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Ab initio real-time quantum dynamics of 
charge carriers in momentum space

Zhenfa Zheng    1, Yongliang Shi    1,2,3 , Jin-Jian Zhou4, Oleg V. Prezhdo5, 
Qijing Zheng    1  & Jin Zhao    1,6,7 

Application of the non-adiabatic molecular dynamics (NAMD) approach is 
limited to studying carrier dynamics in the momentum space, as a supercell 
is required to sample the phonon excitation and electron–phonon (e–ph) 
interaction at different momenta in a molecular dynamics simulation. Here 
we develop an ab initio approach for the real-time charge carrier quantum 
dynamics in the momentum space (NAMD_k) by directly introducing e–ph 
coupling into the Hamiltonian based on the harmonic approximation. 
The NAMD_k approach maintains the zero-point energy and includes 
memory effects of carrier dynamics. The application of NAMD_k to the 
hot carrier dynamics in graphene reveals the phonon-specific relaxation 
mechanism. An energy threshold of 0.2 eV—defined by two optical phonon 
modes—separates the hot electron relaxation into fast and slow regions with 
lifetimes of pico- and nanoseconds, respectively. The NAMD_k approach 
provides an effective tool to understand real-time carrier dynamics in the 
momentum space for different materials.

Tracking the quantum dynamics of excited charge carriers in solid 
materials in multidimensions—including time and energy domains, 
as well as real and momentum spaces—is fundamental to understand-
ing many dynamical processes in optoelectronics, spin- and valley-
tronics, solar energy conversion and so on1–3. Different experimental 
techniques—including ultrafast time- and angle-resolved photoemis-
sion spectroscopy (TR-ARPES), with time, energy and momentum 
resolution—have been rapidly developed and applied to investigate 
charge carrier dynamics in various materials4. However, without 
the input of ab initio investigations, it is difficult to understand the 
physical mechanisms behind the experimental spectra. It is there-
fore urgent to develop an ab initio simulation approach to achieve  
a state-of-the-art understanding of multidimensional carrier  
dynamics in solids.

An ab initio approach based on perturbation theory provides  
useful information to understand carrier lifetimes governed by different 

scattering mechanisms5. In the past few years, the development of the  
real-time Boltzmann transport equation (rt-BTE) made it possible to  
investigate the carrier and phonon dynamics based on the semi- 
classical Boltzmann transport equation6–8. On the other hand, in recent 
decades, real-time time-dependent density functional theory (rt-
TDDFT), which is based on Ehrenfest dynamics9–15, and non-adiabatic 
molecular dynamics (NAMD) approaches, which combines real-time 
time-dependent Kohn–Sham theory and surface hopping, have been 
applied to investigate the quantum dynamics of excited charge carri-
ers in a non-perturbative way3,16–19. Electron–phonon (e–ph) coupling, 
spin–orbit coupling (SOC) and the many-body electron–hole inter-
action have been included with different theoretical strategies20–25; 
however, it is difficult to achieve real-time carrier dynamics in the 
momentum space in all of these methods. In past NAMD simulations, 
the phonon excitation is described using ab initio molecular dynamics 
(AIMD) within periodic boundary conditions, and only phonons at the  
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where ϵn is the energy of the adiabatic Kohn–Sham state, and dmn is the 
non-adiabatic coupling (NAC) between Kohn–Sham states m and n. 
The NAC can be written as

dmn = ⟨ψm|
d
dt

|ψn⟩ =
⟨ψm|∇R ̂H

el |ψn⟩
ϵn − ϵm

⋅ Ṙ. (4)

Here, ϵm and ϵn are the eigenvalues of the Kohn–Sham orbitals m and 
n, dmn is the e–ph coupling term, and Ṙ is the nuclear velocity; NAC is 
the crucial term in the NAMD_r simulation. It determines not only the 
time-dependent coefficient evolution, but also the hopping probabil-
ity in the subsequent surface hopping step16,17. According to Bloch’s 
theory, NAC is zero if ψm and ψn have different k vectors (see Supple-
mentary Section 1 for more details); therefore, the NAMD_r approach 
cannot efficiently simulate the carrier dynamics in the momentum 
space.

The NAMD_k approach is based on the harmonic approximation. 
By contrast with equation (1), we expand the charge carrier wave-
function using the Kohn–Sham orbitals of the equilibrium atomic 
configuration R0

|Ψ(r;R(t))⟩ = ∑
nk

cnk(t) |ψnk(r;R0)⟩ , (5)

where the Kohn–Sham orbital |ψnk(r;R0)⟩ , with band index n and 
momentum k, is the eigenstate of the equilibrium configuration R0. 
The charge carrier Hamiltonian is naturally divided into two parts:

̂H
el
(r;R(t)) = ̂H

0
(r;R0) + ΔV(r;R(t)), (6)

where ΔV is the variation of the potential induced by nuclear displace-
ments ΔR(t) = R(t) − R0. Combining the above equations, we get a new 
coefficient evolution equation:

iℏ d
dt

cmk′ (t) = ∑
nk
(H0

mk′,nk + He-ph
mk′,nk)cnk(t). (7)

Here,

H0
mk′,nk = ⟨ψmk′ | ̂H

0 |ψnk⟩ = ϵnkδmn,k′k, (8)

is the diagonal Kohn–Sham energy matrix and

H e-ph
mk′,nk = ⟨ψmk′ |ΔV |ψnk⟩ , (9)

is the e–ph coupling Hamiltonian; m and n denote the Kohn–Sham 
orbitals, whereas k and k′ denote the momentum.

Transformed into the momentum space (see the Methods for a 
detailed derivation), the e–ph term can be rewritten as

H e-ph
mk′,nk = 1

√N
∑
qν
⟨umk′ |Δqνv(r;R0)|unk⟩ucδq,k′−kQqν(t)/lqν

= 1
√N

∑
ν
gmnν(k,q)Qqν(t)/lqν||q=k′−k,

(10)

where N is the number of unit cells according to the Born-von Kámánn 
boundary conditions, Qqν(t) is the normal mode coordinate of the cor-
responding vibration mode of a phonon with momentum q in branch 
ν, lqν is the zero-point displacement amplitude, and gmnν(k, q) is the 
e–ph matrix element. In this way, the NAC in the NAMD_r approach 
is replaced by the e–ph coupling Hamiltonian in equation (10), which 
naturally includes the coupling between electronic states with  
different momenta k, and the scattering with phonons at different 
momenta q.

Γ point (the centre of the Brillouin zone where the momentum is zero) 
are included. The electron transition from one k-point (a point in the 
reciprocal space representing the momentum of the electron) to 
another through e–ph is therefore forbidden even though the elec-
tronic states can be simulated using multiple k-points. To sample 
the phonon excitation and electron–phonon interaction at differ-
ent momenta, a supercell needs to be used so that phonons at other 
q-points (points in the reciprocal space representing the momenta of 
phonon modes) can be folded to the Γ point. The density of the q-point 
grid is determined by the size of the supercell and, due to the compu-
tational cost, usually only a few q-points can be included in the NAMD 
simulation3,20,22. By contrast, the e–ph scattering between different 
momenta often needs to be simulated with very dense k- and q-point 
grids, especially when the electronic band dispersion is strong. An ab 
initio approach to describe the real-time quantum dynamics of photo-
excited carriers in the momentum space is thus essential.

In this work, by introducing e–ph coupling elements into the time-
propagation Hamiltonian, we extended the ab initio NAMD approach 
from the real-space (NAMD_r) to the momentum space (NAMD_k). 
Unlike the NAMD_r approach, in which a large supercell AIMD simula-
tion is required for q-grid sampling, in NAMD_k, k and q sampling is 
performed by the calculation of e–ph matrix elements using a unit cell; 
the computational cost is therefore substantially reduced. Moreover, 
the NAMD_k approach provides a straightforward picture not only of 
the dynamics of excited electrons in the momentum space, but also 
the time-dependent phonon excitation of the lattice due to the e–ph 
scattering. The phonon zero-point energy and phonon dispersion are 
accurately represented with memory effects. Using this approach, 
we have investigated the hot carrier dynamics in graphene. It is found 
that there is an energy threshold at 0.2 eV above the Fermi level (Ef). 
The threshold separates the hierarchical relaxation dynamics from 
fast (picosecond) to slow (nanosecond) regions. The intervalley e–ph 
scattering is activated in the fast region but strongly suppressed in 
the slow region. The energy threshold is determined by strongly cou-
pled optical phonon modes A1 and E2g. Our work not only reveals the 
phonon mode-specific energy threshold for hot electron relaxation 
in graphene, but also provides a tool which can be widely applied to 
study excited carrier dynamics in different solid state systems with 
momentum space resolution.

Results
Theoretical framework of NAMD_k
In the NAMD_r approach, the charge carrier (electron or hole) wave-
function |Ψ(r;R(t))⟩ is expanded in the basis of instantaneous adiaba-
tic Kohn–Sham orbitals |ψn(r;R(t))⟩, which are obtained by solving the 
Kohn–Sham equation at atomic configuration R(t),

|Ψ(r;R(t))⟩ = ∑
n
cn(t) |ψn(r;R(t))⟩ , (1)

where cn(t) is the time-dependent expansion coefficient of the nth 
Kohn–Sham orbital, and r is the position of carrier. Based on the clas-
sical-path approximation (CPA)16, R(t) can be obtained by AIMD. The 
charge carrier wavefunction follows the time-dependent Schrödinger 
equation (TDSE)

iℏ ∂
∂t

|Ψ(r;R(t))⟩ = ̂H
el
(r;R(t)) |Ψ(r;R, t)⟩ , (2)

where ̂H
el

 is the electronic Hamiltonian. Then, a set of differential equa-
tions for the coefficients cm(t) is produced

iℏ ̇cm(t) = ∑
n
cn(t)[ϵn − iℏdmn], (3)
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To obtain the real-time carrier dynamics via the NAMD_k method, 
the e–ph coupling matrix element gmnν(k, q) and the time-dependent 
normal mode coordinate Qqν(t) need to be computed; gmnν(k, q) can 
be calculated by the density functional perturbation theory method 
using the primitive cell26 or finite difference method with non-diagonal 
supercells27, whereas Qqν(t) can be obtained using different methods. 
For example, it can be expressed in terms of phonon populations as

Qqν(t) = lqν√nqν +
1
2 (e

−iωqνt + eiω−qνt), (11)

where the initial population of phonons at t = 0 (t0) is given by the Bose–

Einstein distribution nqν =
1

eℏωqν/kBT−1
. It can also be obtained from the 

molecular dynamics simulation by using the normal mode decompo-
sition method28. The factor of one-half represents the zero-point energy 
contribution. Finally, fewest-switches surface hopping (FSSH) is applied 
to include the stochastic factor of the carrier dynamics. We use a 1 as 
timestep for the electron dynamics and a 1 fs timestep for the nuclear 
dynamics; thus the CPA is applied16. As the velocity of the atoms is much 
slower than the speed of light, the retarted time is not considered in 
the calculation29.

Hot electron relaxation in graphene
We choose graphene as a prototypical system and simulate the hot 
electron relaxation process, as has been investigated extensively in 
past works8,30–35. Graphene has six Dirac cones near the Ef at the K and K′ 
points in the first Brillouin zone—known as the six valleys (Fig. 1a,b). Hot 
electron relaxation may involve inter- and intravalley e–ph scattering. 
We first study dynamics with a single electron initially excited at 1.0 eV 

above the Ef (Eini = 1.0 eV, where Eini represents initial energy of the hot 
electron) in the K valley. To obtain statistics on the quantum behavior 
of the excited electron, we randomly set the initially excited electron at 
30 different k-points in the K valley with Eini = 1.0 eV. We sample 2 × 104 
trajectories for each k-point. We find that a 150 × 150 × 1k-point grid 
achieves well-converged results (the k-point grid convergence details 
are presented in the Supplementary Fig. 1). Figure 1a shows five snap-
shots of the hot electron population in the band structure over 2 ps, 
whereas Fig. 1b gives the corresponding hot electron distribution in 
the first Brillouin zone. It can be seen that although the hot electron 
is initially excited in the K valley, the K–K′ intervalley scattering starts 
almost immediately. Figure 1c presents the time-dependent electron 
population in the K and K′ valleys. The valley lifetime (τK)—which is 
defined as the timescale on which the equilibrium between K and K′ is 
reached—is around 0.4 ps. The intervalley scattering suggests that the 
hot electron couples with phonons with large momentum. Figure 1d  
shows the hot electron energy relaxation. It can be seen that there 
is an energy threshold for hot electron relaxation located at around 
0.2 eV above the Ef. Above the threshold energy, the relaxation is a 
relatively fast process, which corresponds to energy relaxation from 
1.0 eV to around 0.2 eV within 2 ps. Using a Gaussian function, the life-
time for this fast energy relaxation (τE) can be estimated to be 0.56 ps. 
Furthermore, a quantized character with an energy difference of around 
0.2 eV as indicated in Fig. 1d. Following the fast process, there hap-
pens a much slower relaxation process from 0.2 eV to the Dirac point. 
The timescale of the slow process is difficult to be estimated with a  
2 ps simulation.

To further understand the slow relaxation process close to the Ef, 
we perform a 100 ps NAMD_k simulation for hot electron relaxation 

0 psa

b

c d

En
er

gy
 (e

V)

En
er

gy
 (e

V)

Po
pu

la
tio

n

1.5

1.0

0.5

0

0
0 0.5 1.0

Time (ps)
1.5 2.0

0.2

0.4

0.6

0.8

1.0 1.00

0.75

0.50

0.25

0

S

S

SK KM

M

Γ

MK'

K'

K'K

K

K'S'

S'

S'

0.25 ps 0.5 ps 1.0 ps 2.0 ps

S SK KM MK' K'S' S' S K M K' S'

0 0.5 1.0

Time (ps)

Electron population
10–4 10–2 100

1.5 2.0
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reference of a and d is the Ef.
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with Eini = 0.1 eV. In this case, as the density of states (DOS) becomes 
smaller when the energy is close to the Ef, a more dense k-point grid is 
required; we therefore use a 450 × 450 × 1k-point grid. The energy and 
valley dynamics are shown in Fig. 2a,b. As can be seen, both the energy 
and valley relaxation become much slower, and there is no longer a fast 
process in energy relaxation; τE and τK are estimated to be 1.2 and 3.0 ns, 
respectively. We further study the hot electron relaxation dynamics 
with different Eini from 0.1 to 1.5 eV. As shown in Fig. 2c, it is found that 
Eini = 0.2 eV is a critical point for different relaxation behaviors. If 
Eini > 0.2 eV, there will be both a fast and a slow relaxation process. The 
τE for the fast process (τfastE ) ranges from 0.3 to 3.0 ps, inversely propor-
tional to the DOS. When Eini < 0.2 eV, there is only the slow process and 
τslowE  dramatically increases by 1–3 orders of magnitude. The correlation 
between τK and Eini is shown in Fig. 2d, demonstrating a very similar 
trend with τE. When Eini < 0.2 eV, the intervalley e–ph scattering becomes 
rare and τK reaches a nanosecond timescale. The slow energy relaxation 
process is dominated by the intravalley scattering.

The e–ph coupling H e-ph
mk′,nk = ⟨ψmk′ |ΔV |ψnk⟩  between states  

ψmk′ and ψnk plays the key role in the NAMD_k approach—analogous  
to the NAC in the NAMD_r approach. In Fig. 2e,f we plot the averaged 
H e-ph

mk′,nk, where the x- and y-axes represent the energy of ψmk′ and ψnk 
(labeled Emk′ and Enk, respectively). In Fig. 2e, where Emk′ and Enk  
range within (0.0, 1.5) eV, the largest H e-ph

mk′,nk can be roughly fitted by 
two lines, which are expressed as |Emk′ − Enk| = 0.2 eV, suggesting the 
coupling between two electronic states is the largest when the state 
energy difference is around 0.2 eV; thus, when Eini > 0.2 eV, the hot 
electron prefers to relax to an electronic state 0.2 eV lower in energy, 
which explains the quantized character with an energy difference of 
0.2 eV observed in the fast relaxation process shown in Fig. 1d, suggest-
ing that the hot electron relaxation is strongly coupled to phonons 
with energy of around 0.2 eV. The couplings between Emk′ and Enk are 
much smaller when Eini < 0.2 eV, as indicated by the square marked with 
the white dashed lines in Fig. 2f. The matrix elements that are close to 
the diagonal line (where |Emk′ − Enk| is very small) play a crucial role. 
This result implies that coupling to the phonons with small energies is 
essential in this case.

During the hot electron relaxation, the energy of the electrons 
transfers to the phonons through e–ph coupling. Figure 3 shows the 
phonon excitation dynamics along with the hot electron relaxation. 
Figure 3a shows the four snapshots of phonon excitation within 2 ps 
with Eini = 1.0 eV. It can be seen that only the optical modes A1 and  
E2g—which belong to the longitudinal and transverse optical branches—
are notably excited during the hot electron relaxation process. There 
is also a minor excitation for the longitudinal and transverse acoustic 
modes. Figure 3b,c shows the time-dependent phonon population and 
energies of these four different phonon modes. It can be seen that the 
excitations of the optical A1 and E2g modes (with ℏωA1  = 0.16 eV and 
ℏωE2g = 0.19 eV) are dominant. The excitation of A1 is responsible for 
the intervalley electron scattering, and both A1 and E2g contribute to 
the quantized character in the energy relaxation process. Together, 
they define the critical energy threshold around 0.2 eV. Figure 3d–f 
presents the time-dependent phonon excitation with Eini = 0.1 eV. In 
this case, the longitudinal and transverse acoustic phonons excitation 
are dominant, as shown in Fig. 3d,e. The optical phonon mode A1 also 
has a minor contribution due to the thermal energy smearing of the 
electronic states (see Supplementary Section 4 for further details). As 
its energy is much higher than the longitudinal and transverse acoustic 
phonon energies, its contribution to the excited phonon energy is still 
dominant, as shown in Fig. 3f. As the energies and momenta of the 
longitudinal and transverse acoustic mode phonons are both very 
small, the energy and valley dynamics are much slower with Eini = 0.1 eV.

Finally, we study the multi-hot electron relaxation by simulating 
the electron temperature (Te) decrease. In the TR-ARPES measure-
ments, after photoexcitation, the hot electrons will reach equilibrium 
with a certain temperature through electron–electron (e–e) scattering, 
and then relax to a lower temperature through e–ph coupling.  
Figure 4a shows five snapshots in the Te relaxation with an initial elec-
tron temperature of T ini

e  = 3,193 K. In this case Te decreases to 639 K at 
10 ps. Figure 4b shows the time-dependent relaxation dynamics with 
Tini
e  = 3,193, 2,200 and 1,060 K. For all three cases, Te converges to around 

500 K at 10 ps. The relaxation from 500 K to lower temperature is  
very slow.
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Fig. 2 | Hot electron relaxation in graphene with different Eini. a, Hot electron 
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There are fast and slow processes in the electron relaxation. When Eini > 0.2 eV, the 

electron relaxation is mainly governed by a fast process, whose relaxation time is 
proportional to the DOS−1. When Eini < 0.2 eV, the fast process is suppressed and 
the slow process remains. This results in a substantial increase in relaxation time. 
e,f, Coupling of e–ph, with the energy conservation factor (as shown in equation 
(27)) between states ψmk′ and ψnk plotted with different Emk′ and Enk scales. Here 
we used 150 × 150 × 1k-point grid for simulations with Eini > 0.3 eV, and 
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Experimental validation
The simulation by NAMD_k can explain most important experimen-
tal results. The hot electron relaxation timescale and decrease in Te 
is of the same magnitude as our results36–38. Different experimental 
groups reported that slow decay via acoustic phonons plays a role 
when Eini < 0.2 eV (refs. 38–41), whereas the hot electrons can efficiently 
scatter with the optical phonons when Eini > 0.2 eV (refs. 33,35,39,41). 
The strong coupling with the A1 and E2g modes and the quantized 
energy-loss are particularly in good agreement with the report by Na 
and colleagues35.

Comparing NAMD_k to other methods
The momentum-resolved rt-TDDFT algorithms based on Erhenfest 
dynamics have been implemented by several groups42–46; however, 

as discussed by Lian et al.42 and Hu et al.47, the momentum-depend-
ence (k-dependence) is only related to the electron and hole. In the 
photoexcited charge carrier relaxation process, the momentum of 
the electron and hole cancel each other so that the momentum con-
servation is kept, and only phonons at the Γ point are involved. For 
example, Hu et al.47 only observe the hot carrier relaxation couple 
with the E2g mode, which is located at the Γ point. For the NAMD_r 
approach combined with time-dependent Kohn–Sham with a single-
particle picture, only the Γ point is included for both the electron and 
phonon. An approach in which NAMD_r was combined with GW plus 
the real-time Bethe–Salpeter equation (GW + rt-BSE) was recently 
developed for exciton dynamics20. As both electrons and holes are 
considered, the k-dependence of electron and hole can be included, 
similar to rt-TDDFT based on Erhenfest dynamics; however, it also 
only includes the Γ point phonons. NAMD_k provides a tool for charge 
carrier dynamics with both the k-dependence for the electron and 
the q-dependence for the phonon.

Compared with NAMD_r, the NAMD_k method not only gives 
consistent results, as is shown in Fig. 5 and discussed in the Methods 
section. Besides, NAMD_k has other substantial advantages in treating 
solid state systems. First, the |ψnk(r;R0)⟩ basis sets used here can be 
understood as diabatic basis sets, that is, each electronic state has a 
clear notion of band index and momentum. We do not need to reorder 
the electronic states when they cross each other; thus, the well-known 
state-crossing problem in surface hopping can be avoided48–52. Second, 
in the NAMD_k method, the e–ph coupling can be understood in the 
time domain. Especially, the time-dependent phonon excitation 
induced by electron relaxation can be achieved, which is helpful to 
understand the photoexcition-induced lattice structure distortion. 
But we can not calculate the time-dependent phonon excitation by the 
NAMD_r method using CPA because the lattice distortion is predeter-
mined by the AIMD simulation3,16. Taking graphene as an example, one 
can perform a molecular dynamics simulation using the phonon excita-
tion at 2 ps as an initial condition to see how the lattice structure dis-
torts after the hot electron transfers its energy to the lattice. It also 
provides a dynamical picture of the energy transport between the 
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electron and the phonon subsystems at the ab initio level beyond the 
semi-classical two-temperature model38,53.

Our work also agrees with the theoretical study by Bernardi et al.8 
based on the quasi-classical rt-BTE. It can be noted that hot electron 
relaxation mainly excites the A1, E2g, longitudinal and transverse acous-
tic modes. All of these phonons are in-plane modes. The out-of-plane 
phonon modes are not directly excited, and we therefore propose 
that the buckling of graphene requires a phonon–phonon interaction, 
which can be studied by the rt-BTE method8. It is noted that the rt-BTE 
can also be used to study the real-time charge carrier and phonon 
dynamics8. Rt-BTE is based on the Boltzmann equation, which is valid 
under the semi-classical assumptions for charge transport. The charge 
carrier is described as a semi-classical quasi-particle and the quantum 
effects are incorporated based on the effective mass approximation. 
The Born approximation for the collisions, in the limit of perturbation 
for the e–ph interaction and instantaneous collisions is applied5,6. There 
are no memory effects in rt-BTE8. The NAMD_k approach is based on 
the TDSE; the quantum character of the charge carrier is thus directly 
simulated. The dynamics of the charge carrier can be understood in a 
non-perturbative way. The memory effects are included in real-time 
propagation of TDSE, where the coefficients at a current time are cor-
related with the coefficients in the past. We propose that NAMD_k is 
a quantum dynamics approach for charge carriers, whereas the semi-
classical rt-BTE approach has the advantage to simulate the phonon 
dynamics, which usually occurs on a much longer timescale.

Discussion
Beyond e–ph coupling based on the work by Bernardi and colleagues, 
the exciton–phonon coupling can be understood as a quantum super-
position of the e–ph coupling contributed by the electron and hole20. 

They also developed an approach for exciton dynamics in momentum 
space under the framework of rt-BTE54. Based on the work of exciton–
phonon coupling and the GW + rt-BSE approach20, the NAMD_k method 
can be extended for the investigation of exciton dynamics. Further-
more, the e–ph coupling can be calculated using the spinor basis sets, 
in which the SOC is included24. Thus NAMD_k can also be used to study 
the SOC promoted spin dynamics.

NAMD_k may also be applied to study indirect electron–hole (e–h) 
recombination and interband carrier relaxation; however, the current 
approach only includes the first order of e–ph coupling. When the band 
gap is larger than the phonon energy, the coupling of electrons to mul-
tiphonon through a higher order of e–ph coupling becomes important. 
The NAMD_r approach naturally includes the higher-order of e–ph 
coupling. Furthermore, in the e–h recombination problem, usually only 
the valance band maximum and conduction band minimum need to 
be included, and a very dense of k-point grid is not often required. The 
NAMD_r approach is therefore usually more appropriate for the e–h 
recombination problem; however, if the momentum of the conduction 
band minimum and valance band maximum is very close to each other, 
for example, in the case of the Rashba effects induced momentum-
dependent splitting55, the NAMD_k has its advantage. Still, the future 
development of the NAMD_k to include a higher order of e–ph coupling 
is essential for its application in e–h recombination problem. In Sup-
plementary Section 6 we give an example of e–h recombination study 
in silicon bulk using the NAMD_k and discuss its limitation.

The major approximation used in the NAMD_k method is the har-
monic approximation, which is applied to calculate the e–ph element 
gmnν(k, q) and the time-dependent phonon population Qqν(t). Here 
we propose a possible stratagem to consider the anharmonic effects. 
The first step is using a different way to generate Qqν(t). For example, 
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a molecular dynamics simulation can be performed to generate the 
atomic nuclear R(t). Then Qqν(t) can be obtained by Fourier trans-
form from R(t). Of course, if molecular dynamics is used to get Qqν(t), 
a large supercell must be used to capture the phonons at different 
q-points. But the advantage in NAMD_k is that only Qqν(t) is needed. 
The electronic wave function for each step is not required. Molecular 
dynamics simulations can therefore be performed using empirical or 
deep learning potentials, which makes the large supercell calculation 
realistic. One can also use the rt-BTE approach to get the time-resolved 
phonon population Qqν(t), where the phonon–phonon interaction is 
captured using perturbation theory8. The second step is to consider 
the anharmonic effects in the calculation of the e–ph coupling matrix 
element gmnν(k, q), which can be expanded to higher order. The work 
to include the anharmonic effects in NAMD_k is an interesting and 
important topic in the future.

Methods
In the NAMD_k approach, the NAC from the NAMD_r approach is 
replaced with e–ph coupling by expanding the charge carrier wave-
function with the static Kohn–Sham orbitals of the equilibrium atomic 
configuration, which is the key point in the simulation of momentum 
space. To calculate the e–ph term, we expand the potential energy 
V(r; R(t)) in terms of nuclear displacements ΔR(t). The potential energy 
approximated to first order in displacements is

V(r;R(t)) = V(r;R0) +∑
pα

∂V(r;R)
∂Rpα

|
|
|R=R0

⋅ ΔRpα(t), (12)

where the position of the nucleus α in the pth unit cell is denoted as 
Rpα = Lp + τα, and Lp is the cell vector. In practice, it is convenient to 
decompose nuclear displacements ΔR(t) into normal modes

ΔRpα(t) = √
M0
NMα

∑
qν

eiq⋅Lpeαν(q)Qqν(t), (13)

where N is the number of unit cells according to the Born-von Kámánn 
boundary conditions, M0 is an arbitrary reference mass introduced to 
ensure that both sides of the equation have the dimension of length. 
Typically, M0 is chosen to be the proton mass; eαν(q) is the polarization 
of the vibration wave corresponding to the wave vector q and mode ν; 
and Qqν(t) is the normal mode coordinate of the corresponding mode. 
According to equation (6),

ΔV(r;R(t)) = √
1
N ∑

qν
∑
pα √

M0
Mα

eiq⋅Lp
∂V(r;R)
∂Rpα

|
|
|R=R0

⋅ eαν(q)Qqν(t). (14)

Here, by defining

∂qαv(r;R0) = ∑
p
e−iq⋅(r−Lp) ∂V(r;R)

∂Rpα

|
|
|R=R0

, (15)

and

Δqνv(r;R0) = ∑
α
(M0/Mα)

1/2∂qαv(r;R0) ⋅ eαν(q)lqν, (16)

where lqν is the zero-point displacement amplitude:

lqν =√
ℏ

2M0ωqν
(17)

One can show that ∂qαv(r; R0) and Δqνv(r; R0) are lattice-periodic func-
tions. Equation (14) can then be written as

ΔV(r;R(t)) = N−1/2∑
qν

eiq⋅rΔqνv(r;R0)Qqν(t)l−1qν . (18)

By combining equations (9) and (18), we have

He-ph
mk′ ,nk = N−1/2∑

qν
N−1 ⟨umk′ | e−i(k

′−k−q)⋅rΔqνv(r;R0) |unk⟩Qqν(t)l−1qν

= N−1/2∑
qν
⟨umk′ |Δqνv(r;R0)|unk⟩ucδq,k′−kQqν(t)l−1qν

= N−1/2∑
ν
gmnν(k,q)Qqν(t)l−1qν

|||q=k′−k
,

(19)

where umk′ and unk are the periodic parts of Bloch’s form of Kohn–Sham 
orbitals (see Supplementary equation (2)). The inner product in the 
first line is an integral over the entire Born-von Kámánn supercell. 
Similar to the proof in Supplementary Section 1, one can show that the 
integral can be converted to an integral over the unit cell, provided that 
the momentum is conserved; gmnν(k, q) is referred to as the e–ph matrix 
element

gmnν(k,q) = ⟨umk+q||Δqνv(r;R0)|unk⟩uc. (20)

As we obtain the e–ph coupling Hamiltonian in equation (10), we 
can calculate time-dependent coefficient evolution of excited carrier 
by equation (7). We then simulate the carrier dynamics using the FSSH 
method based on the time-dependent coefficients. The FSSH method 
represents a time-evolving electron–nuclear system by an ensemble 
of trajectories, propagating under the influence of deterministic (via 
the TDSE) and stochastic (via surface hopping) factors. Evolution of 
the system of interest is defined in a joint space combining classical 
phase-space for nuclei and discrete quantum states for electrons. The 
paths are constructed such that the FSSH probabilities for all states 
at all times—averaged over the trajectory ensemble—are equal to the 
corresponding probabilities obtained from the TDSE. The hopping 
probability are given by diagonal elements of the density matrix:

ρmk′ ,nk(t) = c∗mk′ (t)cnk(t). (21)

The off-diagonal elements determine the probabilities of transitions 
between electronic states. For simplicity, we take the diagonal elements 
ρnk,nk as ρnk. If the system is in state nk at time t, then the probability to 
leave this state at time t + Δt is:

Pnk(t; t + Δt) = ρnk(t) − ρnk(t + Δt)
ρnk(t)

= −
∫t+Δt
t ̇ρnk(t)dt

ρnk(t)
. (22)

From the definition of the density matrix, and from the TDSE, it fol-
lows that:

̇ρnk(t) = ∑
mk′

− 2
ℏ Im (ρ∗mk′ ,nkH

e-ph
mk′ ,nk) . (23)

Splitting the resulting hopping probability into various channels,  
mk′, one obtains the probability of transition between the pair of states 
nk → mk′:

Pnk→mk′ (t; t + Δt) = 2
ℏ
∫t+Δt
t Im (ρ∗mk′ ,nkH

e-ph
mk′ ,nk)dt

ρnk(t)
. (24)

Note that each transition from nk to mk′ corresponds to one e–ph scat-
tering process, where the energy and crystal momentum must be con-
served; however, equation (24) cannot guarantee the conservation law. 
To explicitly introduce the conservation law into the probability equation, 
recall that Fermi’s golden rule gives the transition rate between two states

d
dt
𝒫𝒫nk→mk′ (t) =

2π
ℏ
|H e-ph

mk′ ,nk|
2 × [ δ(ϵmk′ − ϵnk − ℏωqν)

+δ(ϵmk′ − ϵnk + ℏωqν) ] .
(25)
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As a result, the modified hopping probability equation changes to

̃Pnk→mk′ (t; t + Δt) = 2
ℏ
Im (ρ∗mk′ ,nk(t)H̃

e-ph
mk′ ,nk)Δt,

ρnk(t)
, (26)

where H̃ e-ph
mk′ ,nk is given by

H̃ e-ph
mk′ ,nk = 2π

N
∑
ν
|gmnν(k,q)|2(nqν +

1
2
) × [ δ(ϵmk′ − ϵnk − ℏωqν)

+δ(ϵmk′ − ϵnk + ℏωqν) ] .
(27)

where the two δ function correspond to absorbtion and emission of 
the phonon, respectively; however, in practical implementation, a 
Gaussian function with certain broadening σ is used to approximate 
the Dirac δ-function

δ(E) ≈ 1
σ√2π

e−
E2

2σ2 . (28)

If the computed probability is negative, it is reset to zero. Thus, in 
general, the FSSH assigns a probability for transition from the current 
electronic state nk to the new state mk′, as:

gnk→mk′ (t; t + Δt) = max [0, ̃Pnk→mk′ (t; t + Δt)] , (29)

gnk→nk(t; t + Δt) = 1 − ∑
mk′≠nk

gnk→mk′ (t; t + Δt). (30)

To reflect the detailed balance condition, the hop rejection and velocity 
rescaling of the standard FSSH are replaced in the FSSH–CPA by scaling 
the transition probabilities gnk→nk with the Boltzmann factor:

gnk→mk′ ⇒ gnk→mk′bnk→mk′ , (31)

bnk→mk′ = {
exp (− ϵmk′ −ϵnk

kBT
) ϵmk′ > ϵnk

1 ϵmk′ ≤ ϵnk
. (32)

After calculating the transition probability between any two states, 
we can perform simulation of carrier dynamics using the FSSH–CPA 
strategy, as discussed by Akimov and co-workers16.

To verify the validity of the NAMD_k method, we compare the 
calculation results of the NAMD_k and NAMD_r approaches. In the 
NAMD_r approach, a supercell is required to sample the phonon exci-
tation with different q-points. Here we only simulate 9 × 9 × 1, 6 × 6 × 1 
and 3 × 3 × 1 supercell due to the limitation of computational cost. We 
then compare the results with what NAMD_k obtains using 9 × 9 × 1, 
6 × 6 × 1 and 3 × 3 × 1k-point grid, respectively (see Fig. 5 for the results). 
As the k-point grid is not dense enough, there are energy gaps in all 
three systems. We simulate the hot electron relaxation with Eini = 2.2, 
2.5 and 5.1 eV for the three systems, respectively. The σ value used in 
NAMD_k is estimated from the energy level oscillation in the NAMD_r 
simulation, which can be seen from Fig. 5a,d,j. One can see that the 
NAMD_r and NAMD_k approaches achieve very similar results, prov-
ing the validity of the NAMD_k approach. Due to the existing of energy 
gaps, the hot electron can not relax close to Ef within 1.0 ps, suggest-
ing that a dense k-point grid is required to simulate the hot electron 
relaxation in graphene.

The computational cost of NAMD_k is notably smaller than that of 
NAMD_r. The work flow of NAMD_r includes: (1) molecular dynamics 
simulation; (2) Kohn–Sham wavefunction and NAC calculation; and  
(3) NAMD simulation. The major computational cost comes from steps 
1 and 2. Step 3 depends on the number of electronic states included and 
is typically negligible under the CPA approximation. Taking 9 × 9 × 1 gra-
phene supercell as an example, if we perform a 5 ps molecular dynamics 

and a 2 ps NAMD, it will take 39.6 h using 48 cores on a single Intel(R) 
Gold 6240R @ 2.40GHz CPU. The workflow of NAMD_k includes: (1) 
e–ph coupling elements; and (2) NAMD simulation. For e–ph coupling 
elements (step 1), the computational cost depends on the size of the 
unit cell. In the case of graphene, the e–ph calculation takes 7.2 h for 
150 × 150 × 1k-point grid if 48 cores are used. The length of the NAMD 
simulation (step 2) depends on the number of electronic states. If 
we use 9 × 9 × 1k-point grid, the relaxation for 2 ps simulation takes 
around 28 s to sample 104 trajectories, which can be neglected. But if 
we use 150 × 150 × 1k-point grid, we have much more electronic states 
and it takes 6 h. There is still lots of room to optimize the NAMD part in 
NAMD_k. In spite of this, for NAMD_k the total computational time for 
graphene with 150 × 150 × 1k-point grid is 13.2 h using 48 cores, which 
is less than one-third compared with NAMD_r with a 9 × 9 × 1 supercell. 
In Table 1 we have summarized the computational cost of NAMD_r 
and NAMD_k with different supercells and k-point grids. One can see 
the NAMD_k is always more efficient than NAMD_r. The advantages 
of NAMD_k become more substantial for denser k-point grid, which 
corresponds to a larger supercell in NAMD_r. If we compare with the 
NAMD_r simulation with a 150 × 150 × 1 supercell, whose computational 
time is too long to execute and is estimated to be about 106 h, which is 
105 longer than that of the NAMD_k simulation.

Data availability
These data are obtained by NAMD_k simulations using our homemade 
code56,57. The source data for Figs. 1–5, Supplementary Figs. 1–3 and 
input files for NAMD_k simulations have been deposited in the Mate-
rials Cloud Archive at https://doi.org/10.24435/materialscloud:2n-3j. 
Source Data are provided with this paper.

Code availability
The code for our algorithm and a guide to reproducing the results is 
available at GitHub56 and Code Ocean57. In the calculation, e–ph cou-
pling is calculated by the package Perturbo58, which can be obtained 
at https://perturbo-code.github.io.
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