Mathematics Applied to Deterministic Problem in the Natural Sciences

Part A: An overview of the interaction of mathematics and natural science

Chapter 1: What's applied mathematics

§1.1On the nature of applied mathematics

Formulation → Solution → Interpretation

§1.2 Introduction to the analysis of galactic structure

1. Physical laws governing galactic behavior

(1) Newton's law's of motion and his law of universal gravitation, which govern all classical mechanics

(2) The laws of electrodynamics according to the formulation of Maxwell

(3) The laws of thermodynamics

2. Dynamics of stellar systems

3. Application Distribution of stars across a galactic disk

Characteristics

§1.3 Aggregation of slime mold amoebae

1. Some facts about slime mold amoebae

2. Formulation of a mathematical model

3. Analysis of aggregation onset as an instability

Chapter 2: Deterministic systems and ordinary differential equations

§2.1 Planetary obits

1. Kepler's laws and the law of universal gravitation

2. The inverse problem: Orbits of planets and comets

3. Planetary orbits according to the general theory of relativity

4. N particles: A deterministic system

5. Linearity

§2.2 Elements of perturbation theory, including Poincare's method for periodic orbits

1. Perturbation theory, elementary consideration

eg.

2. The simple pendulum and the successive approximation to its motion

* (1) o; (2) O;

3. Perturbation series applied to the pendulum problem

4. Poincare's perturbation theory

§2.3 A system of ordinary differential equations

1. The initial value problems statement of theorems

2. Example of nonuniqueness

* (1) Function space; (2) Bifurcation strenge attractor; (3) Lorenz's equation;

Chapter 3: Random processes and partial differential equations

§3.1 Random walk in one dimension; Langevin's equation

1. The 1-D random walk model

2. Mean, variance and generating function

3. Langevin’s equation

§3.2 Asymptotic series, Laplace's method, gamma function, Stirling's formula

1. An example: Asymptotic expansion via parts integration

2. Definition in the theory of asymptotic expansions

3. Laplace’s method

4. Development of the asymptotic Stirling series for the Gamma function

§3.3 A difference equation and its limit

1. A difference equation for probability function of the random walk

2. Approximation of the difference equation by a differential equation

3. Solutions of the differential equation for the probability

4. Reflecting and absorbing barriers

§3.4 Further considerations pertinent to the relationship between probability and partial differential equations

1. Super position of fundamental solutions: the method of images

2. Laplace’s equation related to random walk

Chapter 4: Superposition, heat flow and Fourier analysis

§4.1 Conduction of heat

1. Differential equation for 1-D, 3-D heat condition

2. Solution by the method of separation of variables

§4.2 Fourier theorem

1. Sum of Fourier sine series

2. Full-range and half-range Fourier series

§4.3 Integration and differentiation of Fourier series

1. Fourier series

2. Gibbs phenomenon

3. Approximation with least squared error

4. Bessel’s inequality, Parseval’s theorem and Reiz-Fisher theorem

Chapter 5: Further developments in Fourier Analysis

§5.1 Other aspects of heat conduction

1. Variation of temperature underground

2. Numerical integration of the heat equation

3. Heat conduction in a nonuniform medium

§5.2 Sturm-Liouville systems

1. Properties of eigenvalue and eigenfunction

2. Orthogonality and normalization

3. Expansion in terms of eigenfunctions

4. Asymptotic approximation to eigenvalues and eigenfunctions

§5.3 Brief introduction to Fourier transform

1. Fourier transform formulas and the Fourier identity

2.Solution of the equation by Fourier transform

§5.4 Generalized harmonic analysis

1. Introduction

2. Fourier analysis of a truncated sinusoided function

3. Generalization to stationary time sequences

4. Autocorrelation function and the power spectrum

Part B: Some Fundamental Procedures Illustrated on Ordinary Differential Equations

Chapter 6: Simplification dimensional analysis and scaling

§6.1 The basic simplification procedure

1. Illustrations of the procedure

eg1.  eg2.

2. Two chastening examples

eg3.

3. Conditioning and sensitivity

4. Zeros of function

5. Second order differential equations

 eg1.  eg2.

§6.2 Dimensional analysis

1. Patting a differential equation into dimensionless form

2. Π theorem

§6.3 Scaling

1. Definition of scaling

2. Scaling known functions

 

eg1.

eg2.

eg3.

3. Orthodoxy (regularity)

4. Scaling unknown functions

Chapter 7: Regular perturbation theory

§7.1 The series method applied to the simple pendulum

Chapter 8:

§8.1 Physical formulation and dimensional analysis of a model for “standing gradient” osmotically driven flow

§8.2 A mathematical model and its dimensional analysis

1. Conservation of fluid mass

2. Conservation of solute mass

3. Boundary conditions

4. Introduction of dimensionless variables

5. Possibility of a scale model for standing gradient flow

§8.3 Obtaining the final scaled dimensionless equation of the mathematical model

1. Scaling

2. Estimating the size of the dimensionless parameters

3. An unsuccessful regular perturbation calculation

4. Relation between parameters

5. Final formulation

§8.4 Solution and interpretation

Chapter 9: Introduction of singular perturbation theory

§9.1 Roots of polynomial equations

eg1.  eg2.

§9.2 Boundary value problems for ordinary differential equations

1. A study on the exact solution of a model equation

2. Find an approximate solution by singular perturbation method

3. Matching

4. Basic procedures

 eg1.  eg2.

Chapter 10: Singular perturbation theory applied to a problem in biochemical kinetics

§10.1 Formulation of an initial value problem for a one enzyme-one substrate chemical reaction

1. The law of mass action

2. Enzyme catalysis

3. Scaling and final formulation

§10.2 Approximate solution by singular perturbation method

1. Inner solution

2. Outer solution

3. Matching

4. Higher approximation

Chapter 11: Three techniques applied to the simple pendulum

§11.1 Stability of normal and inverted equilibrium of the pendulum

1. Determining stability of equilibrium

§11.2 A multiple scale expansion

 eg1.  eg2.

§11.3 The phase plane

1. The phase portrait of an undamped simple pendulum

2. Separatrixes

3. Critical points

4. Limit cycles

5. Behavior of trajectories near critical points

eg.

·  [1] Lin CC,Segel LA. Mathematics Applied to Deterministic Problems in the Natural Sciences. New York: Macmillan, 1974.

·  [2] 林家翘,L·A·西格尔. 自然科学中确定性问题的应用数学.北京 科学出版社1986.

·  勘误表(点击打开)

·  勘误表(点击下载)

·  [3] C·M·本德,S·A·奥斯扎戈. 高等应用数学方法.北京 科学出版社 1992.

 

·  习题提示(点击打开)

·  2004-2005学年第一学期

·  上课时间:周四(1,2);周六(3,4)

·  上课教室:西区3321

·  助教:(未及时交的作业本请送到力一楼147)

·  郑志军 zjzheng@mail.ustc.edu.cn ==> SA04005

·  王二恒 wangklg@mail.ustc.edu.cn ==> SA03, SA04

·  sunl@mail.ustc.edu.cn ==> SC04, SB04, BA04, BO04, etc.

·  作业:

·  02周:20040909; 20040911

·  03周:20040916(p.34(2,4)); 20040918(p.51(6); 补充题1)

·  补充题1: 对于 0<ε<<1 按量阶大小排列:ε2, ε1/2, ln(ln ε-1), 1, ε1/2 ln ε-1, ε ln ε-1, e-1/ε, ε sin ε

·  04周:20040923(p.64(10)); 20040925(p.90(4); 交上周的作业)

·  力学沙龙活动:"应用数学"漫谈 926日晚7:00于力一楼524 报告人:倪勇、孙亮、郑志军、王二恒等

·  05周:20040930(习题课); 20041002(国庆放假)

·  时间:国务院办公厅(学校调课)(虞老师安排)

·  101(周五):法定假日

·  102(周六):法定假日

·  103(周日):法定假日

·  104(周一):公休日(102日周六,研究生课程停上)

·  105(周二):公休日(103日周日,研究生课程停上)

·  106(周三):公休日(109日周六,研究生课程要上)(调到7日晚上7:00)

·  107(周四):公休日(1010日周日,研究生课程要上)(晚上7:00上课)

·  108(周五):上班日

·  109(周六):上班日(106日周三)

·  1010(周日):上班日(107日周四)(早上一、二节上课)

·  06周:20041007(周二,9日的课,时间晚上7:00); 20041010(周五,7日的课,时间早上1,2)

·  07周:20041014; 20041016

·  08周:20041021; 20041023

·  09周:20041028; 20041030

·  10周:20041104; 20041106

·  11周:20041111; 20041113

·  12周:20041118; 20041120

·  13周:20041125; 20041127

·  14周:20041202; 20041204

·  15周:20041209; 20041211

·  16周:20041216; 20041218

·  17周:20041223; 20041225

·  18周:20041230; 20050101

·  19周:20050106; 20050108

·  20周:20050113; 20050115