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Abstract

Based on an optimal estimate of the convergence rate

of the second order norm, an improved error estimate for

extraordinary Catmull-Clark subdivision surface (CCSS)

patches is proposed. If the valence of the extraordinary ver-

tex of an extraordinary CCSS patch is even, a tighter error

bound and, consequently, a more precise subdivision depth

for a given error tolerance can be obtained. Furthermore,

examples of adaptive subdivision illustrate the practicabil-

ity of the error estimation approach.

Keywords Catmull-Clark subdivision surfaces, Error esti-

mate, Subdivision depth, Adaptive subdivision

1. Introduction

The Catmull-Clark subdivision surface (CCSS) was de-

signed to generalize the bicubic B-spline surface to the

meshes of arbitrary topology [1]. Because a CCSS is de-

fined as the limit of a sequence of recursively subdivided

control meshes, the control mesh after several steps of sub-

division is often used to approximate the limit surface in

applications such as surface rendering, surface trimming,

and surface/surface intersection. It is natural to ask the fol-

lowing questions: How to estimate the error (distance) be-

tween a CCSS and its control mesh? How many (as small

as possible) steps of subdivision are needed to satisfy a

user-specified error tolerance? Because of the exponential

growth in the numbers of mesh faces with successive subdi-

visions, one more or less step may make a great difference

in mesh density. And precise subdivision depth (step) esti-

mation relies on an accurate error estimate.

Optimum distance estimation techniques for regular

CCSS patches are available [8, 4]. Distance estimation for

an extraordinary CCSS patch is more complicated. Cheng

et al. estimated the distance by measuring norms of the first

order differences of the control points of the given extraor-

dinary CCSS patch [4]. Then they improved the estimate by

measuring norms of the second order differences of the con-

trol points [3]. Furthermore, they introduced a matrix based

technique and the two-step convergence rate of second order

norms [2]. If the valence of an extraordinary CCSS patch is

odd, or even and lower than 8, [2] does give better estimate

than [3]. But if the valence is even and higher than 6, [2]

may derive improper results (see Table 1) and even worse

results than [3] (see Table 2 and Table 3).

The key in Cheng et al.’s approaches [3, 2] is the recur-

rence formula of the second order norm. Whether their es-

timate for the convergence rate of the second order norm is

optimum for extraordinary CCSS patches? And how can we

deal with the extraordinary CCSS patches with high even

valences?

In this paper we tackle these problems with an optimiza-

tion method. The optimal convergence rate of the second

order norm can be evaluated by solving constrained mini-

mization problems. Consequently, we find out that Cheng

et al.’s estimate for the convergence rate of the second order

norm is optimum for odd extraordinary CCSS patches, but

not for even ones. And we derive a general error bound for-

mula and show that, for an extraordinary CCSS patch with

an extraordinary vertex of even valence, the optimal conver-

gence rate leads to a sharper distance bound and a smaller

subdivision depth. As an application, adaptive subdivision

is investigated to explain the applicability of our error esti-

mation technique.

2 Definition and notation

Without loss of generality, we assume the initial control

mesh has been subdivided at least twice, isolating the ex-

traordinary vertices so that each face is a quadrilateral and

contains at most one extraordinary vertex. Then the valence

of an extraordinary patch is defined as the valence of its only



extraordinary vertex.

2.1 Distance between patch and control
mesh

Given a control mesh of a Catmull-Clark subdivision sur-

face, for each interior face F, there is a corresponding sur-

face patch S in the limit surface. S can be parameterized

over the unit square Ω = [0, 1] × [0, 1] as S(u, v) [9]. Let

F(u, v) be the bilinear parametrization of F over Ω. For

(u, v) ∈ Ω, we denote by ‖S(u, v) − F(u, v)‖ the distance

between the points S(u, v) and F(u, v). The distance be-

tween a CCSS patch S and the corresponding mesh face F

is defined as the maximum distance between S(u, v) and

F(u, v) [4], that is,

max
(u,v)∈Ω

‖S(u, v) − F(u, v)‖ ,

which is also called the distance between the patch S and

the control mesh.

2.2 Second order norm

Let Π = {Pi : i = 1, 2, . . . , 2n + 8}, be the control

mesh of an extraordinary patch S = S0
0, with P1 being

the extraordinary vertex of valence n. The control points

are ordered following J. Stam’s fashion [9] (Figure 1(a)).

The second order norm of Π, denoted M = M0 = M0
0 ,

is defined as the maximum norm of the following 2n + 10
second order differences (SODs) {αi : i = 1, . . . , 2n+ 10}
of the control points [3]:

M = max{{‖P2i − 2P1 + P2((i+1)%n+1)‖ : 1 ≤ i ≤ n}

∪{‖P2i+1 − 2P2(i%n)+2 + P2(i%n)+3‖ : 1 ≤ i ≤ n}

∪{‖P2 − 2P3 + P2n+8‖, ‖P1 − 2P4 + P2n+7‖,

‖P6 − 2P5 + P2n+6‖, ‖P4 − 2P5 + P2n+3‖,

‖P1 − 2P6 + P2n+4‖, ‖P8 − 2P7 + P2n+5‖,

‖P2n+6 − 2P2n+7 + P2n+8‖,

‖P2n+2 − 2P2n+6 + P2n+7‖,

‖P2n+2 − 2P2n+3 + P2n+4‖,

‖P2n+3 − 2P2n+4 + P2n+5‖}}

= max{‖αi‖ : i = 1, . . . , 2n + 10} .

(1)

By performing a Catmull-Clark subdivision step on Π,

one gets 2n + 17 new vertices P1
i , i = 1, . . . , 2n + 17 (see

Figure 1(b)), which are called the level-1 control points of

S. All these level-1 control points compose the level-1 con-

trol mesh of S: Π1 = {P1
i : i = 1, 2, . . . , 2n+17}. We use

Pk
i and Πk to represent the level-k control points and level-

k control mesh of S, respectively, after applying k subdivi-

sion steps to Π.
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Figure 1. (a) Ordering of control points of an
extraordinary patch. (b) Ordering of new con-

trol points (solid dots) after a Catmull-Clark
subdivision.
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The level-1 control points form four control point sets

Π1
0, Π

1
1, Π

1
2 and Π1

3, corresponding to the control meshes

of the subpatches S1
0,S

1
1,S

1
2 and S1

3, respectively (see Fig-

ure 1(b)), where Π1
0 = {P1

i : 1 ≤ i ≤ 2n + 8}, and the

other three control point sets Π1
1, Π

1
2 and Π1

3 are shown in

Figure 2. S1
0 is an extraordinary patch, but S1

1,S
1
2 and S1

3 are



regular patches. Following the notation in Equation (1), one

can define the second order norms M1
i for S1

i , i = 0, 1, 2, 3,

respectively. M1 = max{M1
i : i = 0, 1, 2, 3} is defined

as the second order norm of the level-1 control mesh Π1.

After k steps of subdivision on Π, one gets 4k control point

sets Πk
i : i = 0, 1, . . . , 4k − 1 corresponding to the 4k sub-

patches Sk
i : i = 0, 1, . . . , 4k − 1 of S, with Sk

0 being the

only level-k extraordinary patch (if n 6= 4). We denote by

Mk
i and Mk the second order norms of Πk

i and Πk, respec-

tively.

3 Recurrence formula of second order norm

The recurrence relation between the second order norms

of the control meshes of S at different subdivision levels

is crucial to the error estimation [3, 2]. The second order

norms M
k+j
0 and M

j
0 satisfy the following inequality

M
k+j
0 ≤ rj(n)Mk

0 , j ≥ 0 , (2)

where rj(n) is called the j-step convergence rate of second

order norm, which depends on n, the valence of the extraor-

dinary vertex, and r0(n) ≡ 1.

With a direct decomposition method [3], Cheng et al.

gave an estimate of one-step convergence rate r1(n) as fol-

lows:

r1(n) =











2
3 , n = 3
18
25 , n = 5
3
4 + 8n−46

4n2 , n > 5

(3)

The second order norm of an extraordinary patch S = S0
0

of valence n can be put in the matrix form as follows [2]:

M = ‖AP‖∞

where A is a second order norm matrix of dimension 2n ∗
(2n + 1)

A =





























−2 1 0 0 0 1 0 0 · · · 0 0
−2 0 0 1 0 0 0 1 · · · 0 0

...

−2 0 0 1 0 0 0 0 · · · 1 0
0 −2 1 0 0 0 0 0 · · · 0 1
0 0 1 −2 1 0 0 0 · · · 0 0

...

0 0 0 0 0 0 0 0 · · · −2 1





























and P is a control point vector

P = [P1,P2,P3, . . . ,P2n+1]
T .

Then the second order norm of the level-k extraordinary

subpatch Sk
0 can be expressed as:

Mk
0 = ‖AΛkP‖∞ ,

where Λ is a subdivision matrix of dimension (2n + 1) ∗
(2n + 1). Cheng et al. proposed an estimate of multi-step

convergence rate rj(n) as follows [2]

rj(n) = ‖AΛjA+‖∞, j ≥ 1 , (4)

where A+ is the pseduo-inverse matrix of A.

However, it is still unknown whether the estimates (3)

and (4) of the convergence rates are optimum for extraor-

dinary CCSS patches. In the following, we derive optimal

estimates for rj(n), j ≥ 1 by solving constrained minimiza-

tion problems.

First we estimate r1(n). Let αk
i , i = 1, 2, . . . , 2n+10 be

the 2n + 10 SODs of Πk
0 , k ≥ 0 defined as in (1). For each

l = 1, 2, . . . , 2n + 10, we can express αk+1
l as the linear

combination of αk
i :

αk+1
l =

2n+10
∑

i=1

xl
iα

k
i ,

where xl
i, i = 1, 2, . . . , 2n + 10 are undetermined real co-

efficients. It follows that

‖αk+1
l ‖ ≤

2n+10
∑

i=1

‖xl
iα

k
i ‖ ≤

2n+10
∑

i=1

|xl
i|‖α

k
i ‖ ≤

2n+10
∑

i=1

|xl
i|M

k
0 .

Then we can bound ‖αk+1
l ‖ by cl(n)Mk

0 , where cl(n) is the

solution of the following constrained minimization problem

cl(n) = min
2n+10
∑

i=1

|xl
i| ,

s.t.

2n+10
∑

i=1

xl
iα

k
i = αk+1

l .

(5)

Since Mk+1
0 = max{‖αk+1

l ‖ : 1 ≤ l ≤ 2n + 10}, we get

an estimate for r1(n) as follows

r1(n) = max
1≤l≤2n+10

cl(n) .

Following the analysis in the complete version of [3], the

E-V-E SODs with the extraordinary vertex Pk+1
1 as their

center points, have the slowest convergence rate. By sym-

metry, we only need to solve one constrained minimization

problem concerned with αk+1
1 = Pk+1

2 − 2Pk+1
1 + Pk+1

6 .

Then it follows that

r1(n) = c1(n) .

With the help of the symbolic computation of Mathematica,

we analyze the values of c1(n) and obtain the following re-

sult on one-step convergence rate. The proof is shown in

Appendix B.



Lemma 1 If Mk
0 represents the second order norm of the

level-k extraordinary subpatch Sk
0 , k ≥ 0, then

Mk+1
0 ≤ r1(n)Mk

0 ,

where r1(3) = 2
3 , r1(5) = 18

25 , and

r1(n) =
3

4
+

2

n
−











23
2n2 , if n is odd and n > 5
16
n2 , if n can be divided by 4
12
n2 , if n is even but can’t be divided by 4

Similarly, we estimate rj(n) by solving the constrained

minimization problem (5) with αk+1
1 replaced by α

k+j
1 .

Following from the numerical results (see Table 1), we have

Lemma 2 If Mk
0 represents the second order norm of the

level-k extraordinary subpatch Sk
0 , k ≥ 0, then it follows

that

M
k+j
0 ≤ rj(n)Mk

0 , j ≥ 1 ,

where

rj(n) ≤ ‖AΛjA+‖∞, j ≥ 1 .

Here, equality holds only if n is odd.

The above lemmas work in a more general sense, that is,

if Mk
0 is replaced with Mk, the second order norm of the

level-k control mesh Πk, the estimates for rj(n) still work.

Table 1 shows the comparison results of the convergence

rates of the second order norm. If the valence n is odd, our

estimates equal to the ones of [3, 2]. But if n is even, our

technique gives better estimates of the convergence rates.

Especially, for one-step convergence rate, if n is even and

n ≥ 8, [2] gives the wrong estimate r1(n) > 1, which

conflicts with the basic fact r1(n) < 1.

4 Distance bound

By iteratively performing Catmull-Clark subdivision on

S’s extraordinary subpatch, we get a sequence of regular

patches {Sm
b }, m ≥ 1, b = 1, 2, 3, and a sequence of

extraordinary patches {Sm
0 }, m ≥ 0. If we use Ωm

b to

represent the parameter space corresponding to Sm
b then

{Ωm
b }, m ≥ 1, b = 1, 2, 3, form a partition of the unit

square Ω = [0, 1]× [0, 1] (see Figure 3) with

Ωm
1 =

[

1

2m
,

1

2m−1

]

×

[

0,
1

2m

]

,

Ωm
2 =

[

1

2m
,

1

2m−1

]

×

[

1

2m
,

1

2m−1

]

,

Ωm
3 =

[

0,
1

2m

]

×

[

1

2m
,

1

2m−1

]

.

And we denote the parameter space corresponding to the

extraordinary subpatch Sm
0 by

Ωm
0 =

[

0,
1

2m

]

×

[

0,
1

2m

]

.

n 3 5 6 7

r1(n) 0.666667 0.720000 0.750000 0.801020

r1(n)[3] 0.666667 0.720000 0.763889 0.801020

r1(n)[2] 0.666667 0.720000 0.888889 0.801020

r2(n) 0.291667 0.401625 0.468750 0.512117

r2(n)[2] 0.291667 0.401625 0.509838 0.512117

r3(n) 0.122396 0.222541 0.279297 0.314510

r3(n)[2] 0.122396 0.222541 0.287929 0.314510

n 8 10 12 16

r1(n) 0.750000 0.830000 0.805556 0.812500

r1(n)[3] 0.820313 0.835000 0.836806 0.830078

r1(n)[2] 1.007810 1.055000 1.229170 1.333980

r2(n) 0.484375 0.559750 0.549190 0.561462

r2(n)[2] 0.569092 0.621375 0.687645 0.732574

r3(n) 0.302734 0.357497 0.360156 0.375187

r3(n)[2] 0.331848 0.376003 0.410135 0.439940

Table 1. Comparison of the convergence
rates ri(n), i = 1, 2, 3
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Figure 3. Ω-partition of the unit square.

The parametrization for S(u, v) is constructed as follows

[9]. For any (u, v) 6= (0, 0) ∈ Ω, find the Ωm
b that contains

(u, v). m and b can be computed as follows:

m(u, v) = min
{⌈

log 1
2

u
⌉

,
⌈

log 1
2

v
⌉}

b(u, v) =







1, if 2mu ≥ 1 and 2mv ≤ 1
2, if 2mu ≥ 1 and 2mv ≥ 1
3, if 2mu ≤ 1 and 2mv ≥ 1

The transformation (u, v) 7→ (um, vm) maps the tile Ωm
b

onto the unit square. Here,

tm = (2mt)%1 =

{

2mt, if 2mt ≤ 1
2mt − 1, if 2mt > 1

, (6)

where t is u or v. Then the value of S(u, v) is equal to the



value of the B-spline patch Sm
b at (um, vm), i.e.,

S(u, v) = Sm
b (um, vm) .

Let L(u, v), Lm
b (u, v) and Lk

0(u, v) be the bilinear

parametrization of the center faces of the control meshes

of S, Sm
b and Sk

0 , respectively. For (u, v) ∈ Ωm
b , the dis-

tance between an extraordinary CCSS patch S(u, v) and the

corresponding mesh face L(u, v) can be bounded as [3]

‖S(u, v) − L(u, v)‖ ≤ ‖Sm
b (um, vm) − Lm

b (um, vm)‖

+ ‖Lm
b (um, vm) − Lm−1

0 (um−1, vm−1)‖

+

m−2
∑

k=0

‖Lk+1
0 (uk+1, vk+1) − Lk

0(uk, vk)‖

,

(7)

where um and vm are defined in (6).

Since Sm
b is a regular patch, we have [4]

‖Sm
b (u, v) − Lm

b (u, v)‖ ≤
1

3
Mm

b , (8)

where Mm
b is the second order norm of Sm

b . To estimate the

right hand side of (7), we need the following two lemmas.

Lemma 3 If (u, v) ∈ Ωm
b , b = 1, 2, 3 then

∥

∥Lm
b (um, vm) − Lm−1

0 (um−1, vm−1)
∥

∥ ≤
1

4
Mm−1

0 ,

where Mm−1
0 is the second order norm of Sm−1

0 .

bc bc
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0

0 1

23

P5P4

P1

L
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Figure 4. Quarters of Lm−1
0

Proof. For the case b = 1, if (u, v) ∈ Ωm
b , then

(um−1, vm−1) ∈ [12 , 1] × [0, 1
2 ] and (um, vm) ∈ [0, 1] ×

[0, 1]. This means that Lm−1
0 (um−1, vm−1), (u, v) ∈ Ωm

1

corresponds to the 1st quarter of Lm−1
0 (see Figure 4), i.e.,

Lm−1
0 (um−1, vm−1) =Lm−1

0 (um, vm)

=(1 − vm)[(1 − um)P1 + umP6]

+ vm[(1 − um)P4 + umP5]

,

where P1 = 1
2 (Pm−1

1 + Pm−1
6 ), P6 = Pm−1

6 , P4 =
1
4 (Pm−1

1 + Pm−1
4 + Pm−1

5 + Pm−1
6 ), P5 = 1

2 (Pm−1
5 +

Pm−1
6 ).
Referring to Figure 1(b), we have

Lm
1 (um, vm) =(1 − vm)[(1 − um)Pm

6 + umPm
2n+4]

+ vm[(1 − um)Pm
5 + umPm

2n+3]
.

It is easy to know that Pm
5 = P4, i.e., ‖Pm

5 − P4‖ = 0 .

And

∥

∥Pm
6 − P1

∥

∥

=
1

16

∥

∥Pm−1
4 − 2Pm−1

1 + Pm−1
8 + Pm−1

5 − 2Pm−1
6 + Pm−1

7

∥

∥

≤
1

8
Mm−1

0 .

Similarly, we get

∥

∥Pm
2n+3 − P5

∥

∥ ≤
1

8
Mm−1

0 ;
∥

∥Pm
2n+4 − P6

∥

∥ ≤
1

4
Mm−1

0 .

In fact, we can also solve appropriate constrained minimiza-

tion problems similar to (5) to obtain the same bound esti-

mates.

Then it follows that

∥

∥Lm
1 (um, vm) − Lm−1

0 (um−1, vm−1)
∥

∥

=
∥

∥

∥
Lm

1 (um, vm) − Lm−1
0 (um, vm)

∥

∥

∥

≤

[

1

8
(1 − vm)(1 − um) +

1

4
(1 − vm)um +

1

8
vmum

]

Mm−1
0 .

By Proposition 1 given in Appendix A, we have

∥

∥Lm
1 (um, vm) − Lm−1

0 (um−1, vm−1)
∥

∥ ≤
1

4
Mm−1

0 .

For the cases b = 2 and b = 3, proofs are analogous.

Remark 1 The derivation in [3] has a mistake, which leads

to the different bounds for b = 2 and b = 1 or 3. Further-

more, our proof is more straightforward and can be eas-

ily generalized to other subdivision surfaces such as Doo-

Sabin subdivision surfaces [5] and Loop subdivision sur-

faces [7].

In analogy to the proof of Lemma 3, we have

Lemma 4 [3] If (u, v) ∈ Ωm
b , then for any 0 ≤ k < m− 1

we have

∥

∥Lk+1
0 (uk+1, vk+1) − Lk

0(uk, vk)
∥

∥ ≤
1

min{n, 8}
Mk

0 ,

where Mk
0 is the second order norm of Sk

0 and L0
0 = L.



By applying Lemma 3, Lemma 4 and (8) on the inequal-

ity (7), it follows that if (u, v) ∈ Ωm
b ,

‖S(u, v) − L(u, v)‖

≤
1

3
Mm

b +
1

4
Mm−1

0 +
1

min{n, 8}

m−2
∑

k=0

Mk
0

≤
1

3
Mm

b +
1

4
Mm−1

0 +
1

min{n, 8}

m−2
∑

k=0

rk(n)M0

(9)

Here, rk(n) is the k-step convergence rate of second order

norm.

Since r1(n) < 1 and rk(n) ≤ (r1(n))k , the infinite se-

ries
∑∞

k=0 rk(n) ≤
∑∞

k=0(r1(n))k = 1
1−r1(n) . Note that

limm→∞ Mm
b = limm→∞ Mm−1

0 = 0. Let m → ∞ in

(9), , it follows that

‖S(u, v) − L(u, v)‖ ≤
1

min{n, 8}

∞
∑

k=0

rk(n)M0 .

Because {Ωm
b }, m ≥ 1, b = 1, 2, 3, form a partition of Ω,

we have the following theorem on the maximal distance be-

tween S(u, v) and L(u, v), (u, v) ∈ Ω:

Theorem 1 The distance between an extraordinary CCSS

patch S and the corresponding mesh face F is bounded by

max
(u,v)∈Ω

‖S(u, v) − L(u, v)‖ ≤ C∞(n)M0 ,

where

C∞(n) =
1

min{n, 8}

∞
∑

i=0

ri(n) ,

and M0 = M is the second order norm of S.

Since there are no explicit expressions for ri(n), i > 1,

the above theorem just has theoretical value. Provided that

rs(n), s = 1, . . . , a (a ≥ 1) have been computed with the

method described in Sect. 3, then for i = al + j, 0 ≤ j ≤
a − 1, l ≥ 0, it follows that ri(n) ≤ rj(n)(ra(n))l. Thus

∞
∑

i=0

ri(n) =
∞
∑

l=0

a−1
∑

j=0

ral+j(n)

≤

a−1
∑

j=0

∞
∑

l=0

rj(n)(ra(n))l =

∑a−1
j=0 rj(n)

1 − ra(n)
.

We get the following practical corollary for error estima-

tion.

Corollary 1 The distance between an extraordinary CCSS

patch S and the corresponding mesh face F is bounded as

max
(u,v)∈Ω

‖S(u, v) − L(u, v)‖ ≤ Ca(n)M0, a ≥ 1 ,

n 3 5 6 7

C1 1.000000 0.714286 0.666667 0.717947

C1[3] 1.000000 0.714286 0.705882 0.717949

C2 0.784314 0.574890 0.549020 0.527357

C2[2] 0.784314 0.574890 0.642267 0.527357

C3 0.743818 0.545784 0.513099 0.482061

n 8 10 12 16

C1 0.500000 0.735294 0.642859 0.666667

C1[3] 0.695652 0.757576 0.765957 0.735632

C2 0.424242 0.519591 0.500642 0.516631

C2[2] 0.582436 0.678442 0.892082 1.09095

C3 0.400560 0.464930 0.460023 0.474935

Table 2. Comparison of Ca(n) (a = 1, 2, 3)

where

Ca(n) =
1

min{n, 8}

∑a−1
j=0 rj(n)

1 − ra(n)
,

and M0 = M is the second order norm of S.

The corollary is a generalization of Lemma 7 in [3] and

Lemma 6 in [2], corresponding to the case a = 1 and a = 2
respectively. But the estimates of rj(n) may be different

from each other. Table 2 gives the comparison results of

the bound constants Ca(n) (a = 1, 2, 3). Because Ca(n)
is determined by rj(n), we draw a similar conclusion as

rj(n): if n is even, our distance bound is sharper than the

results of [3, 2]. And if n is quite large such as 12 and 16,

[2] may derive an even worse bound than [3].

5 Applications

5.1 Subdivision depth estimation

Because the distance between a level-k control mesh and

the surface patch S is dominated by the distance between

the level-k extraordinary subpatch and its corresponding

control mesh, which, according to Corollary 1, is

‖S(u, v) − Lk(u, v)‖ ≤ Ca(n)Mk ,

where Mk is the second order norm of S’s level-k control

mesh. Assume ǫ > 0 and k = alj + j, 0 ≤ j ≤ a − 1, let

‖S(u, v) − Lk(u, v)‖ ≤ Ca(n)rk(n)M0

≤ Ca(n)(ra(n))lj rj(n)M0 < ǫ ,

then it follows that lj ≥
⌈

log 1
ra(n)

(

rj(n)Ca(n)M0

ǫ

)⌉

. Con-

sequently, we have the following subdivision depth estima-

tion formula for extraordinary CCSS patches.



Theorem 2 Given an extraordinary CCSS patch S and an

error tolerance ǫ > 0, after

k = min
0≤j≤a−1

alj + j

steps of subdivision on the control mesh of S, the distance

between S and its level-k control mesh is smaller than ǫ.

Here,

lj =

⌈

log 1
ra(n)

(

rj(n)Ca(n)M0

ǫ

)⌉

, 0 ≤ j ≤ a−1, a ≥ 1 ,

where rj(n) and Ca(n) are the same as in Corollary 1,

M0 = M is the second order norm of S.

Theorem 2 is also a generalization of Theorem 8 in [3] and

Theorem 7 in [2]. Table 3 shows the comparison results of

subdivision depths computed by the previous techniques [3,

2] and our approach. Two error tolerances 0.01 and 0.001

are considered and the second order norm M0 is assumed

to be 2. Test results show that the new approach has a 20%

improvement over the matrix based technique if n is even.

And one can further decrease the depth by increasing the

value of a. Note that if n is quite large such as 16 and 20,

[2] may give a worse depth estimate than [3].

ǫ = 0.01 ǫ = 0.001
n [3] [2] a=2 a=3 [3] [2] a=2 a=3

3 14 9 9 8 19 12 12 11

5 16 11 11 10 23 16 16 15

6 19 16 13 12 28 22 19 17

7 23 14 14 12 33 22 22 18

8 26 18 13 12 37 26 19 17

9 27 16 16 14 40 24 24 20

10 28 22 17 14 41 32 24 21

12 29 28 16 14 42 40 24 21

16 27 36 17 15 40 50 25 21

20 26 40 17 15 37 56 25 22

Table 3. Comparison of subdivision depths

5.2 Adaptive subdivision

In the following, we explain the the practicability of our

error estimation approach.

The second order norms of the extraordinary CCSS

patches illustrated in Fig. 5 (1a) and (2a) are both 2.83843.

Let a = 3 and the error tolerance ǫ = 0.01 . Accord-

ing to Theorem 2, the subdivision depths are 8 and 12,

respectively. This means, if subdivide the control mesh

of such an patch uniformly, we need 48 = 65, 536 or

412 = 16, 777, 216 faces to approximate the limit patch to

satisfy the given error precision. Too many faces are re-

quired to approximate just one patch. Therefore in such

circumstances the uniform subdivision is impractical.

(1a) Control mesh (n = 3). (2a) Control mesh (n = 6).

(1b) ECS, 148 faces. (2b) ECS, 211 faces.

(1c) DCS, 244 faces. (2c) DCS, 421 faces.

Figure 5. Adaptive subdivision of extraordi-

nary patches.

Notice that after subdivision an extraordinary patch is

partitioned into an sequence of regular subpatches and an

extraordinary subpatch, and regular patches need much less

subdivision steps to satisfy the same precision. For exam-

ple, the subdivision depth for a regular patch with the sec-

ond order norm M = 2.83843 is 4. Then we can adopt the

following two adaptive subdivision strategies:

1. Error controlled subdivision (ECS): Each time before

subdividing a (sub)patch, we estimate its error accord-

ing to Corollary 1. If the error is bigger than the toler-

ance, perform one step of subdivision; otherwise, stop.

2. Depth controlled subdivision (DCS): First estimate the

subdivision depth for each patch of a CCSS accord-

ing to Theorem 2. For an extraordinary (sub)patch,

if its error is smaller than the tolerance, stop; other-

wise, perform one step of subdivision and reestimate

the subdivision depths of its four subpatches. For a

regular (sub)patch, if its subdivision level is equal to

the estimated subdivision depth, stop; otherwise per-

form one step of subdivision.

Figure 5 illustrates examples of adaptive subdivision on



two extraordinary CCSS patches, whose valences are 3 and

6 respectively. Fig. 5 (1b) and (2b) are the meshes after er-

ror controlled subdivision, while Fig. 5 (1c) and (2c) are the

meshes after depth controlled subdivision. The distances

(errors) between these approximate meshes and the limit

patches are all smaller than ǫ = 0.01. Both the two types of

adaptive subdivision achieve significant improvement over

uniform subdivision in the number of mesh faces. How-

ever, at the cost of relatively more error estimation times,

error controlled subdivision performs better than depth con-

trolled subdivision in tessellation and the number of faces.

The examples also show that our error estimate is prac-

tical for extraordinary CCSS patches, though the estimated

subdivision depths in Table 3 are too large to be applicable

at first sight.

6 Conclusions

A new optimization based technique is presented to

study the convergence rate of the second order norm of ex-

traordinary CCSS patches. By solving constrained mini-

mization problems, the optimal convergence rates are de-

rived. With a general distance bound formula, improved er-

ror estimate for an extraordinary CCSS patch is obtained if

the valence of the extraordinary vertex is even. As a result,

more precise subdivision depths for a given error tolerance

can be obtained. Experiment results show that the new ap-

proach improves the matrix based technique [2] by about

20% if the valence is even.

Though, for an extraordinary patch, the slow conver-

gence rate results in a too large subdivision depth to apply

uniform subdivision, adaptive subdivision is shown to be

effective to produce a high precision approximation.

Given a control mesh of a CCSS, pushing the control

points to their limit positions produces a limit mesh of the

CCSS. In general, a limit mesh approximates the limit sur-

face better than the corresponding control mesh. We explore

the distance between a Catmull-Clark subdivision surface

and its limit mesh in another paper [6].

Appendix A: a proposition

Proposition 1 Assume ai ≥ 0, i = 0, 1, 2, 3, the maximum

of the bilinear function f(u, v) = (1−v)[(1−u)a0+ua1]+
v[(1 − u)a2 + ua3], (u, v) ∈ [0, 1]× [0, 1] is

max
0≤u,v≤1

f(u, v) = max{a0, a1, a2, a3} .

Proof. Fix u, then

max
0≤v≤1

f(u, v) = max{(1−u)a0+ua1, (1−u)a2 +ua3} .

Since max0≤u≤1(1 − u)a0 + ua1 = max{a0, a1} and

max0≤u≤1(1 − u)a2 + ua3 = max{a2, a3}, we have

max
0≤v≤1

f(u, v) = max{a0, a1, a2, a3} .

This completes the proof.

Appendix B: proof of Lemma 1

Assisted by the symbolic computation of Mathematica,

we directly have c1(3) = 2
3 , c1(5) = 18

25 .

In the actual computation process, for αk+1
1 = Pk+1

2 −
2Pk+1

1 + Pk+1
6 , we only need to express it as the linear

combination of 2n SODs of Πk
0 that involve vertices in the

1-ring of Pk
1 , that is, the first 2n SODs in (1) :

βk+1 =

2n
∑

i=1

xiα
k
i .

Furthermore, by symmetry, there will be only n + 1 (if n is

odd) or n + 2 (if n is even) undetermined coefficients.

Case 1. n is odd and n > 5, when c1(n) is reached, it

follows that

x1 =
1

2
−

7

4n2
,

x2 = xn =
1

16
−

7

4n2
,

xj = −
7

4n2
, j = 3, . . . , n − 1 ,

xn+2 = x2n =
1

16
−

1

4n2
,

xn+j = −
1

4n2
, j = 1, 3, . . . , n − 1 .

Then

c1(n) =

2n
∑

i=1

|xi| =
3

4
+

2

n
−

23

2n2
.

Case 2. n is even and can be divided by 4, when c1(n) is

reached, it follows that

x1 =
1

2
−

4

n2
,

x4j−1 = 0, j = 1, . . . ,
n

4
,

x4j+1 = −
4

n2
, j = 1, . . . ,

n

4
− 1 ,

x2 = xn =
1

16
−

3

2n2
,

x2j = −
3

2n2
, j = 2, . . . ,

n

2
− 1 ,

xn+2 = x2n =
1

16
−

1

2n2
,

xn+2j = −
1

2n2
, j = 2, . . . ,

n

2
− 1 ,

xn+2j−1 = 0, j = 1, . . . ,
n

2
.



Then

c1(n) =

2n
∑

i=1

|xi| =
3

4
+

2

n
−

16

n2
.

Case 3. n is even and cannot be divided by 4, when c1(n)
is reached, it follows that

x1 =
1

2
−

2

n2
,

x2j+1 = −
2

n2
, j = 1, . . . ,

n

2
− 1 ,

x2 = xn =
1

16
−

3

2n2
,

x2j = −
3

2n2
, j = 2, . . . ,

n

2
− 1 ,

xn+2 = x2n =
1

16
−

1

2n2
,

xn+2j = −
1

2n2
, j = 2, . . . ,

n

2
− 1 ,

xn+2j−1 = 0, j = 1, . . . ,
n

2
.

Then

c1(n) =
2n
∑

i=1

|xi| =
3

4
+

2

n
−

12

n2
.

This completes the proof.
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