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ABSTRACT 
This paper presents large eddy simulation (LES) results of convective heat 
transfer and incompressible-fluid flow around a square cylinder (SC) at 
Reynolds numbers in the range from 103 to 3.5 � 105. The LES uses the 
swirling-strength based sub-grid scale (SbSGS) model. Several flow proper-
ties at turbulent regime are explored, including lift and drag coefficients, 
time-spanwise averaged sub-grid viscosity, and Kolmogorov micro-scale. 
Local and mean Nusselt numbers of convective heat transfer from the SC 
under isothermal wall temperature are predicted and compared with 
empirical results. 
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1. Introduction 

Incompressible turbulent flows past a square cylinder (SC) are important in engineering science, and 
numerical solutions are useful for the understanding of the flow characteristics. A literature review for 
the work before 1990 was given previously by Zhu [1], and some academic backgrounds are addressed 
in this paper. 

The heat transfer from SC was measured by Hilpert [2] and Igarishi [3], as reported in [4, 5]. The 
experimental work of Igarashi was done in a low speed wind tunnel with rectangular cylinders of 
height 30 mm heated under constant heat flux. After the wake flow measurements [6–11], Lyn and 
Rodi [12] conducted some experiments on the flapping shear layer formed by flow separation from 
the forward corner of a SC, with the associated recirculation region on the sidewall, and they found 
that the recirculation is an important aspect of some flow properties. For drag forces acting on flat- 
sided columns, the study encompassed by Tong et al. [13] revealed all chamfering can reduce the drag 
compared with the sharp-cornered case. 

Together with the experimental studies reported recently [14–18], there are also numerical simu-
lations [19–34], some based on the k–ε turbulence model [19–21] or direct numerical simulation 
(DNS) [22–32], with others by means of large eddy simulation (LES) [33, 34]. For turbulent flow 
simulations, three strategies, phenomenological modeling [35, 36], DNS [37], and LES [38], are 
usually employed. In recent years, as reported widely [38–46], LES has become a viable and popular 
simulation tool. 

For LES, in addition to the earlier sub-grid scale (SGS) model of Smagorinsky [38], many SGS 
models have been developed, including the dynamic SGS model given by Germano et al. [47], a sub-
sequent modification given by Lilly [48], the SGS model based on the Kolmogorov equation for 
resolved turbulence given by Cui et al. [49, 50], the model based on algebraic theory [51], the model 
assuming sub-grid stress to be proportional to the temporal increment of filtered strain rate by 
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Zhu et al. [52], the singular valued SGS model [53], and the recent SGS model based on dynamic 
estimation of Lagrangian time scale given by Verma and Mahesh [54]. 

In LES the unclosed stresses are usually modeled by SGS-viscosity models. Alternatively, the 
nonlinear convective terms may be modified directly \citepHolm, based on these regulations [56–59]. 
The concept of spectral-vanishing-viscosity can be used to mimic SGS model for LES [60–64]. 

Turbulent flow is intermittent such that at a local point the flow may be swirling or non-swirling. 
The commonly used SGS models [38] have assigned artificially dependent sub-grid viscosity without 
taking care of the intermittency. A novel SGS model has been developed more recently [65, 66], which 
properly models turbulent flow intermittency. 

This paper presents LES results for zero-incident incompressible turbulent flows around a single 
SC with convective heat transfer under constant wall temperature condition at Reynolds numbers in 

Table 2. Re dependence of CL, CD, (νsr)pm, the relevant RMS values, and the Strouhal number. 

Rea
3 CL CD (νsr)pm CL

0

CD
0

ðnsrÞ
0
p St  

1  � 0.0027  1.543  0.5567  0.1440  0.0346  0.1021  0.1079 
2  � 0.00542  1.560  1.726  0.120  0.0643  0.3311  0.1079 
2.5  � 0.00913  1.594  2.338  0.1302  0.0734  0.5841  0.1079 
5.  � 0.0250  1.736  5.197  0.1711  0.0781  1.194  0.1079 
7.5  � 0.0330  1.770  8.133  0.1776  0.0854  1.705  0.1079 
10  � 0.0365  1.788  10.971  0.1817  0.0877  2.723  0.1079 
12.5  � 0.0345  1.786  13.959  0.1726  0.0892  3.365  0.1079 
25  � 0.0359  1.813  28.953  0.1748  0.0979  6.562  0.1079 
50  � 0.0359  1.804  58.421  0.1612  0.0986  14.15  0.1079 
75  � 0.0369  1.834  82.453  0.1779  0.1048  16.66  0.1079 
100  � 0.0374  1.816  109.57  0.1624  0.1019  24.85  0.1079 
125  � 0.0370  1.825  146.23  0.1679  0.1013  34.14  0.1079 
150  � 0.0365  1.834  172.91  0.1721  0.1016  39.98  0.1079 
200  � 0.0373  1.832  228.38  0.1708  0.1024  43.92  0.1079 
250  � 0.0370  1.833  290.74  0.1710  0.1022  71.81  0.1079 
275  � 0.0369  1.845  292.59  0.1789  0.1040  60.42  0.1079 
300  � 0.0369  1.841  342.65  0.1817  0.1081  65.17  0.1079 
325  � 0.0367  1.843  366.75  0.1795  0.1046  81.55  0.1079 
350  � 0.0374  1.834  404.23  0.1725  0.1042  89.92  0.1079 

aNote that Re3 ¼ Re/103.   

Nomenclature 

A matrix expression of velocity gradient ∇u 
aij element of matrix A 
B spanwise length of square cylinder (m) 
Cμ artificially defined constant in Eq. (1) 
d cross-sectional side length of SC (m) 
fI FSI, factor of swirling-strength  

intermittency, given by Eq. (2) 
k ¼ 1

2 u02i turbulence kinetic energy 
Num mean Nusselt number 
p normalized pressure 
Re ¼ duin/ν Reynolds number 
Smax assumed allowable total error 
T temperature (K) 
Tw temperature on SC wall surface (K) 
T∞ temperature of incoming flow fluid 

u velocity vector 
uin incoming flow speed (m/s) 
u, v, w normalized velocity components (m/s) 
x, y, z Cartesian coordinates 
ε dissipation rate of k 
λci swirling-strength (1/s) 
λ ¼ λcr þ iλci eigenvalue of ∇u 
ρ fluid density (kg/m3) 
ν fluid kinematic viscosity (m2/s) 
νs sub-grid viscosity (m2/s) 
νsr =νs/ν viscosity ratio 
(νsr)pm time-averaged (νsr)peak 

ðnsrÞ
0
p root mean square of (νsr)peak 

(νsr)peak peak value of νsr 

Θ normalized temperature 
θ normalized temperature fluctuation   

Table 1. Computational parameters. 

xu/d xd/d yb/d yt/d N1 N2 N3 Ra
S  

8.5 15  8.5  8.5 191 145 41  0.819 
aSmax ≈ 0.5%, with actual number if time steps n=13800 relevant to the final time t=170.   
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the range of Re ∈ [103, 3.5 � 105]. Nineteen scenarios are presented, as shown in in Table 2, where the 
SbSGS model is described [65, 66], with the turbulent heat flux expressed under the gradient diffusion 
assumption [52, 67]. The objective of this paper is to explore numerically the characteristics of the 
heat and fluid flows past a SC, with particular reference to the three aspects of Reynolds number 
dependence, distributions of t–z averaged sub-grid viscosity ratio and Kolmogorov micro-scale, 
and the local and mean Nusselt numbers. 

2. Governing equations 

2.1. SbSGS model 

At higher Reynolds numbers, effects of turbulence are very intense and crucial [37]. The effect of SGS 
on large scale motions must be considered carefully. As discussed in the literature [39–46], the sub-grid 
stress is postulated usually to be proportional to the local filtered strain rate, with a factor called sub- 
grid viscosity. This is analogous to Newtonian constitutive relationship for laminar flows, implying 
that these SGS models have not ascertained satisfactorily the validity of the range of Reynolds numbers. 

In the earlier model of Smagorinsky [38], the sub-grid viscosity is proposed to be proportional to 
the modular of local filtered strain rate. Unfortunately, using three-dimensional velocity fields based 
on flow instability analysis [68], numerical tests revealed that peak values of the modular of strain rate 
occur at regions without swirling. To avoid this ambiguity, and considering turbulent flows having 
vortical structures and intermittency, a relatively fresh SbSGS model [65, 66] is employed. 

Assuming that the sub-grid viscosity is proportional to the factor of swirling-strength intermit-
tency (FSI) and local swirling-strength, 

ns ¼ Cm f Iðx; tÞkcid
2 ð1Þ

Here Cμ(¼ 0.09) is an artificially defined constant; λci is the swirling-strength of filtered velocity 
gradient ∇u, the FSI denoted by fI, is defined by the ratio of swirling-strength λci to the magnitude 
of the complex eigenvalue λ(¼ λcr þ iλci) of ∇u, i.e., 

f Iðx; tÞ ¼
kci
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
cr þ k2

ci

q ð2Þ

where δ is the length scale, defined by harmonic-average of grid intervals 

1
d
¼
X3

i¼1
1=di ð3Þ

where δi denotes the grid interval in xi direction. If the filtered velocity gradient ∇u is denoted by 

ru ¼ A ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

0

B
@

1

C
A ð4Þ

its eigenvalue λ satisfies the characteristic equation 

k3 þ bk2 þ ckþ d ¼ 0 ð5Þ

where 

b ¼ � trðAÞ ¼ � ða11 þ a22 þ a33Þ;

c ¼ a22 a23
a32 a33

�
�
�
�

�
�
�
�þ

a11 a12
a21 a22

�
�
�
�

�
�
�
�þ

a11 a13
a31 a33

�
�
�
�

�
�
�
�; d ¼ � jAj

8
<

:
ð6Þ
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with |A| being the determinant of matrix A. For incompressible flows, b ¼ 0. For non-rotating 
coordinates, the roots of Eq. (5) are real when the local flow is temporally laminar. When the local 
flow becomes turbulent spontaneously, the roots have two conjugate complex eigenvalues denoted 
by λcr � iλci, where ið¼

ffiffiffiffiffiffi
� 1
p

Þ is the unit of imaginary number. Iso-surfaces of swirling-strength have 
been used to illustrate vortices in turbulent flows previously [69–71]. 

Assigning the parameter Cμ to be the same value as that used to define turbulent eddy viscosity of 
phenomenological models [35], the relevant value in the sub-grid model of Vreman [51] has been set 
as 2:5C2

S. While CS ¼ 0.17 is the theoretical value for homogeneous isotropic turbulence [72], suggest-
ing a parametric value of 0.07. Furthermore, to accomplish robust simulations in complex cases the 
practical value of CS is usually higher. For example, CS ¼ 0.2 has frequently been used in literature, 
giving a value 0.1. It is noted that in the SGS model of Germano et al. [47], the relevant coefficient 
is obtained by grid and test-grid filtering, and the coefficient is temporally and spatially changing, 
hence such kind of model is called a dynamic model. 

As the sub-grid viscosity νs has a factor fI, the decaying factor of length scale [1 � exp (� yþ/25)] 
near the wall as used by Moin and Kim [39] is not used in the present study. 

It is noted that swirling-strength does not vanish completely in laminar flows under a rotating 
framework. To observe the difference in different SGS models, a comparison of the present SbSGS 
model with that of Vreman [51] is given in Figures 1a, b, where two top-views of the contours of 
sub-grid viscosity are illustrated. It can be seen that the sub-grid viscosity based on the present model 
is zero if the local flow is non-swirling, while sub-grid viscosity based on the Vreman’s SGS model 
does not hold. 

2.2. Governing equations 

Consider the turbulent SC flow in a Cartesian coordinate system, as schematically shown in Figure 2, 
in which x(x1) is the horizontal coordinate, with y(x2) and z(x3) denoting the vertical and spanwise 
directions. The origin is allocated at the left-bottom corner of the SC. Let the incoming flow velocity 
be uin, the Reynolds number of the SC flow can be defined by Re ¼uind/ν. 

Taking the length scale as the SC cross-sectional side length d, the time and pressure scales are 
t0 ¼ d/uin and qu2

in, where ρ is the fluid density. Therefore, for the zero-incident incompressible heat 
and fluid flow past a SC, the dimensionless governing equations have the following form: 

r � u ¼ 0 ð7Þ

Figure 1. The comparison of the sub-grid model with the previous one proposed by Vreman [51]. (a) A top-view of the contours 
of νs based on the present model; (b) a top-view of the contours of νs based on the Vreman’s model. Note that the sub-grid viscosity 
has a unit of W0d0 as seen in Appendix A. The contours in part (a) are labeled by values from 0.0004 to 0.0016 with an increment of 
0.0003, while the contours in part (b) are labeled by values from 0.0004 to 0.012 with an increment of 0.0029.  
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ut þ u � ru ¼ � rpþr � ½c1ru� þ R ð8Þ

Ht þ u � rH ¼ r � ½c2rH� ð9Þ

where H ¼ T� T1
Tw� T1, Tw is the temperature on SC wall surface, with T∞ being the temperature 

of incoming flow fluid. For simplicity, we have omitted the over bar for filtering of variables. The 
normalized total viscosities γ1 and γ2 can be represented by 

c1 ¼
1

Re
1þ

ns

n

� �
; c2 ¼

1
Re Pr

1þ
ns

rhn

� �

ð10Þ

where the turbulent Prandtl number σθ is assumed to be 0.9, while R is a force related to the gradient 
of viscosity γ1, given by 

R ¼ ðruÞT � rc1 ð11Þ

Uddin et al. [67] assigned some heat flux models in the LES of heat transfer caused by the normal 
impingement of air jet. Smirnov and Nikitin [36] provided a turbulent model for hydrogen combus-
tion in engines. Here, we use the gradient diffusion assumption as previously [52], and assuming 
constant Prandtl number σθ, we have 

� u0jh ¼
ns

rh

qH

qxj
ð12Þ

where u0j denotes velocity fluctuation in the xj direction, with θ being the temperature fluctuation. 
The solutions of Eqs. (7)–(9) are sought under appropriate conditions. For the boundary 

conditions (BC) on the SC walls, constant wall temperature and non-slip BC are used, implying that 

u ¼ 0; v ¼ 0; w ¼ 0; H ¼ 1 ð13Þ

while for the BC at the outlet, similar to the treatment [24, 25], we use the Orlanski type [73] 

uþ ucu ¼ 0; ð14Þ

where in normalized form, uc ¼ 1, u ¼ (u, v, w, Θ)T, with the superscript T representing the transpose 
of matrix (u, v, w, Θ). At the inlet section, no artificial velocity and temperature disturbances are 
assumed, such that 

u ¼ 1; v ¼ 0; w ¼ 0; H ¼ 0 ð15Þ

Figure 2. Schematic of the flow past a single SC. (a) x–y plane and (b) x–z plane.  
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On the lower and upper side boundaries of the computational domain, we use 

uy ¼ 0; v ¼ 0; w ¼ 0; Hy ¼ 0 ð16Þ

On the spanwise boundaries, periodic condition is used such that 

uðx; y; z; tÞ ¼ uðx; y; z þ B; tÞ ð17Þ

where B is the spanwise (z) length of SC as shown in Figure 2. The initial condition is given by 

u ¼ 1; v ¼ 0; w ¼ 0; H ¼ 0 ð18Þ

3. Numerical method 

3.1. Solution procedure 

The governing Eqs. (7)–(9) of the heat and fluid flows past a single SC are discretized by a finite 
difference method in a staggered grid system, where the convective terms are treated using a 
fourth-order upwind scheme [74]. By making some changes, the existing numerical methods, such 
as described [75–86] are also applicable. The simple approach recently reported by Trias et al. 
[87], which on any structured or unstructured grid can be implemented easily, is also suitable for 
LES of incompressible flows. 

The solutions procedure is based on the accurate projection algorithm PmIII developed by 
Brown et al. [88]. Let intermediate velocity vector, pressure potential, and time level be u, ϕ, and 
n, respectively. Denoting H ¼ (u·∇)u � R, then letting 

unþ1 ¼ u � Dtr/ ð19Þ

we can calculate u by means of 

u � un

Dt
þHnþ1=2 ¼ r � c1r un þ

1
2
ðu � unÞ

� �� �

ð20Þ

and calculate pressure p by 

pnþ1=2 ¼ f1 � 0:5ðDtÞr � c1r½ �g/ ð21Þ

where the pressure potential ϕ satisfies the Poisson’s equation 

r2/ ¼ r � u=Dt ð22Þ

The temperature Θnþ1 can be calculated by 

Hnþ1 � Hn

Dt
þ Hnþ1=2

4 ¼ r � c2r Hn þ
1
2
ðHnþ1 � HnÞ

� �� �

ð23Þ

where H4 ¼ (u·∇)Θ, and the terms at the level of (n þ 1/2) are calculated explicitly using the second- 
order Adams–Bashforth formula [89]. Nonlinear convective terms in the governing equations are 
spatially discretized by a fourth-order upwind finite difference scheme [74], with viscous diffusion 
terms by a second-order central difference scheme. 

The pressure potential Poisson’s equation is initially solved by the approximate factorization one 
(AF1) method [90], and subsequently corrected by the stabilized bi-conjugate gradient method (Bi- 
CGSTAB) given by Van der Vorst [91] to improve its accuracy. In the AF1 application, for SC wake 
flow simulation, the numerical experience reported elsewhere [1] is useful for numerical stability of 
pressure potential iteration. The criterion for pressure potential iteration is chosen so that the relative 
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error defined [89] is less than 1 � 10� 7. In spatial discretization, the implicit second-order Crank– 
Nicolson method is used to solve the diffusion terms on right-hand side in a non-standard way, where 
the part depending on the viscosity gradient (∇γ1) in Eq. (10) is calculated explicitly, while the 
remaining part denoted by [∇·(γ1∇u)] is calculated implicitly. 

3.2. Reliability evaluation 

In the recent numerical study of Smirnov et al. [92], simulating hydrogen fuel rocket engines using 
LOGOS simulator [93], an approach for predicting accumulated error in numerical work based on 
Navier–Stokes equations was reported in detail. As the diffusive terms are treated with the second- 
order central difference scheme, using the values of N1, N2, and N3 as given in Table 1, and the 
assumed allowable total error Smax ¼ 0.5%, the ratios of maximum allowable number of time steps 
to the actual number of time steps used to obtain the result, Rs ¼ 0.819, are estimated and shown 
in Table 1. This ratio estimation has indicated reliability of the LES results, as reported by Smirnov 
et al. [92]. The ratio Rs characterizes reliability of results, i.e., how far below the limit the simulations 
were finalized. Indirectly it characterizes the accumulated error. The higher the value Rs is, the lower 
is the error. As Rs approaches to unity the error tends to the maximum allowable value. 

4. Results and discussion 

Using the solution method given above, LES of heat and fluid flows past a single SC, as shown 
schematically in Figure 2, was encompassed in a personal computer with a memory of 3.2 Gb and 
CPU frequency 3.30 GHz. Each case requires a CPU time of about 86 hours. As can be seen in Table 2, 
classified by Re3 ¼ Re/103, 19 scenarios were studied in the LES work. For each scenario the spanwise 
length of the SC (B) is set at 4. 

In the z-direction, the grid is uniform with number Nk set as 41. While the grids are non-uniform 
in the x- and y-directions, the grid-numbers are set at 191 and 145, respectively, with grid arrange-
ments based on a geometric-series algorithm [65]. In this LES, the assignment of grids on the SC 
section walls uses two key parameters of amplifying-factor (1/0.847) and series termination number 
(14). The total number of vertical grid-line through the SC cross-sectional side is 34. 

At the bottom and top of the SC, the y-grid is assigned with an amplifying-factor of 1/0.9 and a 
series-termination number of 37. For the x-grid, the relevant values are 1/0.817 and 17, respectively, 
for the region upstream of the SC, but 1/0.927 and 47 for the region downstream of the SC. Using a 
geometric-series algorithm for grid partition, it can be seen that the finest grid distance to each SC 
wall is 2.733 � 10� 3d. Such a grid arrangement leads to a time step of Δt ¼ 1.25 � 10� 3, which is 
smaller than that used in the LES reported [65]. 

To show the distribution of Kolmogorov micro–scale in the x–y plane, time-spanwise (t–z) aver-
aging is used. A subscript m is used to represent the t–z averaged variables, with a symbol 0 used to 
denote the root mean square (RMS) values of the variables. The subscript m is omitted for t–z average 
lift (CL) and drag (CD) for simplicity. Furthermore, grid spacing and time step for the 19 scenarios 
remain the same. To remove the effect of initial condition, data in the time period of t ∈ [68, 170] are 
processed. 

4.1. Fluid flow characteristics 

For turbulent SC flows, the flow induced forces acting on SC, usually decompose into drag (CD) and 
lift (CL). As the SC flows have fixed vortex separation points, vortex shedding is different from that in 
a single CC flow. 

To show Reynolds-number dependence, the t–z averaged CL, CD, (νsr)pm, their relevant RMS 
values CL0, CD0, ðnsrÞ

0
p, and St are given in Table 2 and illustrated in Figures 3a–3c. As shown in 

the third column of Table 2, for Re3 ¼ Re/103 ∈ [5, 350], the mean CD is about 1.800(�0.064), with 
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maximum relative deviation of 3.56%. This indicates that in the range of Re3 ∈ [5, 350], drag coef-
ficient is Reynolds-number independent. For Re3 ∈ [1, 50], with the increase of Reynolds number, 
the mean CD increases gradually from 1.543 to 1.804. As indicated in the second column of Table 2, 
the mean CD is approximately zero. The Reynolds-number dependence of mean CD and CL is also 
shown in Figure 3a. 

The Re dependence of relevant RMS values CL0, CD0, and ðnsrÞ
0
p can be found from the fifth, sixth, 

and seventh columns of Table 2. The sub-grid viscosity is calculated from Eq. (1). Corresponding to 
the values given by the fifth and sixth columns of Table 2, the CL0 and CD0 are shown as functions of 
Re3, as shown in Figure 3b. For Re3 ∈ [5, 350], CL0 is about 0.17(�0.0117) with a maximum relative 
deviation of 6.88%; CD0 is around 0.1(�0.0219). 

It can be seen that values of the mean CD and its RMS values agree well with existing experimental 
data of Luo et al. [14] and LES results of Sohankar [34], although the RMS value of CL is less well 
predicted. The present LES results indicate that the CL0 value is about twice the CD0 value. Consider-
ing the wind tunnel measurement of Tamura and Miyagi [15], the effect of inlet turbulence on aero-
dynamic forces on a SC with various corner shapes indicates that the reason of the discrepancy 
requires further investigation. 

The peak value of viscosity ratio (νsr) is sought from the entire computational domain, whose geo-
metric parameters are shown in Table 1. As turbulent SC flow involves vortex shedding, the location 
point of the peak value changes temporally. The mean peak value of viscosity ratio (νsr)pm is based on 
t-averaging. From Figure 3c, it can be seen that Re dependence of (νsr)pm and its RMS value can be 
described by the power law, the (νsr)pm and its RMS value increase with Reynolds number, but the 
growing rate of (νsr)pm is larger. For instance, at Re3 ¼ 125, (νsr)pm is 146.23 with its RMS value of 
34.14, as shown in Table 2. 

As shown in Table 2, based on lift analysis with discrete Hilbert transform [94], for Re3 ∈ [1, 350], 
St is 0.1079 for all values of Re, with the power-spectra diagrams for Re3 ¼ 1, 2, …, 250 and 350 given 
in Figures 4a–4h. This St number is close to the predicted St number of 0.124 for the case of Re ¼ 2.2  
� 104 [19], when two-dimensional flow calculation was carried out based on the two-layer (TL) 
approach with standard k � ε equation with inlet viscosity ratio (rμ ¼ νt/ν) set as 100. As reported 
by Bosch and Rodi [19], St number measured by Bearman and Trueman [8] was 0.123 for the SC 
flow at Re ≈ 5 � 104 when the inlet flow turbulence level Tuð¼

ffiffiffiffiffiffi
u02
p
Þ was less than 1.2%. 

The relevant evolutions of CL and CD at Re3=1, 2, …, and 325 are given in Figures 5a–5h. It can be 
seen that fluctuation of CD is less than that of CL, which is consistent with the CL0 and CD0 listed in 
the fifth and sixth columns of Table 2. 

Some properties of the peak value of viscosity ratio can be seen in Figure 6. Both the mean peak 
value of viscosity ratio (νsr)pm and its RMS value have growing tendency, as shown in Figure 3c. The 
values of (νsr)pm as shown in Figure 6 are consistent with values shown in Table 2 for Re3 ¼ 75, 150, 
and 300. 

Figure 3. Re dependence of mean lift (CL) and drag (CD) (a), their root mean square (RMS) values of CL and CD (b), and the time- 
averaged viscosity ratio (νsr)pm as well as its relevant RMS ðnsrÞ

0
p (c). Note that (νsr)pm is calculated merely by time-averaging for the 

peak value of νsr(¼ νs/ν) in the computational domain, as seen in Figure 6.  
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In Table 2, it can be seen that at Re3 ¼ 50, CL0 ¼ 0.1612, and CD0 ¼ 0.0986; while at Re3 ¼ 125, 
CL0 ¼ 0.1679, and CD0 ¼ 0.1013. In Figures 7a, b, it can be seen that the fluctuation magnitudes of 
CL and CD are approximately identical for the two cases Re3 ¼ 50, 125. 

4.2. Fluid flow patterns 

At x ¼ 3, 6, 9, 12 and time t ¼ 170, labeled by values � 0.3, � 0.2, � 0.1, 0, 0.1, 0.2, and 0.3, the contours 
of streamwise vorticity component ω1 for Re3 ¼ 50 are shown in Figures 8a–8d, with the relevant ω1 
contours for Re3 ¼ 125 shown in Figures 8e–8h. A comparison indicates that the secondary flow 

Figure 4. Power spectra of the evolutions of CD and CL at (a) Re3 ¼ 1; (b) Re3 ¼ 2; (c) Re3 ¼ 10; (d) Re3 ¼ 50; (e) Re3 ¼ 100; 
(f) Re3 ¼ 125; (g) Re3 ¼ 250; and (h) Re3 ¼ 350.  
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patterns are Re dependent. Similarly, the main stream flow patterns given by contours of ω3 are 
shown in Figures 9a, b. 

4.3. t–z averaged variable distributions 

Even though the peak value of viscosity ratio (νsr)pm varies as a result of large eddy motion in the flow 
field, exploring the occurrence of peak value is helpful to the understanding of the characteristics of 
the SC flows. For Re3 ¼ 50 and 125, the t–z averaged viscosity ratios νsr are shown by the contours 

Figure 5. Evolutions of lift (CL) and drag (CD). (a) Re3 ¼ Re/103 ¼ 1; (b) Re3 ¼ 2; (c) Re3 ¼ 10; (d) Re3 ¼ 50; (e) Re3=100; (f) Re3 ¼ 125; 
(g) Re3 ¼ 250; and (h) Re3 ¼ 350.  

Figure 6. Evolutions of the peak value of viscosity ratio ((νsr)p � (νs/ν)peak) at Re3 ¼ 75, 150, and 300.  
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labeled as 0.05, 1, 5, and 10 in Figures 10a, b. The red colored zone corresponds to the t–z averaged 
viscosity ratio νsr ≥ 10, the blue colored region corresponds to νsr � 0.05, whereas the yellow, green, 
and cyan colored regions refer to the ranges of νsr ∈ (5, 10), (1, 5), and (0.05, 1). As shown in Figures 
10a, b, for Re3 ¼ 50, and 125, the peak of viscosity ratio occurs in two downstream regions, where the 
coherent interaction of large eddies is more intense. 

For turbulent SC flows, Kolmogorov micro-scale is predicted on the basis of estimating the kinetic 
energy dissipation rate, similar to previous work [52, 65]. Denoting the Taylor micro-scale as λu [95], 
we have 

k2
u ¼ 10nk=e; g2

u ¼ n2=e
� �1=2

¼ k2
u n e=nð Þ

1=2
=ð10 kÞ

h i
ð24Þ

where k ¼ 1
2 u02i is the time and z-averaged turbulent kinetic energy, u0i is the instantaneous fluctuation 

of velocity component in the xi-direction. While ε is the dissipation rate of k 

e ¼ 2nsijsij; sij ¼ ðqu0i=qxj þ qu0j=qxiÞ=2 ð25Þ

with sij being the fluctuation of strain rate of velocity field. 

Figure 7. Evolutions of lift (CL) (a) and drag (CD) (b) coefficients at Re3 ¼ 50 and 125.  

Figure 8. Contours of streamwise vorticity component (ω1) at t ¼ 170, and four x-locations (i.e., x¼3, 6, 9, and 12) for Re3 ¼ 50 
(a–d) and Re3 ¼ 125 (e–h). Note that the contours are labeled by � 0.3, � 0.2, � 0.1, 0, 0.1, 0.2, and 0.3.  
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The t–z averaged field of Kolmogorov micro-scale [log (ηu)] is shown in Figures 11a, b for two 
Reynolds numbers Re3 ¼ 50 and 125. The t–z averaged Kolmogorov micro-scale [log (ηu)] is less than 
� 3 for blue colored region, but larger than � 2.7 for red colored region. The yellow, green, and cyan 
colored regions correspond to log (ηu) ∈ (� 3, � 2.9), (� 2.9, � 2.8), and (� 2.8, � 2.7). 

From Figures 11a, b, it can be seen that in the near SC wall regions log (ηu) is less than � 3. With 
respect to the definition of ηu given by Eq. (24), this property of log (ηu) distribution indicates that 
near the SC, the dissipation rate of turbulent kinetic energy is larger because of the fluid–solid 
interaction. From Figures 11a, b, there is an asymmetry of distribution of log (ηu), suggesting that 
in the SC flow the vortex shedding from the two fix points is not equivalent, which may lead to 
an asymmetrical distribution of k and its dissipation rate ε [96]. 

4.4. Instantaneous iso-surfaces 

The iso-surfaces of FSI at t ¼ 170 in the sub-domain {x ∈ (0, 7), y ∈ (� 2, 3), z ∈ (1, 3)} are shown in 
Figures 12a, c. As seen in Eq. (2), the iso-surfaces of FSI depend on vortex motion, which can be 
quantified by swirling-strength λci [69–71]. The FSI has a laminated structure involving vortex 
shedding, in addition to those relatively small vortex structures in the SC wake. The distribution 
of FSI iso-surfaces is Re dependent, since the FSI iso-surfaces as shown in Figure 12a have some 
differences from those shown by Figure 12c. 

The iso-surfaces of viscosity ratio νsr are shown in Figures 12b, d, indicating the reliability of t–z 
averaged distribution as given in Figures 11a, b. 

Figure 9. Contours of spanwise vorticity component (ω3) at t ¼ 170 and z ¼ 2 for Re3 ¼ 50 (a) and Re3=125 (b). Note that contours 
of ω3 are labeled by � 2, � 1, � 0.5, 0, 0.5, 1, and 2.  

Figure 10. Contours of the (t–z) averaged sub-grid viscosity ratio (νsr) at Re3 ¼ 50 (a) and 125 (b). Note that the contours of νsr are 
labeled by 0.05, 1, 5, and 10.  
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4.5. Nusselt numbers 

The Re dependence of time-face averaged Nusselt numbers and their arithmetic mean are given in 
Table 3, with the relevant RMS values shown in Table 4. These Nusselt numbers are based on the 
length scale d, as shown in Figures 13a, b. Figure 13a shows that the frontal face averaged Nusselt 
number Nuf is rather sensitive to Re, having the largest growing rate. This is mainly caused by the 
impingement of free flow stream. While the growing rates of bottom, top, and rear face averaged 
Nusselt numbers, Nub, Nut, and Nur are smaller, and comparable to each other, primarily caused 
by the SC flows at zero incident angle have fixed separation points. Influenced by the recirculation 
near the rear face, the RMS value Nu0r is larger than other RMS values, see in Table 4 or Figure 13b. 

Following the comparison approach of Wiesche [4], we further choose 2d as the length scale for the 
arithmetic mean Nusselt number calculation. In comparing, respectively, with empirical correlations 
of Hilpert [2] and Igarashi [3], the Re dependence of Nu2d and the corresponding relative deviations 

Figure 11. Contours of the (t–z) averaged logarithm of Kolmogorov micro-scale to the base of 10 [log(ηu)] at Re3 ¼ 50 (a) and 125 
(b). Note that the contours of log(ηu) are labeled by � 3, � 2.9, � 2.8, and � 2.7.  

Figure 12. Iso-surfaces of factor of swirling-strength intermittency (FSI) at t ¼ 170 for Re3 ¼ 75 (a) and Re3 ¼ 150 (c); iso-surfaces 
of sub-grid viscosity ratio (νsr) at t ¼ 170 for Re3 ¼ 75 (b) and Re3=150 (d). Note that the SC is illustrated simply by a yellow cylinder 
frame; the FSI iso-surfaces are labeled by 0.05, 0.5, and 0.95, with νsr iso-surfaces labeled by 0.05, 1, and 5.  
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Table 3. Re dependence of Nusselt numbers. 

Re3 Nub Nut Nuf Nur Nua
m  

1  4.941  5.180  21.38  2.416  8.477 
2  5.709  6.228  30.28  3.454  11.42 
2.5  6.068  6.789  34.08  4.155  12.77 
5  7.928  9.625  49.52  7.281  18.59 
7.5  9.647  11.874  62.09  9.746  23.34 
10  11.28  14.02  73.10  12.03  27.61 
12.5  12.81  15.98  84.32  14.33  31.86 
25  21.31  24.86  130.41  21.97  49.64 
50  33.69  40.41  203.15  36.66  78.48 
75  46.57  53.87  263.45  53.99  104.47 
100  55.98  65.61  309.14  61.68  123.09 
125  65.03  79.04  356.69  73.97  143.68 
150  72.79  89.86  405.63  85.21  163.37 
200  89.45  111.66  508.36  114.43  205.97 
250  100.36  127.41  623.69  142.75  248.55 
275  107.02  139.74  690.60  162.30  274.91 
300  113.17  148.76  764.71  175.91  300.64 
325  117.09  154.58  878.87  192.40  335.73 
350  118.77  158.32  1134.57  197.64  402.32 

aThe arithmetic mean Nusselt number, Num ¼ (Nub þNut þNuf þNur)/4.   

Table 4. Re dependence of the RMS values of Nusselt numbers. 

Re3 Nu0b Nu0t Nu0f Nu0r Nu0m  

1  0.2076  0.3650  0.0868  0.2670  0.1250 
2  0.1874  0.4965  0.2407  0.5667  0.2795 
2.5  0.1875  0.6016  0.2838  0.7099  0.3802 
5  0.3304  0.5897  0.3082  0.8985  0.4657 
7.5  0.6190  0.646  0.3962  1.117  0.4568 
10  0.9046  0.9851  0.4588  1.383  0.4224 
12.5  1.172  1.364  0.583  1.525  0.4680 
25  2.136  2.687  1.160  4.029  1.379 
50  4.743  5.191  1.881  8.715  3.734 
75  7.163  7.541  1.911  13.63  5.486 
100  9.488  10.46  2.616  17.33  7.575 
125  11.56  12.66  3.04  20.86  8.84 
150  13.34  15.66  3.51  25.29  10.16 
200  17.61  22.20  4.92  62.71  20.30 
250  18.30  42.65  7.18  93.93  32.37 
275  19.53  49.19  8.67  113.78  37.85 
300  20.07  53.48  12.66  120.66  40.39 
325  21.71  55.67  34.69  139.73  47.20 
350  25.66  60.95  65.24  147.66  50.02  

Figure 13. Re dependence of Nusselt numbers and their RMS values. Note that here d is used as the length scale to define these 
Nusselt numbers.  
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(σ1, σ2) are shown in Figures 14a, b. It can be seen that the present LES has predicted the mean 
Nusselt numbers which are consistent with the empirical correlation obtained by earlier experiments 
of Hilpert [2]. 

According to the review of Sparrow et al. [5], the change of length scale is to some extent 
inappropriate. For the SC wake flows at incident angle, the length scale for Nusselt numbers should 
be the SC’s sectional side length d. The present LES has predicted the mean Nusselt number in good 
agreement with the correlation of Hilpert [2]. Igarashi [3] utilized constant heat flux in the wind 
tunnel measurement, resulting in higher values of mean Nusselt number in comparison with those 
under isothermal wall temperature [97]. 

5. Conclusions 

A swirling-strength based SGS (SbSGS) model is used in the LES of zero-incident incompressible 
turbulent flows around a SC with convective heat transfer at Reynolds numbers ranging from 103 

to 3.5 � 105. LES is performed by a finite difference method, where Taylor-expansion is used to 
improve the accuracy of discretization. It reveals the following: 
1. For Reynolds numbers in the range of 103 to 3.5 � 105, Strouhal number is 0.1079, independent of 

Reynolds number. 
2. Mean drag coefficient CD is about 1.800(�0.064) when Re ≥ 5000, with a maximum relative 

deviation of 3.56%. 
3. The peak value of sub-grid viscosity ratio and its RMS values increase with Reynolds number. The 

peak occurs in two regions downstream of the SC, when the coherent interactions of large eddies 
are more intensive. 

4. Kolmogorov micro-scale is less than 10� 3 in the near SC wall region when the Reynolds 
number is over 7.5 � 104. The larger the Reynolds number, the smaller is the Kolmogorov 
micro-scale. 

5. The time-averaged Nusselt number at the frontal face increases with Re rapidly due to the free flow 
stream impingement. While the RMS at the rear face is larger than other RMS values.   
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Appendix A. Numerical test of sub-grid viscosity 

To compare the present SGM with that developed by Vreman [51], a three-dimensional flow field 
based on the analysis of thermal instability of a layer of fluid heated from below with the effect of 
rotation [68] is selected, the flow field is given by 

v1 ¼ �
p
a2 ax sinðaxxÞ cosðayyÞ þ

ffiffiffi
T
p

p2þa2 ay cosðaxxÞ sinðayyÞ
h i

W0 cosðpzÞ

v2 ¼ �
p
a2 ay cosðaxxÞ sinðayyÞ �

ffiffiffi
T
p

p2þa2 ax sinðaxxÞ cosðayyÞ
h i

W0 cosðpzÞ
v3 ¼W0 cosðaxxÞ cosðayyÞ sinðpzÞ

8
>><

>>:

ðA:1Þ

In the numerical test, we assign ax ¼ ay ¼ a=
ffiffiffi
2
p

, a ¼ π, W0 ¼ 1, and the Taylor number 
T ¼ 4X2

n
d4

0 ¼ 1� 106, where Ω is the angular speed of rotation around the z-axis, d0 is the depth 
of the fluid layer, and ν is the fluid kinematic viscosity. The domain is given by x 2f
ð0; 2

ffiffiffi
2
p
Þ; y 2 ð0; 2

ffiffiffi
2
p
Þ; z 2 ð� 1; 1Þg and is partitioned by 51 � 51 � 51 grids. The grids are distribu-

ted uniformly in each direction. The calculated contours of the sub-grid viscosity are shown in 
Figures 1a, b. It can be seen that the sub-grid viscosity based on the present model is zero if the local 
flow is non-swirling, while sub-grid viscosity based on the Vreman’s model does not hold.  

1124 X. SUN ET AL. 


	1. Introduction
	2. Governing equations
	2.1. SbSGS model
	2.2. Governing equations

	3. Numerical method
	3.1. Solution procedure
	3.2. Reliability evaluation

	4. Results and discussion
	4.1. Fluid flow characteristics
	4.2. Fluid flow patterns
	4.3. t–z averaged variable distributions
	4.4. Instantaneous iso-surfaces
	4.5. Nusselt numbers

	5. Conclusions
	Funding
	References
	Appendix A. Numerical test of sub-grid viscosity



