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ABSTRACT ARTICLE HISTORY
This paper presents viscoelastic modelling of traffic flows briefly first and Received 11 July 2015
then shows numerical simulation results of ring traffic flow sensitivity to ~ Accepted 11 January 2016
model parameters, such as viscoelasticity, average vehicle length, brak- KEYWORDS

ing distance, and ch_aracterlstlc length usgd to define r_elaxatlon time. It Viscoelasticity; average
was found that traffic flow pattern formation is dramatically sensitive to vehicular length; braking
viscoelasticity and fundamental diagram which is explicitly impacted by distance; traffic flow
average vehicle length and braking distance, implying that drivers’ self- sensitivity
organisation ability is significant in determining the intensity of traffic wave

interaction. Since the decrease of characteristic length can lead to a rele-

vant change of traffic relaxation time, the length can play a sensitive role

in changing traffic wave structures. Optimisation of traffic regulations is

necessary for the well operation of a segmental or ring road.

1. Introduction

Traffic flow is a long time hot spot of academics in mathematical, physical, and civil-engineering soci-
eties, leading to the occurrence of many models. The probably simplest model LWR (Lighthill and
Whitham 1955; Richards 1956) can capture primary features of traffic flows on highways (Kuhne and
Michalopoulos 2001), be used in analysing interrupted traffic flow (Michalopoulos et al. 1984), develop
macroscopic models and compare with real data in Paris (Papageorgiou and Blosseville 1989), and to
construct the entropy solutions with a discontinuous fundamental diagram (Lu et al. 2009). The LWR
extensions can certainly predict traffic hysteresis (Wong and Wong 2002), simulate evolution of density
waves (Zhu and Wu 2003), and critical transition in bottleneck-related traffic (Chang and Zhu 2006),
although the application results are not usually favourable.

Fundamentals of traffic operations have been described by Daganzo (1997). As soon as momen-
tum conservation of vehicles is further considered in mathematical modelling, the proposed models
are usually called high-order traffic flow models, among which that should be mentioned are the
model of Payne (1971), the gas-kinetic-based model (Helbing and Treiber 1998; Hoogendoorn and
Bovy 2000), the cluster effect model (Kerner and Konhauser 1993; Hilliges and Weidlich 1995), and
the generic model (Lebacque, Mammar, and Haj-Salem 2007b; Zhang, Wong, and Dai 2009; Lebacque
and Khoshyaran 2013). High-order models are more favourable in simulating propagation perfor-
mance of stop and moving waves in traffic flows. In contrast to the negative comment (Daganzo 1995),
there are still many remarkable applications (Liu and Lyrintzis 1996; Zhang and Wong 2006; Ou and
Dai 2006) and further developments (Klar and Wegener 2000; Aw and Rascle 2000; Zhang 2003; Kiselev
etal. 2000, 2004; Zhang and Wong 2006; Lebacque, Mammar, and Haj-Salem 2007a; Li 2008; Mammar,
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Lebacque, and Salem 2009; Zhang, Wong, and Dai 2009; Ngoduy 2013; Zhu and Yang 2013; Tordeux
et al. 2014; Costeseque and Lebacque 2014; Delis, Nikolos, and Papageorgiou 2014; Spiliopoulou
etal.2014; Smirnova et al. 2014a; Smirnov et al. 2014; Bogdanova et al. 2015; Hoogendoorn et al. 2016).

In traffic flow modelling, it should be mentioned that a phase diagram was explained by Helbing,
Hennecke, and Treiber (1999), the diagram was obtained for the nonlocal, gas-kinetic traffic model
in the study of a freeway having ramp effect and single perturbation. Some questions of traffic flows
were answered by Helbing (2001) by using methods in statistical physics and non-linear dynamics of
self-driven particle systems. By using average vehicle length and braking distance at free flow speed,
an expression of traffic sound speed was derived (Kiselev et al. 2000). It was reported that for a VAZ-
type vehicle, the analytically obtained sound speed agrees well with that experimentally measured in
Lincoln Tunnel in New York.

To seek the travelling wave solution of a wide cluster, by using weak solution theory and the
Payne-Whitham (PW) model (Payne 1971; Whitham 1974), it was found that the conservation form
for the acceleration equation is an important ingredient in developing higher order traffic flow mod-
els (Zhang and Wong 2006). To describe traffic flow dynamics, by including the introduction of a
pseudo-density transformed from the velocity, the pressure as a function of the pseudo-density, and
the relaxation of velocity to equilibrium, three flow regimes have been considered by Zhang, Wong,
and Dai (2009), for which, based on fundamental diagram reported by Castillo and Benitez (1995a,b),
numerical examples were used to show the model ability in reproducing some notable traffic phenom-
ena. For travelling wave solutions described by the PW model, a stability analysis (Li 2008) has revealed
that the solutions are asymptotically stable under small disturbances and under sub-characteristic
condition.

Using the gas-kinetic-based approach (Helbing and Treiber 1998; Hoogendoorn and Bovy 2000;
Ngoduy 2012), a macroscopic model has been developed (Ngoduy 2013), in the traffic flow intelligent
vehicles are moving closer to each other than manual vehicles and operating in a form of many pla-
toons each of which contains several vehicles. Tordeux et al. (2014) have reported the main aspects
of a stochastic conservative model of the evolution of the number of vehicles per road section. The
model defined in continuous time on a discrete space follows a misanthrope Markovian process.

Combining the LWR model with dynamics of driver-specific attributions, generic second-order
modelling (GSOM) family of traffic flow models can be expressed as a system of conservation laws, as
reported by Lebacque and Khoshyaran (2013). They have indicated that a proper Lagrangian formu-
lation of the GSOM model can be recast as a Hamilton-Jacobi equation, the solution of which can be
expressed as the value function of an optimal control problem. For models of the GSOM family, Coste-
seque and Lebacque (2014) have proved a variational principle, obtained an adequate framework for
effective numerical methods, and shown the method efficiency through a numerical test. For essen-
tially unsteady-state traffic flows wherein massive changing of lanes produces an effect on handling
segmentary road capacity, a mathematical model has been developed recently (Smirnova et al. 2014a;
Smirnov et al. 2014). The model has no analogue with classical hydrodynamics, because momentum
equations in the flow direction and in orthogonal directions of lane-changing are explicitly different.

In this paper, the viscoelastic traffic flow model (Smirnova et al. 2014b; Bogdanova et al. 2015) is
used to explore traffic flow sensitivity to parameters, such as viscoelasticity, average vehicle length,
braking distance, and characteristics length of flows used to define traffic relaxation time. The traffic
model is briefly introduced at first, where viscosity and elasticity, sound speed and relaxation time
of traffic flows are used in modelling. Then on the basis of the traffic model, with the total variation
diminishing (TVD) scheme (Roe 1981), numerical tests for ring traffic flows are carried out to obtain traf-
fic flow patterns, speed and density evolutions and instantaneous speed-density relations at a given
observation station. By changing values of viscoelasticity, average vehicle length, braking distance,
and characteristic length of flows, the test results for ring traffic flows are shown to reflect the traf-
fic flow sensitivity. To the best knowledge of authors, despite the special concern of the fundamental
diagram (Haight 1963; Daganzo 1997; Lebacque, Mammar, and Haj-Salem 2007b; Zhang, Wong, and
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Dai 2009; Lebacque and Khoshyaran 2013), sofar traffic flow sensitivity to these parameters has been
less reported.

2. Viscoelastic model

Here, we briefly repeat some model descriptions given by Bogdanova et al. (2015). Traffic flow has a
self-organising behaviour, as drivers can usually adjust the moving speed so that the time headway
can approach 1/g. when the instantaneous traffic flow rate (g) is unequal to the equilibrium one (ge)
(Castillo 2001). This self-organising behaviour has been considered in cluster effect models (Kerner
and Konhauser 1993; Hilliges and Weidlich 1995). Vehicular interaction is relatively intense in con-
gested traffic flows, it can generate a synchronised flow mode wherein flow rate is oscillating or a jam
occurs (Kerner and Konhduser 1993). However, the flow is further homogeneous and stable for denser
flow situation when the traffic speed is less than the second critical speed at density pc> (Schonhof and
Helbing 2009) (Figure 1).

As relaxation time is a long time used in expressing external force of traffic flows, while relaxation
and elastic process are related intrinsically from the points of views of fluid mechanics, it is therefore
more reasonable to further include the elastic effect in traffic flow modelling. In the present viscoelastic
traffic flow modelling, only the interaction between the lead and follower vehicles is involved, the lane
interaction is neglected. Hence, traffic flow rate and density are one-dimensional variables.

To simplify description, different from the previous work (Smirnova et al. 2014b; Bogdanova
etal.2015), the model given below has assumed that ramp effect can be excluded, while other assump-
tions remain the same, i.e. (i) road capacity is driver-independent and (ii) traffic flows satisfy a linear
viscoelastic constitutive relationship. The second assumption is made mainly because relaxation time
has been used in many high-order modelling, itself is a concept reflecting elastic and viscous prop-
erties of fluids (Han 2000), and drivers’ concern of driving safety induces the motion of vehicles has a
memory behaviour. Therefore, it is comparatively appropriate to describe this traffic performance with
a memory function.

In non-Newtonian fluid mechanics, the shear stress of linear viscoelastic fluid flow is:

T, = /Oo f(s)H(s) ds (1
0

here f(s) is the memory function. Based on the experimental observation of the relaxation of shear
stress of macromolecule polymer and the theory of micro-rheology (Wagner 1978), we can write the
memory function f(s) in the following form:

N
1
fs) =G )  —exp(—s/y ?
(s) 21: 5 p(—=s/T)
cle| /
oy, F-- f: ””””” Flovs_/—density
! relation
° |
c‘ |
o lp |
p. p.le Pez P

Figure 1. Fundamental diagram used in Kiselev et al. (2000).
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Here G is the modulus of fluid elasticity, and 1; is the relaxation time with the jth order. Hence, the
traffic flow modelling can be started from the linear viscoelastic constitutive equation:

N o0
T=-pl+G Z/ % exp(—s/7)H(s) ds 3)
=170

where T(= —pl + Ts) and p are, respectively, the stress tensor and traffic pressure. H(s) is the Finger
deformation tensor. For the maximum relaxation order denoted by N, the Finger deformation tensor
is given by H(s) = Zﬁﬂ (=1)k+1 (sk/k!)Bk, where By is the White—Metzner tensor and s is the elapsed
time period (Han 2000).

In the analogy to model unsteady traffic flows, using the first-order approximation in the case of
N =1, and the integration formula f0°° sk exp (—as) ds = k1/ak*" merely valid for the positive integer
k and the positive real number g, the traffic flow stress is:

T=—p+GrB (4)

Denoting traffic flow velocity by u, then, according to Appendix 1, we have By = 2uy and then pv =
2Gt, T = —p + pvuy. For the case of N=2, the relevant traffic flow model has been reported (Zhu
and Yang 2013). With respect to existing high-order models, the general form of the forces acting on
vehicular clusters can be written as:

F=(Ge—q)/t+Tx (5)

where the subscribe ‘e’ represents the relevant variables under equilibrium traffic state, ge is the equi-
librium traffic flow rate which can be seen as a function of traffic density, with the form relating to
free flow speed vy, the first critical density p,, vehicular jam density pm, and vehicular moving speed
parameter ¢; as reported (Kiselev et al. 2000). Some examples used to describe speed-flow-density
relationships for freeway analysis can be found in McShane, Roess, and Prassas (1998). T is the relevant
surface force related to the traffic stress.

For simplicity, we use the traffic fundamental diagram used in Kiselev et al. (2000), it can be written
as:

vEp forp < ps
—crplIn(o/pm)  forpe < p < pm

As seen in Appendix 2 and Smirnova et al. (2014b), the traffic pressure has the form:

p=pPm( —a)(p/pm)/[1 —alp/om)] (7)

The maximum permissible density at free flow speed vf is given by:

Px = pmexXp(—vf/cz) 8)

which can be directly derived from the traffic state equation (6) by letting p approach px. Because the
safe traffic density itself indicates that the distance between vehicles is longer than braking distance
X(vf), the density p, should be defined by the equality:

P« = pml1 + X(vr)/N7" 9)

Over which traffic flow becomes unstable, therefore it can also be called the first critical density, or
the first transitional density. Hence, combining Equations (8) and (9) gives the length ratio [X(vf)//1-
dependent speed:

¢ = ve/ In[1 4+ X(vp) /1] (10)

The traffic state equation (6) is shown in Figure 1, where e & 2.71828, p; is the second critical traffic
density, over which the traffic flow becomes stable again.
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Note that in the traffic pressure definition (7), « = lpm, I is average vehicle length, pm, pm are jam
density and jam pressure, with vr denoting the free flow speed. Note that the flow—density relation
used for illustrating traffic fundamental diagram, usually called traffic state equation, explicitly has a
crucial impact on the traffic road operation (Haight 1963). For the urban traffic, based on analysis of
the third-order spline curve used to denote fundamental diagram, a single parameter state equation
has been reported and discussed (Zhu et al. 2002).

Itis necessary to remind that traffic pressure is just a notation, it does not exist physically (Smirnova
et al. 2014a; Smirnov et al. 2014). Therefore, virtual attraction and repulsion forces are introduced,
which for one-dimensional flow could be represented as a derivative of some function, by fluid flow
analogy, it is named traffic pressure. This viewpoint has been appropriately used in mathematical
modelling of traffic flows (Smirnova et al. 2014b).

By assuming the traffic pressure is proportional to the reciprocal of spatial headway of vehicles
rather than the traffic density directly, and assuming the traffic jam pressure is approximately identical
to the total traffic pressure at the transitional point p,, as shown in Appendix 2, we have traffic jam
pressure:

(1 — aps/pm) px/ Pm 2.
200 — pu/pm) '

Pm = Pm = C(z),Om (11)

with:
(1 — aps/pm)px/ Pm 2
2(1 = p«/pm)

As shown in Appendix 2, using sound speed definition in fluid dynamics, we can derive a traffic sound
speed:

c=cv1—a/(0—ap/pm) (13)

For the pressure-spatial headway dependency, merely there is a reasonability theoretically. Justifi-
cations in reality require further explorations. As soon as spatial headway tends to zero, the traffic
pressure approaches infinity, implying the local vehicles should be stopped abruptly. The assumption
of jam pressure is made just for the sound speed derivation.

Therefore, the viscoelastic traffic flow modelling gives rise to the governing equation:

pt+qx=0
p(us +uuy) =R

where R satisfies the following equation:
R = p(Ue — u)/T — c py + [(2GT) Uyl (15)

Assume that the product of relaxation time and sound speed is unchangeable, we yield a density-
dependent relaxation time:

=11 —ap/pm)/V1 —a (16)

where 19 = ly/c;, lo denotes a characteristic length scale of traffic flows. Explicitly, the relaxation time
decreases linearly with traffic density, which should be consistent with the general view of travellers.

The primary difference of the present traffic model from the viscoelastic model reported else-
where (Zhu and Yang 2013) is that the model uses the first-order analogy approximation, the non-
triangular traffic flow-density relationship, such as used by Kiselev et al. (2000), and includes the traffic
ramp effect. In the present model, the traffic pressure, viscosity, relaxation time, and sound speed have
been described individually.
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3. Linear stability analysis

The linear stability analysis is presented by using the linear stability theory of Chandrasekhar (1961).
Hence, we express the variables with their exponential type disturbances as:

0 = po + o exp (wt + ikx) (17a)
U = Ug + T exp (wt + ikx) (17b)
q = qo + gexp (wt + ikx) (17¢)

where the subscript ‘0" refers to the base state of traffic flow, with the magnitude of the flow rate
disturbance given by the supplementary expression g = ugp + pod, and:

ge(p) = Ge(po) + q(00)p exp (wt + ikx) (18)

where ge(po) = poup. We can derive the dispersion relation as:

w? + (C + i2kug)w + ik[Cup + Cig 4 i(Cyj + kud)l = 0 (19)

where g, = dg./dp, and:

2
C= (ﬂ + E/@) (20a)

Lo

G = Cig +iCiy = (q, — up)t ™" — ikc? (20b)

Substituting these variables in the viscoelastic traffic model, a criterion of traffic flows can be written
as (Zhu and Yang 2013):
<1+ <E> k?
00

When the inequality (21) is satisfied, the traffic flow is stable; and when we choose 2Gt/pg = v, ¢ = o,
the result is the same as what derived preciously (Payne 1979). It is clear that for p < p., g, = vf = Uo,
vehicles are moving at free flow speed, the traffic flow is stable. Hence, as shown in Figure 1, p, is called
first critical density of traffic flows. Now it is clear that there is again the second critical density beyond
which flows from unstable regime become stable regime under dense traffic flow situation (Schénhof
and Helbing 2009; Zhang, Wong, and Dai 2009; Zhu and Yang 2013).

/
de — Uo
C

U = (21)

4. Numerical method

Letting the mandatory variables be p and g, and Ri(= R+ c?pyx) instead of R, the governing
Equation (14) becomes:

U 9F)

at ax
where U = (p,q)7, F(U) = (q,g%/p +p)T, and S = (0,R;)", with superscript ‘T’ representing vector
transpose.
Equation (22) indicates that the two eigenvalues should be A, (k = 1,2), withA1 =u —cand x; =
u + ¢, since the Jacobian matrix is given by:

=S

(22)

oF  OF
v, U, 0 1

A= - 23
o0F,  OF, (—uz +c2 2u> (23)
aU;  aU;

Note that there is a controversy for the eigenvalues. Some claim that the eigenvalue should not exceed
traffic speed, others do not employ this rule in traffic flow modelling. Actually, the present viscoelastic
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model uses non-Newtonian fluid dynamics analogy but not the car-following constraint, the traffic
speed is involving vehicular cluster rather than a single car. Hence, we tend to take the view that the
eigenvalue limit is unnecessary.

The TVD scheme (Roe 1981) is used to seek numerical solutions of Equation (22), as the TVD scheme
is easy to be implemented in coding. It should be mentioned that a family of spatial discretisations,
including a second-order MUSCL scheme, and a fifth-order WENO scheme (Jiang and Shu 1996), and
a detailed formulation of the scheme, has been presented in the research work of high-resolution
numerical relaxation approximations to second-order macroscopic traffic flow models (Delis, Nikolos,
and Papageorgiou 2014).

Denoting the space grid and the ratio of time step to grid step, respectively, by x; and w = At/Ax,
the numerical stability condition of TVD is:

w-maxligizipl <1, k=12, i=01,2...,N=1 (24)

where 411/, represents the kth eigenvalue for A at x;1,2, N is the maximum of space grid number.
The term R; is calculated at the time level t" with a linear expansion of:

1 (0R 1 (oR
RHV2 —poy — () spn 4 = [ 22 ) 5g” 25
1 1+2 o 1% +2 oq q (25)

where 8p" = p™1 — p",8q" = q¢"*! — g". Representing the speed and length scales, respectively, by
vo and Ax(=1lp), we have:

oR 0 oR
M _ (%) T (26)
ap ap aq
The TVD scheme has the form:
. . At (3S\"
8U! = —w(Fiy1/2 — Fip2) + (ADS] + > (E) LIV (27)
i

where At(= "1 — t"). The numerical flux Iei+1/2 can be calculated by using the left and right eigen
vectors of Jacobian matrix A. The calculation of IE;+1/2 involves the coefficient of the viscous term
Qk(2) with a small artificial parameter ¢,. Some details for the case of vanished source S can be
found in the previous work (Zhu and Wu 2003; Chang and Zhu 2006). In the calculation of Ay[=
w(ﬁk,;+1/2 — ﬁk,;+1/2) for k =1,2], piy1/2 and giy1/2 are calculated on the basis of Shui (1998), as
reported by Bogdanova et al. (2015).

5. Results and discussion
5.1. Simulation parameters

To seek traffic flow sensitivity to parameters in the viscoelastic modelling, numerical simulations by
virtue of the TVD (Roe 1981; Shui 1998) scheme were conducted for ring traffic without ramps’ influ-
ences. Parameters of ring traffic operations are shown in Table 1. Periodic boundary condition is used,
implying that solutions at xy (= 750) are superposed on those at xo. The ring road with length xy = 750
has a length unit lp = 160 m, excluding some cases wherein Iy is permitted to be changeable for the
sensitivity seeking work. The length /o determines the total ring road length for a given total grid

Table 1. Parameters of ring traffic operations.

vr (kmh=1) om (vehkm™") X(vf) (m) I (m) Ip (m) XA Xg Xc XN
110 150 50 5.8 160 125 375 625 750
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Table 2. Parameters used in numerical tests.

Case I (m) X (m) Ip (m) P/ Pm to (s) 70 (8) Gro = [w . ;%]a
0
1 6.3 50 160 0.1119 47.795 11.468 0.0625
2 5.8 50 160 0.1039 50.377 11.854 0.0625
3 53 50 160 0.0958 54.636 12.280 0.0625
4 4.8 50 160 0.0876 59.782 12.751 0.0625
5 5.8 55.8 160 0.0942 55.614 12372 0.0125
6 5.8 50 160 0.1039 50.377 11.584 0.0125
7 5.8 44.2 160 0.1160 45141 11.280 0.0125
8 5.8 384 160 0.1312 39.90 10.634 0.0125
9 5.8 50 160 0.1039 50.377 11.854 0.125
10 5.8 50 120 0.1039 37.783 8.891 0.125
1 5.8 50 100 0.1039 31.486 7.409 0.125
12 5.8 50 80 0.1039 25.189 5.927 0.125

a Respectively, the flow rate, speed, and time scales are o = p4vf, vo = lp/to, and to = loom/qo-

number N. The velocity scaleis vo = qo/om(= veps/pm =~ 3.176 m/s), corresponding to the time scale
to = lo/vo (s), its value is given in Table 2. The initial density is given by:

1 forx e [x;—1,x+1
p(0,x) = by =T +11 (28)
1/3 otherwise

where the subscript / can be A, Band C, and initial flow rate (0, x) = ge(0(0, x)), can be calculated by
Equation (6). As the section positions shown in Figure 2, x; (I = A, B, C) is assigned by values given in
Table 1.

For average vehicle length | = 5.8 m, the traffic jam density is about 150 veh m~', corresponding to
a minimal distance between jammed vehicles was assigned to be 0.866 m (Smirnova et al. in press).
While for vr = 110 km h™', based on the discussion with some experienced drivers in China, the brak-
ing distance of vehicles is assumed to be about 50 m, the distance has occurred in Equations (9) and
(10) for describing p, and c;, respectively. For a fixed characteristic length /p, the relaxation time g is
70(= lp/c¢), the normalised viscoelasticity is Gfo[: ZG(rovo)/lg - to/qol, as shown in Table 2. The ratio
of time step to space grid step denoted by w is set with a Courant number of 0.75 (Shui 1998), i.e.
® = 0.75/max|Agir1/2], fork=12,i=0,1,2,...,N - 1.

Periodic
section

Figure 2. Schematic of the ring traffic flow without ramps.
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5.2. Viscoelasticity effect

Changing the viscoelasticity Gzo produces dramatically different flow patterns, as shown in Figure 3(a)
and 3(b). In the case of smaller viscoelasticity Gro = 0.0125, self-organising ability of drivers seems to
be lower, the predicted flow pattern in Figure 3(a) has red coloured regions, suggesting that the speed
in the red region is beyond 0.618v¢. Comparing the flow patterns in part (a) and part (b) of Figure 3, we
can see that at any given time, the magnitude of spatial speed waves has a higher variation range; at
any given section the temporal speed waves have a similar property of magnitude variation, implying
there is a more intense interaction of traffic waves.

However, increasing viscoelasticity G,o to 0.125, as shown in Figure 3(b), in a large percent of the
t—x plane the flow pattern is observed to be approximately green coloured, suggesting that vehicles
on ring road move usually at a speed [0.5 + 0.05] in the unit of v¢, interaction of traffic wave has weak-
ened due to the enhancement of drivers’ self-organising ability. This indicates there is a demand of
optimising traffic regulations for a given segmental road and condition of traffic operation.

5.3. Average vehicle length effect

As seen in Table 2, when average vehicle length decreases from 6.3 to 4.8 m with an interval of 0.5m,
the first critical density of traffic flows also decreases from 0.1119 to 0.0876 in the unit of pp,, indicating
that the fundamental diagram curve has relevantly changed with average vehicle length. As shown in
Figure 4(a)-(d), there are explicitly different forms of traffic flow pattern, driver-dependent fundamen-
tal diagram does have a determinantimpact on spatial and temporal evolutions, from another research
angle providing the numerical evidence for the reasonability of recent generic modelling (Lebacque,
Mammar, and Haj-Salem 2007b; Zhang, Wong, and Dai 2009; Lebacque and Khoshyaran 2013). Math-
ematically, the choice of average vehicle length determines the form of source term R in momentum
equation (14). Hence even though the initial and boundary conditions are the same, the numerically
predicted spatial-temporal evolutions should be no doubt different.

Comparison of speed at x = 375 with existing measured data abstracted from McShane, Roess, and
Prassas (1998) can be seen in Figure 5(a)-(d). The instantaneous speed was plotted as a function of
density together with the equilibrium speed. As indicated by flow patterns in Figure 4(a)-(d), with the
decrease of average vehicle length, on the ring road vehicles move at a smaller density variable range,
or we can say traffic speed waves have smaller magnitudes. In particular, for /| = 6.3 m, with a minimal
distance of jammed vehicles 0.366 m, as seen in Figure 5(a), the traffic state prevails in the larger area
region, density can be as small as 0.13pp,,, at a given density the deviation between instantaneous
speed u and equilibrium speed u, is much larger than that in the case of /| =4.8 m.

5.4. Braking distance effect

Braking distance has also been employed in gas-kinetic-based modelling (Helbing and Treiber 1998).
However, so far less discussion of its impact on flow pattern formation has been reported, although
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Figure 3. Traffic flow patterns illustrated by speed contours in the t—x plane for G,o =0.0125 and Gro =0.125 (a and b),
respectively.
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Figure 4. Traffic flow patterns illustrated by density contours in the t—x plane for / = 0.63, 5.8, 5.3, and 4.8 m (a—d), respectively.
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Figure 5. Comparison of traffic speed with existing measured data at x = 375 for/ = 0.63, 5.8, 5.3,and 4.8 m (a—d), respectively. The
observation data are abstracted from McShane, Roess, and Prassas (1998), and the jam density in density normalisation is supposed
to be 200 veh mile ™.

most of the drivers have recognised and understood that braking technology is a dominant feature
of safety control. It is noted that in addition to using braking distance (Kiselev et al. 2000; Smirnova
et al. 2014b; Bogdanova et al. 2015), emergency braking deceleration and maximal positive accel-
eration have been used in recent traffic flow modelling (Smirnova et al. 2014b; Smirnov et al. 2014;
Smirnova et al. in press).

As seen in Figure 6(a)-(d), braking distance has a significant influence on traffic wave interaction
on the ring road, because varying braking distance has generated significantly different flow patterns.
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Figure 6. Traffic flow patterns illustrated by density contours in the t—x plane for X(vf) = 55.8, 50, 44.2, and 38.4m (a-d),
respectively.

As can be seen in Table 2, when the braking distance X decreases from 55.8 to 38.4 m with an interval
of average vehicle length 5.8 m, the first critical density of traffic flows increases from 0.0942 to 0.1312
in the unit of jam density pp,, the relaxation time 7¢ also decreases from 12.372 to 10.634 s, implying
that the equilibrium speed u.(= g/ p) is sensitive, to the braking distance X as the flow g is described

0 120 240 360 480 600
t(min)

Figure 7. Evolutions of traffic speed and density at x = 375 for braking distance X = 55.8 m (a) and 38.4 m (b), respectively.
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by length ratio-dependent speed c; given by Equation (10). The variation trends of p, and tp with the
decrease of braking distance X are the reverse to that with the decrease of average vehicle length /.
The sensitivity of braking distance X can be carefully observed from the predicted four traffic patterns
shown in Figure 6, for which the normalised viscoelasticity Gro is fixed at 0.0125 as shown in Table 2.

To see the braking distance effect more clearly, temporal evolutions are shown in Figure 7(a) and
7(b). Obviously, the speed and density evolution curve at x =375 in the case of X =38.4m are cer-
tainly different from that in the case of X =55.8 m. For the given time range t € [0,600] (min), the X
induced differences occur not only in temporal wave shape, but also in the temporal wave period and
magnitude.

Corresponding to the temporal evolutions given by Figure 7(a) and 7(b), instantaneous traffic
speeds were plotted as a function of traffic density with the equilibrium speed in Figure 8, from
which, the change of braking distance has caused a relevant change of fundamental diagram, which
is reflected by the dependence of equilibrium speed u, on traffic density p. For the case of X =55.8 m,
the dependence curve is shown by non-filled blue delta symbols; while for X =38.4 m it is shown by
non-filled green gradient symbols.
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Figure 9. Traffic flow patterns illustrated by speed contours in the t—x plane for Iy = 160, 120, 100, and 80 m (a—d), respectively.
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5.5. Characteristic length effect

Varying characteristic length /y leads to the occurrence of different flow patterns, which is shown by
speed contours in Figure 9(a)-(d). Decreasing the length /o from 160 to 80 m, the related relaxation
time decreases from 11.854 to 5.927 s. The traffic wave structure in the t—x plane should be closely
related to the p assign, since the external force of traffic flow is described by the relaxation time term
[p(ue — u)/7], as seen in Equation (15).
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Figure 10. Evolutions of traffic speed and density at x = 375 for [y = 160 m (a) and 80 m (b), respectively.
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Figure 11. Comparison of traffic speed-density relation at x = 375 for [y = 160 m and 80 m, respectively.
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To demonstrate the sensitivity of characteristic length more clearly, similar to Section 5.4, the tem-
poral evolutions of speed and density at x =375 are again illustrated, as seen in Figure 10(a) and
10(b). The structures of speed and density waves differ from each other, differences can be viewed
by comparing their wave magnitude and wavelength.

Although relaxation time decreases with the characteristic length, the first critical density remains
the same, the temporal evolutions of speed and density are determinatively impacted by the relax-
ation time, comparison of the relation of instantaneous and equilibrium speeds to density reveals
rather smaller discrepancy, as shown in Figure 11, indicating that the impact of fundamental diagram
curve is dramatically large, similar to traffic viscoelasticity.

6. Conclusions

A fluid dynamic type viscoelastic traffic flow model is briefly reported and employed to explore traf-
fic flow sensitivity to the model parameters by virtue of numerical simulation of ring traffic flows.
Numerical results revealed the following findings:

(1) Traffic flow pattern formation is dramatically sensitive to viscoelasticity, and so is the fundamental
diagram curve which is explicitly impacted by average vehicle length and braking distance, imply-
ing that drivers’ self-organisation ability is significant in determining the intensity of traffic wave
interaction.

(2) Even though the transitional density is insensitive to traffic characteristic length, the decrease in
the characteristic length can lead to a relevant change of traffic relaxation time. This length is also
a sensitive feature of changing traffic wave structures.

(3) Itis necessary to optimise traffic flow regulations for the purpose of keeping a segmental or ring
road working in an expected operational environment.
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Appendix 1. Relation between B, and B, ;1
In Chapter Il of Han (2000), it was reported that forn > 1:

Bni1(s) = dB,/ds — LB, — B,L] (A1)

where L1 = Vu, L] is the transposition of L;. By = 1,and By = L; + L.

Appendix 2. Pressure derivation

Remembering the assumption for traffic pressure, and denoting average vehicle length by /, we have:
p o — (A2)

where s = 1/p. Assume « = |pp, traffic pressure can be expressed as:

0

A3
. 1—ap/pm A3

p

Let the jam pressure be pp,, it has the form:

p =pm(1 —a)(p/pm)/[V — a(p/pm)] (A4)
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Therefore, the sound speed can be expressed as:

a
= £ =1 —a)/(1 —ap/om)? (A5)
where, as given by Equation (11):
(1 — ap«/pm)ps/Pm >

5= v
201 = pu/pm) '

a
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