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In this paper, a visco-elastic traffic flow model is described and applied to explore peculiarities
of traffic flows on a loop road with ramp effects numerically. Based on different expressions
for traffic pressure, sound speed and relaxation time, the viscoelastic model is derived from
mass and momentum conservations and a linear viscoelastic constitutive relation. Numerical
simulations of loop traffic flows have been carried out, with the ramp flow rate being assumed
to be randomly dependent on the local main flow at the intersection. The results revealed that
the on-ramp effect can cause the occurrence of traffic shock waves, the off-ramp effect can
lead to the decrease of traffic density on the loop road. The viscoelastic effect does cause the
significant changes of traffic flow pattern, indicating that self-organisation of loop traffic is a
crucial impacting feature.

Keywords: viscoelastic traffic model; ramp flow effect; relaxation time; elasticity

1. Introduction

Traffic flow is a hot topic in the societies of transportation research as well as
physical-mathematics, because traffic flow has a crucial impact on people’s travel trip planning
and selection. As a result, a number of traffic flow models have been developed. The well-known
one is the LWR model (Lighthill and Whitham 1955; Richards 1956) which is based on vehicular
mass conservation, and probably the simplest for capturing the crucial features of traffic flows on
highways, in contrast to a predicted steeper shock wave front (Kuhne and Michalopoulos 2001).
The LWR model has been used to analyse interrupted traffic flow (Michalopoulos et al. 1984),
to develop macroscopic models and compare with real data in Paris (Papageorgiou and Blos-
seville 1989), and to construct the entropy solutions with a discontinuous fundamental diagram
(Lu et al. 2009). The LWR model extensions can certainly predict traffic hysteresis (Wong and
Wong 2002), simulate the evolution of density waves (Zhu and Wu 2003) and the critical tran-
sition in bottleneck-related traffic (Chang and Zhu 2006), even though to a great extent the
LWR-type model cannot predict highway traffic flows satisfactorily.

The fundamentals of transportation and traffic operations have been described in the work
of Daganzo (1997). If the vehicular momentum conservation is considered as a fundamen-
tal feature in mathematical modelling, the proposed traffic flow models are in the category
of high-order models, among which we should mention the historical work of Payne (1971)
and the gas-kinetic analogy of Helbing and Treiber (1998). High-order models are useful in
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2 A. Bogdanova et al.

elucidating the stop and moving waves in traffic. For these models, despite of the unfavourable
comment (Daganzo 1995), there are remarkable applications (Liu and Lyrintzis 1996; Ou and
Dai 2006; Zhang and Wong 2006) and the further developments (Aw and Rascle 2000; Klar and
Wegener 2000; Kiselev et al. 2000, 2004; Zhang 2003; Zhang and Wong 2006; Lebacque and
Mammar 2007; Li 2008; Mammar, Lebacque, and Salem 2009; Zhang, Wong, and Dai 2009;
Ngoduy 2013; Tordeux et al. 2014).

By introducing an average length of vehicles and a braking distance of traffic flows at free
speed, Kiselev et al. (2000) have derived an expression of traffic sound speed and found the
analytically obtained value for a VAZ-type vehicle agree well with the sound speed experimen-
tally measured in Lincoln Tunnel in New York. They have further derived the expressions for
propagation speed of traffic shock waves moving backward or forward.

By using the weak solution theory and the Payne–Whitham (PW) model (Payne 1971;
Whitham 1974) to solve the travelling wave solution of a wide cluster, Zhang and Wong (2006)
have shown the essence of conservation forms, and revealed that the conservation form for the
acceleration equation is an important ingredient in the development of higher order traffic flow
models. Furthermore, to describe traffic dynamics, Zhang, Wong, and Dai (2009) have consid-
ered three regimes which include the introduction of a pseudo-density transformed from the
velocity, the pressure as a function of the pseudo-density and the relaxation of velocity to equi-
librium. The resultant characteristic variables can be used to measure the deviation of the phase
state to a desired state and derive physically bounded solutions. For instance, taking the pseudo-
density as a conserved variable, the approach can be applied to describe both equilibrium and
non-equilibrium flows in a systematic and unified manner, and thus complex traffic phenomena.
Employing the traffic speed–density relation reported by Castillo and Benitez (1995a, 1995b),
they modelled anisotropic traffic flow at three proposed conditions, and presented numerical
examples to show the ability of the model to reproduce some notable traffic phenomena.

For travelling wave solutions of a quasi-linear hyperbolic system which can be described by
the PW model, a stability analysis by virtue of a weighted energy method (Li 2008) has shown
that the travelling wave solutions are asymptotically stable under small disturbances and under
the subcharacteristic condition. The delicate balance between the relaxation and the diffusion
that leads to the stability of the travelling waves is identified; namely, the diffusion coefficient is
bounded by a constant multiple of the relaxation time. Using a gas-kinetic approach (Helbing and
Treiber 1998; Hoogendoorn and Bovy 2000; Ngoduy 2012), a macroscopic traffic flow model
has been developed (Ngoduy 2013), in the traffic flow intelligent vehicles are moving closer to
each other than manual vehicles and operating in a form of many platoons each of which contains
several vehicles. The model gives well tractable macroscopic equations for such platoon-based
traffic operation. A linear stability analysis found that platoon-based driving behaviour of intel-
ligent vehicles enhances the stabilisation of traffic flow with respect to a small perturbation.
Numerical simulation of an open freeway with an on-ramp bottleneck supports the analytical
results.

Tordeux et al. (2014) have reported the main aspects of a stochastic conservative model of the
evolution of the number of vehicles per road section. The model defined in continuous time on a
discrete space, follows a misanthrope Markovian process. It is a mesoscopic traffic model in the
sense: the vehicles are individually considered, but their dynamics are aggregated per section.
Supply and demand functions in equilibrium are taken as the model parameters.

Some problems involving traffic flows have been explained by applying and extending
methods in statistical physics and nonlinear dynamics to self-driven many particle systems
(Helbing 2001). A phase diagram, which was obtained for the nonlocal, gas-kinetic traffic model
in the study of a freeway with ramp in the presence of single perturbation, was presented and
explained (Helbing, Hennecke, and Treiber 1999).
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Transportmetrica A: Transport Science 3

In this paper, we use a fluid dynamic-type viscoelastic traffic flow model (Smirnova et al.
2014) to explore the flow peculiarities on a loop road when the on- and off-ramp effect exists.
The traffic viscosity and elasticity are determined by traffic sound speed and relaxation time. The
sound speed is represented approximately by the traffic operation parameters: the free flow speed,
the jam density, and the flow transitional density if the jam pressure in traffic flows is identical
to the total pressure at the flow transitional point. The relaxation time is supposed to be the
travel time of an infinitesimal disturbance through a given distance. Based on the model and the
total variation diminishing scheme (Roe 1981), numerical test is encompassed to obtain traffic
flow patterns illustrated by density or speed contours in the temporal and spatial plane. These
patterns are found to be affected by the traffic viscosity and elasticity relating the drivers’ self-
organisation, indicating that the viscoelastic model can provide some fluid dynamical evidences
of why the traffic systems have a rich spectrum of pattern formation phenomena.

2. Viscoelastic model

In this section, we briefly introduce the viscoelastic model. We see that traffic flow has its own
self-organising behaviour, because vehicle drivers can usually adjust the moving speed so that
the time headway can approach 1/qe when the instantaneous traffic flow rate (q) is unequal to
the equilibrium one (qe) (Castillo 2001). This self-organisation has been considered by using the
traffic viscosity and pressure in some high-order models (Kerner and Konhäuser 1993; Hilliges
and Weidlich 1995).

The interaction of vehicles in congested flow is relatively extensive, causing the generation
of a synchronised flow mode in which the flow rate is oscillating, or a jam exists (Kerner and
Konhäuser 1993). However, the flow is homogeneous and stable for denser traffic when the traffic
speed is lower than second critical speed corresponding to ρc2 (Schönhof and Helbing 2009)
Figure 1.

Remembering that the relaxation time is used for the traffic external force description, while
the relaxation and elastic processes are intrinsically related according to the fundamentals of
fluid mechanics, it is therefore relatively reasonable to further include the elastic effect in traffic
mathematical modelling. In the model to be reported below, only the interaction between the lead
and follower vehicles is considered, with the lane interaction being neglected. As a result, both
the traffic flow rate and density can be considered as one-dimensional variables.

For a linear viscoelastic fluid flow, the shear stress can be expressed as

Ts =
∫ ∞

0
f (s)H(s) ds, (1)

Figure 1. Fundamental diagram used by Kiselev et al. (2000).
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4 A. Bogdanova et al.

Figure 2. Schematic of the loop traffic flow with ramps.

here f (s) is the memory function. Based on the experimental observation of the relaxation of
shear stress of macromolecule polymer and the theory of micro-rheology (Wagner 1978), we can
write the memory function f (s) in the following form:

f (s) = G
N∑
1

1

τj
exp

(−s

τj

)
. (2)

Here G is the modulus of fluid elasticity, and τj is the relaxation time with the jth order.
For simplicity, we assume: (i) The road capacity is insensitive to the vehicle drivers; (ii) The

traffic flow is one-dimensional, and satisfies the linear viscoelastic constitutive relation; (iii) The
ramp effect is permitted, as schematically shown in Figure 2. Relating the operational condi-
tions of main road and ramps, to accurately describe the on- and off-ramp flows themselves
instantaneously is rather difficult. Hence, corresponding assumptions should be inevitable.

The assumption (ii) is based on the primary reason: we see that relaxation time in fact has been
used in most of the high-order models to describe the driven force of vehicles, the relaxation time
itself is a concept involving the elastic and viscous properties of fluids (Han 2000) . Drivers’
concerns of driving safety lead to the motion of vehicles has a memory behaviour. Therefore, it
is appropriate to describe this traffic performance with a memory function.

The model derivation is initiated from the linear viscoelastic constitutive equation

T = −pI + G
N∑

j=1

∫ ∞

0

1

τj
exp

(−s

τj

)
H(s) ds. (3)

where T(= −pI + Ts) and p are, respectively, the stress tensor and the traffic pressure. H(s) is
the Finger deformation tensor. For the maximum relaxation order denoted by N, the Finger defor-
mation tensor is given by H(s) = ∑N

k=1(−1)k+1 sk

k! Bk , where Bk is the White–Metzner tensor, and
s is the elapsed time period (Han 2000).

In the analogy to the unsteady traffic flows, using the first-order approximation in the case of
N = 1, and the integration formula

∫∞
0 sk exp (−as) ds = k!/ak+1 merely valid for the positive

integer k and the positive real number a, the traffic flow stress can be expressed as:

T = −p + GτB1. (4)

If the velocity of the traffic flow is u, then, according to Appendix 1, B1 = 2ux and then
ρν = 2Gτ , T = −p + ρνux. It is noted that for N = 2, a mathematical modelling and numerical
evaluation are reported by Zhu and Yang (2013). They found the numerically predicted second
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Transportmetrica A: Transport Science 5

critical speed of traffic flow is consistent with the critical speed obtained from the theoretical
analysis, if the flow–density relation is in a triangular form.

According to the existing high-order models, the general form of the forces acting on vehicular
clusters can be written as

F = (qe − q)

τ
+ Tx. (5)

where qe is the traffic flow rate under the equilibrium traffic state, it can be seen as a monotonic
function of traffic density, the subscribe ‘e’ represents the relevant variables taken under the
equilibrium traffic state. Tx is the relevant surface force related to the traffic stress.

For simplicity, with the explanation given in the forgoing section, we employ the traffic
fundamental diagram in Kiselev et al. (2000), which has the form of

qe =
{

vf ρ for ρ ≤ ρ∗,

−cτ ρ ln
(

ρ

ρm

)
for ρ∗ < ρ ≤ ρm,

(6)

As seen in Appendix 2, the traffic pressure can be written as

p = pm(1 − α)(ρ/ρm)

[1 − α(ρ/ρm)]
, (7)

where the maximum permissible density at free flow speed vf is

ρ∗ = ρm exp

(−vf

cτ

)
,

this definition can be derived directly the traffic state equation (6) by setting ρ approach ρ∗.
Because the safe traffic density is taken to mean that for which the distance between vehicles are
no shorter than the braking distance X (vf ), the density ρ∗ should be defined by the equality

ρ∗ = ρm

[
1 + X (vf )

l

]−1

.

Hence, from the two expressions of ρ∗ given above, we have

cτ = vf

ln[1 + X (vf )/l]
.

The traffic state equation (6) was shown by the fundamental diagram in Figure 1, where e ≈
2.71828, ρc2 is the second critical traffic density beyond which the traffic flow becomes stable
again at a congested condition.

Note that α = lρm, l is the average length of vehicles, X (vf ) is the free flow speed-dependent
braking distance, ρm is the jam density, pm is the jam pressure, vf is the free flow speed. Note that
the flow–density fundamental diagram, usually called traffic state equation, apparently has a cru-
cial impact on the traffic road operation (Haight 1963). For the urban traffic, a single parameter
state equation has been reported and discussed previously (Zhu et al. 2002).

It should be remindful that traffic pressure – is just a notation, it does not exist physically.
There is no actual inter vehicular pressure or momentum flux. The pressure occurs in crush tests,
or when vehicles are colliding. In traffic flows there exist some rules of conduct, which regulate
vehicles acceleration/deceleration via drivers’ reaction to road conditions. Those rules of con-
duct could be determined in different ways, but usually they are incorporated into the equations
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6 A. Bogdanova et al.

in terms of local flow acceleration dependence on flow conditions being multiplied by traffic
density the equations formally look like momentum transfer equations (though no momentum
is transferred between vehicles, which do not touch each other) (Kiselev et al. 2000; Smirnov
et al. 2000).

Therefore, virtual attraction and repulsion forces are introduced, which for one-dimensional
flow could be represented as a derivative of some function. That function by fluid flow analogy
is named traffic pressure. This viewpoint has been appropriately used in mathematical modelling
of traffic flows, recently reported elsewhere (Smirnova et al. 2014).

Also, it should be remindful that the expression of pressure is obtained by supposing the
pressure is proportional to the reciprocal of spatial headway of vehicles rather than the traffic
density directly. The spatial headway is of course vehicle-length dependent. To get an expression
of the jam pressure, it is further supposed the jam pressure is approximately identical to the total
pressure in the transition point ρ∗. Hence, we have

pm = (1 − αρ∗/ρm)ρ∗/ρm

2(1 − ρ∗/ρm)
v2

f · ρm = c2
0ρm, (8)

where

c2
0 = (1 − αρ∗/ρm)ρ∗/ρm

2(1 − ρ∗/ρm)
v2

f . (9)

As shown in Appendix 2, using the sound speed definition in fluid dynamics, we can derive the
sound speed in traffic flows

c = c0
√

1 − α

(1 − αρ/ρm)
(10)

We should mention that for the pressure-spatial headway dependency, there merely exists a rea-
sonability in theoretical aspect. While justifications in traffic reality require to be further sought
and explored. For instance, as soon as the spatial headway tends to zero, the traffic pressure
must approach to infinity, implying the traffic speed should become zero abruptly. The assump-
tion of jam pressure is made just for the sound speed derivation, since we are describing a fluid
dynamic-type viscoelastic model.

Therefore, the governing equations of the viscoelastic traffic flows can be written as

ρt + qx = ṁ,

ρ(ut + uux) = R,
(11)

where R satisfies the following equation:

R = ρ(ue − u)

τ
− c2ρx + [(2Gτ)ux]x. (12)

We assume that the product of relaxation time and sound speed is a constant, indicating that there
is a density dependence expressed as

τ = τ0(1 − αρ/ρm)√
1 − α

(13)

where τ0 = l0/cτ , l0 is a characteristic length scale in traffic flows. Clearly, the relaxation time
decreases linearly with density in traffic flow, which should be consistent with the general view
of vehicular passengers.
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Transportmetrica A: Transport Science 7

The primary difference of the present traffic model from the visco-elastic model reported
elsewhere (Zhu and Yang 2013), is that the model uses the first-order analogy approximation,
the non-triangular traffic flow–density relationship, such as used by Kiselev et al. (2000), and
includes the traffic ramp effect. In the present model, the traffic pressure, viscosity, relaxation
time, and sound speed have been described individually.

3. Numerical method

Choosing ρ and q as the mandatory variables, and R1(= R + c2ρx + ṁu) instead of R, the
governing equations of viscoelastic traffic flows have the form of

∂U
∂t

+ ∂F(U)

∂x
= S, (14)

where U = (ρ, q)T, F(U) = (q, q2/ρ + p)T, and S = (ṁ, R1)
T, with the superscript ‘T’ repre-

senting a vector transpose.
The form of Equation (14) indicates that the two eigenvalues of the problem should be λk , (k =

1, 2), with λ1 = u − c and λ2 = u + c, since the Jacobian matrix is given by

A =

⎛
⎜⎜⎝

∂F1

∂U1

∂F1

∂U2

∂F2

∂U1

∂F2

∂U2

⎞
⎟⎟⎠ =

(
0 1

−u2 + c2 2u

)
. (15)

Note that in Transportation Society, there is a controversy for the eigenvalues. Some researches
claim that the eigenvalue should not exceed the traffic speed, while others have no such a prin-
ciple of traffic flow modelling. Actually, the present viscoelastic model uses the fluid dynamic
analogy but not the car-following, the traffic speed is involving a vehicular cluster rather than a
single vehicle. Hence, our viewpoint is that the eigenvalue limit should be abolishable.

The total variation diminishing (TVD) scheme (Roe 1981) is used to seek the numerical solu-
tions of Equation (14). If we denote the space grid as xi, and the time level as tn, let the ratio of
time step to grid step be ω = 	t/	x, the numerical stability condition of TVD is

ω · max |λk,i+1/2| < 1, k = 1, 2; i = 0, 1, 2, . . . , N − 1, (16)

with λk,i+1/2 representing the kth eigenvalue for A at xi+1/2 and N denoting the maximum of
space grid number.

The term R1 is calculated at the time level tn with a linear expansion of

Rn+1/2
1 = Rn

1 + 1

2

(
∂R1

∂ρ

)
δρn + 1

2

(
∂R1

∂q

)
δqn, (17)

where δρn = ρn+1 − ρn, δqn = qn+1 − qn. Let v0 and 	x(= l0) denote the speed and length
scales, respectively, we have

∂R1

∂ρ
= τ−1

(
∂qe

∂ρ

)
+ σ1u2,

∂R1

∂q
= −τ−1 + 2σ1u, (18)

where σ1(= ṁ/q) is zero, at those sections denoted by xi without ramp connection, while it has a
assumed random number at ramp intersections. Note that the assumption for σ1 is closer to reality

D
ow

nl
oa

de
d 

by
 [

C
hi

na
 S

ci
en

ce
 &

 T
ec

hn
ol

og
y 

U
ni

ve
rs

ity
],

 [
Z

uo
jin

 Z
hu

] 
at

 1
8:

56
 1

6 
Ju

ly
 2

01
5 



8 A. Bogdanova et al.

Table 1. The parameters for the simulation of loop traffic flows.

Case σ̄1(xp1) σ̄1(xp2) Ĝτ0 =
[

2G(τ0v0)

l20
· t0

q0

]a

I 0 0 0.03175

II −1

3

1

8
0.03175

III −1

3

1

6
0.03175

IV −1

3

1

4
0.03175

V 0 0 0.0625

VI 0 0 0.08

VII 0 0 0.125

aRespectively, the flow rate, speed and time scales are q0 = ρ∗vf , v0 = l0/t0, t0 = l0ρm/q0.

(a)

(b)

Figure 3. σ1 and σ1q plotted respectively as a function of time. (a) σ1; (b) σ1q.

than assigning a definite value to ṁ. The random number should be positive for a on-ramp, but
negative for a off-ramp, and it is supposed to be assigned with the Gaussian normal distribution.

For a special case IV(see in Table 1), the evolutions of σ1 can be seen in Figure 3(a), the
instant data of σ1 are recorded during the traffic flow prediction, which supposes that the ramp
flow is randomly relates to the local instantaneous main road flow at the ramp intersections. In
Figure 3(a), for the black curve, the mean value σ̄1 for on-ramp at x = 220 (in the unit of l0) is 1

4 ,
but for the red curve at x = 30 for off-ramp, it is set as − 1

3 . The ratio of root-mean-square value
σ ′

1 to its mean σ̄1 is set as 0.03737, unless further note is given.
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Transportmetrica A: Transport Science 9

The TVD scheme can be written as

δUn
i = −ω(F̂i+1/2 − F̂i+1/2) + (	t)Sn

i + 	t

2

(
∂S
∂U

)n

i

δUn
i , (19)

where 	t(= tn+1 − tn). The numerical flux F̂i+1/2 can be calculated by using the left and right
eigen vectors of Jacobian matrix A. The calculation of F̂i+1/2 involves with the coefficient of
viscous term Qk(z) with a small artificial parameter εk . Some details for the case of vanished
source S can be found in the previous work reported elsewhere (Zhu and Wu 2003; Chang and
Zhu 2006). it is noted that in the calculation of 	k[= ω(F̂k,i+1/2 − F̂k,i+1/2) for k = 1, 2], ρi+1/2

and qi+1/2 are obtained by Shui (1998)

ρi+1/2 = 0.25(ρ
1/2
i + ρ

1/2
i+1)

2,

qi+1/2 = ρi+1/2 · ui+1/2,
(20)

where ui+1/2 = (uiρ
1/2
i + ui+1ρ

1/2
i+1)/(ρ

1/2
i + ρ

1/2
i+1) is the weighted speed.

4. Results and discussion

4.1. Simulation parameters

To explore the viscoelastic effects of traffic flows, numerical simulations using the TVD
(Roe 1981; Shui 1998) scheme were conducted for loop traffic with ramp effects. A periodic
boundary condition is used, implying that solutions at xN are superposed on those at x0. The loop
road length is assumed to be 250, has a length unit l0 = 160 m. The length unit (l0) determines
the total loop road length when the total grid number is fixed. The velocity scale is chosen as
v0 = q0/ρm(= vf ρ∗/ρm ≈ 3.176 m/s), with the time scale t0 = l0/v0(≈ 50.377 s). The off-ramp
intersection is set at xp1 = 30, with the on-ramp intersection located at xp2 = 220.

The initial density conditions are given by

ρ(0, x) =
{

0.9 for x ∈ [124, 126],

0.3 otherwise,
(21)

with q(0, x) = qe(ρ(0, x)), which can be calculated in terms of the fundamental diagram. The
numerical simulations use the flow–density relation shown in Figure 1 and the traffic operation
parameters given in Table 2.

When the average length of vehicles (l) is assumed to be 5.8 m, the traffic jam density is
about 150 m. While when the free flow speed is fixed as 110 km/h, the braking distance can be
assumed to be about 50 m, merely made on the basis of the discussion with some drivers having
the driving experiences on real freeways. The braking distance depends on the vehicular moving
speed, as seen in the expression for cτ occurred in the traffic state equation (6). With the values
of X (vf ), l, and vf , the cτ value can be obtained. Correspondingly, when the traffic length scale l0
is fixed, the value of relaxation time τ0 can be predicted, i.e. τ0(= l0/cτ ) is 0.2353t0 ≈ 11.854 s.

Table 2. The parameters of loop traffic operations.

vf (km/h) ρm (veh/km) X (vf ) (m) l (m)

110 150 50 5.8
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10 A. Bogdanova et al.

The viscoelastic parameter Ĝτ0[= 2G(τ0v0)/l20 · t0/q0] is given in Table 1. The different value of
Ĝτ0 for the case of V, VI, or VII is given by adjusting the modulus of fluid elasticity.

From Table 1, it is seen that seven cases were numerically studied. The off-ramp parameter
σ̄1(xp1) is fixed to be − 1

3 , while the on-ramp parameter σ̄1(xp2) is assumed to be changeable.
This assumption is helpful for numerically exploring the on-ramp effect on the loop traffic flows.
Note that the ratio of root-mean-square value σ ′

1 to its mean σ̄1 is set as 0.03737.
The ratio of time step to space grid step denoted by ω is set with a Courant number of 0.75

(Shui 1998), i.e. ω = 0.75/ max |λk,i+1/2|, for k = 1, 2, i = 0, 1, 2, . . . , N − 1. The small artificial
parameter εk used in the coefficient of viscous term Qk(z) for numerical fluxes in TVD is assumed
to be 0.5% of the normalised free speed vf /v0.

Respecting the previous work of Zhu and Yang (2013), we choose the elasticity in a similar
way. In the present work, we incline to employ the traffic fundamental diagram used previously
(Kiselev et al. 2000) to explore the traffic flow characteristics on the basis of the viscoelastic
model introduced in this paper.

4.2. Viscoelastic effect

For the convenience of discussion, we present the viscoelastic effect when ramps vanishes, i.e.
for the cases I, V, VI, and VII, as given in Table 1. For Case I, the traffic flow pattern is illus-
trated by the speed contours, as shown in Figure 4. There are at least six backward travelling
traffic shock waves. These traffic shocks propagate reversely at speeds, which not only depend
on the traffic operation parameters given in Table 2, but also intrinsically relate to the fundamen-
tal diagram (Daganzo 1997; Kiselev et al. 2000), because the present visco-elastic model has
employed the fundamental diagram to determine the equilibrium traffic state, so that the external
driving force of traffic flow [ρ(ue − u)/τ ], can be given explicitly.

It should mentioned that these shocks wave speeds have been expressed analytically at first
in terms of local flow variables previously (Kiselev et al. 2000). Even without the ramp flow
impacts, on the loop road, there exists interaction of the traffic shock and the deflation waves.
Although the driving maneuver certainly has influences on traffic flow patterns, it is conditioned
by the flow environment and traffic regulations. With the increase of time, the shock wave effect
attenuates, implying the initially assigned heterogeneity can be gradually removed by the self-
organisation of the loop traffic.

It is noted that in Figure 4, the red-coloured region has a speed beyond 0.6, in the unit of free
flow speed vf . The yellow-coloured region has a speed in the range of v ∈ (0.5, 0.6]. While in the
green-coloured region, the traffic speed is in the range from 0.3 to 0.5, with the cyan-coloured
region having speed in the range from 0.1 to 0.3. For instance, in the coarse irregular red lines

Figure 4. Traffic speed contours in the t − x plane for Case I. Note that the contours are labelled by values
from 0.1, 0.3, 0.5, and 0.6 in the unit of vf .
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(a)

(b)

Figure 5. Traffic speed versus time at different sections. (a) x = 30, 220; (b) x = 125.

with positive slope, traffic flow has a speed larger than 0.6vf , even though the average density
(0.3) on the loop road is much greater than the first critical value ρ∗ ≈ 0.104ρm. Obviously, the
average density is chosen slightly less than the saturation density ρm/e, at which the equilibrium
traffic flow rate arrives at its maximum value cτ /e. Here, e ≈ 2.71828. It is seen that the mutually
interaction of the traffic shock and the deflation waves has resulted in complicated traffic flow
structures on the loop road.

Corresponding to the flow pattern given by Figure 4, the temporal evolution of traffic speed
at three monitoring sections, i.e. x = 30, 125, and 220, are shown in Figures 5(a) and 5(b). It
is seen that the speed curves oscillate like stop and moving waves (Castillo 2001; Kuhne and
Michalopoulos 2001). Intrinsically, the speed oscillation depends on the interaction of shock
and deflation waves. As a part of numerical solution, to a great extent, the speed evolution at a
monitoring section is examined by the initial and boundary conditions.

The predicted speed and density at the three monitoring sections are plotted in Figures 6 and
7, for a comparison with the observation data, which are abstracted from McShane, Roess, and
Prassas (1998) and labelled by non-filled squares. In Figure 6(a) and 6(b), the instantaneous
traffic density (ρ) and speed normalised by the free flow speed (u/vf ), which were recorded
at the two sections xp1(= 30) and xp2(= 220), were illustrated by non-filled circles, together
with the normalised equilibrium speed ue/vf shown by black triangles. While in Figure 7, the
instantaneous density and speed were recorded at the section x = 125 and shown by non-filled
circles and black triangles, respectively. It is seen that both figures show that the simulation
results are reliable.

However, the traffic flow pattern varies with the increase in viscoelastic parameter Ĝτ0, as
seen in the loop traffic flow patterns shown in Figure 8(a) and 8(d). Since the parameter Ĝτ0

is naturally related to the viscosity and elasticity of traffic flows as indicated in Equation (4),
and intrinsically involves with the driving maneuver of vehicles which is reflected by the
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12 A. Bogdanova et al.

(a)

(b)

Figure 6. Comparison of traffic speed with measured data time for Case I at (a) x = 30, and (b) x = 220.
Note that the record number is about 6700 in the 8.4 hours’ simulation. The observation data are extracted
from McShane, Roess, and Prassas (1998), and the jam density used in density normalisation is assumed to
be 200 veh/mile.

Figure 7. Comparison of traffic speed with measured data time at x = 125. The observation data are
extracted from Ref. McShane, Roess, and Prassas (1998) as given in the caption of Figure 6.

traffic self-organisation property, it can be therefore concluded that for the loop traffic flow
without ramp effect, its self-organisation is a crucial feature in impacting on the spatial–temporal
evolution of traffic waves.

4.3. Ramp effect

Ramp effect is usually non-negligible. In fact, the interaction intensity between the ramp and
loop traffic flows depends upon not only the on/off-ramp flow rates but also the loop traffic
operational situation. Certainly, there are difficulties in artificially assigning the ramp flows that
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(a)

(b)

(c)

(d)

Figure 8. Traffic speed contours in the t − x plane for (a) Case I, (b) Case V, (c) Case VI, and (d) Case
VII. Note that the contours are labelled by values from 0.1, 0.3, 0.5 and 0.6 in the unit of vf .

are well consistent with that occurred in reality, we use the mathematically simple approach
based on random number setting, as described in Section 3.

We just present the numerical results for Cases I, II, III, and IV, with the viscoelastic parameter
Ĝτ0 being assumed to be unchangeable, and equal to 0.03175. As shown by density contours in
Figure 9(a)–(d), in the considered cases, the increase in σ1(xp2) means a increase in on-ramp flow
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14 A. Bogdanova et al.

(a)

(b)

(c)

(d)

Figure 9. Traffic density contours in the t − x plane for (a) Case I, (b) Case II, (c) Case III, and (d) Case
IV. Note that the contours are labelled by values from 0.1, 0.2, 0.3, and 0.5 in the unit of ρm.

rate, has resulted in the occurrence of traffic congested region labelled by red colour, indicating
that due to the vehicle aggregation the density in the region is beyond 0.5ρm. This region has a
triangular shape, since there also has the off-ramp effect, the off-ramp section is set as xp1. The
off-ramp flow rate is assigned similar to that on-ramp, which is shown in Figure 3(b) for case IV.

The loop road density can be lower than 0.1ρm, as seen in the blue colour regions in
Figures 9(b)–(c). This indicates that a large amount of loop vehicles has been released from
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the off-ramp. Some evidence can also be found in Table 1, in Cases II and III σ̄1(xp1) = − 1
3

which was used to described the amount of mean off-ramp flow, its absolute value is larger than
σ̄ (xp2) = 1

8 , 1
6 , or 1

4 which was used for the amount of mean on-ramp flow. The traffic density
can also be larger than 0.5ρm, as seen in the red colour regions in Figure 9(a)–(d).

Comparing the flow patterns shown by density contours in Figure 9(a)–(d), it is seen that
without the ramp effect as seen in Figure 9(a), due to self-organisation property, the loop traf-
fic flow can attenuates the initial density heterogeneity. While with ramp effect, as shown by
Figure 9(b)–(d) for the three cases II, III, and IV, the spatial–temporal evolution of traffic flows
can be apparently different. What simulated are several simple loop traffic flows. In fact, for
traffic flows in reality, there exists a surprisingly rich pattern formation reasons which are natu-
rally existed in traffic flows, as reported elsewhere (Herman and Ardekani 1984; Nagatani 2002;
Helbing, Hennecke, and Treiber 1999).

5. Conclusions

Considering the relaxation time has been used to represent the external traffic force for a long
time in continuum traffic flow modelling, it indicates that traffic flow has elasticity. A fluid
dynamic-type viscoelastic traffic flow model is developed, in which the expressions for traffic
pressure, sound speed, and relaxation time, have been derived with the basic parameters of traf-
fic systems. Using this model, we have explored the traffic peculiarities of loop traffic flows with
ramp effects.

Numerical tests reveal that for loop traffic flows, the viscoelastic effects can cause the variation
of traffic flow pattern, the existence of complicated structures of shock and deflation waves due
to mutually interaction, suggesting that the self-organisation property of vehicles is a crucial
feature in traffic operations. For the cases of off-ramp flow rate is relatively large, the loop road
density can be lower than its initial density assigned. The on-ramp flow is a reason causing the
occurrence of traffic shock waves and vehicular aggregated region on the t − x plane. The present
viscoelastic model has a potential in predicting traffic flows in reality.
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Appendix 1. Relation between Bn and Bn+1

In Chapter II of Ref. Han (2000), it was written that for n ≥ 1

Bn+1(s) = dBn

ds
− L1Bn − BnLT

1 , (A1)

where L1 = ∇u, LT
1 is the transposition of L1. B0 = 1, and B1 = L1 + LT

1 .

Appendix 2. Pressure derivation
Remembering the assumption for traffic pressure, let the average length of vehicles be l, we have

p ∝ 1

s − l
, (A2)
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where s = 1/ρ. Assume α = lρm, we can express traffic pressure as

p ∝ ρ

1 − αρ/ρm
. (A3)

Let the jam pressure be pm, we have

p = pm(1 − α)(ρ/ρm)

[1 − α(ρ/ρm)]
. (A4)

Therefore, we can express the sound speed as

c2 = ∂p

∂ρ
= c2

0(1 − α)

(1 − αρ/ρm)2 , (A5)

where, as given by Equation (8),

c2
0 = (1 − αρ∗/ρm)ρ∗/ρm

2(1 − ρ∗/ρm)
v2

f . (A6)
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