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Abstract

When used as a current collector, aluminum foil (AF) is vulnerable to local anodic corrosion
during the charge/discharge process, which can lead to the deterioration of lithium-ion batteries
(LIBs). Herein, a graphene foil (GF) with high electrical conductivity (~5800 S cm™') and low
mass density (1.80 g cm ™) was prepared by reduction of graphene oxide foil with ultra-high
temperature (2800 °C) annealing, and it exhibited significantly anodic corrosion resistance when
serving as a current collector. Moreover, a LiNiy sCog,Mng 30, (NCM523) cathode using GF as
a current collector (NCM523 /GF) demonstrated a gravimetric capacity of 137.3 mAh g~ ' at 0.5
C based on the mass of the whole electrode consisting of the active material, carbon black,
binder, and the current collector, which is 44.5% higher than that of the NCM523 /AF electrode.
Furthermore, the NCM523 /GF electrode retains higher capacity at relatively faster rates, from
0.1 C to 5.0 C. Therefore, GF, a lightweight corrosion-resistant current collector, is expected to
replace the current commercial metal current collectors in LIBs and to achieve high energy-
density batteries.

Supplementary material for this article is available online

Keywords: graphene foil, current collector, lithium-ion batteries, capactiy

1. Introduction hexafluorophosphate  (LiPFs) and lithium bis  (tri-

fluoromethane sulfonyl) imide (LiTFSI) [2-8], which leads to

The current collector is an essential part of lithium-ion bat-
teries (LIBs). It supports the electrochemically active mate-
rials and transfers electrons between active materials and the
external circuit [1]. An ideal current collector for LIBs should
be electrochemically inactive, anticorrosive, highly con-
ductive, lightweight and cost-effective. Typically, the exten-
sively used materials for current collectors are Al foil (AF) for
cathodes and Cu foil for anodes. However, both Al and Cu
foils are susceptible to localized corrosion during long-term
cycling because of the decomposition of lithium

0957-4484,/20,/2057104-07$33.00

a loss of specific capacity. Therefore, finding one material
which can satisfy both the physics requirements and high
utility in an LIB system is highly significant.

To this end, a great deal of effort has been made to
optimize current collectors. Carbon materials have been
researched as current collectors because of their low density
and high conductivity. Especially, carbon materials are
resistive to chemical corrosion within a wide range of elec-
trochemical window. Graphene-coating methods have been
reported, which effectively prevents the corrosion of metal

© 2020 IOP Publishing Ltd  Printed in the UK
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current collectors and improves battery performance [9-11].
Three-dimensional (3D) carbon current collectors can form an
interconnected electron conductive path to significantly
improve the rate capability while maintaining excellent
electrochemical stability [12-15]. Two-dimensional (2D)
carbon films, such as graphite foil [16], carbon nanotube
(CNT) film [17-20] and graphene film [21-27] have been
reported to replace the metal current collectors in LIBs. These
results indicate the great potential of carbon-based materials
for current collectors in LIBs. However, it is still rare to find a
carbon-based current collector that is competitive with metal
foils in terms of electrical conductivity, mechanical strength
and production scalability.

In this work, we developed a blade-coating method fol-
lowed by high temperature (2800 °C) graphitization to effi-
ciently produce a large graphene foil (GF) from graphene
oxide. The GF has a thickness of micrometers, a length of
meters and a width of tens of centimeters with high electrical
conductivity (~5800 S cm™'), low mass density (1.80 g
cm73), excellent tensile strength (90 MPa) and anodic cor-
rosion resistance. These physical properties yield the GF to be
a competitive material for use as the current collector in LIBs.
The cathode materials, LiNigsCog-.Mng;0, (NCM523),
LiNip ¢Cop,Mng,04 (NCM622) and LiFePO, (LFP) loaded
on the GF demonstrated an enhanced gravimetric capacity
when calculated based on the mass of the whole electrode
including the active material, binder and conductive additives,
and current collector, together with improved cycling stability
and rate capability.

2. Experimental

2.1. Preparation of the GF

The graphene oxide was prepared through the modified
Hummer’s method, which was dispersed in water to form a
graphene oxide colloidal suspension (25 mg ml'). The
suspension was then coated on a polyethylene terephthalate
(PET) substrate through blade coating, and dried at 100 °C,
which was followed by thermal annealing at 2800 °C in argon
flow. A GF of meters in length and tens of centimeters in
width could be obtained.

2.2. Electrochemical measurements

The GF and AF with areal masses of 2.0 and 6.4 mg and
thicknesses of 12 and 22 pm, respectively, were directly used
as current collectors without any  pretreatment.
LiNig 5Cop>Mng 30, (NCM523, Beijing Easpring Material
Technology Co., Ltd), LiNi ¢¢Cop,Mng,0, (NCM622,
Beijing Easpring Material Technology Co., Ltd) or LiFePO,
(LFP; Tianjin BTR New Energy Materials Co., Ltd) powder
(9.0 g) was mixed with polyvinylidene fluoride (PVDF;
Shanghai 3F New Materials Technology Co., Ltd, 0.5 g) and
super P carbon (Jiaozuo City Hexing Chemical Industry Co.,
Ltd, 0.5 g) in 1-methyl-2-pyrrolidone (NMP) to formulate a
slurry, which was then blade coated on GF or AF current

collectors. The electrodes were sequentially dried in a drum
wind oven at 80 °C for 4 h before drying in a vacuum oven at
110 °C for 8 h. Finally, the electrodes were cut into disks of
diameter of 1.2 cm, which were coupled with lithium metal
foils as an anode to assemble 2032 type coin cells. An 80 pul
electrolyte, containing 1 M LiPFg dissolved in ethylene car-
bonate, ethyl methyl carbonate and dimethyl carbonate (EC:
EMC:DMC = 1:1:1 in volume, Zhangjiagang Guotai Huar-
ong Chemical New Material Co., Ltd), was added to each
cell. The mass loading of the active material was around 8.0
mg cm 2 on the current collector. The density of the electrode
was around 2.1 g cm ™ on the current collector. The cells
were aged for 8 h before electrochemical tests. The gravi-
metric capacity values reported in this work are calculated
with respect to the mass of the whole electrode containing
active material, additives and current collector.

Herein, we mainly studied the effect of using GF as a
current collector on battery performance. In addition, due to
the light weight of the GF, the loading of cathode materials is
also different from the practical application. Therefore, there
is no in-depth study on the loading of cathode material in
this work.

The cyclic voltammetry (CV) and electrochemical
impedance spectral (EIS) measurements were carried out on a
Princeton electrochemical workstation (PARSTAT4000A).
CV was performed at a scan rate of 10 mV s~ in the potential
range of 2.0-5.0 V (versus Li/Li"). The EIS studies were
performed before and after cycling of the electrodes in the
frequency range of 500 kHz—0.01 Hz at open circuit potential
conditions. Galvanostatic charge—discharge experiments were
performed at different current densities in the potential range
of 2.8-4.5 V (versus Li/Li") using a CT2001A cell test
instrument (Land Electronic Co., Ltd).

The energy density of the electrodes was calculated
according to the following equation: energy density = (spe-
cific capacity x discharge voltage platform)/M,,, where M,,
is the sum of the mass of active material, additives and current
collector, and the negative electrode is lithium.

2.3. Characterization

The scanning electrical microscopy (SEM) images of the GF
were obtained with JSM-2100F (JEOL Ltd) apparatus oper-
ated at 10.0 kV. The Raman spectra of the GF on SiO,/Si
substrate were measured by using Renishaw inVia equipment
with a 532 nm laser and a x50 objective lens. X-ray dif-
fraction (XRD; D/max-TTR III) was performed with Cu Ko
radiation (V = 40 kV, I = 200 mA). The tensile strength of
the GF was obtained by using a peel strength tester (Dong-
guan PERFECT Instrument Co., LTD, PT-6081B). The ten-
sile specimens have a gauge length of 10 cm, thickness of 12
pm and width of 1.0 cm. The flexibility of the GF was
measured by Mit Folding Endurance Tester (GOTECH
Testing Machines Inc., GT-6014-A MIT). The electrical
conductivity of the GF (length of 4.9 cm, width of 1.9 cm and
thickness of ~12 pm) was measured by using a four-probe
method using a Keithley SCS 4200 semiconductor char-
acterization system.



Nanotechnology 31 (2020) 205710

H Xu et al

d 5

3 20
8

oy

2 D GF

g

=

graphene oxide foll

1600 2000 2400 2800

Raman shift (cm™)

1200

(002)

GF

(001)

Intensity (a.u.)

graphene oxide foil

10 20 30 40 50 60 70 80
2 Theta degree

Figure 1. (a) Photograph of the GF; (b) before compression, the cross-sectional and (c) surface SEM images of the GF; (d) Raman
spectroscopy of the graphene oxide foil and the GF, the low D/G ratio and the high 2D peak indicate highly crystalline GF after the
graphitization process. () XRD patterns of the graphene oxide foil and the GF.

3. Results and discussion

Figure 1(a) presents the macroscale image of a GF with length
of 20 meters and width of 18.5 cm. The SEM image in
figure 1(b) shows that the GF contains a layer-by-layer
stacking of graphene sheets with thickness of ~30 pm.
Figure 1(c) shows the intrinsic wrinkles on the GF surface.
After statistic compression under a pressure of 60 MPa, the
density of the GF is about 1.80 g cm ™. Moreover, we studied
the compositional and structural evolutions from graphene
oxide foil to GF by Raman spectroscopy and XRD. The
Raman spectroscopy images in figure 1(d) show that both the
graphene oxide foil and the GF have a D peak at 1365 cm ™'
and a G peak at 1580 cm ™. In addition, the GF has a 2D peak
at 2716 cm ', and a lower intensity ratio of D peak to G peak
(Ip/Ig) of ~0.09. This result proved that the GF obtained by
high temperature annealing was of high quality [27-29].
Moreover, the XRD pattern of the graphene oxide foil shows
a typical sharp and strong (001) peak at 26 of 10.6°,
corresponding to an interplanar spacing of 0.834 nm
(figure 1(e)). Further analysis of the XRD pattern shows that
the GF features a narrow and sharp intensity peak at around
26.6° corresponding to the (002) plane, and the interplanar
spacing of the GF is about 0.335 nm, which is consistent with
that of natural graphite [30]. The decrease in the interplanar
spacing is due to the elimination of interlamellar water and
some oxygen-containing groups. These results demonstrate
that the ordered lamellar structure of the GF is well-preserved
after the graphitization treatment.

The electrical conductivity of the GF obtained in this
work is about 5800 S cm ™! (figure 2(a), see the Experimental
section for details). Therefore, the conductivity of the as-
prepared GF is much higher than that of the reported carbon
films, such as graphene film prepared by chemical vapor
deposition (CVD) method [27], reduced graphene oxide film
[21, 26, 31], CNT film [18, 19], graphite foam [12] and
graphite foil [16]. Moreover, we carried out tensile experi-
ment by using a peel strength tester to further evaluate the
capacity of the GF to withstand tensile loads. The stain—stress
curve of GF recorded in figure 2(b) reveals an average tensile
strength of 90 MPa at the breakage elongation of 2.6%. The
Young’s modulus of the GF with 10 cm gauge length and 1
cm gauge width was measured as 162.8 MPa.

LiPFg salt in Li-ion battery electrolytes decomposed with
the presence of H,O, generating HF [32]. To accelerate the
corrosion of the current collector, we added 10 ppm of DI
water into the electrolyte (1 M LiPFg) and measured the
cyclic voltammetry (CV) at 10 mV s~ '. Since we added 10
ppm of water into electrolyte, we chose 5.0 V to verify the
electrochemical stability of the GF as the current collector. As
shown in figure 3(a), the CV scan results showed obvious
redox peaks for the AF in around 2.3 V (versus Li/Li"), 3.3
V (versus Li/Li*) and 3.3 V (versus Li/Li") at the first, the
fifth and the tenth cycle, respectively, and no obvious redox
peaks were observed for the GF (figure 3(c)). Then, we
carefully took the current collectors out of the cells and
checked their morphology after CV measurements. The SEM
image clearly show that big cavities were formed by corrosion
on the surface of the AF after ten CV cycles (figures 3(b) and
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Figure 2. Electrical conductivity of (a) the GF and (b) tensile strength of the GF as a function of strain.

3.
—_— 2'
=
E 1
3 0
£ 41
o 0.370hm
2 9
i
0 -5 0 5 10
Current (mA)
a o2
AF-10ppm(H,0)
& — 1st
£ — 5th
< 91 —_10th
E
=
© 0.0
5
®)
-0.1+ - - . . : :
20 25 3.0 35 40 45 50
Voltage (V)
C o2
GF-10ppm (H,0)
& — st
€ 014 — 5th
< — 10th
E
5 00
5
O

- 1 T T T T T T T
20 25 3.0 35 4.0 45 50
Voltage (V)

b

d

Figure 3. CV of the (a) AF and (c) the GF, SEM image of the (b) AF and (d) the GF after ten CV cycles.

S1 is available online at stacks.iop.org/NANO/31/205710/
mmedia), while the GF had no obvious changes (figures 3(d)
and 1(c)). Based on the above observations, we therefore
conclude that the GF current collector has better electro-
chemical stability compared with the commercial AF current
collector.

We further employ the obtained GF as cathode current
collector for electrochemical experiments. As shown in
figure 4(a), the as-prepared NCM523 /GF electrode shows a

good flexibility. Figure 4(b) shows that the active materials
closely adhere to the surface of the GF. The electrochemical
impedance spectroscopy (EIS) results, as show in
figures 4(c)—(d) and table S1, reveal that before cycling (see
experimental section for details) the NCM523/GF electrode
has a lower charge transfer resistance (R, 250 () than that of
NCM523/AF (950 Q). These results indicate that the GF
reduces the barrier of charge transfer between the electrode
material and the current collector, which may enhance the
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Figure 4. (a) Photography of the NCM523/GF electrode, (b) SEM image of the NCM523/GF electrode, (c) and (d) EIS analysis of cells.
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Table 1. The energy densities of NCM523 /AF and NCM523/GF at different C rates.

Energy density

Energy density of NCM523 (Wh kg™")

Current collector ~ 0.1C 0.2C 0.5C 1.0C 2.0C 5.0C
GF 6354 6269 5699 536.0 486.8 3833
AF 419.0 4062 3575  295.6 178.5 332

utilization of cathode materials at high rates [11, 33]. Fur-
thermore, after 50 cycles, the R, of NCM523/GF (28 ) is
still lower than that of NCM523/AF (70 (2), which indicates
the good interface between MCNS532 and GF after long
cycles, improving the overall performance of the electrode.

The galvanostatic charge and discharge experiments
show that the polarization of NCM523/GF is much smaller
than that of NCM523 /AF in the high current density regime
(figures 5(a), (b)). Further results in figure 5(c) reveal that the
GF current collector has a better rate capacity than the AF
current collector. Figures 5(d) and S2 show the cycling per-
formance of the NCM523/GF and NCM523/AF electrodes.
The initial discharge-specific capacities of the NCM523 /GF
were 137.3, 123.3 and 112.4 mAh g71 at 0.5, 2.0 and 5.0 C
(based on the mass of the whole electrode), respectively.
After cycling for 200 cycles, the specific capacities of
NCM523/GF decayed to 98.0, 59.3 and 42.0 mAh g_1 at 0.5
C, 2.0 C and 5.0 C, respectively, but they are much higher
than that of NCM523 /AF (66.2, 50.5 and 10.6 mAh g ').
The cycling data are re-plotted by replacing 22 um AF with
15 pm AF using current electrochemical data, as shown in
figure S3. The results demonstrate that the electrochemical
performance of the cell with 15 ym AF as a current collector
is slightly better than that with 22 ym AF. If we only count
the mass of the active material, the initial specific capacities
of the NCM523/GF electrode and the NCM523/AF elec-
trode are 170.2 mAh g~ ' and 154.7 mAh g~ ', respectively
(figures S4 and S5). Similarly, the cells with the GF current
collector have better electrochemical performance, including
rate performance and long-term cycling performance. Addi-
tionally, we also calculated the energy density of NCM523/
AF and NCM523/GF, as shown in table 1. The NCM523 /GF
current collector shows a higher energy density of 635.4 Wh
kg ' at 0.1 C than NCM523/AF (419.0 Wh kg ' at 0.1 C),
especially at the high rate of 5.0 C; NCM523 /GF delivers an
energy density of 383.3 Wh kg~ '. Accordingly, the GF cur-
rent collector is able to enhance the rate/power performance
of LIBs.

Aside from its obvious role as a current collector for
NCMS523 materials, the capacities of NCM622 materials
(figure 5(e)) and LFP (figure 5(f)) materials with the GF
current collector were also improved compared with te AF
current collector. Since the GF current collector weighs less
than conventional metal current collectors, the weight of LIBs
could be efficiently reduced. The energy density of these
electrodes was also calculated, as shown in table 2. The GF
current collector also shows higher energy density than that of
the AF current collector. To sum up, we demonstrate a design

Table 2. The energy densities of AF and GF current collectors with
different cathode materials.

Cycle number

Energy density (Wh kg™ ")

Samples Ist 100th 120th ~ 200th
NCM523 (0.5C) GF 5319 4482 4297  349.8
8.0 mg cm 2 AF  362.1 3045 2942 2368
NCM622 (0.5C) GF  928.6 7404 7159 /
4.0 mg cm > AF 5682 3407 3244 /
LFP (0.1 C) GF 5223  399.1 3742 /
7.2 mg cm > AF 4369 3243 3056 /

of high energy-density battery, which shows potential to be
scaled up for industrial applications.

4. Conclusion

In conclusion, the GF current collector exhibited excellent
electrochemical stability and significantly improved cyclic
stability and electrode energy density compared to the AF
current collector. The electrochemical stability of the GF
current collector for LIBs has been proved and found to
provide lightweight corrosion resistance. More importantly,
our studies clearly show that GF current collector has better
electrochemical performance, including rate performance,
long-term cycling performance and energy-density under a
high current density. The GF current collector offers a new
option for high-performance and high energy-density LIBs.
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