negative values), and the clamp function
sets all negative values to zero. This has the effect of increasing the amount of sky and
decreasing the size and intensity of the clouds.

See also
ff Creating a seamless noise texture

Chapter 8

275

Creating a wood grain effect
To create the look of wood, we can start by creating a virtual "log", with perfectly cylindrical
growth rings. Then we'll take a slice of the log, and perturb the growth rings using noise from
our noise texture.

The following image illustrates our virtual "log". It is aligned with the y-axis, and extends
infinitely in all directions. The growth rings are aligned with integer distances from the y-axis.
Each ring is given a darker color with lighter color in between rings. Each growth ring extends a
narrow distance around the integer distances.

To take a "slice", we'll simply define a 2D region of the log's space based on the texture
coordinates. Initially, the texture coordinates define a square region, with coordinates ranging
from zero to one. We'll assume that the region is aligned with the x-y plane, so that the s
coordinate corresponds to x, the t coordinate corresponds to y, and the value of z is zero. We
can then transform this region in any way that suits our fancy, to create an arbitrary 2D slice.

Using Noise in Shaders

276

After defining the slice, we'll determine the color based on the distance from the y-axis. However,
before doing so, we'll perturb that distance based on a value from the noise texture. The result
has a general look that is similar to real wood. The following image shows an example:

Getting ready
Set up your program to generate a noise texture and make it available to the shaders through
the uniform variable NoiseTex.

There are three uniforms in the fragment shader that can be assigned from the OpenGL
program. They are as follows:

ff LightWoodColor: The lightest wood color

ff DarkWoodColor: The darkest wood color

ff Slice: A matrix that defines the slice of the virtual "log" and transforms the default
region defined by the texture coordinates to some other arbitrary rectangular region

How to do it...
To create a shader program that generates a wood grain effect using a noise texture, use the
following steps:

1.	 Set up your vertex shader to pass the texture coordinate to the fragment shader via
the variable TexCoord.

2.	 Use the following code for the fragment shader:
#version 400

uniform sampler2D NoiseTex;

uniform vec4 DarkWoodColor = vec4(0.8, 0.5, 0.1, 1.0);
uniform vec4 LightWoodColor = vec4(1.0, 0.75, 0.25, 1.0);
uniform mat4 Slice;

Chapter 8

277

in vec2 TexCoord;

layout (location = 0) out vec4 FragColor;

void main()
{
 // Transform the texture coordinates to define the
 // "slice" of the log.
 vec4 cyl = Slice * vec4(TexCoord.st, 0.0, 1.0);

 // The distance from the log's y axis.
 float dist = length(cyl.xz);

 // Perturb the distance using the noise texture
 vec4 noise = texture(NoiseTex, TexCoord);
 dist += noise.b;

 // Determine the color as a mixture of the light and
 // dark wood colors.
 float t = 1.0 – abs(fract(dist) * 2.0 – 1.0);
 t = smoothstep(0.2, 0.5, t);
 vec4 color = mix(DarkWoodColor, LightWoodColor, t);

 FragColor = vec4(color.rgb , 1.0);
}

How it works...
The first line of the main function within the fragment shader expands the texture coordinates
to a 3D (homogeneous) value with a z coordinate of zero (s, t, 0, 1), and then transforms
the value by the matrix Slice. This matrix can scale, translate, and/or rotate the texture
coordinates to define the 2D region of the virtual "log".

One way to visualize this is to think of the slice as a 2D unit square embedded
in the "log" with its lower-left corner at the origin. The matrix is then used
to transform that square within the log to define a slice through the log. For
example, I might just translate the square by (-0.5, -0.5, -0.5) and scale by 20
in x and y to get a slice through the middle of the log.

Using Noise in Shaders

278

Next, the distance from the y-axis is determined by using the built-in length function
(length(cyl.xz)). This will be used to determine how close we are to a growth ring. The
color will be a light wood color if we are between growth rings, and a dark color when we are
close to a growth ring. However, before determining the color, we perturb the distance slightly
using a value from our noise texture by using the following line of code:

dist += noise.b;

The next step is just a bit of numerical trickery to determine the color based on how close we
are to a whole number. We start by taking the fractional part of the distance (fract(dist)),
multiplying by two, subtracting one, and taking the absolute value. As fract(dist) is a
value between zero and one, multiplying by two, subtracting one, and taking the absolute
value will result in a value that is also between zero and one. However, the value will range
from 1.0 when dist is 0.0, to 0.0 when dist is 0.5, and back to 1.0 when dist is 1.0
(a "v" shape).

We then invert the "v" by subtracting from one, and storing the result in t. Next, we use the
smoothstep function to create a somewhat sharp transition between the light and dark
colors. In other words, we want a dark color when t is less than 0.2, a light color when it is
greater than 0.5, and a smooth transition in between. The result is used to mix the light and
dark colors via the GLSL mix function.

The smoothstep function works in the following way:
smoothstep(a, b, x)

The preceding function call returns 0.0 when x<= a, 1.0 when x>= b and
uses Hermite interpolation between 0 and 1 when x is between a and b.

The result of all of this is a narrow band of the dark color around integer distances, and a light
color in between, with a rapid, but smooth transition.

Finally, we simply apply the final color to the fragment.

There's more...
A book-matched pair of boards is a pair that is cut from the same log and then glued together.
The result is a larger board that has symmetry in the grain from one side to the other. We can
approximate this effect by mirroring the texture coordinate. For example, we could use the
following in place of the first line of the preceding main function:

vec2 tc = TexCoord;
if(tc.s > 0.5) tc.s = 1.0 – tc.s;
vec4 cyl = Slice * vec4(tc, 0.0, 1.0);

Chapter 8

279

The following image shows an example of the results:

See also
ff Creating a noise texture using libnoise

Creating a disintegration effect
It is straightforward to use the GLSL discard keyword in combination with noise to simulate
erosion or decay. We can simply discard fragments that correspond to a noise value that
is above or below a certain threshold. The following image shows a teapot with this effect.
Fragments are discarded when the noise value corresponding to the texture coordinate is
outside a certain threshold range.

Getting ready
Set up your OpenGL program to provide position, normal, and texture coordinates to the
shader. Be sure to pass the texture coordinate along to the fragment shader. Set up any
uniforms needed to implement the shading model of your choice.

Using Noise in Shaders

280

Create a seamless noise texture (see Creating a seamless noise texture), and place it in the
appropriate texture channel.

The following uniforms are defined in the fragment shader, and should be set via the OpenGL
program:

ff NoiseTex: The noise texture

ff LowThreshold: Fragments are discarded if the noise value is below this value

ff HighThreshold: Fragments are discarded if the noise value is above this value

How to do it...
To create a shader program that provides a disintegration effect, use the following steps:

1.	 Create a vertex shader that sends the texture coordinate to the fragment shader via
the output variable TexCoord. It should also pass the position and normal to the
fragment shader through the variables Position and Normal.

2.	 Use the following code for the fragment shader:
#version 400

// Insert uniforms needed for the Phong shading model

uniform sampler2D NoiseTex;

in vec4 Position;
in vec3 Normal;
in vec2 TexCoord;

uniform float LowThreshold;
uniform float HighThreshold;

layout (location = 0) out vec4 FragColor;

vec3 phongModel() {
 // Compute Phong shading model…
}

void main()
{
 // Get the noise value at TexCoord
 vec4 noise = texture(NoiseTex, TexCoord);

 // If the value is outside the threshold, discard
 if(noise.a<LowThreshold) discard;
 if(noise.a>HighThreshold) discard;

 // Color the fragment using the shading model
 vec3 color = phongModel();
 FragColor = vec4(color , 1.0);
}

Chapter 8

281

How it works...
The fragment shader starts by retrieving a noise value from the noise texture (NoiseTex),
and storing the result in the variable noise. We want noise that has a large amount of high
frequency fluctuation, so we choose four-octave noise, which is stored in the alpha channel
(noise.a).

We then discard the fragment if the noise value is below LowThreshold or above
HighThreshold. As the discard keyword causes the execution of the shader to stop,
the following statements will not execute if the fragment is discarded.

Finally, we compute the shading model and apply the result to the fragment.

See also
ff Creating a seamless noise texture

Creating a paint-spatter effect
Using high-frequency noise, it is easy to create the effect of random spatters of paint on the
surface of an object. The following image shows an example:

We use the noise texture to vary the color of the object, with a sharp transition between the
base color and the paint color. We'll use either the base color or paint color as the diffuse
reflectivity of the shading model. If the noise value is above a certain threshold, we'll use the
paint color; otherwise, we'll use the base color of the object.

Using Noise in Shaders

282

Getting ready
Start with a basic setup for rendering using the Phong shading model (or whatever model
you prefer). Include texture coordinates and pass them along to the fragment shader.

There are a couple of uniform variables that define the parameters of the paint spatters:

ff PaintColor: The color of the paint spatters

ff Threshold: The minimum noise value where a spatter will appear

Create a noise texture with high frequency noise (see Creating a seamless noise texture).
To increase the frequency of the noise, use the following line of code before generating
the texture:

perlinNoise.SetFrequency(32.0f);

Try different frequencies and observe the results.

Make your noise texture available to the fragment shader via the uniform variable NoiseTex.

How to do it...
To create a shader program that generates a paint-spatter effect, use the following steps:

1.	 Create a vertex shader that sends the texture coordinate to the fragment shader via
the output variable TexCoord. It should also pass the position and normal to the
fragment shader through the variables Position and Normal.

2.	 Use the following code for the fragment shader:
#version 400

// Uniforms for the Phong shading model
uniform struct LightInfo {
 vec4 Position;
 vec3 Intensity;
} Light;

uniform struct MaterialInfo {
 vec3 Ka;
 vec3 Kd;
 vec3 Ks;
 float Shininess;
} Material;

// The noise texture
uniform sampler2D NoiseTex;
// Input from the vertex shader
in vec4 Position;

Chapter 8

283

in vec3 Normal;
in vec2 TexCoord;

// The paint-spatter uniforms
uniform vec3 PaintColor = vec3(1.0);
uniform float Threshold = 0.65;

layout (location = 0) out vec4 FragColor;

vec3 phongModel(vec3 kd) {
 // Evaluate the Phong shading model using kd as the diffuse
 // reflectivity.
}

void main()
{
 vec4 noise = texture(NoiseTex, TexCoord);
 vec3 color = Material.Kd;
 if(noise.g> Threshold) color = PaintColor;
 FragColor = vec4(phongModel(color) , 1.0);
}

How it works...
The main function of the fragment shader retrieves a noise value from NoiseTex, and stores
it in the variable noise. The next two lines set the variable color to either the base diffuse
reflectivity (Material.Kd) or PaintColor, depending on whether or not the noise value is
greater than the threshold value (Threshold). This will cause a sharp transition between the
two colors and the size of the spatters will be related to the frequency of the noise.

Finally, the Phong shading model is evaluated using color as the diffuse reflectivity. The
result is applied to the fragment.

There's more...
As mentioned some time back, using lower frequency noise will cause the spatters to be
larger in size and more spread out. A lower threshold will also increase the size without
spreading over the surface, but as the threshold gets lower, it starts to look more uniform
and less like random spattering.

See also
ff Creating a seamless noise texture

Using Noise in Shaders

284

Creating a night-vision effect
Noise can be useful to simulate static or other kinds of electronic interference. This recipe is
a fun example of that. We'll create the look of night-vision goggles with some noise thrown in
to simulate some random static in the signal. Just for fun, we'll also outline the scene in the
classic "binocular" view. The following image shows an example:

We'll apply the night-vision effect as a second pass to the rendered scene. The first pass will
render the scene to a texture (see Chapter 4, Rendering to a Texture), and the second pass
will apply the night-vision effect.

Getting ready
Create an FBO for the first pass. Attach a texture to the first color attachment of the FBO.
For more information on how to do this, see Chapter 4, Rendering to a texture.

Create and assign any uniform variables needed for the shading model. Set the following
uniforms defined in the fragment shader:

ff Width: The width of the viewport in pixels

ff Height: The height of the viewport in pixels

ff Radius: The radius of each circle in the "binocular" effect (in pixels)

ff RenderTex: The texture containing the render from the first pass

ff NoiseTex: The noise texture

ff RenderPass: The subroutine uniform used to select the functionality for each pass

Chapter 8

285

Create a noise texture with high frequency noise, and make it available to the shader via
NoiseTex. Associate the texture with the FBO available via RenderTex.

How to do it...
To create a shader program that generates a night-vision effect, use the following steps:

1.	 Set up your vertex shader to pass along the position, normal, and texture coordinates
via the variables Position, Normal, and TexCoord respectively.

2.	 Use the following code for the fragment shader:
#version 400

in vec3 Position;
in vec3 Normal;
in vec2 TexCoord;

uniform int Width;
uniform int Height;
uniform float Radius;
uniform sampler2D RenderTex;
uniform sampler2D NoiseTex;

subroutine vec4 RenderPassType();
subroutine uniform RenderPassType RenderPass;

// Define any uniforms needed for the shading model.

layout(location = 0) out vec4 FragColor;

vec3 phongModel(vec3 pos, vec3 norm)
{
 // Compute the Phong shading model
}

// Returns the relative luminance of the color value
float luminance(vec3 color) {
 return dot(color.rgb, vec3(0.2126, 0.7152, 0.0722));
}

subroutine (RenderPassType)
vec4 pass1()
{
 return vec4(phongModel(Position, Normal),1.0);
}

subroutine(RenderPassType)
vec4 pass2()
{
 vec4 noise = texture(NoiseTex, TexCoord);

Using Noise in Shaders

286

 vec4 color = texture(RenderTex, TexCoord);
 float green = luminance(color.rgb);

 float dist1 = length(gl_FragCoord.xy –
 vec2(Width/4.0, Height/2.0));
 float dist2 = length(gl_FragCoord.xy –
 vec2(3.0 * Width/4.0, Height/2.0));
 if(dist1 > Radius && dist2 > Radius) green = 0.0;

 return vec4(0.0, green * clamp(noise.a + 0.25, 0.0, 1.0),
 0.0 ,1.0);
}

void main()
{
 // This will call either pass1() or pass2()
 FragColor = RenderPass();
}

3.	 In the render function of your OpenGL program, use the following steps:

i.	 Bind to the FBO that you set up for rendering the scene to a texture.

ii.	 Select the pass1 subroutine function in the fragment shader via RenderPass.

iii.	 Render the scene.

iv.	 Bind to the default FBO.

v.	 Select the pass2 subroutine function in the fragment shader via RenderPass.

vi.	 Draw a single quad that fills the viewport using texture coordinates that range
from 0 to 1 in each direction.

How it works...
The fragment shader is broken into two subroutine functions for each pass. Within the pass1
function, we simply apply the Phong shading model to the fragment. The result is written to
the FBO which contains a texture to be used in the second pass.

Chapter 8

287

In the second pass, the pass2 function is executed. We start by retrieving a noise value
(noise), and the color from the render texture from the first pass (color). Then we compute
the luminance value for the color and store that result in the variable green. This will
eventually be used as the green component of the final color.

The next step involves determining whether or not the fragment is inside the "binocular"
lenses. We compute the distance to the center of the left lens (dist1), which is located in the
viewport halfway from top to bottom and one-quarter of the way from left to right. The right
lens is located at the same vertical location, but three-quarters of the way from left to right.
The distance from the center of the right-hand lens is stored in dist2. If both dist1 and
dist2 are greater than the radius of the virtual lenses, then we set green to zero.

Finally, we return the final color, which has only a green component; the other two are set to
zero. The value of green is multiplied by the noise value in order to add some noise to the
image to simulate random interference in the signal. We add 0.25 to the noise value and
clamp it between zero and one, in order to brighten the overall image. I have found that it
appeared a bit too dark if the noise value wasn't biased in this way.

There's more...
It would make this shader even more effective if the noise varied in each frame during
animation to simulate interference that is constantly changing. We can accomplish this
roughly by modifying the texture coordinates used to access the noise texture in a time-
dependent way. See the blog post mentioned in See also for an example.

See also
ff Chapter 4, Rendering to a texture

ff Creating a noise texture

ff This recipe was inspired by a blog post by Wojciech Toman: (wtomandev.
blogspot.com/2009/09/night-vision-effect.html)

9
Animation and

Particles

In this chapter, we will cover:

ff Animating a surface with vertex displacement

ff Creating a particle fountain

ff Creating a particle system using transform feedback

ff Creating a particle system using instanced particles

ff Simulating fire with particles

ff Simulating smoke with particles

Introduction
Shaders provide us with the ability to leverage the massively parallel architectures of today's
modern graphics cards. Since they have the ability to transform the vertex positions, they
can be used to implement aspects of animation directly within the shaders themselves.
This can provide a certain bump in efficiency if the animation algorithm can be parallelized
appropriately for execution within the shader.

One challenging aspect with respect to animation within shader programs is the difficulty of
writing the updated positions. Shaders were not designed to write to arbitrary buffers (except
of course the framebuffer). Therefore, many programmers make creative use of framebuffer
objects (FBOs) and texture objects to store shader output.

Recently, however, OpenGL added a feature that enables us to write the values of the
vertex shader's output variables to an arbitrary buffer (or buffers). This feature is called
transform feedback.

Animation and Particles

290

In this chapter, we'll look at several examples of animation within shaders, focusing mostly
on particle systems. The first example, Animating with vertex displacement, demonstrates
animation by transforming the vertex positions of an object based on a time-dependent
function. In the recipe, Creating a particle fountain, we create a simple particle system under
constant acceleration. In Creating a particle system using transform feedback there is an
example illustrating how to use OpenGL's transform feedback functionality within a particle
system. The recipe Creating a particle system using instanced particles shows you how to
animate many complex objects using instanced rendering.

The last two recipes demonstrate some particle systems for simulating complex real systems
such as smoke and fire.

Animating a surface with vertex
displacement

A straightforward way to leverage shaders for animation is to simply transform the vertices
within the vertex shader based on some time-dependent function. The OpenGL application
supplies static geometry and the vertex shader modifies the geometry using the current time
(supplied as a uniform variable). This moves the computation of the vertex position from the
CPU to the GPU, and leverages whatever parallelism the graphics driver makes available.

In this example, we'll create a waving surface by transforming the vertices of a tessellated
quad based on a sine wave. We'll send down the pipeline a set of triangles that make up a flat
surface in the x-z plane. In the vertex shader we'll transform the vertex's y-coordinate based
on a time-dependent sine function, and compute the normal vector of the transformed vertex.
The following image shows the desired result. (You'll have to imagine that the waves are
travelling across the surface from left to right.)

Chapter 9

291

Alternatively, we could use a noise texture to animate the surface based
on a random function. (See Chapter 8 for details on noise textures.)

Before we jump into the code, let's take a look at the mathematics that we'll need.

We'll transform the y-coordinate of the surface as a function of the current time and the
modeling x-coordinate. To do so, we'll use the basic plane wave equation (shown in the
following diagram).

Here A is the wave's amplitude (the height of the peaks), lambda (λ) is the wavelength (the
distance between the peaks), and v is the wave's velocity. The preceding diagram shows an
example of the wave when t = 0 and the wavelength is equal to one. We'll configure these
coefficients through uniform variables.

In order to render the surface with proper shading, we also need the normal vector at the
transformed location. We can compute the normal vector using the (partial) derivative of the
preceding function. The result is the following equation:

Of course, the preceding vector should be normalized before using it in our shading model.

Getting ready
Set up your OpenGL application to render a flat, tessellated surface in the x-z plane. The
results will look better if you use a large number of triangles. Also, keep track of the animation
time, using whatever method you prefer. Provide the current time to the vertex shader via the
uniform variable Time.

Animation and Particles

292

The other important uniform variables are the coefficients of the preceding wave equation:

ff K: The wave number (2π / λ)

ff Velocity: The wave's velocity

ff Amp: The wave's amplitude

Set up your program to provide appropriate uniform variables for your chosen shading model.

How to do it...
Use the following code for the vertex shader:

#version 400

layout (location = 0) in vec3 VertexPosition;

out vec4 Position;
out vec3 Normal;

uniform float Time; // The animation time

// Wave parameters
uniform float K; // Wavenumber
uniform float Velocity; // Wave's velocity
uniform float Amp; // Wave's amplitude

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 MVP;

void main()
{
 vec4 pos = vec4(VertexPosition,1.0);

 // Translate the y coordinate
 float u = K * (pos.x - Velocity * Time);
 pos.y = Amp * sin(u);

 // Compute the normal vector
 vec3 n = vec3(0.0);
 n.xy = normalize(vec2(-K * Amp *cos(u), 1.0));

 // Send position and normal (in camera cords) to frag.
 Position = ModelViewMatrix * pos;
 Normal = NormalMatrix * n;

 // The position in clip coordinates
 gl_Position = MVP * pos;
}

Chapter 9

293

Create a fragment shader that computes the fragment color based on the variables
Position and Normal using whatever shading model you choose (see Chapter 3,
Implementing per-fragment shading).

How it works...
The vertex shader takes the position of the vertex and updates the y-coordinate using the
wave equation discussed some time back. After the first three statements, the variable pos is
just a copy of the input variable VertexPosition with the modified y-coordinate.

We then compute the normal vector using the preceding equation, normalize the result, and
store it in the variable n. As the wave is really just a two-dimensional wave (it doesn't depend
on z), the z component of the normal vector will be zero.

Finally, we pass along the new position and normal to the fragment shader after converting
to camera coordinates. As usual, we also pass the position in clip coordinates to the built-in
variable gl_Position.

There's more...
Modifying the vertex position within the vertex shader is a straightforward way to offload some
computation from the CPU to the GPU. It also eliminates the possible need to transfer vertex
buffers between the GPU memory and main memory in order to modify the positions.

The main disadvantage is that the updated positions are not available on the CPU side, if
perhaps they are needed for additional processing (such as collision detection). However,
there are a number of ways to provide this data back to the CPU. One technique might be
clever use of FBOs to receive the updated positions from the fragment shader. In a following
recipe, we'll look at another technique that makes use of a newer OpenGL feature called
transform feedback.

See also
ff Chapter 3, Using per-fragment shading for improved realism

Creating a particle fountain
In computer graphics, a particle system is a group of objects that are used to simulate
a variety of "fuzzy" systems such as smoke, liquid spray, fire, explosions, or other similar
phenomena. Each particle is considered to be a point object with a position, but no size.
Often, they are rendered as point sprites (using the GL_POINTS primitive mode). Each
particle has a lifetime: it is born, it animates according to a set of rules, and then it dies.
The particle can then be resurrected and goes through the entire process again. Generally,
particles do not interact with other particles, or reflect light. The particle is often rendered as
a single, textured, camera-facing quad with transparency.

Animation and Particles

294

During the lifetime of a particle, it is animated according to a set of rules. These rules often
include the basic kinematic equations that define the movement of a particle that is subjected
to constant acceleration (such as a gravitational field). In addition, we might take into
account things such as wind, friction, or other factors. The particle may also change shape or
transparency during its lifetime. Once the particle has reached a certain age (or position), it is
considered to be "dead" and can be "recycled" and used again.

In this example, we'll implement a relatively simple particle system that has the look of a
fountain of water. The particles in this example will not be "recycled". Once they have reached
the end of their lifetime, we'll draw them as fully transparent so that they are effectively
invisible. This gives the fountain a finite lifetime, as if it only has a limited supply of material. In
later recipes, we'll see some ways to improve this system by recycling particles.

The following is a sequence of images that show several successive frames from the output of
this simple particle system:

To animate the particles, we'll use the standard kinematics equation for objects under
constant acceleration.

The above equation describes the position of a particle at time t. P0 is the initial position, v0
is the initial velocity, and a is the acceleration.

We'll define the initial position of all particles to be the origin (0,0,0). The initial velocity will
be determined randomly within a range of values. Each particle will be created at a slightly
different time, so the time that we use in the preceding equation will be relative to the start
time for the particle.

As the initial position is the same for all particles, we won't need to provide it as an input
attribute to the shader. Instead, we'll just provide two other vertex attributes: the initial velocity
and the start time (the particle's time of "birth"). Prior to the particle's birth time, we'll render
it completely transparent. After its birth, its position will be determined using the preceding
equation with a value for t that is relative to the particle's start time (Time – StartTime).

Chapter 9

295

We'll render each particle as a textured point sprite (using GL_POINTS). It is easy to apply
a texture to a point sprite because OpenGL will automatically generate texture coordinates
and make them available to the fragment shader via the built-in variable gl_PointCoord.
We'll also reduce the alpha of the point sprite linearly with the age of the particle, to make the
particle appear to fade out as it animates.

Getting ready
We'll create two buffers (or a single interleaved buffer) to store the input to the vertex shader.
The first buffer will store the initial velocity for each particle. We'll choose the values randomly
from a limited range of possible vectors. To create the vertical "cone" of particles in the
preceding picture, we'll choose randomly from a set of vectors within the cone. The following
code is one way to do this:

vec3 v(0.0f);
float velocity, theta, phi;
GLfloat *data = new GLfloat[nParticles * 3];
for(GLuint i = 0; i<nParticles; i++) {

 // Pick the direction of the velocity
 theta = glm::mix(0.0f, (float)PI / 6.0f, randFloat());
 phi = glm::mix(0.0f, (float)TWOPI, randFloat());

 v.x = sinf(theta) * cosf(phi);
 v.y = cosf(theta);
 v.z = sinf(theta) * sinf(phi);

 // Scale to set the magnitude of the velocity (speed)
 velocity = glm::mix(1.25f,1.5f,randFloat());
 v = v * velocity;

 data[3*i] = v.x;
 data[3*i+1] = v.y;
 data[3*i+2] = v.z;
}
glBindBuffer(GL_ARRAY_BUFFER,initVel);
glBufferSubData(GL_ARRAY_BUFFER, 0,
 nParticles * 3 * sizeof(float), data);

In the preceding code the randFloat function returns a random value between zero and
one. We pick random numbers within a range of possible values by using the GLM mix
function. (The GLM mix function works the same as the corresponding GLSL function. It
performs a linear interpolation between the values of the first two arguments.) Here, we
choose a random float between zero and one and use that value to interpolate between the
endpoints of our range.

Animation and Particles

296

To pick vectors from within our cone, we utilize spherical coordinates. The value of theta
determines the angle between the center of the cone and the outer edge. The value of phi
defines the possible directions around the y-axis for a given value of theta. For more on
spherical coordinates, grab your favorite math book.

Once a direction is chosen, the vector is scaled to have a magnitude between 1.25 and 1.5.
The magnitude of the velocity vector is the overall speed of the particle. We can tweak this
range to get a wider variety of speeds or faster/slower particles.

The last three lines in the loop assign the vector to the appropriate location in the array data.
After the loop, we copy the data into the buffer referred to by initVel. Set up this buffer to
provide data for vertex attribute zero.

In the second buffer, we'll store the start time for each particle. This will provide only a single
float per vertex (particle). For this example, we'll just create each particle in succession at a
fixed rate. The following code will set up a buffer with each particle created 0.00075 seconds
after the previous one:

float * data = new GLfloat[nParticles];
float time = 0.0f, rate = 0.00075f;

for(unsigned int i = 0; i<nParticles; i++) {
 data[i] = time;
 time += rate;
}
glBindBuffer(GL_ARRAY_BUFFER,startTime);
glBufferSubData(GL_ARRAY_BUFFER, 0,
 nParticles * sizeof(float), data);

This code simply creates an array of floats that start at zero and increment by rate. The array
is then copied into the buffer referred to by startTime. Set this buffer to be the input for
vertex attribute one.

Set the following uniform variables from within the OpenGL program:

ff ParticleTex: The particle's texture

ff Time: The amount of time that has elapsed since the animation began

ff Gravity: The vector representing one half of the acceleration in the preceding
equation.

ff ParticleLifetime: How long a particle survives after it is created

Make sure that the depth test is off, and enable alpha blending using the following statements:

glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Chapter 9

297

You will also want to choose a reasonable size for each point sprite. For example, the following
line sets it to 10 pixels:

glPointSize(10.0f);

How to do it...
Use the following code for the vertex shader:

#version 400

// Initial velocity and start time
layout (location = 0) in vec3 VertexInitVel;
layout (location = 1) in float StartTime;

out float Transp; // Transparency of the particle

uniform float Time; // Animation time
uniform vec3 Gravity = vec3(0.0,-0.05,0.0); // world coords
uniform float ParticleLifetime; // Max particle lifetime

uniform mat4 MVP;

void main()
{
 // Assume the initial position is (0,0,0).
 vec3 pos = vec3(0.0);
 Transp = 0.0;

 // Particle doesn't exist until the start time
 if(Time >StartTime) {

 float t = Time - StartTime;

 if(t <ParticleLifetime) {
 pos = VertexInitVel * t + Gravity * t * t;
 Transp = 1.0 - t / ParticleLifetime;
 }
 }

 gl_Position = MVP * vec4(pos, 1.0);
}

Use the following code for the fragment shader:

#version 400

in float Transp;
uniform sampler2D ParticleTex;

layout (location = 0) out vec4 FragColor;

void main()

Animation and Particles

298

{
 FragColor = texture(ParticleTex, gl_PointCoord);
 FragColor.a *= Transp;
}

How it works...
The vertex shader receives the particle's initial velocity (VertexInitVel) and start time
(StartTime) in its two input attributes. The variable Time stores the amount of time that
has elapsed since the beginning of the animation. The output variable Transp is the overall
transparency of the particle.

In the main function of the vertex shader, we start by setting the initial position to the modeling
origin (0,0,0), and the transparency to 0.0 (fully transparent). The following if statement
determines whether the particle is alive yet. If the current time is greater than the start time for
the particle, the particle is alive; otherwise, the particle has yet to be "born". In the latter case,
the position remains at the origin and the particle is rendered fully transparent.

If the particle is alive, we determine the "age" of the particle by subtracting the start time from
the current time, and storing the result in the variable t. If t is greater than or equal to the
lifetime for a particle (ParticleLifetime), the particle has already fully evolved through
its animation and is rendered fully transparent. Otherwise, the particle is still active and we
execute the body of the inner if statement which is responsible for animating the particle.

If the particle is alive and active, the position (pos) is determined using the preceding
kinematic equation described. The transparency is determined by linearly interpolating based
on the particle's age:

Transp = 1.0 – t / ParticleLifetime;

When the particle is born it is fully opaque, and linearly becomes transparent as it ages. The
value of Transp is 1.0 at birth and 0.0 at the end of the particle's lifetime.

In the fragment shader, we color the fragment with the result of a value of a texture lookup.
As we are rendering GL_POINT primitives, the texture coordinate is determined automatically
by OpenGL and is available in the built-in variable gl_PointCoord. Before finishing, we
multiply the alpha value of the final color by the variable Transp, in order to scale the overall
transparency of the particle based on the particle's age (as determined in the vertex shader).

There's more...
This example is meant to be a fairly gentle introduction to GPU-based particle systems. There
are many things that could be done to improve the power and flexibility of this system. For
example, we could vary the size or rotation of the particles as they progress through their
lifetime to produce different effects.

Chapter 9

299

We could also create a better indication of distance by varying the size of the particles with
the distance from the camera. This could be accomplished by defining the point size within
the vertex shader using the built-in variable gl_PointSize. Alternatively, we could use the
geometry shader as outlined in Chapter 6, Point Sprites with the Geometry Shader, to draw
the point sprites as actual quads.

One of the most significant drawbacks of the technique of this recipe is that the particles can't
be recycled easily. When a particle dies, it is simply rendered as transparent. It would be nice
to be able to re-use each dead particle to create an apparently continuous stream of particles.
Additionally, it would be useful to be able to have the particles respond appropriately to
changing accelerations or modifications of the system (for example wind or movement of the
source). With the system described above, we couldn't do so because we are working with a
single equation that defines the movement of the particle for all time. What would be needed
is to incrementally update the positions based on the current forces involved (a simulation).

In order to accomplish the above, we need some way to feed the output of the vertex shader
(the particle's updated positions) back into the input of the vertex shader during the next
frame. This would, of course, be simple if we weren't doing the simulation within the shader
because we could simply update the positions of the primitives directly before rendering.
However, since we are doing the work within the vertex shader, we are limited in the ways that
we can write to memory.

In the following recipe, we'll see an example of how to use a new OpenGL feature called
transform feedback to accomplish exactly what was just described. We can designate certain
output variables to be sent to buffers that can be read as input in subsequent rendering passes.

See also
ff A vertex displacement shader

ff Creating a particle system using transform feedback

Creating a particle system using transform
feedback

Transform feedback provides a way to capture the output of the vertex (or geometry) shader to
a buffer for use in subsequent passes. Originally introduced into OpenGL with version 3.0, this
feature is particularly well suited for particle systems because among other things, it enables
us to do discrete simulations. We can update a particle's position within the vertex shader
and render that updated position in a subsequent pass (or the same pass). Then the updated
positions can be used in the same way as input to the next frame of animation.

Animation and Particles

300

In this example, we'll implement the same particle system from the previous recipe (Creating
a particle fountain), this time making use of transform feedback. Instead of using an
equation that describes the particle's motion for all time, we'll update the particle positions
incrementally, solving the equations of motion based on the forces involved at the time each
frame is rendered.

A common technique is to make use of the Euler method, which approximates the position
and velocity at time t based on the position, velocity, and acceleration at an earlier time.

In the preceding equation the subscripts represent the timestep (or animation frame), P is
the particle position, and v is the particle velocity. The equations describe the position and
velocity at frame n + 1 as a function of the position and velocity during the previous frame (n).
The variable h represents the timestep size, or the amount of time that has elapsed between
frames. The function a(tn) represents the instantaneous acceleration that is computed based
on the positions of the particles at time tn. For our simulation, this will be a constant value, but
in general it might be a value that changes depending on the environment (wind, collisions,
inter-particle interactions, and so on.).

The Euler method is actually numerically integrating the Newtonian equation
of motion. It is one of the simplest techniques for doing so. However, it is a
first-order technique, which means that it can introduce a significant amount
of error. More accurate techniques include Verlet integration, and Runge-
Kutta integration. As our particle simulation is designed to look good and
physical accuracy is not of high importance, the Euler method should suffice.

To make our simulation work, we'll use a technique sometimes called buffer "ping-ponging".
We maintain two sets of vertex buffers and swap their uses in each frame. For example, we
use buffer A to provide the positions and velocities as input to the vertex shader. The vertex
shader updates the positions and velocities using the Euler method and sends the results
to buffer B using transform feedback. Then, in a second pass, we render the particles using
buffer B.

Chapter 9

301

Update pass(no rasterization)

A
input output B

B Vertex
Shader

to fragment
shaderinput

Render pass

Vertex
Shader

In the next frame of animation, we repeat the same process, swapping the two buffers.

In general, transform feedback allows us to define a set of shader output variables that are
to be written to a designated buffer (or set of buffers). There are several steps involved that
will be demonstrated below, but the basic idea is as follows. Just before the shader program
is linked, we define the relationship between buffers and shader output variables using the
function glTransformFeedbackVaryings. During rendering, we initiate a transform
feedback pass. We bind the appropriate buffers to the transform feedback binding points.
(If desired, we can disable rasterization so that the particles are not rendered.) We enable
transform feedback using the function glBeginTransformFeedback and then draw the
point primitives. The output from the vertex shader will be stored in the appropriate buffers.
Then we disable transform feedback by calling glEndTransformFeedback.

In this recipe, we'll use the following steps when rendering:

1.	 Send the particle positions to the vertex shader for updating, and capture the results
using transform feedback. The input to the vertex shader will come from buffer A, and
the output will be stored in buffer B. During this pass we enable GL_RASTERIZER_
DISCARD so that nothing is actually rendered to the framebuffer.

2.	 Render the particles at their updated positions using buffer B as input to the vertex
shader.

3.	 Swap the purposes of the buffers.

Note that there will actually be two sets of buffers rather than just two individual buffers. Each
set will include buffers for each attribute (position, velocity, and start time).

Getting ready
Create and allocate three pairs of buffers. The first pair will be for the particle positions, the
second for the particle velocities, and the third for the "start time" for each particle (the time
when the particle comes to life). For clarity, we'll refer to the first buffer in each pair as the A
buffers, and the second as the B buffers. Also, we'll need a single buffer to contain the initial
velocity for each particle.

Animation and Particles

302

Create two vertex arrays. The first vertex array should link the A position buffer with the
first vertex attribute (attribute index 0), the A velocity buffer with vertex attribute one, the A
start time buffer with vertex attribute two, and the initial velocity buffer with vertex attribute
three. The second vertex array should be set up in the same way using the B buffers and the
same initial velocity buffer. In the following code, the handles to the two vertex arrays will be
accessed via the GLuint array named particleArray.

Initialize the A buffers with appropriate initial values. For example, all of the positions could
be set to the origin, and the velocities and start times could be initialized in the same way as
described in the preceding recipe Creating a particle fountain. The initial velocity buffer could
simply be a copy of the velocity buffer.

When using transform feedback, we define the buffers that will receive the output data
from the vertex shader by binding the buffers to the indexed binding points under the GL_
TRANSFORM_FEEDBACK_BUFFER target. The index corresponds to the index of the vertex
shader's output variable as defined by glTransformFeedbackVaryings.

To help simplify things, we'll make use of transform feedback objects. Use the following code
to set up two transform feedback objects for each set of buffers:

GLuint feedback[2]; // Transform feedback objects
GLuint posBuf[2]; // Position buffers (A and B)
GLuint velBuf[2]; // Velocity buffers (A and B)
GLuint startTime[2]; // Start time buffers (A and B)

// Create and allocate buffers A and B for posBuf, velBuf
// and startTime
…

// Setup the feedback objects
glGenTransformFeedbacks(2, feedback);

// Transform feedback 0
glBindTransformFeedback(GL_TRANSFORM_FEEDBACK, feedback[0]);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER,0,posBuf[0]);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER,1,velBuf[0]);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER,2,startTime[0]);

// Transform feedback 1
glBindTransformFeedback(GL_TRANSFORM_FEEDBACK, feedback[1]);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER,0,posBuf[1]);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER,1,velBuf[1]);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER,2,startTime[1]);

Chapter 9

303

Similar to vertex arrays, transform feedback objects store the buffer bindings for the GL_
TRANSFORM_FEEDBACK_BUFFER binding point so that they can be reset quickly at a later
time. In the preceding code, we create two transform feedback objects, and store their
handles in the array named feedback. For the first object, we bind posBuf[0] to index 0,
velBuf[0] to index 1, and startTime[0] to index 2 of the binding point (buffer set A). The
last argument for each is the buffer's handle. For the second object, we do the same thing
using the buffer set B.

Once this is set up, we can define the set of buffers to receive the vertex shader's output, by
binding to one or the other transform feedback object.

The uniform variables that need to be set are the following:

ff ParticleTex: The texture to apply to the point sprites

ff Time: The simulation time

ff H: The elapsed time between animation frames

ff Accel: The acceleration

ff ParticleLifetime: The length of time that a particle exists before it is recycled

How to do it...
Use the following code for your vertex shader:

#version 400

subroutine void RenderPassType();
subroutine uniform RenderPassType RenderPass;

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexVelocity;
layout (location = 2) in float VertexStartTime;
layout (location = 3) in vec3 VertexInitialVelocity;

out vec3 Position; // To transform feedback
out vec3 Velocity; // To transform feedback
out float StartTime; // To transform feedback
out float Transp; // To fragment shader

uniform float Time; // Simulation time
uniform float H; // Elapsed time between frames
uniform vec3 Accel; // Particle acceleration
uniform float ParticleLifetime; // Particle lifespan

uniform mat4 MVP;

subroutine (RenderPassType)
void update() {

 Position = VertexPosition;

Animation and Particles

304

 Velocity = VertexVelocity;
 StartTime = VertexStartTime;

 if(Time >= StartTime) {

 float age = Time - StartTime;

 if(age >ParticleLifetime) {
 // The particle is past its lifetime, recycle.
 Position = vec3(0.0);
 Velocity = VertexInitialVelocity;
 StartTime = Time;
 } else {
 // The particle is alive, update.
 Position += Velocity * H;
 Velocity += Accel * H;
 }
 }
}

subroutine (RenderPassType)
void render() {
 float age = Time - VertexStartTime;
 Transp = 1.0 - age / ParticleLifetime;
 gl_Position = MVP * vec4(VertexPosition, 1.0);
}

void main()
{
 // This will call either render() or update()
 RenderPass();
}

Use the following code for the fragment shader:

#version 400

uniform sampler2D ParticleTex;

in float Transp;

layout (location = 0) out vec4 FragColor;

void main()
{
 FragColor = texture(ParticleTex, gl_PointCoord);
 FragColor.a *= Transp;
}

Chapter 9

305

After compiling the shader program, but before linking, use the following code to set up the
connection between vertex shader output variables and output buffers:

const char * outputNames[] = { "Position", "Velocity",
 "StartTime" };
glTransformFeedbackVaryings(progHandle, 3, outputNames,
 GL_SEPARATE_ATTRIBS);

During rendering, use the following code (or similar) in the OpenGL application:

/////////// Update pass ////////////////
glUniformSubroutinesuiv(GL_VERTEX_SHADER, 1, &updateSub);

// Set the uniforms: H and Time
…

// Disable rendering
glEnable(GL_RASTERIZER_DISCARD);

// Bind the feedback object for the buffers to be drawn next
glBindTransformFeedback(GL_TRANSFORM_FEEDBACK,
 feedback[drawBuf]);

// Draw points from input buffer with transform feedback
glBeginTransformFeedback(GL_POINTS);
glBindVertexArray(particleArray[1-drawBuf]);
glDrawArrays(GL_POINTS, 0, nParticles);
glEndTransformFeedback();

// Enable rendering
glDisable(GL_RASTERIZER_DISCARD);

//////////// Render pass ///////////////
glUniformSubroutinesuiv(GL_VERTEX_SHADER, 1, &renderSub);
glClear(GL_COLOR_BUFFER_BIT);

// Initialize uniforms for transformation matrices if needed
…

// Un-bind the feedback object.
glBindTransformFeedback(GL_TRANSFORM_FEEDBACK, 0);

// Draw the sprites from the feedback buffer
glBindVertexArray(particleArray[drawBuf]);
glDrawArrays(GL_POINTS, 0, nParticles);

// Swap buffers
drawBuf = 1 - drawBuf;

Animation and Particles

306

How it works...
There's quite a bit here to sort through. Let's start with the vertex shader.

The vertex shader is broken up into two subroutine functions. The update function is used
during the first pass, and uses Euler's method to update the position and velocity of the
particle. The render function is used during the second pass. It computes the transparency
based on the age of the particle and sends the position and transparency along to the
fragment shader.

The vertex shader has four output variables. The first three—Position, Velocity, and
StartTime—are used in the first pass to write to the feedback buffers. The fourth (Transp)
is used during the second pass as input to the fragment shader.

The update function basically just updates the particle position and velocity using Euler's
method, unless the particle is not alive yet, or is past its lifetime. If its age is greater than the
lifetime of a particle, we recycle the particle by resetting its position to the origin, updating
the particle's start time to the current time (Time), and setting its velocity to its original initial
velocity (provided via input attribute VertexInitialVelocity).

The render function computes the particle's age and uses it to determine the transparency
of the particle, assigning the result to the output variable Transp. It transforms the particle's
position into clip coordinates and places the result in the built-in output variable gl_Position.

The fragment shader is only utilized during the second pass. It just colors the fragment based on
the texture ParticleTex and the transparency delivered from the vertex shader (Transp).

The preceding code segment that is placed prior to linking the shader program is responsible
for setting up the correspondence between shader output variables and feedback buffers
(buffers that are bound to indices of the GL_TRANSFORM_FEEDBACK_BUFFER binding point).
The function glTransformFeedbackVaryings takes three arguments. The first is the
handle to the shader program object. The second is the number of output variable names that
will be provided. The third is an array of output variable names. The order of the names in this
list corresponds to the indices of the feedback buffers. In this case, Position corresponds
to index zero, Velocity to index one, and StartTime to index two. Check back to the
preceding code that creates our feedback buffer objects (the glBindBufferBase calls) to
verify that this is indeed the case.

glTransformFeedbackVaryings can be used to send data into an
interleaved buffer instead (rather than separate buffers for each variable).
Take a look at the OpenGL documentation for details.

Chapter 9

307

The last code segment above describes how you might implement the render function
within the main OpenGL program. In this example, there are two important GLuint arrays:
feedback and particleArray. They are each size two and contain the handles to the two
feedback buffer objects, and the two vertex array objects respectively. The variable drawBuf
is just an integer used to bounce back and forth between the two sets of buffers. At any given
frame, drawBuf will be either zero or one.

The code begins by selecting the update subroutine to enable the update functionality within
the vertex shader, and then setting the uniforms Time and H. The next call, glEnable(GL_
RASTERIZER_DISCARD), turns rasterization off so that nothing is rendered during this pass.
The call to glBindTransformFeedback selects the set of buffers corresponding to the
variable drawBuf, as the target for the transform feedback output.

Before drawing the points (and thereby triggering our vertex shader), we call
glBeginTransformFeedback to enable transform feedback. The argument is the kind of
primitive that will be sent down the pipeline (in our case GL_POINTS). Output from the vertex
(or geometry) shader will go to the buffers that are bound to the GL_TRANSFORM_FEEDBACK_
BUFFER binding point until glEndTransformFeedback is called. In this case, we bind the
vertex array corresponding to 1 - drawBuf (if drawBuf is 0, we use 1 and vice versa) and
draw the particles.

At the end of the update pass, we re-enable rasterization with glEnable(GL_RASTERIZER_
DISCARD), and move on to the render pass.

The render pass is straightforward; we just select the render subroutine, and draw the
particles from the vertex array corresponding to drawBuf. We also de-select the transform
feedback object (by selecting index 0) just to be safe. This isn't strictly necessary, but it's
usually not a good idea to be reading and writing to the same buffer, so this is to make sure
that that's not the case.

Finally, at the end of the render, we swap our buffers by setting drawBuf to 1 – drawBuf.

There's more...
You might be wondering why it was necessary to do this in two passes. Why couldn't we just
keep the fragment shader active and do the render and update in the same pass? This is
certainly possible for this example, and would be more efficient. However, I've chosen to
demonstrate it this way because it is probably the more common way of doing this in general.
Particles are usually just one part of a larger scene, and the particle update logic is not
needed for most of the scene. Therefore, in most real-world situations it will make sense to do
the particle update in a pass prior to the rendering pass, so that the particle update logic can
be isolated only to where it is needed.

Animation and Particles

308

Querying transform feedback results
It is often useful to determine how many primitives were written during transform feedback.
For example, if a geometry shader was active, the number of primitives written could be
different from the number of primitives that were sent down the pipeline.

OpenGL provides a way to query for this information using query objects. To do so, start by
creating a query object:

GLuint query;
glGenQueries(1, &query);

Then, prior to starting the transform feedback pass, start the counting process using the
following command:

glBeginQuery(GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, query);

After the end of the transform feedback pass, call glEndQuery to stop counting:

glEndQuery(GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN);

Then we can get the number of primitives using the following code:

GLuint primWritten;
glGetQueryObjectuiv(query, GL_QUERY_RESULT, &primWritten);
printf("Primitives written: %d\n", primWritten);

Recycling particles
In this example, we recycled particles by resetting their position and initial velocity. This can
cause the particles to begin to "clump" together over time. It would produce better results to
generate a new random velocity and perhaps a random position (depending on the desired
results). Unfortunately, there is currently no support for random number generation within
shader programs. The solution might be to create your own random number generator
function, using a texture with random values, or using a noise texture (see Chapter 8).

See also
ff Creating a particle fountain

Creating a particle system using instanced
particles

To give more geometric detail to each particle in a particle system, we can make use of OpenGL's
support for instanced rendering. Instanced rendering is a convenient and efficient way to draw
several copies of a particular object. OpenGL provides support for instanced rendering through
the functions glDrawArraysInstanced and glDrawElementsInstanced.

Chapter 9

309

In this example, we'll modify the particle system introduced in the previous recipes. Rather
than using point sprites, we'll render a more complex object in the place of each particle. The
following image shows an example where each particle is rendered as a shaded torus:

Using instanced rendering is simply a matter of calling one of the instanced draw functions,
and providing the number of instances to draw. However, there is some subtlety to the way
that we provide vertex attributes to the shader. If all particles were drawn with exactly the
same attributes, it would be simple to draw, but would hardly be an interesting result because
all particles would appear at the same location and in the same orientation. As we'd like to
draw each copy in a different position, we need some way of providing the needed information
(in our case, the particle's start time) to the vertex shader separately for each particle.

The key to this is the function glVertexAttribDivisor. This function specifies the rate at
which vertex attributes are advanced during instanced rendering. For example, consider the
following setting:

glVertexAttribDivisor(1, 1);

The first argument is the vertex attribute index, and the second is the number of instances
that will pass between updates of the attribute. In other words, the preceding command
specifies that all vertices of the first instance will receive the first value in the buffer
corresponding to attribute one. The second instance will receive the second value, and so on.
If the second argument was 2, then the first two instances would receive the first value, the
next two would receive the second, and so on, in the same way.

The default divisor for each attribute is zero, which means that vertex attributes are processed
normally (the attribute advances once per vertex rather than some number per instance). An
attribute is called an instanced attribute if its divisor is non-zero.

Animation and Particles

310

Getting ready
Start with a particle system as described in Creating a particle fountain. We'll just make a few
modifications to that basic system. Note that you can also use this with transform feedback
if desired, but to keep things simple, we'll use the more basic particle system. It should be
straightforward to adapt this example to the transform feedback-based system.

When setting up the vertex array object for your particle shape, add two new instanced
attributes for the initial velocity and start time. Something similar to the following code should
do the trick:

glBindVertexArray(myVArray);

// Set up the pointers for attributes 0, 1, and 2 (position,
// normal, and texture coord.)
…

// Initial velocity (attribute 3)
glBindBuffer(GL_ARRAY_BUFFER, initVel);
glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glEnableVertexAttribArray(3);
glVertexAttribDivisor(3, 1);

// Start time (attribute 4)
glBindBuffer(GL_ARRAY_BUFFER, startTime);
glVertexAttribPointer(4, 1, GL_FLOAT, GL_FALSE, 0, NULL);
glEnableVertexAttribArray(4);
glVertexAttribDivisor(4, 1);

// Bind to the element array buffer if necessary
…

Note the use of glVertexAttribDivisor in the preceding code. This indicates that
attributes 3 and 4 are instanced attributes (the values in the arrays are to be advanced only
once per instance, rather than once per vertex). Therefore, the size of the buffers must be
proportional to the number of instances, rather than the number of vertices in an instance. The
buffers for attributes 0, 1, and 2 should (as usual) be sized in relation to the number of vertices.

The value of the vertex attribute divisor becomes part of the vertex
array object's state, so that just like the other elements of the
VAO's state, we can reset it at a later point by binding to the VAO.

How to do it...
The vertex shader code is nearly identical to the code shown in the previous recipe Creating a
particle fountain. The difference lies in the input and output variables. Use something similar
to the following:

Chapter 9

311

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;
layout (location = 2) in vec3 VertexTexCoord;
layout (location = 3) in vec3 VertexInitialVelocity;
layout (location = 4) in float StartTime;

out vec3 Position;
out vec3 Normal;

Within the main function, update the position of the vertex by translating it using the equation
of motion:

Position = VertexPosition + VertexInitialVelocity * t +
 Gravity * t * t;

Be sure to pass along the normal, and updated position (in camera coordinates) to the
fragment shader.

In the fragment shader, implement your favorite shading model (Phong?).

In the main OpenGL program, within the render function, render the instances using the
following code:

glBindVertexArray(myVArray);
glDrawElementsInstanced(GL_TRIANGLES, nEls, GL_UNSIGNED_INT,
 0, nParticles);

How it works...
Recall that the first three input attributes to the vertex shader are not-instanced, meaning that
they are advanced every vertex (and repeated every instance). The last two (attributes 3 and
4) are instanced attributes and only update every instance. Therefore, the effect is that each
instance is translated by the result of the equation of motion.

The glDrawElementsInstanced function will draw nParticles instances of the object.
Of course, nEls is the number of vertices in each instance.

There's more...
OpenGL provides a built-in variable to the vertex shader named gl_InstanceID. This is
simply a counter and takes on a different value for each instance that is rendered. The first
instance will have an ID of zero; the second will have an ID of one, and so on. This can be
useful as a way to index to texture data appropriate for each instance. Another possibility
is to use the instance's ID as a way to generate some random data for that instance. For
example, we could use the instance ID (or some hash) as a seed to a pseudo-random number
generation routine to get a unique random stream for each instance.

Animation and Particles

312

See also
ff Creating a particle fountain

ff Creating a particle system using transform feedback

Simulating fire with particles
To create an effect that roughly simulates fire, we only need to make a few changes to our
basic particle system. Since fire is a substance that is only slightly affected by gravity, we
don't worry about a downward gravitational acceleration. In fact, we'll actually use a slight
upwards acceleration to make the particles spread out near the top of the flame. We'll also
spread out the initial positions of the particles so that the base of the flame is not just a
single point. Of course, we'll need to use a particle texture that has the red and orange
colors associated with flame.

The following image shows an example of the running particle system:

The texture that was used for the particles looks like a light "smudge" of the flame's colors. It
is not shown here because it would not be very visible in print.

Getting ready
Start with the basic particle system presented in the recipe Creating a particle system using
transform feedback.

Set the uniform variable Accel to a small upward value like (0.0, 0.1, 0.0).

Chapter 9

313

Set the uniform variable ParticleLifetime to about four seconds.

Create and load a texture for the particles that has fire-like colors. Bind it to the first texture
channel, and set the uniform ParticleTex to zero.

Use a point size of about 50.0.

How to do it...
When setting up the initial positions for your particles, instead of using the origin for all
particles, use a random x location. The following code could be used:

GLfloat *data = new GLfloat[nParticles * 3];
for(int i = 0; i<nParticles * 3; i += 3) {
 data[i] = glm::mix(-2.0f, 2.0f, randFloat());
 data[i+1] = 0.0f;
 data[i+2] = 0.0f;
}
glBindBuffer(GL_ARRAY_BUFFER, posBuf[0]);
glBufferSubData(GL_ARRAY_BUFFER, 0, size, data);

When setting up the initial velocities, we'll make sure that the x and z components are zero
and the y component contains a random speed. This combined with the chosen acceleration
(see the preceding code) makes each particle move in only the y (vertical) direction:

// Fill the first velocity buffer with random velocities
for(unsigned int i = 0; i<nParticles; i++) {
 data[3*i] = 0.0f;
 data[3*i+1] = glm::mix(0.1f,0.5f,randFloat());
 data[3*i+2] = 0.0f;
}
glBindBuffer(GL_ARRAY_BUFFER,velBuf[0]);
glBufferSubData(GL_ARRAY_BUFFER, 0, size, data);
glBindBuffer(GL_ARRAY_BUFFER,initVel);
glBufferSubData(GL_ARRAY_BUFFER, 0, size, data);

In the vertex shader, when recycling particles, reset the y and z coordinates, but don't change
the x coordinate:

…
if(age >ParticleLifetime) {
 // The particle is past its lifetime, recycle.
 Position = vec3(VertexPosition.x, 0.0, 0.0);
 Velocity = VertexInitialVelocity;
 StartTime = Time;
} else {
…

Animation and Particles

314

How it works...
We randomly distribute the x-coordinate of the initial positions between -2.0 and 2.0 for all of
the particles, and set the initial velocities to have a y-coordinate between 0.1 and 0.5. Since
the acceleration has only a y-component, the particles will move only along a straight, vertical
line in the y direction. The x or z component of the position should always remain at zero. This
way, when recycling the particles, we can simply just reset the y coordinate to zero, to restart
the particle at its initial position.

There's more...
Of course, if you want a flame that moves in different directions, perhaps blown in the wind,
you'd need to use a different value for the acceleration. In which case, our little trick for
resetting particles to their initial position will no longer work. However, we only need to add
another buffer to our particle system (similar to the initial velocity buffer) to maintain the
initial position and re-use it when recycling particles.

See also
ff Creating a particle system using transform feedback

Simulating smoke with particles
Smoke is characterized by many small particles that float away from the source, and spread
out as they move through the air. We can simulate the floatation effect with particles by using
a small upwards acceleration (or constant velocity), but simulating the diffusion of each small
smoke particle would be too expensive. Instead, we can simulate the diffusion of many small
particles by making our simulated particles change their size (grow) over time.

The following image shows an example of the results:

Chapter 9

315

The texture for each particle is a very light "smudge" of grey or black color.

To make the particles grow over time, we'll make use of the GL_PROGRAM_POINT_SIZE
functionality in OpenGL, which allows us to modify the point size within the vertex shader.

Getting ready
Start with the basic particle system presented in the recipe Creating a particle system using
transform feedback.

Set the uniform variable Accel to a small upward value like (0.0, 0.1, 0.0).

Set the uniform variable ParticleLifetime to about six seconds.

Create and load a texture for the particles that look like light grey smudge. Bind it to the first
texture channel, and set the uniform ParticleTex to zero.

Set the uniform variables MinParticleSize and MaxParticleSize to 10 and
200 respectively.

How to do it...
Set the initial positions to the origin. Define the initial velocities in the same way as described
in the recipe Creating a particle system using transform feedback. However, it looks best
when you use a large variance in theta.

Within the vertex shader, add the following uniforms:

uniform float MinParticleSize;
uniform float MaxParticleSize;

Also within the vertex shader, use the following code for the render function:

subroutine (RenderPassType)
void render() {
 float age = Time - VertexStartTime;
 Transp = 0.0;
 if(Time >= VertexStartTime) {
 float agePct = age/ParticleLifetime;
 Transp = 1.0 - agePct;
 gl_PointSize =
 mix(MinParticleSize,MaxParticleSize,agePct);
 }
 gl_Position = MVP * vec4(VertexPosition, 1.0);
}

Animation and Particles

316

In the main OpenGL application, before rendering your particles, make sure to enable GL_
PROGRAM_POINT_SIZE:

glEnable(GL_PROGRAM_POINT_SIZE);

How it works...
The render subroutine function sets the built-in variable gl_PointSize to a value between
MinParticleSize and MaxParticleSize, determined by the age of the particle. This
causes the size of the particles to grow as they evolve through the system.

Note that the variable gl_PointSize is ignored by OpenGL unless GL_PROGRAM_POINT_
SIZE is enabled.

See also
ff Creating a particle system using transform feedback

Index
Symbols
2D quad

tessellating 220-224
2D texture

applying 106-110
3D surface

tessellating 225-230
[] operator 34

A
accessibility 258, 259
adjacency modes

GL_LINES_ADJACENCY 206
GL_LINE_STRIP_ADJACENCY 206
GL_TRIANGLES_ADJACENCY 206
GL_TRIANGLE_STRIP_ADJACENCY 206

ads function 103
ADS shading

directional light source 61
distance attenuation 61
functions, using 62-64
implementing 55-59
non-local viewer, using 61
per-vertex, vs. per-fragment 61

Airy disc 164
aliasing artifacts 173
alpha maps

using, for discarding pixels 114-116
ambAndDiff 110
ambient component 55
ambient occlusion (AO)

about 236
dynamic ambient occlusion 262
Screen-space ambient occlusion 262

anti-aliasing 173
aoFactor 261

B
back faces

rendering 247
baking 260
Bernstein polynomials 214
Bezier curve 214
binormal vector 118
blending functions 214
BlobSettings block 42
bloom effect

about 164-169
creating 164-169
low-res textures, using 169

blur filter 157
buffer object

about 37
example 38
using 38-40

buffer ping-ponging 300

C
canonical viewing volume 239
cartoon shading effect

creating 97-100
centroid qualifier 178
chromatic aberration 134
clamp function 274
CloudColor 273
cloud-like effect

creating 272-274
Color attribute 21
ColorTex variable 180
compatibility profile 7
compileShaderFromFile function 45
compileShaderFromString function 45
const qualifier 64

318

convolution filters 150
core profile 7
C++ shader program class

building 43, 44
requirements 43
working 44-46

cube map 123
CubeMapTex 127
curve

tessellating 214-219

D
DarkWoodColor 276
deferredFBO variable 180
deferred shading

about 150, 179
using 179-185

deprecation model 7
depth shadows 235
diffuse component 55
diffuse irradiance environment map 135
diffuseOnly function 75
diffuse reflectivity 51
diffuse shading

about 54
implementing, with single point light

source 50-53
directional light source

about 61, 84
shading with 84-87

discard keyword 76
disintegration effect

creating 279, 281
distance

computing, from eye 104
dynamic ambient occlusion 262

E
edge detection 150
edge detection filter

applying 150-156
EdgeWidth variable 207
emitEdgeQuad function 212
EmitVertex function 189
EndPrimitive function 189
environment mapping 123

F
fileExists function 45
fire

simulating, with particles 312-314
fixed-function pipeline 7
flat shading

about 69
implementing 69, 70

fog
simulating 100-103

fog factor 101
forward compatible context 7
FragColor variable 60, 184, 245
fragment shader

about 48, 49
discarding 76-79

framebuffer 289
framebuffer object 244
Fresnel equations 134
full compatible context 7

G
gamma correction

using, for improving image quality 170-172
Gaussian blur filter

applying 157-162
working 163

GEdgeDistance variable 203
General Purpose Computing on Graphics

Processing Unit (GPGPU) 6
generic vertex attributes 22
geometry shader (GS) 187-189
getUniformLocation function 45
GetValue function 268
glActiveTexture 109
glBeginTransformFeedback function 301
glBindAttribLocation function 26
glBindBufferBase function 41
glBindFramebuffer 146
glBindTexture 109
glCreateShader function 17
glDeleteProgram 22
glDeleteShader 18
glDrawArrays function 27
glDrawArraysInstanced function 308
glDrawElementsInstanced function 308

319

GLee library 10
glEnableVertexAttribArray 27
glEndTransformFeedback function 301
GLEW Library

downloading 8
using, for OpenGL functionality accessing 8-10

gl_FrontFacing variable 68
glGenFramebuffers 146
glGenTextures 109
glGenVertexArrays function 27
glGetActiveAttrib function 31
glGetActiveUniformName function 36
glGetAttribLocation 31
glGetIntegerv function

about 13
working 13, 14

glGetProgramInfoLog 21
glGetProgramiv 21
glGetShaderInfoLog 18
glGetShaderiv 18
glGetString function

about 13
working 13, 14

glGetSubroutineIndex 75
glLight function 61
glLinkProgram 20
GLM library

about 10
GLM types, using as input to OpenGL 12
using, for mathematics 11
working 11

glm::lookAt function 11
glm::rotate function 11
glOrtho function 10
glPatchParameter function 217
gl_PointCoord variable 298
glPointParameter function 193
glPointSize function 193
glPolygonOffset 247
gl_Position variable 60
glProvokingVertex function 70
glRotate function 10
glShaderSource function 17
GLSL

2D texture, applying 106-110
about 6
alpha maps, using for discarding

pixels 114-116

bloom effect, creating 164-169
cartoon shading effect, creating 97-100
cloud-like effect, creating 272-274
deferred shading, using 179-185
directional light source, shading with 84-87
disintegration effect, creating 279, 280
edge detection filter, applying 150-156
fire, simulating with particles 312-314
fog, simulating 100-103
gamma correction, using 170-172
Gaussian blur filter, applying 157-163
halfway vector, using 91-93
image based lighting 135-138
multiple positional lights, shading with 82-84
multiple textures, applying 111-113
multisample anti-aliasing, using 173-179
night-vision effect, creating 284-287
noise texture, creating using libnoise 265-269
normal map 117
normal mapping 116
normal map, using 117-122
paint-spatter effect, creating 281-283
particle fountain, creating 293-299
particle system, creating using instanced

particles 308-311
particle system, creating using transform feed-

back used 299-307
per-fragment shading, using 88-90
projected texture, applying 138-143
reflection, simulating with cube maps 123-129
refraction, simulating with cube

maps 130-133
seamless noise texture, creating 269-272
shadows 235
smoke, simulating with particles 314-316
spotlight, simulating 94-97
subroutine 71
surface, animating with vertex

displacement 290-293
texture, rendering to 143-147
wood grain effect, creating 275-278

GLSL functions
getEyeSpace function 64
main function 64
phongModel function 64

GLSL noise functions
creating 264

320

GLSLProgram class 45
GLSL Shaders

about 47
ADS shading, implementing 55-60
diffuse shading, implementing with single

point light source 50-53
flat shading, implementing 69, 70
fragment 48
functions, using 62-64
geometry 48
old fixed functionality, replicating 49, 50
overview 47
per-vertex shading, implementing with single

point light source 50-53
tessellation control 48
two-sided shadind, implementing 65-68
vertex 48

gl_TessLevelInner array 190
gl_TessLevelOuter array 190
glTexImage2D 109, 268
glTexImage2D function 244
glTexParameterf 109
glTexParameterfv function 244
glTransformFeedbackVaryings function 301
GLuint variable 241
gluLookAt function 10
glUniform functions 34
glUniformMatrix4fv 34
glUniformSubroutinesuiv function 75
glUseProgram 21
glVertexAttribDivisor function 309
glVertexAttribPointer 28
GNormal variable 203
Gouraud shading 69, 88
GPosition variable 203
GPUs
gradient noise 264
Graphics Processing Units (GPUs) 6
greaterThan function 79

H
halfway vector

using 91-93
HighThreshold 280
homogeneous clip coordinates 238

I
image based lighting 135-138
instanced attribute 309
instanced rendering 308
isFrontFacing function 211

L
layout qualifiers

column_major 43
packed qualifier 42
row_major 43
shared qualifier 42

level-of-detail (LOD)
about 230
implementing 230

libnoise
about 265, 268
compiling 265
downloading 265

LightDir 122
LightInfo 84
LightIntensity variable 60
LightPosition 87
LightWoodColor 276
LineColor variable 207, 216
link function 45
local coordinate system 118
log function 45
low-res textures

using 169
LowThreshold 280
LumThresh variable 166

M
main function 64, 203
mathematics 10
MaxDepth variable 231
MaxTessLevel variable 231
MinDepth variable 231
mini-programs, GLSL. See shader program;

See simply shaders
MinTessLevel variable 231
mix function 39, 295

321

multiple positional lights
shading with 82-84

multiple textures
applying 111-113

multi-sample anti-aliasing
about 173
using 173-179

N
night-vision effect

creating 284-287
NoiseTex 280
noise texture

creating, libnoise used 265-269
NoiseTex variable 273
non-local viewer 61
noperspective qualifier 203
normal map

about 117
using 117-122

normal mapping 116
NormalTex variable 180
NumSegments variable 216
NumStrips variable 216

O
octave 266
OpenGL

adjacency modes 206
OpenGL documentation 26
OpenGL functionality

accessing, GLEW Library used 8-10
OpenGL Mathematics. See GLM library
OpenGL Shading Language. See GLSL
optimization techniques 156

P
PaintColor 282
paint-spatter effect

creating 281-283
particle fountain

creating 293-299
particle system

creating, instanced particles used 308-311
creating, transform feedback used 299-307

fire, simulating with particles 312-314
particles, recycling 308
smoke simulating with particles 314-316
transform feedback results, querying 308

pass4 function 169
patch primitive 189, 190
PctExtend variable 207
Percentage-Closer Filtering (PCF) 247
per-fragment shading

using 88-90
Perlin noise

about 264
using 264

Perlin noise generator 265
perspective division 239
per-vertex lighting 61
per-vertex shading

implementing, with single point light
source 50-53

phongModel 110
phongModel function 64, 122, 168
Phong reflection model 55
Phong shading 88
point sprites 192
point sprites, with geometry shader 192-197
PositionTex variable 180
printActiveAttribs function 45
printActiveUniforms function 45
programHandle variable 72
projected texture

applying 138-143
projective texture mapping 138
provoking vertex 70

Q
QImage class 109
QImage object 109

R
randFloat function 295
random sampling

about 251
using, for creating soft shadow edges 251-254

realism
improving, with ambient

occlusion (AO) 258-261

322

ReflectDir 128
ReflectFactor 129
reflect function 59
reflection

simulating, with cube maps 123-129
refraction

about 130
simulating, with cube maps 130-133

render function 306
renderTex variable 166
Runge-Kutta integration 300

S
Screen-Space Ambient Occlusion (SSAO) 262
sDotN 60
seamless noise texture

creating 269-272
SetFrequency function 268
SetOctaveCount function 268
SetPersistence function 269
setUniform function 45
shadeModelType, subroutine type 74
shader

compiling 15
compiling, diagrammatic representation 15
compiling, steps 16
shader object, deleting 18
working 17

shader functionality
selecting, subroutines used 71-76

shader pipeline
simplified view 188

shader program
about 6
C++ class, building 43
deleting 22
linking 18, 19
linking, steps 19, 20
models, in NVIDIA GeForce 400 series cards 6
working 20, 21

shaders 289
shadeWithShadow function 245
shadow

aliasing 246
shadow edges

antialiasing, PCF used 247-250
shadow map 236

shadow mapping algorithm 235
shadows

about 235
rendering, with shadow maps 236-243

silhouette lines
drawing, geometry shader used 205-213

simply shaders 6
SkyColor 273
smoke

simulating, with particles 314-316
smoothstep function 39, 200, 278
Snell’s law 130
Sobel operator 152, 156
soft shadow edges

creating, with random sampling 251-257
specular component 55
specular highlights 57
specular irradiance environment map 135
spotlight

about 94
simulating 94-97

subroutine
about 71
using, to select shader functionality 71-75
working 74

surface
animating, with vertex displacement 290-293

T
tangent space 118
tangent vector 118
TENormal variable 226
TEPosition variable 226
tessellation, based on depth

about 230, 231
working 233

tessellation control shader (TCS) 188
tessellation evaluation shader (TES) 188
tessellation primitive generator (TPG) 190
tessellation shaders 187-192
texColor 122
TexCoord variable 79, 273
texel 135
texels 248
texture

rendering to 143-147
textureProj function 245, 248

323

textureProjOffset function 248
Threshold 282
toObjectLocal 122
toon shading 97
transform feedback 289
Transp variable 306
triangle altitude 199
two-sided rendering

using, for debugging 68
two-sided shading

implementing 65-68

U
uniform blocks

about 37
data, modifying 41
instance name, using 42
layout qualifiers, using 42
need for 37
working 41

uniform buffer objects
using 38-40
working 41

uniform variables
about 32
data, sending to shader 33
information, printing 35, 36
list 35
member structure 34
RotationMatrix, using 33
vertex shader, using 33
working 34

update function 306
use function 45
using namespace glm, command link 12

V
Verlet integration 300
vertex array object (VAO) 27
vertex attribute indices

getting 29, 30
working 31

vertex attributes 31
vertex buffer objects (VBOs)

rendering with 28
VertexColor attribute 22

vertex input attributes list
getting 29, 30

VertexPosition attribute 24
vertex shader

about 22, 48, 49
(basic.vert) 23
buffer objects, setting up 24, 25
components 22
element arrays, using 29
fragment shader (basic.frag) 24
interleaved arrays 29
layout qualifiers, using 28
per-vertex input attributes 22
triangle, rendering 24, 25
vertex attributes, working 26
vertex buffer objects, using 23
VertexColor attribute 23
VertexPosition attribute 23

VertexTexCoord 79
ViewDir 122

W
winding 68
wireframe

drawing, on top of shaded mesh 198-204
wood grain effect

creating 275-278

Thank you for buying
OpenGL 4.0 Shading Language

Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Blender 2.5 Character
Animation Cookbook
ISBN: 978-1-849513-20-3 Paperback: 308 pages

50 great recipes for giving soul to your characters by
building high-quality rigs

1.	 Learn how to create efficient and easy to use
character rigs

2.	 Understand and make your characters , so that
your audience believes they're alive

3.	 See common approaches when animating your
characters in real world situations

Blender 2.5 HOTSHOT
ISBN: 978-1-849513-10-4 Paperback: 332 pages

Challenging and fun projects that will push your Blender
skills to the limit

1.	 Exciting projects covering many areas: modeling,
shading, lighting, compositing, animation, and the
game engine

2.	 Strong emphasis on techniques and methodology
for the best approach to each project

3.	 Utilization of many of the tools available in
Blender 3D for developing moderately complex
projects

Please check www.PacktPub.com for information on our titles

GIMP 2.6 cookbook
ISBN: 978-1-849512-02-2 Paperback: 408 pages

Over 50 recipes to produce amazing graphics with
the GIMP

1.	 Recipes for working with the GIMP, the most
powerful open source graphics package in the
world

2.	 Straightforward instructions guide you through the
tasks to unleash your true creativity without being
hindered by the system

Away3D 3.6 Cookbook
ISBN: 978-1-849512-80-0 Paperback: 480 pages

Over 80 practical recipes for creating stunning graphics
and effects with the fascinating Away3D engine

1.	 Invaluable tips and techniques to take your Away
3D applications to the top

2.	 Reveals the secrets of cleaning your scene from
z-sorting artifacts without killing your CPU

3.	 Get 2D objects into the 3D world by learning to
work with TextField3D and extracting graphics
from vector graphics

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with GLSL 4.0
	Introduction
	Using the GLEW Library to access the
	latest OpenGL functionality
	Using the GLM library for mathematics
	Determining the GLSL and OpenGL version
	Compiling a shader
	Linking a shader program
	Sending data to a shader using per-vertex
	attributes and vertex buffer objects
	Getting a list of active vertex input
	attributes and indices
	Sending data to a shader using
	uniform variables
	Getting a list of active uniform variables
	Using uniform blocks and uniform
	buffer objects
	Building a C++ shader program class

	Chapter 2: The Basics of GLSL Shaders
	Introduction
	Implementing diffuse, per-vertex
	shading with a single point light source
	Implementing per-vertex ambient,
	diffuse, and specular (ADS) shading
	Using functions in shaders
	Implementing two-sided shading
	Implementing flat shading
	Using subroutines to select shader
	functionality
	Discarding fragments to create a
	perforated look

	Chapter 3: Lighting, Shading Effects, and Optimizations
	Introduction
	Shading with multiple positional lights
	Shading with a directional light source
	Using per-fragment shading for
	improved realism
	Using the halfway vector for improved
	performance
	Simulating a spotlight
	Creating a cartoon shading effect
	Simulating fog

	Chapter 4: Using Textures
	Introduction
	Applying a 2D texture
	Applying multiple textures
	Using alpha maps to discard pixels
	Using normal maps
	Simulating reflection with cube maps
	Simulating refraction with cube maps
	Image-based lighting
	Applying a projected texture
	Rendering to a texture

	Chapter 5: Image Processing and Screen Space Techniques
	Introduction
	Applying an edge detection filter
	Applying a Gaussian blur filter
	Creating a "bloom" effect
	Using gamma correction to improve
	image quality
	Using multisample anti-aliasing
	Using deferred shading

	Chapter 6: Using Geometry and Tessellation Shaders
	Introduction
	Point sprites with the geometry shader
	Drawing a wireframe on top of a shaded
	mesh
	Drawing silhouette lines using the
	geometry shader
	Tessellating a curve
	Tessellating a 2D quad
	Tessellating a 3D surface
	Tessellating based on depth

	Chapter 7: Shadows
	Introduction
	Rendering shadows with shadow maps
	Anti-aliasing shadow edges with PCF
	Creating soft shadow edges with
	random sampling
	Improving realism with prebaked
	ambient occlusion

	Chapter 8: Using Noise in Shaders
	Introduction
	Creating a noise texture using libnoise
	Creating a seamless noise texture
	Creating a cloud-like effect
	Creating a wood grain effect
	Creating a disintegration effect
	Creating a paint-spatter effect
	Creating a night-vision effect

	Chapter 9: Animation and Particles
	Introduction
	Animating a surface with vertex
	displacement
	Creating a particle fountain
	Creating a particle system using transform
	feedback
	Creating a particle system using instanced
	particles
	Simulating fire with particles
	Simulating smoke with particles

	Index

