This article can be cited before page numbers have been issued, to do this please use: W. Zeng, Y. Zhao, K. Ni and Y. Zhu, RSC Adv., 2016, DOI: 10.1039/C5RA24104A.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Fast pseudocapacitive reactions of three-dimensional manganese dioxide structures synthesized via self-limited redox deposition on microwave-expanded graphite oxide

Wencong Zeng, Yuan Zhao, Kun Ni, Yanwu Zhu

Three-dimensional (3D) MnO$_2$ structures are deposited on microwave-expanded graphite oxide (MEGO) via a self-limited redox reaction between MEGO and KMnO$_4$. The 3D architecture consists of MnO$_2$ sheets lying uniformly on MEGO and walls protruding from MEGO, both with thickness in the range of 1–5 nm. The loading of MnO$_2$ and the height and density of walls in the 3D architecture can be controlled by tuning the reaction duration, leading to a balanced specific capacitance and power performance. Symmetric supercapacitors assembled using a MEGO–MnO$_2$ composite with 24.5 wt.% MnO$_2$ can work at a voltage of up to 2 V in a 1 M Na$_2$SO$_4$ electrolyte, yielding an energy density of 14 Wh/kg (13.6 Wh/L) at a power density of 250 W/kg (243 W/L) or a power density of 7.67 kW/kg (7.44 kW/L) at an energy density of 5.46 Wh/kg (5.3 Wh/L). Asymmetric supercapacitors, consisting of the MEGO–MnO$_2$ (containing 24.5 wt.% MnO$_2$) composite as the positive electrode and activated MEGO as the negative electrode in a 1 M Na$_2$SO$_4$ electrolyte, exhibit an energy density of 25.1 Wh/kg at a power density of 93 W/kg with a working voltage of up to 1.8 V.

1. Introduction

Supercapacitors (SCs), also known as electrochemical capacitors, have emerged as promising candidates for energy storage as they have long cycle lives and can provide high power density and excellent pulse charge and discharge [1–3]. Based on their charge-storage mechanism, SCs can be classified into two basic types: electric-double-layer capacitors (EDLCs), which mainly employ porous carbon materials as electrodes; pseudocapacitors, which use metal oxides or conducting polymers as electrodes [4–6]. Pseudocapacitive transition-metal oxides such as RuO$_2$, NiO, and MnO$_2$ have been extensively studied as active materials in electrodes for SCs owing to large pseudocapacitance based on fast and reversible redox reactions at the electrode surface, which result in large specific capacitances exceeding those of carbon-based materials in electric-double-layer charge storage [7–9].

Among the pseudocapacitive oxides mentioned above, manganese oxide is characterized as a low-cost material with a large theoretical capacity (1370 F/g), abundant resources, and environmentally friendly nature, and it has attracted significant interest as a promising electrode material for SCs [10,11]. Owing to the poor conductivity of intrinsic MnO$_2$, it has been combined with highly conductive materials such as carbon to form composites with improved conductivity and electrochemical performance [12–15]. Of the various carbon-based materials, graphene is especially attractive to researchers in many fields because of its large theoretical specific surface area (∼2630 m2/g), high conductivity, excellent mechanical flexibility, light weight, and chemical stability, as well as feasibility for large-scale production [16–18].

In general, MnO$_2$–graphene composites can be synthesized by physically mixing MnO$_2$ with carbon, or by electrochemically or chemically depositing MnO$_2$ on carbon. Among the chemical-deposition methods, synthesis of MnO$_2$ through the self-limited redox reaction between KMnO$_4$ and carbon is an effective way to enhance the MnO$_2$ utilization ratio and optimize the capacitance of composites [19–24]. For example, Wei et al. obtained a MnO$_2$–graphene composite by self-limited deposition of nanoscale particle-like MnO$_2$ on the surface of chemically reduced graphene oxide under microwave irradiation [25]. Dong et al. prepared nanoflower-like MnO$_2$ on graphene foam via the redox reaction of KMnO$_4$ with carbon under hydrothermal conditions, and the resulting composite demonstrated good performance for SCs [26]. Typical MnO$_2$ nanoparticles obtained from the reaction of KMnO$_4$ with graphene materials are usually sparsely
distributed on carbon and thus have relatively poor ion diffusion or weak electrical connection with carbon, which is undesirable for high power output. In contrast, thin MnO$_2$ nanosheets (with thickness of the order of a few nanometers) that are closely connected with the carbon skeleton may have fast ion diffusion and low internal resistance because the pseudocapacitive reaction is considered to mainly occur at a depth of less than 5 nm from the MnO$_2$ surface [27–30]. Thus, it is desirable to develop sub-5-nm sheet-like MnO$_2$ on carbon for MnO$_2$–carbon composite SCs with superior performance.

In this work, a straightforward strategy is proposed to synthesize three-dimensional (3D) MnO$_2$ structures on microwave-expanded graphite oxide (MEGO) via the reaction between MEGO and KMnO$_4$. Owing to the self-limited reaction, the nanosheets lying on graphene had a thickness of only several nanometers, while the density and height of MnO$_2$ walls in 3D MnO$_2$ structures increased with the synthesis duration, forming a porous honeycomb morphology on MEGO. This 3D MnO$_2$ structure benefitted the contact between the electrolyte and MnO$_2$, as well as the electron transfer between MnO$_2$ and graphene, leading to more efficient utilization of MnO$_2$. Asymmetric supercapacitors employing a MEGO–MnO$_2$ composite (MnO$_2$ loading: 24.5 wt.%) as the positive electrode and activated MEGO (aMEGO) as the negative electrode in an aqueous 1 M Na$_2$SO$_4$ electrolyte had an operating voltage of up to 1.8 V, resulting in an energy density of 25.1 Wh/kg at an averaged power density of 93 W/kg and fast frequency response, as observed in Nyquist plots. In addition, the asymmetric supercapacitors exhibited retention of 78% of the specific capacitance after 5000 cycles.

2. Experimental

2.1 Material synthesis

MEGO was prepared by treating graphite oxide powder under microwave irradiation, and aMEGO was synthesized by KOH activation of MEGO; the synthesis procedures of both materials are described in our previous work [31,32]. MEGO–MnO$_2$ composites were synthesized using a self-limited redox deposition process based on the reaction between MEGO and KMnO$_4$. In brief, 100 mg MEGO powder was added to 500 mL diluted aqueous KMnO$_4$ solution (10 mM) under magnetic stirring. During the reaction, the solution temperature was kept at 30 °C. The mixtures were vacuum-filtered and washed after the reaction, followed by drying in air at 60 °C for 10 h. The samples were further dried in vacuum at 80 °C for 9 h. The reaction duration was controlled to be 10, 40, or 120 min; hereafter, the corresponding MEGO–MnO$_2$ composites obtained from the reactions are referred to as GMn-x (x = 10, 40, 120).

2.2 Characterizations

Scanning electron microscopy (SEM) images were collected on a scanning electron microscope (JSM-6700M, JEOL, Japan). Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images were obtained on a transmission electron microscope (JEM-2100, JEOL, Japan) using an accelerating voltage of 200 kV. Thermogravimetric analysis (TGA) was carried out using a TG analyzer (DTG-60H, Shimadzu, Japan) under flowing air and at a heating rate of 10 °C/min. The structure of the MEGO–MnO$_2$ composites was characterized by X-ray diffraction (XRD), using a powder diffractometer (SmartLab, Rigaku, Japan) and Cu K$_\alpha$ radiation. X-ray photoelectron spectroscopy (XPS) was performed on an XP spectrometer (ESCALAB 250, Thermo Scientific, USA) using Al K$_\alpha$ radiation. Raman spectroscopy was performed on a Raman microscope (inVia, Renishaw, UK) using a 532-nm laser. The textural properties of composites were characterized by N$_2$ adsorption measurement at 77 K (Quantachrome Instruments Autosorb-iQ); the specific surface area and pore size distribution was obtained from adsorption/desorption data using a nonlocal density functional theory (NLDFT) method.

2.3 Supercapacitor Evaluation

MEGO or MEGO–MnO$_2$ composite electrodes were fabricated by mixing 87 wt.% active material, 10 wt.% acetylene black, and 3 wt.% polytetrafluoroethylene (PTFE; 5 wt.% dispersion in water). The mixture was rolled into a membrane with a thickness of 40–50 µm, then punched into circular electrodes with a diameter of 7 mm, and dried at 80 °C for 12 h in vacuum. The aMEGO electrodes were prepared by a similar procedure using 97 wt.% aMEGO and 3 wt.% PTFE. Symmetric supercapacitors were assembled with two identical electrodes; asymmetric supercapacitors were assembled using the MEGO–MnO$_2$ composites as positive electrodes and aMEGO as negative electrodes. A 1 M Na$_2$SO$_4$ solution was used as the electrolyte and the supercapacitors were assembled according to the procedures described in previous report [22]. Cyclic voltammetry (CV) and galvanostatic charging–discharging were performed to test the electrochemical performance of the electrodes. Electrochemical impedance spectroscopy (EIS) was conducted in the frequency range of from 100 kHz to 0.01 Hz with an electrochemical station (PARSTAT 4000, Princeton Applied Research, USA). The cycling stability was tested by a battery measurement system (CT2001A, LAND, China). The specific capacitance of an electrode (C_v), specific capacitance of a SC (C_{cell}), energy density (W), and average power density (P) were calculated from the galvanostatic charge–discharge curves according to the following equations:

$$
C = \frac{4It}{(mV)}
$$

$$
C_{cell} = C/4
$$

$$
E = C_{cell} V^2/2
$$

$$
P = E / t
$$

where I is the charge–discharge current, m is the total mass of two electrodes, t is the discharge time, and V is the initial voltage at the beginning of the discharge process.

3. Results and discussion
As shown in Fig. 1, a self-limited redox reaction between KMnO₄ and MEGO was utilized to deposit birnessite-type MnO₂ 3D structures on the surface of MEGO. The reaction between carbon and the MnO₄⁻ ions proceeded according to the following equation [33]:

\[
4\text{MnO}_4^- + 3\text{C} + 2\text{H}_2\text{O} = 4\text{MnO}_2 + 3\text{CO}_2 + 4\text{OH}^-
\]

In this reaction, carbon (MEGO) served as a sacrificial reductant and converted KMnO₄ to MnO₂, which was deposited on the carbon surface and restricted further reaction between MnO₄⁻ and carbon, leading to the synthesis of ultrathin MnO₂ sheets [34–36]. The GMn-x (x = 10, 40, 120) composite was prepared by immersing MEGO in an aqueous KMnO₄ solution to react for 10, 40, or 120 min. The weight percentage of MnO₂ in the MEGO–MnO₂ composites were 17.1, 24.5, and 33.6% for GMn-10, GMn-40, and GMn-120, respectively, as estimated by TGA (Fig. S1).

The detailed structure of the MEGO–MnO₂ composites was elucidated by TEM studies. The images in Figs. 3 and S2 show that the MnO₂ nanosheets were strongly anchored on MEGO through the use of ultrasonics during TEM sample preparation without exfoliating. As shown in Fig. S2a and b, quasi-two-dimensional (quasi-2D) graphene sheets were covered with a thin layer of MnO₂ after 10 min of growth. The slit-like contrast observed in the bright-field TEM images corresponds to the walls protruding from the MEGO planes shown in the SEM images. The TEM image of GMn-40 in Fig. 3(a) shows that the interconnected walls were uniformly distributed on MEGO with clear lattice fringes, which are also shown in the TEM image with higher magnification in Fig. 3(b). The HRTEM image in Fig. 3(c) indicates that the interplanar distance of the walls was 0.7 nm, which is consistent with the interplanar distance of the (001) planes in birnessite-type MnO₂ [37,38]. Close inspection of Fig 3(d) showed that the lattice fringes of the sheets lying on MEGO were distinctly separated by an interplanar distance of 0.24 nm (Fig 3(d)), corresponding to the (200) planes of MnO₂. Since the (001) plane is perpendicular to the (200) plane in monoclinic birnessite-type MnO₂, it is presumed that the vertical walls were continuously connected to the sheets lying on MEGO in our composites. From the measurements of the wall thickness (Fig. 3(b)), the thickness of MnO₂ sheets was estimated to be in the range of 1–5 nm, which showed little variation even when MnO₂ was deposited over a much longer period. In the case of GMn-120, for example, even though the density and the height of walls were largely increased (Figs. S2c and d), the thickness of the walls was remained similar. Nitrogen adsorption measurements show that the Brunauer-Emmett-Teller (BET) specific surface area of GMn-40 is ~37 m²/g, slightly larger than ~31 m²/g of MEGO. At the same time the peak of typical pore size distribution in MEGO/MnO₂ composites shifts to a smaller value compared with that of MEGO, which is presumably attributed to the formation of porous MnO₂ 3D architectures (Fig. S3).
XRD, Raman spectroscopy, and XPS were carried out to further verify the phase of MnO$_2$ in the MEGO–MnO$_2$ composites, with measurements of bare MEGO used as references. As shown in Fig. 4(a), the MEGO XRD pattern shows two broad peaks at 2θ of around 23° and 43°, which are assigned to the (002) and (100) crystal planes, respectively, of layered carbon. In addition to the strong signals from MEGO in the XRD patterns of the MEGO–MnO$_2$ layered carbon. In addition to the strong signals from MEGO in the XRD patterns of the MEGO–MnO$_2$ composites, three broad diffraction peaks at about 12°, 37°, and 66° can be indexed to birnessite-type MnO$_2$ (JCPDS card No. 42-1317; space group: C2/m (12)) [28]. As the reaction time was increased, the diffraction intensity from MEGO decreased while the intensities of the peaks belonging to MnO$_2$ became stronger owing to the increasing MnO$_2$ content in the composites. In the Raman spectra shown in Fig. 4(b), one can clearly identify three bands at 496, 575, and 630 cm$^{-1}$ of the MEGO–MnO$_2$ composites, in addition to the D band (1350 cm$^{-1}$) and G band (1590 cm$^{-1}$) of graphitic carbon. According to previous reports [39,40], the bands at 496 and 575 cm$^{-1}$ belong to Mn–O stretching vibrations in the basal plane of the MnO$_2$ sheets, and the band located at 630 cm$^{-1}$ can be assigned to the symmetric stretching vibration of Mn–O in the MnO$_2$ group in birnessite-type MnO$_2$ [41]. It is worth noting that the intensity ratio of D to G bands (I_D/I_G) of MEGO showed little change after MnO$_2$ was deposited (Table S1), indicating that the amount of defects in MEGO was not significantly increased by the reaction with KMnO$_4$. The XPS spectra shown in Figs. 4(c) and (d) further suggest that the predominant oxidation state of Mn was +4 in the composites, as evidenced by Mn 2p$_{3/2}$ and Mn 2p$_{1/2}$ peaks with a spin-energy separation of 11.8 eV [42,43].

Fig. 4 (a) XRD patterns and (b) Raman spectra of MEGO and MEGO–MnO$_2$ composites. (c) XPS survey spectra and (d) XPS Mn 2p spectra of G-Mn-40.

Fig. 5 (a) CV curves obtained at a scan rate of 10 mV/s and (b) galvanostatic charge–discharge curves obtained at a current density of 0.5 A/g for MEGO and MEGO–MnO$_2$ composite electrodes with various MnO$_2$ loadings. (c) Specific capacitance of MEGO and MEGO–MnO$_2$ composites versus charge–discharge current density. (e) Nyquist curves of MEGO and MEGO–MnO$_2$ composites.

Fig. 5(a) shows CV curves of symmetric SCs using MEGO or MEGO–MnO$_2$ composites as active materials in the electrodes. The area under the CV curves obtained at a scan rate of 10 mV/s increased with reaction time, indicating that the capacitance was enhanced by incorporating pseudocapacitive MnO$_2$ into MEGO; the increase in MnO$_2$ loading led to an increase in the area, although GMn-120 showed a very small enhancement compared to GMn-40. The quasi-rectangular shape of the CV curves indicates good capacitive behavior and a fast charging–discharging process in the MEGO–MnO$_2$ composites. The galvanostatic charging–discharging curves in Fig. 5(b) are all linear and symmetrical, further indicating the reversible feature of the redox reaction and the nearly ideal electrochemical capacitive behavior of samples. Fig. 5(c) shows the specific capacitance of GMn-10, GMn-40, and GMn-120 at various current densities calculated from the discharge curves. While the specific capacitance of the composites increased with the MnO$_2$ loading in the composite for discharge current densities below 1 A/g, GMn-40 showed the highest gravimetric capacitance among all composites for discharge current densities above 1 A/g, suggesting that this was the most optimized performance of GMn-40. Compared to MEGO, the MEGO–MnO$_2$ composites demonstrated significant improvement in the specific capacitance, which was greatly dependent on the MnO$_2$ loading and its efficient utilization. We believe the deteriorated rate performance of GMn-120 was caused by the higher MnO$_2$ vertical walls protruding from the MEGO plane, which may have lengthened the ion-diffusion path in MnO$_2$ and simultaneously decreased the electrical conductivity between MnO$_2$ and carbon. The frequency response of the electrodes was further tested by EIS. As shown in the Nyquist plots in Fig. 5(d), GMn-40 showed the most vertical frequency response curves when compared to MEGO or all other MEGO–MnO$_2$ composites, suggesting highly capacitive behavior [25,28]. The semicircles in the Nyquist plots, as shown in the magnified high-frequency region in the inset of Fig. 5(d), are related to the charge-transfer resistance
the working voltage previously reported for MnO$_2$ obtained up to a potential of 2.0 V, which is much higher than the working voltage of 2.0 V resulted in an energy density of 14 Wh/kg (13.6 Wh/L based on the electrode density of 0.97 g/cm3) at a power density of 250 W/kg (243 W/L) and a maximum power density of 7.67 kW/kg (7.44 kW/L) at 5.46 Wh/kg (5.3 Wh/L). The GMn-120 symmetric supercapacitor was also tested at a high working potential of 2 V, but it exhibited low capacitance (Fig. S5).

Based on its outstanding performance, GMn-40 was utilized to fabricate symmetric supercapacitors, and their performance in a 1 M Na$_2$SO$_4$ electrolyte was investigated in detail. As shown in Fig. S4, rectangular CV curves were obtained up to a potential of 2.0 V, which is much higher than the working voltage previously reported for MnO$_2$-based symmetric supercapacitors in aqueous electrolytes [19,29,30,45]. The high working voltage achieved here may be partially explained by the exposed sheet edges of the vertical MnO$_2$ walls, which provided a large number of active sites for H$^+$ adsorption and decreased the over potential for gas evolution reactions through the interlayer space [28]. Based on the galvanostatic charge–discharge curves of GMn-40, the working voltage of 2.0 V resulted in an energy density of 14 Wh/kg (13.6 Wh/L) based on the electrode density of 0.97 g/cm3 at a power density of 250 W/kg (243 W/L) and a maximum power density of 7.67 kW/kg (7.44 kW/L) at 5.46 Wh/kg (5.3 Wh/L). The GMn-120 symmetric supercapacitor was also tested at a high working potential of 2 V, but it exhibited low capacitance (Fig. S5).

4. Conclusions

A MEGO–MnO$_2$ composite with 3D architecture was synthesized by a self-limited redox reaction between MEGO and KMnO$_4$. The composite consisted of interconnected ultra-thin MnO$_2$ nanosheets on the surface of MEGO. Owing to the short ion-diffusion paths and reduced electrical conductivity, the utilization efficiency of MnO$_2$ was improved. It was found that with the optimized MnO$_2$ loading (24.5 wt.%), both symmetric and asymmetric supercapacitors made from the composite exhibited excellent electrochemical performance in 1 M Na$_2$SO$_4$. Working under a high voltage of up to 1.8 V, the asymmetric GMn-40/MEGO supercapacitors delivered a high energy density of 25.1 Wh/kg and a power density of 4.9 kW/kg were obtained from the asymmetric SC (Fig. 6(e)), which are higher than those of symmetric SCs and other MnO$_2$-based asymmetric SCs (Table S2). In addition, the asymmetric SCs also exhibited long cycle life, with a capacitance retention of 75% after 5000 charge–discharge cycles at a current density of 1 A/g (Fig. 6(f)).

Acknowledgements

This work was financially support by China Government 1000 Plan Talent Program, China MOE NCET Program, Natural Science Foundation of China (51322204), the Fundamental Research Funds for the Central Universities (WK2060140014 and WK2060140017), and the External Cooperation Program of BIC, Chinese Academy of Sciences (211134KYSB20130017).

Notes and references
Footnotes relating to the main text should appear here. These might include comments relevant to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.

§§

Self-limited redox reaction between KMnO₄ and microwave-expanded graphite oxide was utilized to deposit birnessite-type MnO₂ 3D structures on the surface of MEGO.