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This paper presents large eddy simulation (LES) results of incompressible heat and fluid flows around a square cylinder (SC)
at zero incident angle at high Reynolds numbers (Re) in the range from 1.25 × 105 to 3.5 × 105. LES results are obtained
on the basis of swirling strength based sub-grid model, and a higher order upwind scheme developed with respect to the
Taylor expansion. It was found that, for the zero incident SC wake flows at a Reynolds number in the range {Re5 = Re/105 ∈
[1.25, 3.5]}, the Strouhal number equals to 0.1079, completely independent of the Reynolds number; the coefficient of
drag is around 1.835 with an uncertainty of about 1.9%, almost non-sensitive to the Re. When Re is beyond 3.0 × 105, the
time-averaged peak value of sub-grid viscosity is over 340, implying that the role of sub-grid model is crucial in some regions
where vortex motion is active and vortex interaction is intense. The time–spanwise (t-z) averaged sub-grid viscosity ratio
profiles and the profiles of fluctuations of the sub-grid viscosity ratio and velocity components at four locations downstream
of the SC are presented. The fields of the t-z averaged sub-grid viscosity ratio, and the instantaneous fields of streamwise
and spanwise vorticities are also reported and discussed. The predicted mean Nusselt number is compared with empirical
correlations, revealing that swirling strength based LES has its potential in predicting natural and industrial flows.

Keywords: square cylinder wake flow; sub-grid viscosity ratio; incompressible heat and fluid flows; swirling strength;
vortex interaction

1. Introduction

Incompressible turbulent heat and fluid flows past a square
cylinder (SC) involving vortex shedding and convective
heat transfer are of great significance in applied mathemat-
ics and mechanics. Recently, many studies of wake flows
were performed by experiments (Luo, Chew, and Ng 2003;
Tamura and Miyagi 1999; Wang and Zhou 2009), stability
analysis (Williamson 1996; Robichaux, Balachandar, and
Vanka 1999), and numerical simulations (Kato and Laun-
der 1993; Bosch and Rodi 1998; Sohankar, Norberg, and
Davidson 1999; Sohankar 2006; Saha, Biswas, and Mu-
ralidhar 2003; Zhu, Niu, and Li 2013).

We should mention the heat transfer measurements of
Hilpert (1933) and Igarashi (1987), as reported in Sparow,
Abraham, and Tong (2004) and Wiesche (2007). The mea-
surements of Igarashi were done in a low-speed wind tunnel
with a working section 400 mm high, 150 mm wide, and 800
mm long, with the wind speed ranging from 6 to 20 m/s.
The rectangular cylinders with a height of 30 mm were
heated under the condition of constant heat flux.

In general, for turbulent flow modelling, three strate-
gies, i.e. the phenomenological model, direct numerical
simulation (DNS), and large eddy simulation (LES) are
widely used. The first phenomenological model, as re-
viewed by Hanjalic (2002), is based on Reynolds averaging,

∗
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without any universal model coefficient, and implies that
the coefficient examined in some benchmark cases might
be unsuitable to other flows in nature and modern industry.

DNS, as reported in Holmes, Lumley, and Berkooz
(1996), Manhart (2004), and Niu and Zhu (2006), in the
traditional meaning, requires the use of an extremely fine
grid with a total spatial grid number as large as Re2.25,
where Re is the flow Reynolds number. This indicates that
for DNS only supercomputers are possible to provide the
computation resources.

LES, as reported in Smagorinsky (1963) and McMil-
lan and Feiziger (1979), uses grid-filtering to simulate the
large motion explicitly, with the small eddy effect on the
large eddy motion being modelled. The LES work reported
previously (Moin and Kim 1982; Madabhushi and Vanka
1991; Metais and Lesieur 1996; Sohankar 2006; Yu, Lau,
and Chan 2004; Guo et al. 1995; Wu, Chan, and Zhou 2011;
Duwig et al. 2011; Nogenmyr et al. 2013) indicates that this
strategy is appropriate for predicting turbulent flows.

For LES, many sub-grid scale (SGS) models have been
developed, among which, are the earlier SGS model of
Smagorinsky (1963), the dynamic SGS model given by
Germano et al. (1991), a subsequent modification given
by Lilly (1992), the SGS model based on the Kolmogorov
equation for resolved turbulence given by Cui, Xu, and

C© 2015 Taylor & Francis
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Zhang (2004) and Cui, Zhou, et al. (2004), the model based
on algebraic theory by Vreman (2004), the model assuming
the sub-grid stress to be proportional to the temporal incre-
ment of filtered strain rate by Zhu, Yang, and Chen (2010),
and the recent SGS model based on dynamic estimation of
Lagrangian time scale given by Verma and Mahesh (2012).

In LES the unclosed stresses are usually modelled by
SGS viscosity models to smooth the Navier–Stokes equa-
tions. Alternatively, another way is to modify the non-linear
convective terms directly as done by Holm (1999). Thus,
models based on these regulations occur (Cheskidov et al.
2005; Geurts and Holm 2003; van Reeuwijk, Jonker, and
Hanjalic 2008, 2009).

Turbulent flow is intermittent in time and space, indi-
cating that the flow may be locally swirling or non-swirling,
depending on the swirling strength. The SGS model used
in this paper, as described by Zhu, Niu, and Li (2013), can
to some extent characterise the flow intermittency. Results
of the LES are compared with existing experimental data.

To show different flow characteristics found in a
circular cylinder (CC) flow, this paper presents LES results
of incompressible heat and fluid flow around an SC at high
Reynolds numbers relevant to the range Re5 ∈ [1.25, 3.5],
covering the subcritical Reynolds number (∼2.0 × 105) of
circular cylinder flow as reported by Beaudan and Moin
(1994). The incoming flow has zero incident angle and
has no inlet disturbances. LES demonstrates some char-
acteristics involved in incompressible heat and fluid flows
around an SC from four aspects: (1) the Reynolds number
dependence; (2) the t-z averaged sub-grid viscosity ratio
profiles and the profiles of root-mean-square (rms) values
of the sub-grid viscosity ratio and velocity components at
four locations downstream of the SC; (3) the field of the
t-z averaged sub-grid viscosity ratio, and the instantaneous
fields of streamwise and spanwise vorticities; (4) the
convective heat transfer from the SC.

2. Governing equations

At high Reynolds numbers, effects of turbulence are rather
intense and significant as introduced in the work of Holmes,
Lumley, and Berkooz (1996), the influence of SGS on large-
scale motions should be considered carefully. In previous
work (Moin and Kim 1982; Madabhushi and Vanka 1991;
Metais and Lesieur 1996; Sohankar 2006; Yu, Lau, and
Chan 2004; Guo et al. 1995; Wu, Chan, and Zhou 2011;
Duwig et al. 2011; Nogenmyr et al. 2013) the sub-grid stress
was postulated to be proportional to the locally filtered
strain rate, with a factor called sub-grid viscosity, similar to
the Newtonian constitutive relationship, implying that these
SGS models have not satisfactorily ascertained the problem:
at which Reynolds number, these models are applicable,
because the sub-grid viscosity still exists even when the
flow is in the laminar regime.

In the earlier model of Smagorinsky (1963), sub-grid
viscosity is assumed to be proportional to the modular

of locally filtered strain rate. Unfortunately, for three-
dimensional velocity fields obtained by stability analysis
of Chandrasekhar (1961), numerical tests revealed that the
peak values of the modular of strain rate still exist at some
flow regions without swirling. To avoid this ambiguity, con-
sidering turbulent flows having vortical structures and in-
trinsic intermittency, as reported in Zhu, Niu, and Li (2013)
and Zhang et al. (2014), the model used in the present LES
study is briefly introduced below.

In the SGS model, sub-grid viscosity is suggested to be
proportional to the factor of swirling strength intermittency
(FSI) and the local swirling strength,

νs = CµfI (x, t)λciδ
2 (1)

Here Cµ (= 0.09) is an artificially defined constant; λci is
the swirling strength of filtered velocity gradient ∇u, the
FSI denoted by fI, is defined by the ratio of swirling strength
λci to the magnitude of the complex eigenvalue λ(= λcr +
iλci) of ∇u, i.e.

fI (x, t) = λci√
λ2

cr + λ2
ci

(2)

where δ is the length scale, defined by the harmonic average
of grid intervals,

1

δ
=

3∑
i=1

1/δi (3)

with δi being the grid interval in xi direction. Let the filtered
velocity gradient ∇u be

∇u = A =
⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ (4)

its eigenvalue λ should satisfy the characteristic equation

λ3 + bλ2 + cλ + d = 0 (5)

where⎧⎨
⎩

b = −tr(A) = −(a11 + a22 + a33),

c =
∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ +
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ +
∣∣∣∣ a11 a13

a31 a33

∣∣∣∣, d = −|A|
(6)

with |A| being the determinant of matrix A. For incom-
pressible flows, with respect to the free divergence of ve-
locity vector (∇ · u = 0), the coefficient in Equation (5),
b = 0. When the coordinates are non-rotating, the Coriolis
force should be zero. At the local point where the roots
of Equation (5) are real, indicating that the vortices have
not arrived at the point, the local flow regime is temporally
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laminar. When the local flow is temporally turbulent, the
roots have two conjugate complex eigenvalues denoted by
λcr ± iλci, here i(= √−1) is the unit of imaginary num-
ber. Iso-surfaces of swirling strength have been used to
show vortices in turbulent flows previously (Zhou et al.
1999; Ganapathisubramani, Longmire, and Marusic 2006;
Lin and Zhu 2010).

To maintain a certain parametric consistency in turbu-
lence modelling, as reported in Zhu, Niu, and Li (2013)
and Zhang et al. (2014), the coefficient Cµ = 0.09, which is
assigned to be the same as that used for turbulent eddy vis-
cosity of phenomenological models (Hanjalic 2002). In the
sub-grid viscosity model of Vreman (2004), the relevant
coefficient is set as 2.5C2

S , where CS = 0.17 is the theo-
retical value for homogeneous isotropic turbulence (Lilly
1967), giving a value of 0.07. Furthermore, to obtain robust
simulations in complex cases the practical value of CS is
sometimes higher than the theoretical value. For example,
CS = 0.2, which has frequently been used in literature, cor-
responds to a value of 0.1, in the sub-grid model. In the
sub-grid model of Germano et al. (1991), the relevant co-
efficient is obtained by double control volumes averaging,
and the coefficient is temporally and spatially changing,
hence such kind of model is called dynamic model.

In order to define the length scale of the grid interval
δ, the harmonic average is used, in which any smaller grid
interval can get a larger weight of average. This has an
influence on the calculation of SGS viscosity, but just in the
value. In principle, we suggest that the local SGS viscosity
be omitted when λci = 0, therefore, leading to LES’ natural
transition to DNS.

Considering that the sub-grid viscosity νs already has
a factor fI, the decaying factor of length scale [1 − exp
(− y+ /25)] near the wall, as used previously in the work of
Moin and Kim (1982), is cancelled in the present model.
Here y+ = yuτ /ν, y denotes the normal distance to the wall,
with uτ and ν representing the mean friction velocity and
the kinematic viscosity of fluid, respectively.

It is noted that swirling strength does not vanish com-
pletely when flow is laminar under a rotating coordinate sys-
tem. The difference of the present sub-grid model with that
of Vreman (2004) was given by Zhu, Niu, and Li (2013),
from which it can be ascertained that the sub-grid viscosity
of the present model is zero if the local flow is non-swirling,
while the sub-grid viscosity of the Vreman’s model does not
hold this peculiarity.

Consider the turbulent SC flow in a Cartesian coordinate
system, as schematically shown in Figure 1(a) and 1(b), in
which x(x1) is the horizontal coordinate, y(x2) and z(x3) are
the vertical and spanwise directions. The SC’s spanwise
length is given by B, and its cross-sectional side length
is set as d. xu, xd, yb, and yt are geometric parameters of
the computational domain, which can be seen in Table 1.
The coordinate origin is set at the left-bottom corner of the
SC. It is seen that the distance from the SC front face to

y

x

xu xd

yt

yb

ouin

d

(a)

z

xo

uin

(b)

B

Figure 1. Schematic of flow past a square cylinder. (a) x–y plane;
(b) x–z plane.

the inlet section (xu), the distance from the top face to the
top boundary of the domain (yt), and the distance from the
bottom face to the bottom boundary of the domain (yb),
in the unit of d, have the same value 8.5, implying that
the blockage of the SC flow is 1/18 (≈5.56%). While the
distance of the outlet section to the SC rear face has a value
15, which was found to be sufficiently long to conduct DNS
of the SC flow as reported by Niu and Zhu (2006). For all
cases in this LES, the spanwise length of the domain B is
set as 4.

Denoting the incoming flow velocity by uin, the
Reynolds number of the SC flow should be Re = uind/ν; the
incoming fluid is air at ambient condition, hence the fluid
Prandtl number (Pr = ν/a) is set as 0.71. It is assumed that
the temperature influence on fluid thermodynamic prop-
erties is negligible. The SC wall surfaces have a constant
temperature Tw, which is different from the ambient T∞.

Let the fluid temperature be T, the normalised temper-
ature is given by � = (T − T∞)/�Tw, where �Tw = Tw

− T∞. With the incoming flow speed uin and SC cross-
sectional side length d, express the fluid density by ρ, the
time and pressure scales are expressed as t0 = d/uin and
ρu2

in. Therefore, for the incompressible heat and fluid flow
past an SC, the normalised governing equations have the
following form:

∇ · u = 0 (7)

ut + u · ∇u = −∇p + ∇ · [γ1∇u] + R (8)

�t + u · ∇� = ∇ · [γ2∇�] (9)

For simplicity, the over bar for the filtering of flow variables
is omitted. The normalised total viscosities γ 1 and γ 2 are

Table 1. Computational parameters.

xu/d xd/d yb/d yt/d N1 N2 N3 Ra
S

8.5 15 8.5 8.5 191 145 41 0.819

aSmax ≈ 0.5%, with actual number of time steps n = 13,800 relevant to
the final time t = 170.
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4 Yinglin Li et al.

given by

γ1 = 1

Re

(
1 + νs

ν

)
, γ2 = 1

RePr

(
1 + νs

σθν

)
(10)

where the turbulent Prandtl number σ θ is assumed to be 0.9.
R is a force related to the gradient of viscosity γ 1, given
by

R = (∇u)T · ∇γ1 (11)

The use of σ θ in Equation (9) indicates that the
temperature–velocity coupling induced heat flux has been
considered by a gradient diffusion assumption. In mathe-
matical modelling of the turbulent heat flux, there are other
kinds of methods such as those described by Uddin et al.
(2009) and Smirnov and Nikitin (2014). An assessment of
some turbulent heat flux models was done by Uddin et al.
(2009) in the LES of heat transfer induced by a turbu-
lent impinging jet. For hydrogen combustion in engines,
in the recent modelling and simulation encompassed by
Smirnov and Nikitin (2014), the turbulent heat flux model
was simply given by a gradient diffusion hypothesis, and
the temperature fluctuation was governed by a partial dif-
ferential equation derived from energy conservation, where
the Prandtl numbers for the turbulent diffusion of species
were also used.

In this paper, we focus on the swirling strength based
model in describing the effect from SGS eddies, for temper-
ature in the SC flow field, we choose the constant turbulent
σ θ model, so that the turbulent heat flux is expressed as

−u′
j θ = νs

σθ

∂�

∂xj

where u′
j denotes velocity fluctuation in xj direction, θ be-

ing the temperature fluctuation. The solutions of Equations
(7)–(9) are sought under appropriate conditions. For the
boundary conditions (BC) on the SC walls, constant wall
temperature and non-slip BC are used, such that

u = 0, v = 0, w = 0, � = 1 (12)

while for the BC at the outlet, similar to the treatment of
Sohankar, Norberg, and Davidson (1999) and Saha, Biswas,
and Muralidhar (2003), we use the Olanski (1976) type, for
x = 1 + xd

ϕ + ucϕ = 0 (13)

where in the normalised form, we choose uc = 1, ϕ = (u,
v,w, �)T, with the superscript ′T′ denoting the transpose
of matrix (u, v,w, �) . At the inlet section, for x = −xu we

choose

u = 1, v = 0, w = 0, � = 0 (14)

On the bottom and top boundaries of the computational
domain, where y = −yb, or 1 + yt, we use

uy = 0, v = 0, w = 0, �y = 0 (15)

On the spanwise boundaries, where z = 0, or z = B, we
use the periodic condition such that

ϕ(x, y, z, t) = ϕ(x, y, z + B, t) (16)

where B is the spanwise length of the computational domain
(see in Figure 1(b)]. Finally, the initial condition, at t = 0,
is given by

u = 1, v = 0, w = 0, � = 0 (17)

3. Numerical method

3.1. Solution procedure

The governing equations (7)–(9) of the heat and fluid flow
problem are discretised by a finite difference method in
a non-uniform staggered gird system, where the convec-
tive terms are treated by a fourth-order upwind scheme
reported by Yang, Chen, and Zhu (2009). It is noted that
by some proper changes, the existing numerical methods
in DNS, such as those described in Patankar (1980), Har-
low and Welch (1995), Nikitin (2006), Papanicolaou and
Jaluria (1992), Khanafer, Vafai, and Lightstone (2002), are
also applicable. The simple approach recently reported by
Trias et al. (2013), which can be implemented easily on any
structured or unstructured grid, is of course also suitable
for LES of incompressible flows.

The solutions procedure of the governing equations is
designed on the basis of the accurate projection algorithm
PmIII of Brown, Cortez, and Minion (2001). Hence, just a
brief description is given below.

Using u, φ, and n to represent intermediate velocity vec-
tor, pressure potential, and time level, respectively, defining
a vector H = (u · ∇)u − R, then the velocity at the time
level n + 1 can be written as

un+1 = u − �t∇φ (18)

where the intermediate velocity vector u is calculated by
means of

u − un

�t
+ Hn+1/2 = ∇ ·

{
γ1∇

[
un + 1

2
(u − un)

]}
(19)
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with pressure p predicted by

pn+1/2 = {1 − 0.5(�t)∇ · [γ1∇]}φ (20)

The pressure potential φ satisfies the Poisson’s equation

∇2φ = ∇ · u/�t (21)

The temperature �n + 1 is calculated by

�n+1 − �n

�t
+ H

n+1/2
4 = ∇ ·

{
γ2∇

[
�n + 1

2
(�n+1 − �n)

]}
(22)

where H4 = (u · ∇)�, and the terms at time level of (n +
1/2) are calculated explicitly by the second-order Adams–
Bashforth formula. The non-linear convective terms in the
governing equations are spatially discretised by the fourth-
order upwind finite difference scheme of Yang, Chen, and
Zhu (2009), with the viscous diffusion terms by a second-
order central difference scheme.

The pressure potential Poisson’s equation is initially
solved by the approximate factorisation one (AF1) method
of Adrian (1981), and then corrected by the stabilised bi-
conjugate gradient method (Bi-CGSTAB) given by Vorst
(1992) to improve the solution accuracy. In spatial discreti-
sation, the implicit second-order Crank–Nicolson method
is used to solve the right-hand side diffusion terms. It is
noted that the present numerical approach treats the diffu-
sion term in a non-standard way, where the part depending
on the viscosity gradient (∇γ 1) [see in Equation (10)] is
calculated explicitly, with the remaining part denoted by
[∇ · (γ 1∇u)] calculated implicitly.

3.2. Accuracy improvement

For the finite difference of the term ∇ · u and ∇2φ at time
level n, the effect of heterogeneous stagger grid (i.e. φi is
positioned at xi and arranged between ui and ui + 1) should
be considered carefully. For convenience of description, we
present here the relevant expressions for ux and φxx, other
formulae can be derived similarly. To cancel the unexpected
numerical errors arisen from grid heterogeneity, let δ1 = (xi

− xi − 1), δ2 = (xi + 1 − xi), and δ = (δ1 + δ2)/2, by means
of Taylor expansion, we have

{
ux = (ui+1 − ui)/δ + Ru + o(ε3),

φxx = [(φi+1 − φi)/δ2 + (φi−1 − φi)/δ1] /δ + Rφ + o(ε2)
(23)

where⎧⎨
⎩

Ru = − [
(δ2 − δ1)u(2)

x /2! + (δ2
1 + δ2

2 − δ1δ2)u(3)
x /3!

]
,

Rφ = −
[
(δ2 − δ1)φ(3)

x /3
]

(24)
with o(ε2) and o(ε3) denoting the second- and third-order
cut-off errors. In Equation (24), u(2)

x , u(3)
x are respectively the

second- and third-order partial derivatives of u with respect
to x at xi, and φ

(3)
x is the third-order partial derivative of φ

with respect to x at xi. The terms vy and wz in ∇ · u, and
the terms φyy and φzz in ∇2φ at time level n can be written
similarly. Tracing the previous numerical works published
in the literature, it is seen that very few studies have been
conducted on the heterogeneous grid effect in dealing with
the Poisson’s equation of pressure potential.

In the recent numerical study of Smirnov et al. (2014),
involving hydrogen fuel rocket engines simulation using
LOGOS simulator (Betelin et al. 2014), an approach for
estimating the accumulated error in numerical work based
on Navier–Stokes equations was reported in detail. As the
diffusive terms are treated with the second-order central
scheme, using the values of N1, N2, and N3 as listed in
Table 1, and with the assumed allowable total error Smax =
0.5%, we can estimate the ratio of maximal allowable num-
ber of time steps for the problem and the actual number of
time steps used to obtain the result, Rs = 0.819, as shown
in Table 1. As reported by Smirnov et al. (2014), the ratio
Rs characterises reliability of results, i.e. how far below the
limit the simulations were finalised. Indirectly it charac-
terises the accumulated error. The higher the value Rs is,
the lower is the error. On tending Rs to unity the error tends
to maximal allowable value.

In the present study, using the strategy of accuracy im-
provement, results for Re5 ∈ [1.25, 3.5] reveal that Strouhal
number is Reynolds number independent. Evidence can be
seen in the next section.

4. Results and discussion

Using the solution method described in Section 3, LES
of the heat and fluid flows past an SC (see schemati-
cally in Figure 1) was carried out in a personal com-
puter with a memory of 3.2 GB and CPU frequency 3.30
GHz. Geometric parameters of the computational domain
are given in Table 1. The scenarios are classified by Re5

(= Re/105), each requiring a CPU time about 85.8 hours.
As shown in Tables 2–4, eight scenarios are studied and
presented.

In the z-direction, with uniform grid, the grid number
N3 is set as 41. However, in the x- and y- directions the grids
are non-uniform, and the grid numbers are N1 = 191 and
N2 = 145, respectively, with grid arrangement based on a
geometric series algorithm. In this LES, the assignment of
grids on the SC section walls uses two key parameters called
amplifying factor (1/0.847) and series termination number
(14). The total number of vertical grid lines through the SC
cross-sectional side is 34.

In the bottom and top sides of the SC, the y-grid is
assigned with an amplifying factor of 1/0.9 and a series
termination number of 37. For the x-grid assignment, the
relevant values are 1/0.817 and 17 for the region upstream
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6 Yinglin Li et al.

Table 2. Re dependence of CL, CD, (νsr )pm, their RMS values, and Strouhal number.

Re5 CL CD (νsr )pm CL′ CD′ (νsr )′p St

1.25 −0.0369 1.825 146.23 0.1679 0.1013 34.14 0.1079
1.5 −0.0365 1.834 172.91 0.1721 0.1016 39.98 0.1079
2.0 −0.0373 1.832 228.38 0.1708 0.1024 43.92 0.1079
2.5 −0.0370 1.833 290.74 0.1710 0.1022 71.81 0.1079
2.75 −0.0369 1.845 292.59 0.1789 0.1040 60.42 0.1079
3.0 −0.0369 1.841 342.65 0.1817 0.1081 65.17 0.1079
3.25 −0.0367 1.843 366.75 0.1795 0.1046 81.55 0.1079
3.5 −0.0374 1.834 404.23 0.1725 0.1042 89.92 0.1079

Table 3. Re dependence of Nusselt numbers.

Re5 Nub Nut Nuf Nur Num

1.25 65.03 79.04 356.69 73.97 143.68
1.5 72.79 89.86 405.63 85.21 163.37
2.0 89.45 111.66 508.36 114.43 205.97
2.5 100.36 127.41 623.69 142.75 248.55
2.75 107.02 139.74 690.60 162.30 274.91
3.0 113.17 148.76 764.71 175.91 300.64
3.25 117.09 154.58 878.87 192.40 335.73
3.5 118.77 158.32 1134.57 197.64 402.32

of the SC, but 1/0.927 and 47 for the region downstream
of the SC. Using the geometric series algorithm for grid
partition, it can be shown that the finest grid distance to
each SC wall in the unit of d is 2.733 × 10−3. Such a grid
arrangement leads to a time step of �t = 1.25 × 10−3.

To show the distribution of sub-grid viscosity ratio in
x–y plane, time–spanwise averaging (t-z) is used. A sub-
script (m) is used to label the t-z averaged variables, with
a superscript (′) used to represent the rms values of the
variables. In particular, the subscript ′m′ is omitted for t-z
average lift (CL) and drag (CD), for simplicity. Further-
more, grid spacings and time step for the eight scenarios
are the same. To remove the influence from initial condition,
merely the data in the period of t ∈ [68, 170] are processed.

As reported by Beaudan and Moin (1994), experimen-
tal results of Roshko (1961) suggested that in the extreme
case of very rough circular cylinder, some mean flow statis-

Table 4. Re dependence of rms values of Nusselt numbers.

Re5 Nu′
b Nu′

t Nu′
f Nu′

r Nu′
m

1.25 11.56 12.66 3.04 20.86 8.84
1.5 13.34 15.66 3.51 25.29 10.16
2.0 17.61 22.20 4.92 62.71 20.30
2.5 18.30 42.65 7.18 93.93 32.37
2.75 19.53 49.19 8.67 113.78 37.85
3.0 20.07 53.48 12.66 120.66 40.39
3.25 21.71 55.67 34.69 139.73 47.20
3.5 25.66 60.95 65.24 147.66 50.02

tics become Reynolds number independent and vary only
with wall-surface roughness when Reynolds number is be-
yond 2 × 106. Hence, the SC surface roughness effect in the
present LES is neglected in the range of Re5 ∈ [1.25, 3.5].

4.1. Turbulent flow statistics

For fluid flow past an SC, it is characterised mainly by vor-
tex shedding whose normalised primary frequency is usu-
ally depicted by Strouhal number (St = fd/uin), and by the
flow-induced force acting on the SC, usually decomposed
into drag and lift. The vortex shedding naturally generates
retrograde/prograde spanwise vortices as described by Na-
trajan, Wu, and Christensen (2007), moving downstream,
mutually interact, and sometimes could be engulfed into the
recirculation zone near the SC rear wall. On the contrary,
the incoming flow impinging directly on the SC front wall
is less impacted by the vortex shedding and flow separation.

As SC flows have fixed vortex separation points, the
vortex shedding would be different from that past a circular
cylinder. For circular cylinder flows, there is sensitivity to
disturbances in the critical range as reported by Schewe
(1986); whereas this remains a question in SC flows.

To show Reynolds number dependence, the t-z averaged
CL, CD, t-averaged (νsr )pm, the corresponding rms values
CL′, CD′, (νsr )′p, and St are given in Table 2. As shown
in the second column of Table 2, the mean CL is close to
zero. As shown in the third column, for Re5 ∈ [1.25, 3.5],
the mean CD is about 1.835 (±0.035), with a maximum
relative deviation less than 1.9%, suggesting that in the
range Re5 ∈ [1.25, 3.5], CD is not sensitive to Re, and
almost Re independent. As indicated in the fourth column,
the time average of the peak of sub-grid viscosity ratio,
denoted by (νsr )pm, becomes large with the increase of Re.
The Re dependence of these averaged variables is shown in
Figure 2(a) and 2(c),where the abscissa is Re5.

For corresponding rms values, the Re dependence can
be found in the fifth, sixth, and seventh columns of Table 2.
For CL′, CD′, their variations with Re are plotted as func-
tions of Re5 in Figure 2(b). Within the range of Re5 ∈ [1.25,
3.5], it can be seen that CL′ is around 0.1748 (±0.0069),
with a maximum relative deviation of less than 3.95%.
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Figure 2. Re dependence of mean lift (CL) and drag (CD) (a), their root mean square (rms) values of CL and CD (b), and the time-
averaged viscosity ratio (νsr )pm as well as its relevant rms (νsr )′p (c). Note that (νsr )pm is calculated merely by time-averaging for peak
value of νsr(= νs/ν) in the computational domain, as can be seen in Figure 5.

The CD′ is approximately equal to 0.1047 (±0.0034), with
a maximum relative deviation of less than 3.25%. For (νsr )′p,
its relation to Re is shown in Figure 2(c), from which it can
be seen that the (νsr )′p has a similar trend as (νsr )pm, but the
growth rate of (νsr )′p with the increase of Re is much lower
than that of (νsr )pm.

It is noted that the values of the mean CD and its rms
value agree quite well with the existing experimental data
of Luo, Yazdani, and Lee (1994) as well as the LES results
of Sohankar (2006), but the rms value of CL is less well
predicted. Our LES results show that the CL′ value is about
twice the CD′ value. Considering the experiment of Tamura
and Miyagi (1999), the effect of inlet turbulence on aerody-
namic forces on an SC with various corner shapes indicates
that the reason requires further studies.

It is noted that the peak value of viscosity ratio (νsr)p

is sought from the entire flow field. As turbulent SC flow
involves vortex shedding, the peak value must be changed
temporally. The t-averaged peak value of viscosity ratio
denoted by (νsr )pm, as shown in Figure 2(c), has a larger
growth rate. For instance, in the range of Re5 ∈ [1.25,
3.5], the (νsr )pm grows from 146.23 to 404.23 when Re5

increases from 1.25 to 3.5. Quantitatively, with respect to
the parameter Re5, the mean growth rate [∂(νsr )pm/∂Re5]
is about 115, with [∂(νsr )′p/∂Re5] ≈ 25.

For Re5 ∈ [1.25, 3.5], the Strouhal number (St) is inde-
pendent of Re. As shown in the eighth column of Table 2,
St is 0.1079 for each scenario. This value of St is obtained
by discrete Hilbert transform (see Hahn 1996) of the evolu-
tion data of lift coefficient. The power-spectra diagrams for
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Figure 3. Power spectra of the evolutions of CD and CL at (a) Re5 = 1.25, (b) Re5 = 2.5, (c) Re5 = 3.0, (d) Re5 = 3.5.
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8 Yinglin Li et al.

Figure 4. Evolutions of peak value of viscosity ratio ((νsr)p ≡ (νs/ν)p) at Re5 = Re/105 = 1.25, 2.5, and 3.5.

Re5 = 1.25, 2.5, 3.0, 3.5 are given in Figure 3(a)–(d). It can
be seen that for the SC flows at the four cases, the primary
frequency of vortex shedding in the unit of (uin/d) labelled
by St is 0.1079.

This St is very close to the predicted value 0.124 for the
case of Re = 2.2 × 104 in the numerical work of Bosch and
Rodi (1998). The prediction of Bosch and Rodi was based
on the two-dimensional flow assumption and the two-layer
approach with standard k − ε turbulence model, and the
inlet viscosity ratio (rµ = ν t/ν) was set as 100. Here ν t

is the eddy viscosity which depends on kinetic energy k
and its dissipation rate ε. As reported by Bosch and Rodi
(1998), the St measured by Bearman and Trueman (1972)
is 0.123 for the SC flow at Re ≈ 5 × 104 when the inlet
flow turbulence level T u(=

√
u′2) was less than 1.2%. This

comparison with existing numerical and experimental re-
sults, to some extent indicates the reliability of the present
LES work.

Figure 4 shows the evolution of the peak value of viscos-
ity ratio (νsr)p, where the three dash-dotted purple horizon-

tal lines are used to show the mean peak value of viscosity
ratio (νsr )pm, with the dash-dotted green, dashed blue, and
solid lines illustrating the evolution curves of (νsr)p for the
three scenarios of Re5 = 1.25, 2.5, and 3.5, respectively.
Both the mean peak value of viscosity ratio, i.e. (νsr )pm,
and its rms have a growing tendency with Re5. The values
of (νsr )pm as shown in Figure 4 are consistent with those
given by Table 2 for the three scenarios.

4.2. Nusselt numbers

More conveniently, to describe the temperature � profile
near the SC wall surface, we use y to denote the normal
distance to the wall surface, and assume

�(y) = A(1 + y)m (25)

Hence, we have

�w = �(0) = A; �1 = A(1 + y1)m (26)
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Figure 5. Re dependence of Nu2d and the relevant relative deviations σ 1 and σ 2. Note that σ1 = (Nu2d − Nuexp1)/Nuexp1 × 100%,
σ2 = (Nu2d − Nuexp2)/Nuexp2 × 100%, where for Re2d = 2Re, Nuexp1 = 0.085Re0.675

2d in Hilpert (1933); Nuexp2 = 0.14Re0.66
2d in Igarashi

(1987).
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Figure 6. Profiles of t-z averaged velocity rms values at four locations (i.e. x = 3, 6, 9, and 12) for Re5 = 1.25 (a–d), and Re5 = 2.5
(e–h).
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10 Yinglin Li et al.

Figure 8. Contours of streamwise vorticity component (ω1) at t = 170, and four locations (i.e. x = 3, 6, 9, and 12) for Re5 = 1.25 (a–d),
and Re5 = 2.5 (e–h). Note that the contours are labelled by −0.3, −0.2, −0.1, 0, 0.1, 0.2, and −0.3.

where y1 denotes the normal distance of the near-wall grid
point. Accordingly, the local Nusselt number

Nu = q̇w/[ρCp · (ν/Pr) · �Tw] =
[
∂�/∂y

∣∣
y→0

]
= Am

(27)
where m = log (�1/�w)/log (1 + y1). The expression (27)
for Nu is used to calculate the t-z averaged face Nusselt
numbers (Nuβ , β = b, t, f, r) and their arithmetic mean
(Num), as shown in Table 3. The subscript ′β ′ can represent
the bottom (b), top (t), front (f), and rear (r) faces, respec-
tively. It can be seen that the t-z averaged Nuβ increases
with Reynolds number, but the growth rate of Nuβ is differ-
ent as the local fluid flow near the faces has different vortex
structures. Totally, as shown in Table 4, the normalised rms
of Nuβ also has a growing tendency.

Following the work of Wiesche (2007), we further
choose 2d as the length scale for the mean Nusselt number
and compare its value with experimental results. In com-
parison with empirical correlations of Hilpert (1933) and
Igarashi (1987), respectively, the Re dependence of Nu2d

and the corresponding relative deviations (σ 1 and σ 2) are
shown in Figure 5(a) and 5(b). It is shown that the mean
Nusselt number is slightly under-predicted as compared
with the earlier experiment of Hilpert, with a maximum
relative deviation less than 23.2%. As Igarashi (1987) ap-
plied constant heat flux in his wind tunnel measurement,
which may result in the measured mean Nusselt number
higher than that obtained under constant wall temperature,
as described by Mihiev (1956).

4.3. Flow profiles

As shown in Figures 6 and 7(a)–(h), flow profiles are
obtained by t-z averaging, and then treated by assuming
that they are symmetrical to the mid plane y = 0.5[see in
Figure 1(a)].

Different from the illustration of Bosch and Rodi
(1998), which showed the profiles of mainstream velocity
and the turbulent kinetic energy along the line of symme-
try, and compared with existing numerical and experimental
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Figure 9. Contours of spanwise vorticity component (ω3) at t = 170, and z = 2.0 for Re5 = 1.25 (a), and Re5 = 2.5 (b). Note that
contours of ω3 are labelled by −2, −1, −0.5, 0, 0.5, 1, and 2.

results, the present LES obtained the relevant data to cal-
culate the rms profiles of velocity at the four locations x =
3, 6, 9, and 12. The rms profiles are shown in Figure 6(a)–
(h). It is found that the wake width gradually broadens in
the mainstream direction. Defining the wake core region
by {x ≥ 1, andy ∈ [0, 1]}, the profiles of u′, v′, and w′

indicate that when x ≥ 6, v′ maintains a relative large value
which varies with the downstream distance to the SC, and
the order of relative value (v′ > u′ > w′) holds in the core
region, depending on the downstream distance. In the near
cylindrical wake region, when x = 3, the influence of flow
recirculation can lead to the change of the order of relative
value, as can be seen in parts (a) and (e) of Figure 6. It
can also be seen that the Re dependence of the normalised
velocity fluctuation profiles is not significant.

In contrast, the influence of Re on mean sub-grid vis-
cosity ratio and its rms value is significant. Especially in the
wake region, the (νsr)m and its rms value (νsr)′ in general
take relatively smaller values in comparison with those in
the outer wake regions simply denoted by y ∈ (1, 3) and y ∈
(− 2, 0). This suggests that vortex interaction in the outer

wake region is more intense, causing larger values of (νsr)m

and (νsr)′.

4.4. Instantaneous flow patterns

Due to vortex shedding, the SC flows have patterns vary-
ing temporally as reported in Shraiman and Siggia (2000),
Adrian (2007), and Natrajan, Wu, and Christensen (2007).
It is useful to show the instantaneous flow patterns for
a deeper understanding of SC flows at high Reynolds
numbers.

At the four x-locations x = 3, 6, 9, 12, and time t = 170,
contours of ω1 are labelled by values −0.3, −0.2, −0.1, 0,
0.1, 0.2, and 0.3, the instantaneous secondary flow patterns
for Re5 = 1.25 are shown in Figure 8(a)–(d), with those for
Re5 = 2.5 shown in Figure 8(e)–(h). A comparison be-
tween the parts (a)–(d) and the parts (e)–(h) indicates that
secondary flow patterns are not only Re dependent but also
different at various x-locations.

Close correlation with the secondary flows
[Figure 8(a)–(h)], the flow patterns in the mid plane

Figure 10. Contours of the (t-z) averaged sub-grid viscosity ratio (νsr) at Re5 = 1.25 (a), and 2.5 (b). Note that the contours of νsr are
labelled by 0.05, 1, 10, and 20.
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12 Yinglin Li et al.

z = 2 as depicted by the contours of ω3 can be seen
in Figure 9(a) and 9(b), from which one can capture an
impression of the Karman vortex street. It can be seen that
the calculation of flow vorticity components has adopted
the staggered grid speciality.

4.5. t-z averaged field of sub-grid viscosity ratio

For the peak value of (νsr )pm, its occurrence position varies
temporally as a result of large eddy motion and interaction.
Exploring the occurrence of peak value would be helpful
for the understanding of the SC flows. Therefore, for Re5

= 1.25, and 2.5, the t-z averaged field of sub-grid viscosity
ratio νsr is shown by contours labelled by 0.05, 1, 10, and
20, in Figure 10(a) and 10(b). In the red coloured zone,
the t-z averaged νsr is over 20. While in the blue coloured
region, its value is less than 0.05, whereas the cyan, green,
and yellow coloured regions correspond to νsr ∈ (0.05, 1),
(1, 10), and (10, 20) respectively. As seen in Figure 10(a)
and 10(b), for Re5 = 1.25, and 2.5, the (νsr )pm occurs in the
two downstream regions of SC, where the vortex interaction
is more intense.

5. Conclusions

A swirling strength based LES was performed to explore the
characteristics of incompressible turbulent heat and fluid
flow past an SC at Reynolds numbers in the range of Re5

∈ (1.25, 3.5). The LES was based on a finite difference
method, where the numerical scheme accuracy was im-
proved by means of Taylor expansion. The present LES for
eight scenarios reveals several findings as listed below:

(1) Different from circular cylinder flows, for Re5 ∈
(1.25, 3.5), the numerically simulated mean CD
is about 1.835 (±0.035), with maximum relative
deviation of 1.9%; calculated Strouhal number is
0.1079, independent of the high Reynolds num-
ber. Both agree well with existing experimental and
numerical data. Downstream the SC, the effect of
Reynolds number on the t-z averaged profiles of
normalised velocities and their rms values is not
significant.

(2) Both mean peak of viscosity ratio, i.e. (νsr )pm, and
its rms value increase with Reynolds number, but
the growth rate of the mean peak is much larger
as compared to that of its rms value. This may be
attributed to the fact that when the Cartesian co-
ordinate origin is set at the bottom flow separation
point of the SC flow, the peak of sub-grid viscosity
ratio occurs in the outer wake region denoted by
{x ≥ 1, y ∈ (1, 3)} and {x ≥ 1, y ∈ (− 2, 0)}. The
iso-surfaces of the FSI and the sub-grid viscosity
ratio in a sub-domain reflect to some extent the

reliability of t-z averaged sub-grid viscosity ratio
field.

(3) The SC’s wake width gradually broadens in the
mainstream direction. For the rms of velocities, in
the far core wake region, for instance, when the dis-
tance from the SC’s rear face is beyond 5, among the
fluctuations of velocity components, the fluctuation
of vertical component is the highest, with the fluc-
tuation of spanwise component being the lowest.
Within the near cylindrical wake, flow recirculation
significantly influences the velocity fluctuations.

(4) The mean Nusselt number agrees well with the ear-
lier experiment of Hilpert (1933). The t-z averaged
top Nusselt number is not identical to the bottom
one, suggesting that the t-z averaged flow field is
asymmetrical about the symmetry line y = 0.5 in
the x–y plane.
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