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Abstract

This paper presents a generalization of Catmull-Clark-variant Doo-Sabin surfaces and non-uniform biquadratic B-spline sur-
faces called NURDSes (Non-Uniform Recursive Doo-Sabin Surfaces). One step of NURDS refinement can be factored into one
non-uniform linear subdivision step plus one dual step. Compared to the prior non-uniform Doo-Sabin surfaces (i.e., quadratic
NURSSes), NURDSes are convergent for arbitraryn-sided faces. Closed form limit point rules, which are important for applica-
tions in adaptive rendering and NC machining, are given as well.
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1. Introduction

The Doo-Sabin [1] and the Catmull-Clark scheme [2] are
generalizations of the subdivision rules for biquadratic and
bicubic B-splines to meshes of arbitrary topology, respectively.
In the same paper [2], Catmull and Clark also proposed a vari-
ant of Doo-Sabin subdivision, which could be interpreted asone
linear subdivision step followed by one dual step [3, 4].

In 1998, Sederberg et al. [5] introduced non-uniform re-
cursive subdivision surfaces (NURSSes) that extended non-
uniform tensor product B-spline surfaces to control grids of
arbitrary topology for the first time. Quadratic and cubic
NURSSes correspond to non-uniform Doo-Sabin and Catmull-
Clark surfaces, respectively. To obtain stationary refinement
rules, a restriction that opposing edges of each four-sidedface
have the same knot interval is placed on cubic NURSSes to
generate NURCCs [6].

Limit point rules are useful for adaptive rendering of sub-
division surfaces [7]. For a stationary subdivision scheme, an
eigenanalysis can be performed for each configuration of knot
intervals to obtain the limit point using the method described
in [8]. However, general limit point rules for NURCCs have
not yet become available. Recently, Müller et al. presented
two different approaches to extend both bicubic NURBS and
Catmull-Clark surfaces. Extended Subdivision Surfaces (ES-
ubs) [9] offer limit point rules but are nonstationary. DINUS
[10] is a stationary scheme which provides limit point as well
as limit normal rules.

Quadratic NURSSes [5] are the only subdivision surfaces
that generalize both non-uniform biquadratic B-spline sur-
faces and original Doo-Sabin surfaces [1]. In Doo-Sabin like
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schemes, theextraordinary pointsare at the ”centers” ofn-sided
faces withn , 4. Qin et al. point out that quadratic NURSSes
converge forn ≤ 12, but may diverge whenn > 12 [11]. As a
stationary scheme, a detailed eigenanalysis has been performed
for quadratic NURSSes [12], but no closed form limit point
rules are known for this scheme to date. As for the Catmull-
Clark variant of Doo-Sabin subdivision [2], no non-uniform
counterpart has ever been presented to the best of our knowl-
edge.

This paper introduces a non-uniform extension to the
Catmull-Clark-variant Doo-Sabin surfaces (CCDSes) called
NURDSes (Non-Uniform Recursive Doo-Sabin Surfaces).
NURDSes are the subdivision surfaces that generalize non-
uniform biquadratic B-spline to control meshes of arbitrary
topology and that generalize CCDSes to non-uniform knot vec-
tors. Just like NURSS and NURCC, ”NURDS” can as well
stand for ”Non-UniformRationalDoo-Sabin Surfaces”.

By analyzing non-uniform biquadratic B-spline subdivision
and the CCDS scheme, NURDSes are devised to have the anal-
ogous properties as follows:

• Repeated averaging: One NURDS refinement step can be
decomposed into one linear subdivision step followed by
one dual step.

• Convergence: The NURDS refinement is convergent for
extraordinary points with arbitrary valence.

• Limit point: For ann-sided face, its weighted centroid
is the limit point of its associated extraordinary point.
That is, ann-sided face converges to its weighted centroid
which is on the limit surface.

The rest of this paper is organized as follows. The next
section briefly reviews the Catmull-Clark variant of Doo-Sabin
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subdivision. Section 3 describes the decomposition of the non-
uniform quadratic subdivision into one non-uniform linearsub-
division step and one averaging (dual) step. In Section 4, we
propose the refinement rules for NURDSes, discuss the con-
tinuity of this scheme and give some examples. Finally, we
conclude the paper with some suggestions for future work.

2. Catmull-Clark variant of Doo-Sabin subdivision

This section briefly reviews Doo-Sabin subdivision surfaces,
especially the Catmull-Clark variant of Doo-Sabin subdivision.
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Figure 1: Doo-Sabin subdivision.

The Doo-Sabin subdivision algorithm is a generalization of
the subdivision scheme for uniform biquadratic B-splines to
control meshes of arbitrary topology [1]. The initial control
mesh may consist of faces and vertices with arbitrary valence.

During each Doo-Sabin subdivision step (see Figs. 1 and 2),
for each face withn verticesP0, . . . ,Pn−1, the corresponding
new verticesP0, . . . ,Pn−1 are computed by

Pi =

n−1
∑

j=0

wi, jP j, i = 0, . . . , n− 1. (1)

Then a new face of type F is created by connectingP0, . . . ,Pn−1

to replace the old one. For each edge, a new four-sided face of
type E is formed by connecting the images of the new points
that have been generated for the faces sharing this edge. For
each vertex, a new face of type V is formed by connecting the
new points that have been generated for the faces surrounding
the vertex.

The weights in Eq. (1) have two forms. One is suggested by
Doo and Sabin in [1] as follows
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The other is the Catmull-Clark variant proposed in [2]
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Figure 2: One linear subdivision step followed by a dual stepproduces the
Catmull-Clark variant of Doo-Sabin subdivision.

The latter one has a more intuitive geometric interpretation
in terms of repeated averaging [3, 4]. As illustrated in Fig.2,
for an n-sided face, one linear subdivision step inserts a new
edge pointEi at the midpoint of each edgePiPi+1 and a new
face pointF at the centroid of each face; then it inserts edges by
connecting the face centroid with each of the surrounding edge
midpoints. Applying one dual step to the linearly refined mesh,
one obtains the same control mesh by performing one step of
the Catmull-Clark variant of Doo-Sabin subdivision on the ini-
tial mesh. Thedual of a mesh is a new mesh whose vertices
are the centroids of old faces and whose edges join centroids
of faces that share a common edge. Since the linearly subdi-
vided mesh consists of only quadrilateral faces, the new control
vertexPi corresponding toPi in ann-sided face is computed as

Pi =
1
4

(Pi + Ei−1 + Ei + F)

= (
1
2
+

1
4n

)Pi + (
1
8
+

1
4n

)(Pi+1 + Pi−1) +
1
4n

∑

|i− j|>1

P j .

whereEi = (Pi + Pi+1)/2 is the edge point onPiPi+1, andF =
∑n−1

j=0 P j/n is the centroid of then-sided face.
For both Doo-Sabin subdivision schemes, theextraordinary

pointsare at the ”centers” ofn-sided faces withn , 4, and their
limit positions are exactly at the centroids of the faces.

Fig. 3 shows the effect of applying the Catmull-Clark variant
of Doo-Sabin subdivision to a cube. Fig. 3(b) is the result of
linear subdivision. Fig. 3(c) is the result of next applyingdual
averaging and corresponds to one round of subdivision applied
to the initial cube. Fig. 3(d) is the limit mesh via applying one
more dual step.

3. Non-uniform quadratic B-spline subdivision

In this section, we show that non-uniform quadratic B-spline
subdivision schemes can be also decomposed into one non-
uniform linear subdivision step and one averaging (dual) step.

Non-uniform B-spline curves are specified in terms of a set
of control points, a knot vector, and a degree. Aknot interval
is the difference between two adjacent knots in a knot vector,
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Figure 3: Cube model: (a) initial control mesh; (b) linearlysubdivided mesh;
(c) refined control mesh after dual averaging on (b); and (d) limit mesh of (c).
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Figure 4: A non-uniform quadratic B-spline curve with its knot intervals.

i.e., the parameter length of a B-spline curve segment [5, 6].
For a quadratic B-spline curve, a knot intervaldi is assigned to
each control pointPi , since each control point corresponds to a
quadratic curve segment, as Fig. 4 shows.
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Figure 5: Refinement of a non-uniform quadratic B-spline curve.

For each edgePiPi+1, non-uniform linear subdivision inserts
a new edge pointEi which is a weighted average of two end-
points of the edge

Ei =
di+1Pi + diPi+1

di + di+1
, (2)

wheredi anddi+1 are the knot intervals associated withPi and
Pi+1, respectively. Subsequently, new control points are gener-
ated using one averaging step

Q2i =
1
2

(Pi + Ei)

=
(di + 2di+1)Pi + diPi+1

2(di + di+1)

Q2i+1 =
1
2

(Pi+1 + Ei)

=
di+1Pi + (2di + di+1)Pi+1

2(di + di+1)
as illustrated in Fig. 5. The subdivision rules are the same as
those presented in [5]. Note that each new knot interval is half
as large as its parent.
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Figure 6: A non-uniform biquadratic B-spline surface with its knot intervals.

Non-uniform biquadratic B-spline surfaces are defined in
terms of a control mesh that is topologically a rectangular grid
(see Fig. 6). A horizonal knot intervaldi and a vertical knot
interval ej are assigned to each control pointPi, j , since each
control point corresponds to a biquadratic surface patch.

As illustrated in Fig. 7, one round of non-uniform linear sub-
division inserts one new edge point for each edge and one new
face point for each quad face; and it splits each quad into four
smaller quads. New edge points are computed according to Eq.
(2). New face points are obtained using the tensor product form
of Eq. (2). For the quadPi, jPi+1, jPi+1, j+1Pi, j+1, its new face
point is

F =
ej+1(di+1Pi, j + diPi+1, j) + ej(di+1Pi, j+1 + diPi+1, j+1)

(di + di+1)(ej + ej+1)
.
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Figure 7: Refinement of a non-uniform biquadratic B-spline surface.

The subsequent dual (averaging) step yields the non-
uniform biquadratic B-spine subdivision. For the quad face
Pi, jPi+1, jPi+1, j+1Pi, j+1, the new control pointQ2i,2 j correspond-
ing to Pi, j is computed as

Q2i,2 j =
1
4

(Pi, j + E1 + E2 + F)

=
Pi, j + F

2
+

diej(Pi+1, j + Pi, j+1 − Pi, j − Pi+1, j+1)

4(di + di+1)(ej + ej+1)

,

whereF is the face point of the quad, andE1 andE2 are the two
edge points on the edges adjacent to the vertexPi, j in the face.
Again, one obtains the subdivision rules proposed in [5]. Notice
that non-uniform biquadratic B-spline surfaces interpolate the
face points of all quad faces in their control meshes.

4. NURDSes

We now present new non-uniform Doo-Sabin subdivision
surfaces called NURDSes (Non-Uniform Recursive Doo-Sabin
Surfaces). NURDSes are a generalization of non-uniform bi-
quadratic B-spline surfaces and Catmull-Clark-variant Doo-
Sabin Surfaces. The refinement rules for NURDSes are derived
by following the ideas described in Sections 2 and 3.

4.1. Refinement rules
For a non-uniform Doo-Sabin surface, each vertex is as-

signed a knot interval (possibly different) for each edge inci-
dent to it. Referring to Fig. 8, the notationd0

i, j indicates the
knot interval for edgePiP j . The notationdm

i, j,m≥ 1 denotes the
knot interval for them-th edge encountered when rotating the
edgePiP j counter-clockwise aboutPi . And a−m refers to ro-
tating clockwise. After subdivision, new knot intervals̄dk

i j can
be specified as follows [5]

d̄0
i,i+1 = d̄−1

i,i−1 = d0
i,i+1

d̄0
i,i−1 = d̄1

i,i+1 = d0
i,i−1

.
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Figure 8: Non-uniform Doo-Sabin refinement.

Note that differently from the original form presented in [5],
the new knot intervals are scaled by a factor of two, since non-
uniform Doo-Sabin subdivision rules only rely on ratios of the
knot intervals. This simplifies computation and leads to station-
ary subdivision.

Referring to Fig. 2, since the edge point rule of Eq. (2) is still
applicable for arbitrary meshes, all we need to do is to devise
a face point rule forn-sided faces for the non-uniform linear
subdivision:

F =
n−1
∑

j=0

c jP j , (3)

wherec j , j = 0, . . . , n − 1 are unknown weights. Then after
one dual step on the linearly refined control mesh, we obtain a
vertex refinement rule

Pi =
1
4

(Pi + Ei−1 + Ei + F)

=
1
4

(1+ ci +
qi+1

pi + qi+1
+

pi−1

pi−1 + qi
)Pi +

1
4

∑

|i− j|>1

c jP j

+
1
4

(ci−1 +
qi

pi−1 + qi
)Pi−1 +

1
4

(ci+1 +
pi

pi + qi+1
)Pi+1.

(4)

Here we letpi = d0
i,i+1 andqi = d0

i,i−1 for the sake of simplicity.
That is to say that for a vertex of a face, the corresponding new
vertex is the average of four points: the vertex, two edge points
on the edges incident on this vertex in the face, and the face
point of the face.

In both the Catmull-Clark variant of Doo-Sabin subdivision
and non-uniform biquadratic B-spline subdivision, face points
are the (weighted) centroids of the corresponding faces andap-
pear on the limit surface, namely, face points are the limit points
corresponding to the centers of the faces. Requiring the rule of
Eq. (3) possesses the same property, we have

F =
n−1
∑

j=0

c jP j =

n−1
∑

j=0

c jP j .

With the aid of a computer algebra system such as Mathemat-
ica, by solving a system of linear equations with respect to
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c j , j = 0, . . . , n− 1, it follows that

c j =
α j

∑n−1
k=0 αk

,

where

α j =
1
2

(
n−1
∏

k=0

p j+k +

n−1
∏

k=0

q j−k) +
n−1
∑

m=1

(
m
∏

k=1

q j+k

n−1
∏

k=m

p j+k).

Here indices are taken modulon. For example, ifn = 4 (see
Fig. 9), we have

bc bc

bcbc

rs F

P0

p0

q0

P1 p1

q1

P2

p2

q2

P3p3

q3

Figure 9: A four-sided face with its knot intervals.

α0 =
p0p1p2p3 + q0q1q2q3

2
+ q1p1p2p3 + q1q2p2p3 + q1q2q3p3

α1 =
p0p1p2p3 + q0q1q2q3

2
+ q2p2p3p0 + q2q3p3p0 + q2q3q0p0

α2 =
p0p1p2p3 + q0q1q2q3

2
+ q3p3p0p1 + q3q0p0p1 + q3q0q1p1

α3 =
p0p1p2p3 + q0q1q2q3

2
+ q0p0p1p2 + q0q1p1p2 + q0q1q2p2

4.2. Convergence and continuity analysis

For an n-sided face at subdivision levelk with vertices
Pk

0, . . . ,P
k
n−1, its face point F and new verticesPk+1

i , i =
0, . . . , n − 1 are all linear combinations of old vertices. The
construction in previous section guarantees thatF is the limit
point corresponding to the extraordinary point (i.e. the center)
of the face.

Theorem 1. The NURDS scheme is convergent at extraordi-
nary points of arbitrary valence.

Proof. By Eq. (4), fori = 0, . . . , n− 1, we have:

‖Pk+1
i − F‖ =

∥

∥

∥

∥

∥

1
4

(Pk
i + Ek

i−1 + Ek
i + F) − F

∥

∥

∥

∥

∥

=
1
4

∥

∥

∥

∥

∥

(1+
qi+1

pi + qi+1
+

pi−1

pi−1 + qi
)(Pk

i − F)

+
qi

pi−1 + qi
(Pk

i−1 − F) +
pi

pi + qi+1
(Pk

i+1 − F)
∥

∥

∥

∥

∥

≤
3
4

max
0≤ j≤n−1

‖Pk
j − F‖

≤ (
3
4

)k+1 max
0≤ j≤n−1

‖P0
j − F‖ ,

Then fori = 0, . . . , n− 1,

lim
k→∞

Pk
i = F .

As a consequence, eachn-sided face converges to its face point
on the limit surface.
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Figure 10: Configuration surrounding a type F face.

Like the analysis for quadratic NURSSes in [5], only type F
faces are needed to be analyzed forG1 continuity. After at most
two steps of subdivision, the configuration surrounding a type F
face may be represented as in Fig. 10. In the center lies the face
(of type F)P0P1 . . .Pn−1. Each edge of this face (for example
PiPi+1) is adjacent to a four-sided face of type E with vertices
PiPi+1Ei2Ei1. The neighborhood of each vertexPi is completed
by a four-sided face of type V with verticesPiEi1CiE(i−1)2. The
refinement formulas are as follows:

Pi =
1
4

(2+ ci + r i − r i−1)Pi +
1
4

∑

|i− j|>1

c jP j

+
1
4

(ci−1 + r i−1)Pi−1 +
1
4

(1+ ci+1 − r i)Pi+1,

Ei1 =
3
8

(1+ r i)Pi +
3
8

(1− r i)Pi+1

+
1
8

(1+ r i)E j1 +
1
8

(1− r i)E j2,

Ei2 =
3
8

r iPi +
3
8

(2− r i)Pi+1 +
1
8

r iE j1 +
1
8

(2− r i)E j2,

Ci =
1
16

(9Pi + 3Ei1 + 3Ei−1,2 + Ci).

wherer j = q j+1/(p j + q j+1), j = 0, . . . , n − 1, and indices are
taken modulon. For positive knot intervals, it follows that 0<
r j < 1, j = 0, . . . , n− 1.

Let the control point vector around this type F be represented
by

M = [P0, . . . ,Pn−1,E01,E02, . . . ,En−1,1En−1,2,C0 . . . ,Cn−1]

andM be the corresponding control point vector after subdivi-
sion. ThenM = SnM, whereSn is a 4n× 4n matrix called the
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subdivision matrix. We index the eigenvalues ofSn in order of
decreasing modulus asλi , i = 0, 1, . . . , 4n− 1.

Note that four-sided faces are not always regular cases, since
non-uniform Doo-Sabin surfaces permit arbitrary knot inter-
vals. Forn = 4, the characteristic polynomial ofS4 has the
form

C4(λ) = (λ − 1)(λ −
1
4

)5(λ −
1
8

)4(λ −
1
16

)4

((λ −
1
2

)2 +
(r0 + r2 − 1)(r1 + r3 − 1)

16
).

If ( r0 + r2 − 1)(r1+ r3 − 1) ≤ 0, we get two real subdominant
eigenvalues

λ1 =
1
2
+

√
−(r0 + r2 − 1)(r1 + r3 − 1)

4
,

λ2 =
1
2
−
√
−(r0 + r2 − 1)(r1 + r3 − 1)

4
.

Since|(r0 + r2 − 1)(r1 + r3 − 1)| < 1, it follows thatλ0 = 1 >
λ1 > λ2 > λ3 =

1
4.

If ( r0 + r2 − 1)(r1 + r3 − 1) > 0, one obtains two conjugate
complex subdominant eigenvalues

λ1 =
1
2
+

√
(r0 + r2 − 1)(r1 + r3 − 1)

4
I ,

λ2 =
1
2
−
√

(r0 + r2 − 1)(r1 + r3 − 1)
4

I .

It is easy to know thatλ0 = 1 > |λ1| = |λ2| > λ3 =
1
4. Us-

ing the analysis techniques in [13], we prove that the proposed
subdivision scheme isG1 in both cases.

For valencen = 3, similar results hold. Because the sub-
division matrixSn has no obvious symmetries, it is difficult to
perform an eigenanalysis for extraordinary points with valence
n ≥ 5. Being analogous to Sederberg et al. [5], numerical ex-
periments and examples show that limit surfaces areG1 at these
points.

4.3. Examples

Since NURDSes generalize biquadratic NURBS and
Catmull-Clark-variant Doo-Sabin surfaces, a modeling pro-
gram based on NURDSes can handle any NURBS or Doo-
Sabin model as a special case.

Fig. 11 shows uniform and non-uniform Doo-Sabin surfaces
generated from a tetrahedron with holes. Fig. 11(a) depicts
a uniform Catmull-Clark-variant Doo-Sabin surface after four
refinement steps on the initial control mesh. Fig. 11(b) is an
example of a NURDS in which three knot intervals along cer-
tain edges have been set to zero (as labeled), thereby creating a
crease along the oval edge on the right.

Fig. 12 is an example of a doughnut model whose initial con-
trol mesh is topologically a rectangular grid. Fig. 12(b) shows a
uniform biquadratic B-spline surface. Fig. 12(c) is a biquadratic
NURBS surface with a crease created by setting one row of the
knot intervals to zero. Fig. 12(d) depicts a NURDS with a dart
formed by setting to zero the knot intervals of appropriate ver-
tices.

(a) (b)

Figure 11: (a) A uniform Catmull-Clark-variant Doo-Sabin surface; (b) a
NURDS with a crease.

(a) (b)

(c) (d)

Figure 12: Doughnut model: (a) initial control mesh; (b) uniform biquadratic
B-spline surface; (c) biquadratic NURBS surface with a crease; (d) NURDS
with a dart.

The shapes in Fig. 11(b) and Fig. 12(d) cannot be obtained
using biquadratic NURBS or uniform Doo-Sabin surfaces.

We next consider the configuration surrounding a type F face
of valencen as illustrated in Fig. 10. Just like [11], we as-
sume thatp0 = 1000 and all other knot intervals equal 1. For
valence 3≤ n ≤ 30, we construct subdivision matrices for
quadratic NURSSes and NURDSes respectively, and then in-
vestigate eigenstructure and continuity using the approaches de-
scribed in [13] with the help of a computer algebra system such
as Mathematica.

Fig. 13 plots absolute values of the first four eigenvalues of
the subdivision matrix for quadratic NURSSes for 3≤ n ≤
30. Concerning spectrum and continuity, we have the following
results.

• For 3≤ n ≤ 30,λ0, λ1 andλ2 may be negative, whileλ3 is
always positive.

• Forn ≥ 15, |λ0| > 1, the subdivision process is divergent.

• For 3≤ n ≤ 14,λ0 = 1 > |λ1|, the subdivision process is
convergent.
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Figure 13: Absolute values of the first four eigenvalues for quadratic NURSSes for 3≤ n ≤ 30.

• For 3 ≤ n ≤ 10 andn = 12, λ0 = 1 > |λ1| = |λ2| > λ3,
quadratic NURSSes areG1 continuous at the extraordinary
vertices.

• For n = 13 and 14,λ0 = 1 > |λ1| > |λ2| > λ3, quadratic
NURSSes areG1 continuous at the extraordinary vertices.

• For n = 11,λ0 = 1 > |λ1| > λ2 = λ3, quadratic NURSSes
are onlyG0 continuous at the extraordinary vertices.

Fig. 14 depicts values of the first four eigenvalues of the sub-
division matrix for NURDSes for 3≤ n ≤ 30. It follows that

• For 3≤ n ≤ 30,λ0, λ1, λ2 andλ3 are all positive.

• For 3≤ n ≤ 30,λ0 = 1 > |λ1|, the subdivision process is
convergent.

• For 3≤ n ≤ 30,λ0 = 1 > λ1 = λ2 > λ3, NURDSes areG1

continuous at the extraordinary vertices.

5. Conclusion

In this paper we have introduced new non-uniform Doo-
Sabin surfaces – NURDSes. Both non-uniform biquadratic B-
spline surfaces and Catmull-Clark-variant Doo-Sabin surfaces

can be represented with this surface type. In addition, the new
subdivision scheme can be factored into one linear subdivision
step and one dual step just like biquadratic non-uniform B-
spline subdivision and the Catmull-Clark variant of Doo-Sabin
subdivision.

In comparison to quadratic NURSSes [5], the NURDSes re-
duce to Catmull-Clark-variant Doo-Sabin surfaces [2] whereas
quadratic NURSSes degenerate to original Doo-Sabin surfaces
[1] when all knot intervals are equal. Furthermore, when
all knot intervals are positive, the NURDSes are convergent
at extraordinary points of arbitrary valence while quadratic
NURSSes may diverge for valences larger than 12. And closed
form limit point rules are available for NURDSes as well.

Although the refinement rules for NURDSes are stationary, it
is not easy to analyze the eigenstructure of the subdivisionma-
trix for high valence. Standard analysis techniques usually ex-
ploit rotational symmetry to transform a large subdivisionma-
trix into a block diagonal matrix [13]. However, the NURDS
scheme is not rotationally symmetric. In future work we hope
to derive efficient approaches to deal with such schemes. Rig-
orous analysis forG1 continuity for valencen > 5 remains to
be investigated.
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