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Abstract

This paper presents a generalization of Catmull-ClarkawarDoo-Sabin surfaces and non-uniform biquadratic Baspsur-
faces called NURDSes (Non-Uniform Recursive Doo-Sabirfg@es). One step of NURDS refinement can be factored into one
non-uniform linear subdivision step plus one dual step. @amad to the prior non-uniform Doo-Sabin surfaces (i.eadyatic
NURSSes), NURDSes are convergent for arbitragided faces. Closed form limit point rules, which are intpot for applica-
tions in adaptive rendering and NC machining, are given ds we
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1. Introduction schemes, thextraordinary pointsre at the "centers” af-sided

. faces withn # 4. Qin et al. point out that quadratic NURSSes
The Doo-Sabin [1] and the Catmull-Clark scheme [2] ar€converge fom < 12, but may diverge when > 12 [11]. As a

g.ener.ahzatlo'ns of the subdmsmq rules for blquad.rami a stationary scheme, a detailed eigenanalysis has beenmpedo

bicubic B-splines to meshes of arbitrary topology, respebt for quadratic NURSSes [12], but no closed form limit point

In the same Paper [2],.C_a.tmull af“" Clark alsp proposed a VaTules are known for this scheme to date. As for the Catmull-
ant of Doo-Sabin subdivision, which could be interpretedrees Clark variant of Doo-Sabin subdivision [2], no non-uniform

linear subdivision step followed by.one dual step [3, 4.]' counterpart has ever been presented to the best of our knowl-
In 1998, Sederberg et al. [5] introduced non-uniform re- d
i bdivision surfaces (NURSSes) that extended none- ge. . . .
cursive su This paper introduces a non-uniform extension to the

uniform tensor product B-spline surfaces to control grils o ~_. . 1 clark-variant Doo-Sabin surfaces (CCDSes) dalle

nggggeéocp;lroegsy ;g; ttgiof::_s'[nt.}':re&] D(Ogg_%d;s.tr']caigdcggg'cnwURDSes (Non-Uniform Recursive Doo-Sabin Surfaces).
P ; uni . aol ) YNURDSes are the subdivision surfaces that generalize non-
Clark surfaces, respectively. To obtain stationary refigeim

rules, a restriction that opposing edges of each four-siaeel uniform biquadratic B-spline to control meshes of arbitrar
have the same knot interval is placed on cubic NURSSes ttopology and that generalize CCDSes to non-uniform knot vec

generate NURCCs [6]. fbrs. Just like NURSS and NURCC, "NURDS” can as well

o ) . . stand for "Non-UniformRationalDoo-Sabin Surfaces”.
Limit point rules are useful for adaptive rendering of sub- . . . . . .
A X e By analyzing non-uniform biquadratic B-spline subdivisio
division surfaces [7]. For a stationary subdivision scheare .
. . . ; and the CCDS scheme, NURDSes are devised to have the anal-
eigenanalysis can be performed for each configuration of kng

intervals to obtain the limit point using the method desedib ogous properties as follows:

in [8]. However, general limit point rules for NURCCs have o Repeated averaging: One NURDS refinement step can be
not yet become available. Recently, Mller et al. presgnte  gecomposed into one linear subdivision step followed by
two different approaches to extend both bicubic NURBS and e dual step.

Catmull-Clark surfaces. Extended Subdivision Surfaces- (E

ubs) [9] dfer limit point rules but are nonstationary. DINUS e Convergence: The NURDS refinement is convergent for
[10] is a stationary scheme which provides limit point aslwel extraordinary points with arbitrary valence.

as limit normal rules.

Quadratic NURSSes [5] are the only subdivision surfaces ® Limit point: For ann-sided face, its weighted centroid
that generalize both non-uniform biquadratic B-spline- sur is the limit point of its associated extraordinary point.
faces and original Doo-Sabin surfaces [1]. In Doo-Sabia lik That is, am-sided face converges to its weighted centroid

which is on the limit surface.

*Corresponding author. Tek86 551 3603829 . . .
Email addresseszhuang@ustc . edu. cn (Zhangjin Huang), The rest of this paper is organized as follows. The next

wgp@pku. edu. cn (Guoping Wang) section briefly reviews the Catmull-Clark variant of Dook8a
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subdivision. Section 3 describes the decomposition of tme n
uniform quadratic subdivision into one non-uniform lineab-
division step and one averaging (dual) step. In Section 4, we
propose the refinement rules for NURDSes, discuss the con-
tinuity of this scheme and give some examples. Finally, we
conclude the paper with some suggestions for future work.

2. Catmull-Clark variant of Doo-Sabin subdivision

This section briefly reviews Doo-Sabin subdivision surface
especially the Catmull-Clark variant of Doo-Sabin subslivmn.

\ /
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Figure 2: One linear subdivision step followed by a dual stepduces the
Catmull-Clark variant of Doo-Sabin subdivision.

The latter one has a more intuitive geometric interpretatio
in terms of repeated averaging [3, 4]. As illustrated in Fig.
for an n-sided face, one linear subdivision step inserts a new
edge pointE; at the midpoint of each eddggP;,1 and a new
face point- at the centroid of each face; then it inserts edges by
connecting the face centroid with each of the surroundingeed
midpoints. Applying one dual step to the linearly refined imes
one obtains the same control mesh by performing one step of
the Catmull-Clark variant of Doo-Sabin subdivision on the i
tial mesh. Thedual of a mesh is a new mesh whose vertices
Figure 1: Doo-Sabin subdivision. are the centroids of old faces and whose edges join centroids
of faces that share a common edge. Since the linearly subdi-
The Doo-Sabin subdivision algorithm is a generalization ofyided mesh consists of only quadrilateral faces, the newrebn

the subdivision scheme for uniform biquadratic B-splines t vertexP; corresponding t®; in ann-sided face is computed as
control meshes of arbitrary topology [1]. The initial canitr

mesh may consist of faces and vertices with arbitrary vaenc B = 1 (P +Eiy +E +F)
During each Doo-Sabin subdivision step (see Figs. 1and2), '~ 4 ' 7
for each face witm verticesP,, ..., P,_1, the corresponding 1 1 1 1 1
. —_ —_ =(— R P - R P P._ _ P
new vertices,, . . ., P,_; are computed by GraPir (g gp)Prat P+ o Z )

li-jl>1

n-1
P = ZWi,ij,i -0,....n-1 (1) whereE; = P + Pi+1)/2 is the edge point oR;P;,1, andF =
= Y75 Pj/nis the centroid of ther-sided face.
_ _ For both Doo-Sabin subdivision schemes, éxéraordinary

Then a new face of type F is created by conneddig. .,Pn-1  pointsare at the "centers” ai-sided faces witm # 4, and their
to replace the old one. For each edge, a new four-sided face gfnit positions are exactly at the centroids of the faces.
type E is formed by connecting the images of the new points Fig. 3 shows thefeect of applying the Catmull-Clark variant
that have been generated for the faces sharing this edge. Fef Doo-Sabin subdivision to a cube. Fig. 3(b) is the result of
each vertex, a new face of type V is formed by connecting theinear subdivision. Fig. 3(c) is the result of next applyihgal
new points that have been generated for the faces surrayndiaveraging and corresponds to one round of subdivisionegpli

the vertex. to the initial cube. Fig. 3(d) is the limit mesh via applyingeo
The weights in Eq. (1) have two forms. One is suggested bynore dual step.

Doo and Sabin in [1] as follows

oS, =] 3. Non-uniform quadratic B-spline subdivision
Wij =19 342cos(@(i-j)/n) i % |

an ’ In this section, we show that non-uniform quadratic B-splin
The other is the Catmull-Clark variant proposed in [2] subdivision schemes can be also decomposed into one non-
uniform linear subdivision step and one averaging (duaf).st

1,1 4i_il=

i + 41n’ |! J.I =0 Non-uniform B-spline curves are specified in terms of a set
wj=1 g+z lI-Jl=1 of control points, a knot vector, and a degreekmot interval

1 li—jl>1 is the diference between two adjacent knots in a knot vector,

B
=]



For each edg®;P;.1, non-uniform linear subdivision inserts
a new edge poinE; which is a weighted average of two end-
points of the edge
di+1Pi + diPisy
Ej=———m——, 2
' di + disa @
whered; andd;,; are the knot intervals associated wikhand
Pi.1, respectively. Subsequently, new control points are gener
ated using one averaging step
1
Qazi = 5(Pi+E)

_ (di +2di41)P; + diPiyy
N 2(dh + disa)
1
Qaiy1 = E(Pi+l + Ei)
_ GiaPi + (2di + di1)Pisa
- 2(di + div1)
as illustrated in Fig. 5. The subdivision rules are the same a

those presented in [5]. Note that each new knot intervallfs ha
as large as its parent.

Figure 3: Cube model: (a) initial control mesh; (b) lineaslybdivided mesh;
(c) refined control mesh after dual averaging on (b); andifai} mesh of (c).
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Figure 4: A non-uniform quadratic B-spline curve with itsdkiintervals. tj-1

di—1 di dii1
i.e., the parameter length of a B-spline curve segment [5, 6] S_1 S Si1 Si2
For a quadratic B-spline curve, a knot interdals assigned to

each control poinP;, since each control point corresponds to a Figure 6: A non-uniform biquadratic B-spline surface withknot intervals.
quadratic curve segment, as Fig. 4 shows.

Non-uniform biquadratic B-spline surfaces are defined in
terms of a control mesh that is topologically a rectangutat g
(see Fig. 6). A horizonal knot intervd| and a vertical knot
interval g; are assigned to each control poRt;, since each
control point corresponds to a biquadratic surface patch.

As illustrated in Fig. 7, one round of non-uniform linear sub
division inserts one new edge point for each edge and one new
face point for each quad face; and it splits each quad into fou
smaller quads. New edge points are computed according to Eq.
(2). New face points are obtained using the tensor produat fo

knot intervals: 3 3 of Eq. (2). For the quadP; jPi,1;Pis1j+1Pij+1, its new face
' ‘ point is

knots: S_1 S S+1 Si2

ej+1(d|+1P| jt diPis1, ]) + € (dis1Py, j#1 Tt diPisa, j+1)
(di + d|+l)(ej + e]+l)

Figure 5: Refinement of a non-uniform quadratic B-splineveur
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Note that dfferently from the original form presented in [5],
the new knot intervals are scaled by a factor of two, since non
uniform Doo-Sabin subdivision rules only rely on ratios loé t

The subsequent dual (averaging) step yields the norknotintervals. This simplifies computation and leads tticta
uniform biquadratic B-spine subdivision. For the quad faceary subdivision.

Figure 7: Refinement of a non-uniform biquadratic B-splingace.

Pi,jPi+1,jPi+1,j+1Pi j+1, the new control poin@;i 2j correspond- Referring to Fig. 2, since the edge point rule of Eq. (2) i sti
ing to P; j is computed as applicable for arbitrary meshes, all we need to do is to devis
1 a face point rule fon-sided faces for the non-uniform linear
Qaizj = Z(Pi,j +E1+E2+F) subdivision: .
_Pu+F 0P+ Py —Pij — Piaj)” F= Z ciP;, 3)
2 A(d; + disa)(€) + €j41) j=

whereF is the face point of the quad, afid andE, are the two ~ WNerec;. j = 0.....n — 1 are unknown weights. Then after
edge points on the edges adjacent to the veRfgin the face.  ON€ dual step on the linearly refined control mesh, we obtain a
Again, one obtains the subdivision rules proposed in [Stidéo ~ Vertex refinement rule

that non-uniform biquadratic B-spline surfaces interpokhe B =}(P- +E1+E+F)

face points of all quad faces in their control meshes. VAL

1 Gi+1 Pi-1 1
=—(1+c+ P+ = CiP;
4. NURDSes 47T T p+ g patgl 4 ijz>l NG
We now present new non-uniform Doo-Sabin subdivision +:_L(Ci_1 + 7)3 1+ = (C|+1 + L)piﬂ'
surfaces called NURDSes (Non-Uniform Recursive Doo-Sabin Pi-1 Pi + Giv1
Surfaces). NURDSes are a generalization of non-uniform bifere we letp; = d°.,, andg = d_, for the sake of simplicity.

quadratic B-spline surfaces and Catmull-Clark-varianbDo That is to say that for a vertex of a face, the correspondimg ne

Sabin Surfaces. The refinement rules for NURDSes are derlvaﬁértex is the average of four p0|nt3_ the vertex, two edgatpo|

by following the ideas described in Sections 2 and 3. on the edges incident on this vertex in the face, and the face

i point of the face.

4.1. Refinement rules In both the Catmull-Clark variant of Doo-Sabin subdivision
For a non-uniform Doo-Sabin surface, each vertex is asang non-uniform biquadratic B-spline subdivision, facént

signed a knot interval (possibly fiiérent) for each edge inci- gre the (weighted) centroids of the corresponding facespnd

dent to it. Referring to Fig. 8, the notatiaf}; indicates the  pear on the limit surface, namely, face points are the limiifs

knot interval for edgéiP;. The notatiord(}, m > 1 denotesthe  corresponding to the centers of the faces. Requiring theeatl
knot interval for them-th edge encountered when rotating the gq. (3) possesses the same property, we have

edgeP;P; counter-clockwise abow;. And a—m refers to ro-

tating clockwise. After subdivision, new knot intervai“].; can S S =
e F= CiPj = CiP;j.
be specified as follows [5] 3 ~
0 _ 1 0 , )
d_i,i+l =i T diisa With the aid of a computer algebra system such as Mathemat-
P =d,=d ica, by solving a system of linear equations with respect to



Cj,j=0,...,n—1, it follows that

G = —
a S axk
where
1 n-1 n-1 n-1 m n-1
aj = 5(1_[ pre + [ [+ D[ T ] | pivw)-
k=0 k=0 Mkl kem

Here indices are taken moduto For example, ifn = 4 (see

Fig. 9), we have

P1 p1 qz P>

qu qu
oOF

Po 03

P()C/qO p3OP3

Figure 9: A four-sided face with its knot intervals.

_ PoP1P2P3 + God10203

ao = 2 + Q1P1P2P3 + Q102P2P3 + 010203P3
a = PoPrP2 pa;- Ao + G2P2P3Po + 9203P3P0 + G20300Po
ay = POP2P2 pg; 0% 1 gspspops + dsGoPoPy + GadodiPy
s = PoP1P2P3 ;r 009109203 + GoPoP1 P2 + ol P1 P2 + JoCaG2Pa

4.2. Convergence and continuity analysis

For an n-sided face at subdivision levéd with vertices

Pk, ..., P

,Py_,, its face pointF and new verticesP!‘*l,i =

0,...,n—1 are all linear combinations of old vertices. The

construction in previous section guarantees & the limit
point corresponding to the extraordinary point (i.e. theteg
of the face.

Theorem 1. The NURDS scheme is convergent at extraordi-

nary points of arbitrary valence.

Proof. By Eq. (4), fori =0,...,n—1, we have:

1
Pt — F|| = HZ(P!‘ +EX, +EF+F) - FH

1” Qi+1 Pi-1 K
=—||(1+ + Pf—F
214+ 5 )Pl - F)

+0+1 Pi-1+ G
i K Pi K ”
+ P ,—-F)+ P.,—F
P+ ) Pi+ 01 Tt )
3 K
< 7 oax, IPy = Fll

3 k+1 0
< (7 max IIPf—Fl

Thenfori=0,...,n-1,

lim P =F .

k—o0

As a consequence, eanfsided face converges to its face point
on the limit surface. O

Figure 10: Configuration surrounding a type F face.

Like the analysis for quadratic NURSSes in [5], only type F
faces are needed to be analyzed@bicontinuity. After at most
two steps of subdivision, the configuration surroundingaeetly
face may be represented as in Fig. 10. In the center lies tiee fa
(of type F)PoP;...Ph_1. Each edge of this face (for example
PiPi.1) is adjacent to a four-sided face of type E with vertices
PiPi.1Ei2Ei1. The neighborhood of each vertBxis completed
by a four-sided face of type V with vertic®E;1CiE_1)2. The
refinement formulas are as follows:

_ 1 1
P :4_1(2+ C+ri—ri—)P + Z |i;>1Cij

1 1
+ Z(Ci—l +ric)Piig + Z(l + Cis1 — i)Pisa,
— 3 3
Bir =g +r)Pi+ g(1-1)Pin
1 1
+ §(1+ ri)Ejl + é(l_ ri)Ejg,
— 3 3 1 1
Ei2 =5MiPi+ g(2- )P+ griEji + o2 - ri)Ej,
- 1
Ci =1—6(9Pi + 3Ei1 + 3Ei,1,2 + Ci).

whererj = dj«1/(pj + dj«1), ] = 0,...,n—1, and indices are
taken modula. For positive knot intervals, it follows that @
ri<lj=0,....,n-1.

Let the control point vector around this type F be represénte
by

M = [PO’ RO Pn—l’ EOl’ EOZ’ sy En—l,lEn—l,Z’ CO sy Cn—l]

andM be the corresponding control point vector after subdivi-
sion. ThenM = S,M, whereS, is a 4 x 4n matrix called the



subdivision matrix We index the eigenvalues &, in order of
decreasing modulus as i =0,1,...,4n- 1.

Note that four-sided faces are not always regular case= sin
non-uniform Doo-Sabin surfaces permit arbitrary knot iinte
vals. Forn = 4, the characteristic polynomial & has the
form
1

_)4

1 1
Ca(t) = (- - (- (- 15

Q@ 1)2 N (ro+r2—1)(rp+rs— 1))
2 16 '
] If (ro+r2—1)(r1 +r3 - 1) < 0, we get two real subdominant Figure 11: (a) A uniform Catmull-Clark-variant Doo-Sabinrface; (b) a
eigenvalues NURDS with a crease.

(ro+r2-1)(r1+r3-1)
4 b

(ro+r2-1)(ri+rs-1)
Ay = .
4
Since|(ro + rz — 1)(r1 + r3 — 1)| < 1, it follows thatlp = 1 >
A1 > A > Az = %
If (ro +r2—1)(r1 + r3 — 1) > 0, one obtains two conjugate
(a) (b)
(c) (d)

A=

+\/_
-

NI NI

complex subdominant eigenvalues

/11=:_l+ \/(ro+f2—1)(|'1+|'3—1)|’

2 4
1 Vlo+re-1)(i+r3-1),
2 4 '

A=

It is easy to know thaflp = 1 > |11 = |d2] > 13 = 7. Us-

ing the analysis techniques in [13], we prove that the pregos

subdivision scheme 8! in both cases. _ o o _
For valencen = 3, similar results hold. Because the sub- [0 12 Poushaus nedes ) ) conve mesn 0o bacree

division matrixS, has no obvious symmetries, it isf@#i¢ult t0 it & dart.

perform an eigenanalysis for extraordinary points wittenak

n > 5. Being analogous to Sederberg et al. [5], numerical ex-

periments and examples show that limit surfacesrat these The shapes in Fig. 11(b) and Fig. 12(d) cannot be obtained

points. using biquadratic NURBS or uniform Doo-Sabin surfaces.

We next consider the configuration surrounding a type F face
of valencen as illustrated in Fig. 10. Just like [11], we as-

ume thatp, = 1000 and all other knot intervals equal 1. For
valence 3< n < 30, we construct subdivision matrices for

4.3. Examples

Since  NURDSes generalize biquadratic NURBS
Catmull-Clark-variant Doo-Sabin surfaces, a modeling-pro

gram basgdl on NURDSIes can handle any NURBS or D00y, qratic NURSSes and NURDSes respectively, and then in-
abin model as a special case. vestigate eigenstructure and continuity using the apresde-

Fig. 11 shows uniform and non-uniform Doo-Sabin surfaces, e i [13] with the help of a computer algebra systenmsuc
generated from a tetrahedron with holes. Fig. 11(a) deplctg,tS Mathematica

a uniform Catmull-Clark-variant Doo-Sabin surface afteuif Fig. 13 plots absolute values of the first four eigenvalues of

refinement steps on the initial control mesh. Fig. 11(b) is an o subdivision matrix for quadratic NURSSes for3n <

example of a NURDS in which three knot intervals along cer4y. Concerning spectrum and continuity, we have the foligwi
tain edges have been set to zero (as labeled), therebyngeati results '

crease along the oval edge on the right.

Fig. 12 is an example of a doughnut model whose initial con- o For 3< n < 30, 10, 1; and.l, may be negative, whilgs is
trol mesh is topologically a rectangular grid. Fig. 12(b)sis a always positive.
uniform biquadratic B-spline surface. Fig. 12(c) is a bidjzdic
NURBS surface with a crease created by setting one row of the ¢ Forn > 15,|1¢| > 1, the subdivision process is divergent.
knot intervals to zero. Fig. 12(d) depicts a NURDS with a dart
formed by setting to zero the knot intervals of appropriate v e For3<n < 14,19 = 1 > |44], the subdivision process is
tices. convergent.
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Figure 13: Absolute values of the first four eigenvalues foadratic NURSSes for 8 n < 30.

e For3<n<l10andn = 12,10 = 1 > |A1] = |12] > A3, can be represented with this surface type. In addition, dve n
quadratic NURSSes a@ continuous at the extraordinary subdivision scheme can be factored into one linear subidivis
vertices. step and one dual step just like biquadratic non-uniform B-

spline subdivision and the Catmull-Clark variant of DodbBa

e Forn =13 and 144y = 1 > |11] > |42] > A3, quadratic subdivision.

NURSSes ar&! continuous at the extraordinary vertices.

In comparison to quadratic NURSSes [5], the NURDSes re-
duce to Catmull-Clark-variant Doo-Sabin surfaces [2] velaer
gquadratic NURSSes degenerate to original Doo-Sabin ssfac

Fig. 14 depicts values of the first four eigenvalues of the sub[1] when all knot intervals are equal. Furthermore, when
division matrix for NURDSes for X n < 30. It follows that all knot intervals are positive, the NURDSes are convergent
at extraordinary points of arbitrary valence while quaidrat
NURSSes may diverge for valences larger than 12. And closed
e For3<n < 30,10 = 1> |14, the subdivision process is form limit point rules are available for NURDSes as well.

convergent.

e Forn=11,1p = 1> |11] > A2 = A3, quadratic NURSSes
are onlyGP continuous at the extraordinary vertices.

e For 3<n< 30,419, 11,12 andAz are all positive.

Although the refinement rules for NURDSes are stationary, it

e For3<n<30,1p=1> 1; = A, > A3, NURDSes ar&? is not easy to analyze the eigenstructure of the subdivisian

continuous at the extraordinary vertices. trix for high valence. Standard analysis techniques uguai
ploit rotational symmetry to transform a large subdivisioa-
trix into a block diagonal matrix [13]. However, the NURDS
scheme is not rotationally symmetric. In future work we hope

In this paper we have introduced new non-uniform Doo-to derive dficient approaches to deal with such schemes. Rig-
Sabin surfaces — NURDSes. Both non-uniform biquadratic Borous analysis fo! continuity for valencen > 5 remains to
spline surfaces and Catmull-Clark-variant Doo-Sabinate$ be investigated.

7

5. Conclusion
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Figure 14: Values of the first four eigenvalues for NURDSes3fg n < 30.
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