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Abstract—Elastic optical networks (EONs) provide fine band-
width allocation granularity and enable scalable network man-
agement. In this paper, we review the strategies to alleviate
spectrum fragmentation from both the preemptive and proactive
perspectives. As for preemptive defragmentation, we investigate
the characteristics of bandwidth fragmentation in EONs, and
then discuss a fragmentation-aware routing and spectrum assign-
ment (RSA) algorithm to relieve spectrum fragmentation when
setting up connections. As for proactive defragmentation,we
decompose the problem into three subproblem: 1)Connection
Selection; 2) RSA Re-optimization; and 3) Traffic Migration . We
also discuss the problem of timing selection for defragmentation
in dynamic network environments, and investigate how to im-
prove network performance with the minimum operation cost
by using intelligent and adaptive timing selection.

Index Terms—EONs, bandwidth fragmentation, defragmenta-
tion, network reconfiguration

I. I NTRODUCTION

A new era of optical network can be foreseen with the
advances of elastic optical networking that adopts the optical
orthogonal frequency-division multiplexing multiplexing (O-
OFDM) technology [1–41]. It is known that with O-OFDM,
the bandwidth allocation granularity can be reduced down to
12.5GHz or less. Therefore, elastic optical networks (EONs)
built with O-OFDM can realize more agile bandwidth man-
agement than the wavelength-division multiplexing (WDM)
networks. However, the flexible nature of EONs also brings
new challenges for network operators. One important example
is the spectrum fragmentation, which refers to the existing
of non-aligned, isolated and small-sized blocks of spectral
segments in EONs due to setting up and tearing down connec-
tions frequently [3, 11]. Spectrum fragmentation has serious
consequences, as it can lead to low bandwidth utilization and
high blocking probability.

To alleviate spectrum fragmentation, one can seek the solu-
tions with either preemptive or proactive strategies. Preemptive
strategies refer to designing routing and spectrum assignment
(RSA) algorithms with the objective to minimizing spectrum
fragmentation during setting up requests [42–63]. These type
of RSA algorithms can be called as fragmentation-aware RSA
[4, 6]. However, there is no guarantee that the fragmentation-
aware RSA can eliminate spectrum fragmentation. Therefore,
proactive strategies with spectrum defragmentation have also
been proposed [3, 4, 6, 13]. Typically, spectrum defragmen-
tation involves the rerouting and retuning of some existing
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Fig. 1. An example of bandwidth defragmentation in EONs.

connections to consolidate the spectrum utilization. Fig.1
shows an intuitive example of spectrum defragmentation.
Consider that we have a routing path that consists of three
fiber links, i.e., L1, L2, and L3, Fig. 1(a) and 1(b) show
the spectrum utilization before and after defragmentation. The
spectrum defragmentation consolidates the available spectrum
fragments and vacates spectrum resources over the path for
future requests.

In this paper, we review both the preemptive and proactive
strategies for alleviating spectrum fragmentation in EONs. The
rest of the paper is organized as follows. The preemptive
strategies,i.e., the fragmentation-aware RSA algorithms, are
discussed in Section II, while the proactive ones,i.e., the
spectrum defragmentation algorithms, are reviewed in Section
III. Finally, Section IV summarizes the paper.

II. FRAGMENTATION-AWARE RSA ALGORITHMS

Spectrum fragmentation can be caused by two factors during
RSA: 1) when allocating a block of contiguous spectrum
to a request, we may cut the available spectrum on fiber
links into small segments. 2) RSA leads to the situation that
the available spectrum on a certain link is misaligned in
the spectrum domain with those on the neighbor links. The
objective of fragmentation-aware RSA is to minimize these
two factors during RSA. In [3], we proposed a fragmentation-
aware RSA algorithm, and the simulation results showed that
the fragmentation-aware RSA algorithm can reduce request
blocking probability significantly, compared with other RSA
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Fig. 2. Overall bandwidth blocking probability (BBP) versus provi-
sion time [35].
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Fig. 3. Total number of connection reconfigurations within a 24-hour
period [35].

algorithms that did not consider spectrum fragmentation.

III. SPECTRUM DEFRAGMENTATION ALGORITHMS

Spectrum defragmentation involves the reconfiguration of
existing connections to consolidate the spectrum utilization.
More specifically, each defragmentation operation consists of
three steps.

• Step 1: Select existing connections for reconfiguration.
• Step 2: Redo RSA the selected connections to consolidate

spectrum utilization.
• Step 3: Migrate the connections to new RSA locations.

With these steps, the simulation results in [6] showed that
bandwidth defragmentation can reduce blocking probability
effectively. Besides the benefits brought by defragmentation
on network performance, it is also necessary to consider the
operation cost of defragmentation. Untimely defragmentation
cannot reduce the blocking probability to an acceptable level,
while too frequent defragmentation can lead to unnecessary
operation cost. We need to leverage the network status in-
formation, and make the defragmentation timing selection
intelligently and adaptively.

We assume that the EON’s traffic load varies in an unpre-
dictable but gradual manner, and monitor the network status
to achieve intelligent defragmentation timing selection.When

we observe the upward trend of request blocking probability,
we will shorten the time interval for next defragmentation,
otherwise, we take the opposite action. However, in the
situation where the blocking is in a relative low level or
even no blocking, although the trend of blocking can be
upward, it is not necessary to trigger defragmentation. We
realize this by setting a blocking time window that can be
changed dynamically [35]. The simulation results in Fig. 2
and Fig. 3 showed that the defragmentation strategy that adopts
both adaptive time and object selection strategies (DF-AT-AP)
not only achieved maximum bandwidth blocking probability
(BBP) reduction but also invoked the minimum times of
reconfigurations for defragmentation.

IV. CONCLUSION

In this paper, we reviewed both the preemptive and proactive
strategies for alleviating spectrum fragmentation in EONs. For
preemptive defragmentation, we discussed a fragmentation-
aware RSA algorithm to relieve spectrum fragmentation when
setting up new connections. For proactive defragmentation, we
considered to involve reconfiguration of existing connections
to consolidate the spectrum utilization. Defragmentationin
dynamic network environment with intelligent timing selection
was also discussed.
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