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Abstract. We present a novel algorithm that applies conics to realize reliable
camera calibration. In particular, we show that a single view of two coplanar
circles is sufficiently powerful to give a fully automatic calibration framework
that estimates both intrinsic and extrinsic parameters. This method stems from
the previous work of conic based calibration and calibration-free scene analysis.
It eliminates many a priori constraints such as known principal point, restric-
tive calibration patterns, or multiple views. Calibration is achieved statistically
through identifying multiple orthogonal directions and optimizing a probability
function by maximum likelihood estimate. Orthogonal vanishing points, which
build the basic geometric primitives used in calibration, are identified based on
the fact that they represent conjugate directions with respect to an arbitrary circle
under perspective transformation. Experimental results from synthetic and real
scenes demonstrate the effectiveness, accuracy, and popularity of the approach.

1 Introduction

As an essential step for extracting metric 3D information from 2D images, camera cal-
ibration keeps an active research topic in most computer vision applications[9]. Much
work has been devoted to camera calibration. They can be classified into two cate-
gories: (1D, 2D or 3D) Calibration pattern based algorithms, and multiple view based
self-calibration approaches [15,19].

Conics and quadrics are widely accepted as most fundamental patterns in computer
vision due to their elegant properties such as simple and compact algebraic expression,
invariance under projective transformation, and robustness to image noise. Conics have
long been employed to help perform camera calibration and pose estimation [6]. The
strategy of using spheres as calibration pattern also draws more and more attention in
recent years [1].

Vanishing point and vanishing line also play important roles in a lot of calibration
and scene analysis work[12,14]. Under the assumption of zero skew and unit aspect
ratio, all intrinsic parameters can be solved from the vanishing points of three mutually
orthogonal directions in a single image[3]. Multiple patterns or views can be employed
to perform calibration in the cases where not all three vanishing points are available
from a single view.

Although recent research has come up with fruitful achievements, most work suffers
from the problems of multiple views, restricted patterns or incompleteness of solutions
[5,13,18]. Two major obstacles are the mandatory requirements of multiple views and
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non-planar scene structures. In this paper, we make an attempt to calibrate the camera
from a single image of planar scene. In our approach, coplanar circles are adopted as
basic calibration patterns and vanishing points function in a brand new way. Conic based
planar rectification[11] and conic based pose estimation[4] are two previous approaches
most related to our work. The work of [4] estimates the focal length and the camera pose
from two coplanar circles in the image. However, this method implicitly assumes that
the principal point is known beforehand and cannot treat non-unit aspect ratio. The work
of [11] makes accurate Euclidean measures from coplanar circles in a calibration-free
manner. Nevertheless, the analysis is limited on the target plane and cannot be extended
to applications in need of camera parameters.

In our work, we propose a full calibration scheme which statistically estimates the
focal length, the principal point, the aspect ratio as well as the extrinsic parameters. In
particular, we show that circle is a powerful conic in that a single view of two coplanar
circles is capable of providing adequate information to do metric calibration. A coarse
pipeline of our algorithm is as follows: First, calibration-free planar rectification re-
ported in [11] is performed and extended to recover the vanishing line, the centers of the
circles and many orthogonal vanishing point pairs. Second, under different guesses of
the principal point the distribution of the focal length are computed from all orthogonal
vanishing point pairs. Third, based on the previously computed focal length distribution
a statistical optimization routine is designed to estimate the focal length, the principal
point and the aspect ratio simultaneously. Fourth, the conic based pose estimation[4,6]
are employed to compute the extrinsic parameters. Finally, the calibration result is vali-
dated by comparison with the ground truth for synthetic scenes or by augmented reality
tests for real scenes.

The major advantage of our work lies in that the algorithm uses only a single image
of simple planar scene to achieve a full solution of camera calibration. Therefore, the
scene requirement is low in comparison with previous methods. This approach is very
practical and works well for many scenes which previous methods fail to treat.

The rest of the paper is organized as follows. Section 2 briefly reviews and extends
the previous work of coplanar circles based scene analysis. Section 3 elaborates a fea-
sible scheme which statistically estimates the focal length, the principal point and the
aspect ratio simultaneously. Some discussions are also provided in this section. Section
4 presents the experimental results on both synthetic and real scenes. Finally, conclud-
ing remarks are given in Section 5.

2 Preliminaries

We will present a calibration algorithm step by step under the practical assumption of
zero skew. Our algorithm solves the camera projection matrix P = K[R|t] where K is
the zero-skew calibration matrix containing 4 intrinsic parameters as defined in equation
(1) and the metric matrix [R|t] fully encodes the 6 extrinsic parameters.

K =

⎛
⎝

αf 0 u
0 f v
0 0 1

⎞
⎠ (1)
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We first briefly introduce some related work. Throughout the discussion we adopt
the homogeneous presentation which is standard in algebraic projective geometry [17].

In [11] it is suggested that under perspective transformation the images of the two
circular points on a plane, I = (1, i, 0)T and J = (1, −i, 0)T , can be computed by
solving the intersection of the images of two coplanar circles, which have the following
forms under homogeneous presentation.

a1x
2 + b1xy + c1y

2 + d1xw + e1yw + f1w
2 = 0

a2x
2 + b2xy + c2y

2 + d2xw + e2yw + f2w
2 = 0

(2)

By solving equation (2) the images of the two circular points, I ′ and J ′, can be com-
puted as

I ′ = (x0, y0, 1)
J ′ = (x0, y0, 1)

(3)

where (x0, y0) are the roots of equation (2) corresponding to the circular points. After-
wards the vanishing line is computed as the cross product of the two circular points:

l′∞ = I ′ × J ′ = (y0 − y0, x0 − x0, x0y0 − x0y0) (4)

Notice that the vanishing line is a real line although the entries of I ′ and J ′ are always
complex.

In [4] an algorithm is addressed to estimate the focal length and the camera pose
from two coplanar circles. Unfortunately the principal point has to be known a priori
and the aspect ratio is fixed to be 1.0 for this algorithm to take effect. The attempt of
using this constraint solely to estimate the principal point and the focal length at the
same time results in large errors, especially in the presence of non-unit aspect ratio. It is
also mentioned in [10] that small changes in the estimated principal point may severely
degrade the quality of reconstruction. Therefore, some alternative algorithm is desired
to give a reliable estimate of the principal point as well as the aspect ratio.

By integrating and extending the ideas of the above approaches, we propose a cal-
ibration scheme which simultaneously estimates the focal length, the principal point,
and the aspect ratio. The algorithm is outlined in Section 3.

3 Statistical Camera Calibration

In this section, we present a step-by-step framework that benefits from conjugate direc-
tion computation and fully calibrates the camera. We start from Some preparing theories
and give an orthogonal direction identification algorithm based on coplanar circles [17].

3.1 Orthogonal Vanishing Point Pairs Identification

To make full use of the geometric cues in the image we turn to the following fact: the
line at the infinity, l∞ , is the polar line of the circle center, oi, of an arbitrary circle
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Fig. 1. Vanishing line and orthogonal point pair computation under original and perspective view.
v1 and v2 are orthogonal vanishing points.

C on the plane. In other words, oi and l∞ satisfy the pole-polar relation described in
equation (5).

l∞ = (l1, l2, l3)T = Coi =

⎡
⎣

a b/2 d/2
b/2 c e/2
d/2 e/2 f

⎤
⎦

⎡
⎣
xi

yi

zi

⎤
⎦ (5)

A corollary of the above fact is that two orthogonal directions are conjugate to each
other with respect to any circle on the plane. Note that a planar direction can be rep-
resented by the corresponding point at infinity. Accordingly, given a circle C and the
line at infinity l∞ on the plane, we can freely choose one point at infinity, v, on l∞ and
determine another point at infinity v′ in the orthogonal direction of v using the conju-
gate property of the two directions. The calculation is formulated with the following
equations under homogeneous representation.

l = Cv, v′ = l × l∞ (6)

That is, the orthogonal direction of a given point at infinity can be computed by solving
the intersection of its polar line, l, and the line at infinity, l∞. All the above computa-
tions are based on the pole-polar relationship, which is invariant under projective trans-
formation. Consequently, the process can be easily transported to determine as many
conjugate vanishing point pairs as we want in a perspective view. An illustration of
these computations is given in Figure 1. With an image of two coplanar circles, the van-
ishing line can be computed using equations (2-4). Then many orthogonal directions
can be computed using equation (6). This paves the way for our statistical calibration
framework, which will be detailed in the next section.

3.2 Statistical Calibration by Maximum Likelihood Estimate

For convenience we first consider the camera model with unit aspect ratio. In the Carte-
sian image coordinate if the position of the principal point p(x0, y0) is given, then for
each freely chosen vanishing point v(x, y), a corresponding vanishing point v′(x′, y′),
which represents the orthogonal direction of v, can be identified on the vanishing line
using equation (6). Moreover, according to the orthogonal property of v and v′, there is
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a unique focal length corresponding to specified p, v, and v′, which can be computed
from the following equation [3].

f =
√

−(x − x0)(x′ − x0) − (y − y0)(y′ − y0) (7)

Different orthogonal vanishing point pairs lead to different estimated focal lengths.
Therefore, for each guessed principal point p and a set of orthogonal vanishing points
V = {{v1, v

′
1}, {v2, v

′
2}, ...{vn, v′n}} , we can estimate a corresponding set of focal

lengths F = {f1, f2, ...fn}. Our basic idea is to employ the set F containing large
amounts of estimated f values to statistically put constraint on the principal point.

We reasonably expect that, if the principal point is correctly estimated, then the f
values in the F set surely form a densely distributed cluster. On the contrary, if the
guessed principal point is far from the correct position, then the distribution of the focal
lengths computed by equation (7) is more likely quite sparse. Therefore, the distribution
of the entries of the F set provides a confidence measure of the guess about the principal
point (x0, y0). Naturally, the variance of the distribution, D(F ), is a good candidate
to measure such confidence and evaluate the goodness of the guess. In other words,
although the probability density function P (x0, y0) is hidden from us it can be measured
through the observable focal length distribution D(F ). Smaller D(F ) corresponds to
higher confidence of (x0, y0). Under this formulation we can use D(F ) to characterize
the probability density function of the principal point and perform calibration through
maximum likelihood estimate. Note that F is determined by (x0, y0) and should be
more strictly written as F (x0, y0). We take D(F ) as the cost function and try to solve
the following optimization problem:

Minimize(x0,y0)(D(F (x0, y0))) (8)

Under this formulation, from every guess about the principal point a confidence value
can be estimated and the corresponding focal length can be computed. An optimization
routine is required to seek the minimum of equation (8), which corresponds to the max-
imum likelihood estimate of the intrinsic parameters (x0, y0, f). In our study the above
statistical function is not easily differentiated analytically. So a derivative-free opti-
mizer is preferred. The downhill simplex method is a good candidate for this type of
optimization [16]. In addition, Experiments show that a lot of local minimums exist in
the solution space. We solve this problem by employing multiple initial points. Namely,
the optimization is repeated several times with multiple randomly chosen starting points
and the best result produced is adopted as the final solution. This strategy ensures the
reliability and robustness. After the principal point (u, v) and the focal length f are de-
termined, the conic based pose estimate algorithm in [4,8] is employed to calculate the
extrinsic parameters. This completes a full single-view based calibration framework.

3.3 Taking Aspect Ratio into Account

Having made the above calibration algorithm work, adding an extra intrinsic parameter,
i.e., the scale factor α, becomes straightforward. All we need to do is just introduce α as
a fourth unknown variable into the optimization routine. During optimization, for each
guessed value of the scale factor, the image is first scaled horizontally to give a corrected
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’ideal image’. Afterwards the ’ideal image’ is taken as the input of the optimization
program. Due to the fact that the 4 intrinsic parameters (u, v, f, α) are somewhat tightly
coupled and are not easy to be estimated separately with high precision [2], the risk
of instability slightly rises compared with the algorithm considering no scale factor.
Nonetheless, the power of the downhill simplex method with multiple initializations
effectively prevents such degradation and a good solution can always be reached.

Table 1 briefly describes the major steps of the calibration scheme addressed in this
section.

Table 1. The pipeline of our calibration scheme

step Approach Techniques Equations

1
Solve the vanishing line and a group of
orthogonal vanishing point pairs

Ellipse detecting and fitting, Algebraic
equation solving, pole-polar computa-
tion

(2-6)

2
Compute an optimal focal length f for
each given guess of (u, v, α)

Vanishing point and vanishing line
based intrinsic parameter calibration

(7)

3 Use the distribution of the focal lengths
to build an error function based on MLE

Probability density function based
maximum-likelihood estimate

(8)

4
Nonlinear optimization by iteratively
executing steps 2-4, until convergence

Downhill simplex method with multiple
initialization

Ref. [16]

5
Extrinsic parameter calibration from
optimal (u, v, α, f) Conic based camera pose estimation Ref. [4,8]

3.4 More Discussions

Finally, it is worthwhile to make an insightful comparison between our work and other
conic based calibration approaches. Although conics are widely used for calibration
purpose, up to date most conic based calibration algorithms are originated from the
plane-based calibration framework stated in [18]. In such a framework, the images of
the circular points computed from conics of multiple views are used to put constraints
on and solve the image of the absolute conic ω(IAC). Then the calibration matrix K is
obtained by factorizing it with the well known equation ω = K−T K−1. In contrast,
by treating the problem from a different point of view our work does not involve the
notion of IAC. The calibration is achieved from statistical information provided by a
large set of orthogonal vanishing points in a single view. The advantage of our work
is obvious: it does not rely on a priori known principal point or aspect ratio as in [4],
has no restrictions on circle positions as in [5,13], and above all, utilizes only a single
view to achieve reliable calibration. We believe that it is an attractive solution and may
represent a promising direction.

Note that in the context of our study, many orthogonal vanishing point pairs {v1, v
′
1},

{v2, v
′
2}, ..., {vn, v′n} can be identified. So one might wonder whether we could use the

over-determined constraint vT ωv′ = 0 to solve the image of the absolute conic, ω, and
then compute the calibration matrix by employing the methods of [18]. Unfortunately
this idea does not work in practice. The reason is that all vanishing points come from
a common line, which is a degenerate case for this formulation. The solution obtained
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Fig. 2. The original Olympic logo scene and two augmented frames

Table 2. Camera calibration results for the synthetic scene

Ground truth (u, v, α, f) Estimated (u, v, α, f)
Case1 (-0.005, -0.005, 1.00, 2.56) (-0.00983, -0.00278, 1.00068, 2.57648)
Case2 ( 0.275, -0.360, 0.89, 2.56) ( 0.26896, -0.38662, 0.89303, 2.55377)
Case3 ( 0.500, 0.450, 0.97, 2.56) ( 0.49496, 0.45749, 0.96346, 2.49293)
Case4 (-0.200, 0.125, 1.05, 2.56) (-0.20441, 0.17573, 1.05164, 2.68032)
Case5 (-0.075, -0.045, 1.16, 2.56) (-0.07842, -0.01975, 1.15125, 2.51853)

in this way bears a high risk of inaccuracy and instability and it often occurs that the
ω computed in this manner fails to be decomposed reliably. This problem is avoided in
our MLE based optimization scheme.

4 Experimental Results

Both synthetic and real world scenes are tested in our experiments. Ellipse detection
and fitting is performed by some robust feature extraction and regression algorithms [7].
One point to stress is that our experiments are done in normalized image coordinates to
ensure a steady order of magnitude during the solving process and to achieve a better
precision [9].

4.1 Synthetic Scene

The image in our first experiment is a 512*512 synthetic planar scene with an Olympic
logo on it. See Figure 2. Different circle combinations can be selected to compute the
vanishing line. After the vanishing line is computed by equation (4) the method ad-
dressed in section 3 is employed to calibrate the camera and test the performance of
the algorithm under different parameter configurations. In the normalized image co-
ordinate the size of one pixel is 0.01. Some results are given in Table 2. The data in
the table show that the algorithm adapts stably to a wide range of principal points and
aspect ratios. All parameters can be estimated with high accuracy. The maximal devi-
ations of the principal point, the focal length, and the aspect ratio are, respectively, 5
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Fig. 3. The original and the augmented plaza scenes

Table 3. Camera calibration results for the real scene

Key circle u v α f N

Circle1 0.00757 -0.02641 1.07045 6.86312 (-0.2804,0.7824,0.5561)
Circle2 0.01425 0.03174 1.06088 6.93255 (-0.2846,0.7869,0.5475)
Circle3 0.01577 -0.02191 1.07829 6.92373 (-0.2774,0.7857,0.5529)

pixels, 12 pixels, and 0.009. The plane normal with respect to the camera coordinate,
N , can be computed using the method in [8]. In all cases we get consistent results
N ≈ (−0.0005, 0.4480, 0.8940). This normal vector helps us compute the extrinsic
parameters, which define the camera pose.

With all intrinsic and extrinsic parameters figured out, we easily rebuild the trans-
form matrix between the world coordinate and the camera coordinate. To validate the
correctness of the result we make an augmented reality experiment by producing a short
movie of a 3D soccer model rolling on the plane in the scene. The augmented scene
looks quite realistic. Two frames extracted from the movie are illustrated in Figure 2.

4.2 Real Scene

In our second experiment a challenging 640*480 plaza scene is adopted to test the
interesting case of concentric circles. See Figure 3. Despite the relatively noisy scene
structures in the image, the distinct magenta color of the two rings in the scene allows
robust detection of both edges of the inner ring (circle1 and circle2) and the inner edge
of the outer ring (circle3). Circle1 and circle2 are too close to each other and represent
a typical degenerate case. So this pair is not appropriate and should be discarded for
calibration purpose. By contrast, the (circle1, circle3) pair and the (circle2, circle3) pair
are sufficiently distant although the two circles are concentric. From either combination
the images of the circular points and the circle centers can be successfully estimated.
By employing equation (6) we compute an individual orthogonal vanishing point set
from each of the 3 circles and try one calibration respectively. The calibration results
of the 4 intrinsic parameters and the plane normal N for all 3 cases are given in Table
3. The data in the table show that the results are quite consistent. This strongly justifies
the stability of our approach.

Two reference points are selected on the plane to help build a world coordinate sys-
tem with the ground plane as the x-y plane and its normal as the z direction. Then the
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transform between the camera coordinate and the world coordinate is established. We
additionally validate our algorithm by adding a 3D moving car model into the scene.
Metric rectification technique helps tailor the size of the virtual car and fill it seamlessly
into the scene. Two frames of the animation are given in Figure 3.

5 Conclusion

We have presented a framework that fully calibrates the camera from only a single per-
spective view of two coplanar circles. Metric planar rectification and conic based pose
estimate are combined in a statistical manner to achieve robust and reliable calibration.
The advantage of our work is twofold: First, it is superior to many previous calibration
algorithms in that it uses only a single view of planar scene. Second, it is more prac-
tical than many calibration-free approaches because it supports 3D augmented reality
applications in addition to simple 2D Euclidean measure. Future work includes making
more accurate error analysis and treating more complex camera models.
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