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Extensions of the tetrahedron method for evaluating spectral 
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Abstract. Two extensions of the widely used tetrahedron method for the evaluation of spec- 
tral properties of solids are presented. The first provides explicit formulae for including 
matrix element variation inside tetrahedral microzones in the same spirit in which the energy 
variation is included in the original method. The second is a scheme for using local quadratic 
interpolation inside some tetrahedra to provide the matrix element and energy values re- 
quired to apply the tetrahedron method to a large number of tetrahedra into which the 
original tetrahedra have been divided This scheme is similar to the hybrid method extension 
of the Gilat-Raubenheimer method. Application to the calculation of the density of states 
of a single tight-binding band in a FCC crystal shows that its efficiency is comparable with 
that of the method recently proposed by Chen. 

1. Introduction 

The importance of efficient techniques for Brillouin zone (BZ) integrations in solid- 
state physics has been widely appreciated in recent years. (For a review of the topic see 
Gilat 1972, 1976.) Such techniques are of great importance in self-consistent band cal- 
culations (e.g. see Wang and Callaway 1977) as well as in the calculation of such crystal 
properties as optical spectra and susceptibility functions. Most Brillouin zone integrals 
of interest are simply related to that for a general spectral function which is of the form 

dk F(k) s B Z ( ~  - w(k) - iE) 
G(w) = 

where E is a positive infinitesimal, the w(k) are eigenvalues for some elementary excita- 
tion and F(k) is some matrix element. Usually the BZ integrals can be restricted by 
symmetry to an irreducible region of the BZ. The real'and imaginary parts of G(w) are 

and 

d ( w )  = '~t dkF(k)G(w - ~ ( k ) )  (1.3) s 
respectively. Since R(w) and I(w) are related by Kramers-Kronig relations it is sufficient 
to restrict our attention to I(w). The techniques discussed below can, however, be 
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modified to evaluate R(w) directly. (Compare @ 2  and 3 with Rath and Freeman (1975)) 
Also of great interest is the integrated function 

J ( o )  = dw’Z(o’) = IBz dk F(k)d(w - w(k)). (1.4) 

The charge density of a solid is an example of a quantity expressed by a BZ integral of 
the form of equation (1.4). 

When F ( k )  = 1 in equation (1.3), Z(w) reduces to the familiar density-of-states 
function g(o) .  Gilat (1972) has examined in detail the evaluation of g(o )  and has 
distinguished five separate methods: (i) the root-sampling method (Blackman 1937, 
Brust 1968); (ii) the linear discrete method (Gilat and Dolling 1964); (iii) the quadratic 
discrete method (Mueller et a1 1971); (iv) the Gilat-Raubenheimer (1966) method and 
(v) the hybrid method (Janak et a1 1970, Cooke and Wood 1972). Gilat’s analysis shows 
that the last two of these methods are clearly superior. Subsequently the tetrahedron 
method (Jepsen and Andersen 1971, Lehmann and Taut 1972) and the ray method 
(Chen 1977) have been proposed. The choice between these last four methods in practice 
depends on a variety of considerations including the desired accuracy, the ease of 
application, the importance of an accurate treatment of Van Hove singularities and the 
complexity of the evaluation of o ( k )  and F(k). Detailed comparisons are contained in 
several of the papers quoted above and will not be repeated here. The tetrahedron method 
is frequently a good choice and is one of the most extensively used. In this paper we 
present equations which represent a generalisation of the original tetrahedron method 
and suggest a hybrid tetrahedron method which is analogous to the hybrid Gilat- 
Raubenheimer methods. The relation of this hybrid method to the other methods 
mentioned above is discussed in the next paragraph. Section 2 reviews the original 
tetrahedron method and describes its generalisation to the F(k)  not constant case. In 
0 3 the hybrid tetrahedron method is described and the results of its application to the 
calculation of g(w) for a single tight-binding band of an FCC crystal are shown as a 
demonstration of its usefulness. Section 4 contains concluding remarks. 

The Gilat-Raubenheimer method (1966) is based on the division of the BZ (or the 
irreducible region) into a large number of cubic microzones, usually of equal volume, 
inside which w(k) is approximated by a linear form. The contribution to g ( o )  and n(o)  = 
J: , do’  g(o’)  from each microzone can then be evaluated analytically. The tetrahedron 
method is similar but the microzones are general tetrahedra rather than cubes. A problem 
with both these methods is that the convergence with the number of microzones, N ,  
is not rapid. (In fact the error is roughly proportional to N - 2 / 3 . )  More rapid convergence 
with increasing numbers of microzones was obtained in the approach of Mueller et a1 
(1971) which is based on a quadratic form approximation for w(k) inside each cubic 
microzone and the root-sampling method. For this reason Cooke et a1 (1972) and Janak 
et al(1970) suggested the hybrid method in which the quadratic form for w(k) is used to 
define a linear form for o ( k )  inside still smaller cubic microzones. Then the Gilat- 
Raubenheimer method can be used to calculate g(o) .  The hybrid tetrahedron method 
described in this paper, is analogous to these hybrid methods but is in the context of the 
tetrahedron method rather than the Gilat-Raubenhemier method. 

Sr , 

2. The inclusion of matrix element variation in the tetrahedron method 

In the original tetrahedron method (Jepsen et a1 1971, Lehmann et a1 1972) the linear 
form used for w(k) is the unique result of linear interpolation which matches the exact 
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values at the four tetrahedron vertices. If the k-dependence of F(k) is to be included in 
the scheme, the consistent approximation is to replace F(k)  as well by the result of linear 
interpolation which matches at the tetrahedron vertices. We label the energies at the 
vertices of the ith tetrahedron wf ,  wiz, U:, and wd (mi < w;+J and the matrix element 
values F i ,  F;, F i  and Fb. It is an important simplification of the tetrahedron method that 
the expressions we will derive for g(o),  n(w), I(w) and J(w) are dependent only on w and 
the above eight quantities; they are entirely independent of the shapes of the tetrahedral 
microzones. Expressions for the inclusion of matrix element variations in the calcula- 
tion by I (w)  by the tetrahedron method have been given previously by Gilat and 
Bharatiya (1975). The corresponding expressions required for the evaluation of J ( w )  
are given here for the first time. 

To define notation we write 

(2.la) 

(2.lb) 

. .  N 4 N 4  

I (w)  = V,, C si 1 Ik(w, CO:, CO;, 0'3, wb)F; E VMz S i  ILFL (2.1~) 
i = l  k = l  i = l  h = l  

N 4  N 4  

~ ( w )  = v,, ni J ~ ( W , W : , O ~ , W : , C O ~ ) F ;  E v,, c ni C J;F; (2.14 

where N is the number of tetrahedral microzones and V,, is the microzone volume. 
The required expressions are most easily derived by considering J(w) first and then 
differentiating with respect to w to obtain I ( o ) .  The expressions for g(w) and n(w) then 
follow as a special case by setting Fh = 1. Note that C,"= I ;  = x:= Jh = € in equations 
(2.1~) and (2.14 These coefficients thus describe how the values of F(k)  at the tetrahedron 
vertices are to be averaged to obtain the appropriate contributions to I (w)  and J(w). 
We must consider five separate cases : 

(i) For w < w'; the tetrahedral microzone is entirely unoccupied and there is no 
contribution to g(w), n(w), I ( o )  or J(w). (We will refer to the portion of the tetrahedron 
for which the linear interpolation of o(k), G(k), is less than w as the occupied part. The 
tetrahedron index will be dropped wherever no confusion is likely.) 

(ii) For CO: < w < 01 the occupied portion of the tetrahedron is a tetrahedron with 
vertices at k , ,  k ,  = f,, ,k ,  + f,, ,kl, k,  = f,, 1k3 + fl, 3kl  and ky  = f4, I k 4  + f,, 4kl as 
shown in figure 1. We have defined 

(2.2) 

i = l  k = l  i = l  k = l  

f n , m  E (0 - ~ m ) I ( m t )  - wm), 

noting that f,,, + f,,, = 1. fn,m is the fraction of the distance from km to k, at which 
8 ( k )  equals w. To evaluate the contribution to J ( o )  we replace F(k)  by its linear inter- 
polation &). Note that F(Ci aiki)  = xi  aiF"(ki) and that the centroid of an arbitrary 
tetrahedron is located at the arithmetic mean of its four vertices, independent of the 
shape of the tetrahedron. Then recalling that the volume of an arbitrary tetrahedron 
with vertices at x , ,  x,, x ,  and x4 is given by (xz - xl), ((x, - x l )  x (x4 - x,))/6 it 
follows that 
r 4 

J F(k)B(w - &(k)) = VM,niF"((kl + k,  + k ,  + k,)/'4) = VMZni J i F ;  
MZ k = l  

(2.3) 

F15 
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k2 
Figure 1. Intersection of a tetrahedral microzone with the planar 6 ( k )  = w surface for 
w1 -c w < oz. 

(2 .4~)  

(2.4b) 

and 

Jh = f,, ,/4 k = 2,3,4. (2.4~) 

By differentiating equation (2.3) with respect to w we obtain 

gi = 3ni/(o - a,) (2 .5~)  

'2 = % f l , 2  +f1,3 + fl,,) (2.5b) 
1: = i f , ,  1 k = 2,3,4. (2.5~) 

(iii) For CO; < w < w\ the occupied part of the tetrahedron may be considered at the 
sum of three tetrahedra as shown in figure 2. One tetrahedron has vertices at k , ,  k,, k ,  = 

has vertices at k, ,  k ,  kp and k,  = f,, ,k4 + f l ,4kl  and volume Vlap, = VMzf4, lf,,4f,,2 

while the third has vertices at kl, kp,, k, and k ,  = f,, , k ,  + f,, ,kl and volume V,p,.y = 
f,, f,, ,f,, ,. Expressions for Jt, n', If, and gi can be obtained exactly as in the previous 

f4 ,  zk4  -k fz, 4 k ~  and kp = f3,2k3 -t- f 2 ,  i k 2  and volume vl/lzap = vMZf4, 2f3,23 the second 

Figure 2. Intersection of a tetrahedral microzone with the planar h(k j  = w surface for w 2  < 
w -c w ~ .  The occupied portion of the tetrahedron can be divided into three non-overlapping 
tetrahedra with vertices at k , ,  k,, k, and k,, k , ,  k,, k ,  and k, and k, ,  k,, ka and k ,  respectively. 



Extensions of the tetrahedron method 2995 

case after noting that the centroid of the occupied portion is the average of the centroids 
of three constituent tetrahedra weighted by their volumes. The results are rather cumber- 
some but may be expressed in the following form which is convenient for automatic 
computation. 

(iv) For w: < w < wd the occupied portion is most conveniently considered as the 
full tetrahedron less the tetrahedron with vertices at k,, k,  = f,, ,k, + f2, 4k2, k, = 
f4.1 k4 + fl, 4kl and k ,  = f 4 ,  3k4 + f3, 4k3 and volume 1/4pay = vM,f1, ,fZ, 4 f3, (see 
figure 3). This leads to the expressions 

( 2 . 7 ~ )  

(2.7b) 

(2 .7~)  

(2.7d) 

(2.7e) 

(2.7f) 

(2.79) 
(2.7h) 

(v) Finally we have the case of a full tetrahedron wb < w. For this case there is no 

n’ = 1 ( 2 . 8 ~ )  

contribution to either g(o) or I ( o )  but 

and 

J f=  $, k = 1,2,3,4.  (2.8b) 
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Figure 3. Intersection of the tetrahedral microzone with the planar G(k) = w surface for 
w 3  i w < w4. 

The fact that the gi, and ni, and particularly the I: and Jg depend only on w and w: is 
of great use in simplifying the application of this method. As o approaches w1 from 
above, J ,  and I ,  approach one while J,, J,, J,, I,, I ,  and I ,  approach zero. This corre- 
sponds to the fact that the centroid of the occupied region of the nearly empty tetra- 
hedron is near k , .  As w increases towards w,, the tetrahedron gradually fills up and all 
the Jk approach %, corresponding to the completely filled case. In this limit I , ,  I ,  and I ,  
approach zero while I ,  approaches one since the I coefficients average F(k) over the 
6 ( k )  = CO plane. The way in which these coefficients vary as a tetrahedral microzone is 
filled is illustrated for the case w1 = 0, w, = 1, w, = 2 and w, = 3 for the J coefficients 
in figure 4 and for the I coefficients in figure 5. 

Some comments on the usefulness of this scheme in practice are appropriate at this 
point. The first point to make is that all the BZ integration schemes are intended for 
problems in which the effort of calculating the F(k)  and o ( k )  is very large. The evaluation 

W 

Figure 4. Variation of J , ,  J,, J ,  and J ,  with w for w1 = 0, w 2  = 1, w3 = 2, w4 = 3. These 
coefficients express the averaging of F(k) over the occupied portion (G(k )  < w) of the tetra- 
hedral microzone. Also plotted is n(w) 
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w 

Figure 5. Variation of I , ,  I , ,  I ,  and I ,  with o for o1 = 0, w2 = 1, o, = 2, o4 = 3. These 
coefficients express the averaging of F(k) over the planar q k )  = o surface. Also plotted is 
do). 

of the I ,  and J ,  would therefore be an insignificant component of any such calculation 
and so their rather complicated algebraic expressions should not be construed as a 
disadvantage. A common method of including matrix element variation in the tetra- 
hedron method is to replace P(k)  by its value at the centroid of the tetrahedron (Wang 
and Callaway 1977, Rath and Freeman 1975). The scheme outlined above represents 
an improvement both in accuracy, since the linear variations in F(k)  are treated exactly, 
and in a reduction of the number of F(k)  evaluations required, since in typical applica- 
tions of the tetrahedron method there are far fewer vertices than there are tetrahedra. 

3. The hybrid tetrahedron method 

To apply the tetrahedron method the irreducible region of the BZ must be divided into 
a sufficiently large number of tetrahedra to obtain results of the desired accuracy. One 
way of doing this is by successively dividing each tetrahedron into eight smaller tetra- 
hedra in the manner shown in figure 6. We concentrate on a single tetrahedron at some 
stage in this process and label its vertices by k , ,  k,, k ,  and k,. If the division by eight 
process is applied twice to this tetrahedron, the additional vertices generated are 
as shown in figure 7. We note that knowledge of o ( k )  and/or F(k)  at k ,  to klo,  the 
distinct vertices generated when the division by eight process is applied once to the 
original tetrahedron, gives sufficient information to provide a unique quadratic repre- 
sentation of a ( k )  and/or F(k)  inside the tetrahedron by requiring the representation to 
be exact at the points k ,  to kl0.  This interpolation can be used to determine the necessary 
eigenvalues and matrix element values when the tetrahedron method is applied with 
any larger number of tetrahedra. It is easily seen that this representation of the eigenvalues 
and matrix elements is continuous throughout the BZ i.e. there is no discontinuity in 
moving from one tetrahedron to a neighbour. 

To simplify the remaining discussion we focus on the evaluation of g(o) .  We believe 
that this scheme will be most useful when the smaller tetrahedra which will use the 
quadratically interpolated eigenvalues are generated by successive application of the 
division by eight process of figure 6. For definiteness we concentrate here on the case 
in which the division by eight process occurs once more. The quadratically interpolated 
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Figure 6 .  Division of a tetrahedron into eight sub-tetrahedra. The eight tetrahedra have 
vertices corresponding to the k-labels (1,5,6,7), (2, 5,8, lo), (3,8,9,6), (4,9,7, lo), (7, 8, 10, 9), 
(7,8, 10, 5), (7, 8,6,9) and (7,8,6,5) respectively. 

eigenvalues are then required at the points labelled by 11 to 35 in figure 7. The location 
of the k points of figure 7, expressions for the quadratically interpolated eigenvalues at 
points 11 to 35 and the 64 equal-volume tetrahedra which result from the division pro- 
cess are listed in tables 1,2 and 3 respectively. It is an important simplification in practice 
that the required interpolated eigenvalues are given, in terms of the eigenvalues at 

Figure 7. Vertices generated by applying the division by eight process of figure 6 twice. 
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Table 1. The points labelled by 5 to 35 in figure 7 are simple linear combinations of k, to k,. 
In the table below Index is the k-vector index and Position indicates the k-vector by giving 
the coefficients of its expansion in terms of k,k,. For convenience the coefficients have been 
multiplied by four. For example, the first entry in the left column indicates that k, = 
(24 + 2k2)/4. 

~ ~ ~~~~ 

Index Position Index Position 

5 2(1) + 2(2) 20 l(1) + 3(3) 
7 2(1) + 2(4) 22 l(2) + 3(4) 
6 2(1) + 2(3) 21 3(2) + l(4) 
8 2(2) + 2(3) 23 2(1) + l(2) + l(4) 
9 2(3) + 2(4) 24 2(2) + l(1) + l(4) 
10 2(2) + 2(4) 25 2(4) + l(1) + l(2) 
11 3(1) + l(4) 26 2(4) + l(2) + l(3) 
12 l(1) + 3(4) 27 2(2) + l(3) + l(4) 
13 3(4) + l(3) 28 2(3) + l(2) + l(4) 
14 l(4) + 3(3) 29 2(2) + l(1) + l(3) 
15 3(3) + l(2) 30 2(1) + l(2) + l(3) 
16 l(3) + 3(2) 31 2(3) + l(1) + l(2) 
17 3(2) + l(1) 32 2(1) + l(4) + l(3) 
18 l(2) + 3(1) 33 2(3) + l(1) + l(4) 
19 3(1) + l(3) 34 2(4) + l(1) + l(3) 

35 l(1) + l(2) + l(3) + l(4) 

k ,  to k,,,  by simple expressions which are independent of the shape of the original 
tetrahedron. 

We illustrate the use of the scheme by means of a specific example, namely application 
to the density of states, g(c),  of a single FCC tight-binding band: 

ck = - [cos(~,u/~) C O S ( ~ , U / ~ )  + C O S ( ~ , U / ~ )  C O S ( ~ , U / ~ )  + C O S ( ~ , U / ~ )  cos(kza/2)] (3.1) 
Jelitto (1969) has evaluated g(c)  for this case, by using special simplifying properties of 
equation (3.1) to an accuracy of one part in lo5. For the purpose of comparison we may 

Table 2 .  The quadratically interpolated eigenvalues at the points labelled by 11 to 35 in 
figure 7 are simple linear combinations of the eigenvalues at k ,  to klW The coefficients are 
given in the same manner as in table 1 and are independent of the shape of the original 
tetrahedron. For convenience the coefficients have been multiplied by eight. 

Index 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Eigenvalue 

4(5) + 4(10) + 2(7) - (1) - (4) 
4(7) + 4(10) + 2(5) - (1) - (2) 
4(10) + 4(9) + 2(8) - (3) - (2) 
4(10) + 4(8) + 2(9) - (4) - (3) 
4(9) + 4(8) + 2(10) - (2) - (4) 
Y5) + 4(8) + 2(6) - (1) - (3) 
4(5) + 4(6) + 2(8) - (2) - (3) 
4(6) + 4(8) + 2(5) - (1) - (2) 
4(6) + 4(7) + 2(9) - (3) - (4) 
4(6) + 4(9) + 2(7) - (1) - (4) 
4(7) + 4(9) + 2(6) - (1) - (3) 
2(5) + 2(6) + 2(7) + 2(8) + 2(9) 
+2(10) - (1) - (2) - (3) - (4) 
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take his results to be exact. There are Van Hove singularities in g(c) at E = -3 and at 
E = 0, reflecting extremal values of ck at r and L respectively. There is also an infinity 
in g ( E )  at E = 1 because of a line of extremal values of ek from X to W on the FCC BZ 
surface. The density of states as calculated by Jelitto is plotted in figure 8. We have cal- 
culated g ( E )  from the tetrahedron method with quadratic interpolation used as des- 
cribed above inside 5 12 equal-volume tetrahedra into which the irreducible region of the 
BZ was divided. We refer to the g ( ~ )  corresponding to these tetrahedra, to the 4096 

Table 3. The 35 k points in figure 7 are at the vertices of the 64 equal-volume tetrahedra 
into which the original tetrahedron has been divided These 64 tetrahedra are listed below by 
giving the labels of the four k-vectors at the vertices of each tetrahedron. 

(1, 18, 19, 11) 
(30, 18, 19, 11) 
(5, 18, 23, 30) 
(18, 11, 30, 23) 
(6, 19, 30, 32) 
(11, 30, 32, 23) 
(11, 19, 30, 32) 
(11, 32, 23, 7) 
(8, 29, 31, 35) 
(30, 29, 31, 35) 
(5, 29, 23, 30) 
(29, 35, 30. 23) 
(6, 31, 30, 32) 
(35, 31, 30, 32) 
(35, 30, 23, 32) 
(35, 32, 23, 7) 
(2, 17, 21, 16) 
(24, 17, 21, 16) 
(5 ,  17, 29, 24) 
(17, 16, 29, 24) 
(10, 21, 24, 27) 
(21, 16,24, 27) 

(16, 24, 29, 27) 
(16, 27, 29, 8) 
(5, 23, 29, 24) 
(23, 29, 24, 35) 
(7, 23, 25, 35) 
(23, 24, 35, 25) 
(8, 29, 35, 27) 
(29, 24, 35, 27) 
(24. 35. 25, 27) 
(24, 10, 25, 27) 
(3, 20, 15, 14) 
(20, 15, 14, 31) 
(6, 20, 33, 31) 
(20, 14, 31, 33) 
(8, 15, 31, 28) 
(15, 14, 31,28) 
(14, 31, 33, 28) 
(14, 28, 33, 9) 
(7, 32, 35, 34) 
(31, 35, 32, 34) 
(6, 32, 33, 31) 
(32, 34, 31, 33) 

(8. 15, 31, 28) 
(15. 34,31,28) 
(34, 31. 33, 28) 
(34, 28. 33, 9) 
(4, 12, 22, 13) 
(25, 12, 22, 13) 
(7,  25, 34, 12) 
(13, 25, 34, 12) 
(10. 22, 25, 26) 
(13, 22, 25, 26) 
(9, 13, 34, 26) 
(25, 13, 34, 26) 
(7, 35, 34, 25) 
(28, 35, 34, 25) 
(8, 35, 27, 28) 
(35, 25. 28.,27) 
(9, 34, 28, 26) 
(34, 25, 28, 26) 
(25, 28, 27. 26) 
(25, 26, 27, 10) 

tetrahedra when the division by eight is applied once, and to the 32 768 tetrahedra when 
quadratic interpolation is used as gl(E), g2(E) and g 3 ( E )  respectively. The average relative 
errors of g l ( E ) ,  gZ(E)  and g 3 ( E )  on an equally spaced grid of energy values in the occupied 
range were found to be 5.7 %, 1.6 % and 0.6 % respectively. The important point to note 
is that in comparing g 2 ( E )  and g 3 ( E )  the reduction in the error is close to the factor of -4 
which would be expected if the tetrahedron method were applied directly. In contrast 
while only 933 ‘first-principles eigenvalues’ were required to obtain g3(c) using quadratic 
interpolation - 6000 would be required if the tetrahedron method were applied directly. 
Further reduction in the error with no additional ‘first-principles eigenvalues’ would be 
expected if the division by eight process were applied again with the same quadratic 
interpolation retained. Alternatively we might expect close to the same accuracy in 
g3(E) using only the 155 first-principles eigenvalues required for g l ( E )  and quadratic 
interpolation inside 64 tetrahedron in the irreducible region. These observations show 
that the scheme is quite competitive with that suggested by Chen (1977) who obtained 
an average relative error in q(c) of 0.6 ”/, with -400 first-principles eigenvalue determi- 
nations for the same test case. 
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16- 
- 
x 

a. 5 12-  

0 
L 

e .,- 
g 08- 

O L -  

Figure 8. g(4 for a single tight-binding band in a FCC crystal as given by Jelitto (1969). The 
units are electrons/(atom energy) and the spin degeneracy factor has been included. Note 
the Van Hove singularities at E = - 3 and E = 0 and the divergence of g(c) at E = 1. 

1 

Figure 9. gI(c), g 2 ( 6 )  and g 3 ( E )  near the Van Hove singularity at E = 0. The solid line is the 
exact result as given by Jelitto (1969). The units are electron/(atom energy) and the spin 
degeneracy factor has been included. 
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The quadratic interpolation tetrahedron method was also found to give a more 
accurate g(E) near Van Hove singularities, as is illustrated by figure 9, thus controlling 
one of the disadvantages of linear analytic schemes. Both a reduced error at the singular 
energy and a reduced region of relatively high error near the singularity were achieved 
with no additional first-principles eigenvalues. 

4. Concluding remarks 

The tetrahedron method has proved to be a useful BZ integration scheme for evaluating 
spectral properties of solids. In this paper we have extended the usefulness of the method 
by providing simple and convenient expressions for including matrix element varia- 
tion in the tetrahedron method and by illustrating how quadratic interpolation may be 
used to accelerate its convergence. Both aspects have proved useful in applications to 
Pd and Pt (Liu et a1 1979). For example, the matrix element variation capability is 
useful in accounting for the oscillations of the Fermi surface in the iterative approach 
to self-consistency in self-consistent band calculations and in calculating the form factors 
of the induced magnetisation in paramagnetic metals. On the other hand, quadratic 
interpolation may be used with the tetrahedron method to provide improved accuracy 
for a given number of first principles matrix elements and eigenvalue evaluations. 
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