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Abstract: This article presents the direct numerical simulation results of the turbulent flow in a straight square duct at a Reynolds 
number of 600, based on the duct width and the mean wall-shear velocity.  The turbulence statistics along the wall bisector is 
examined with the turbulent flow field properties given by streamwise velocity and vorticity fields in the duct cross section. It was 
found that the solutions of the turbulent duct flow obtained in a spatial resolution with 1.2 106 grid points are satisfactory as 
compared to the existing numerical and experimental results. The results indicate that it is reasonable to neglect the sub-grid scale 
models in this spatial resolution level for the duct flow at the particular friction Reynolds number.  
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1. Introduction
Turbulent flow in a straight square duct has a 

remarkable change in flow structure that results in the 
so-called Prandtl’s second kind secondary flows with 
the velocities generally much higher than those 
induced by turbulence[1]. Gessner in his early 
experiments[2] examined the mechanism of initiate 
secondary flow in developing turbulent flow along a 
corner. He applied both energy and vorticity balance 
to the mean motion along a corner bisector. His results 
indicated that a transverse flow is initiated and directs 
towards the corner as a direct result of turbulent shear 
stress gradients normal to the bisector. Moreover, the 
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anisotropy of the turbulent normal stresses did not 
play a major role in the generation of secondary flow. 
The recent experiment conveyed the observation of 
the effects of the secondary flow in a square duct on 
mass transfer near the corners. The effects were 
initially small, but grew to a significant degree further 
downstream[3].

The numerical studies in this area started 
relatively later than the experimental studies that were 
initially carried out in 1960s and 1970s. Nakayama et 
al. [4] presented an algebraic stress model combined 
with the k  model for simulating the secondary 
flow of the second kind and conducted numerical 
simulation of fully developed turbulent flows in 
square, rectangular and trapezoidal ducts. They made 
an intensive comparison between their numerical 
results and the available experimental data, and 
particularly emphasized the local structure of 
turbulence to reveal the full features of this stress 
model. The numerical work of Demuren and Rodi[5]

have shown that the main features of the mean-flow 
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and the turbulence quantities can be simulated 
realistically, but the secondary velocity is dependent 
on turbulence models.  

Recently, with the development of computer 
technology, the Direct Numerical Simulation (DNS) 
has become a tool in turbulence study for flow at a 
low Reynolds number. Liu et al.[6] have investigated 
the turbulent open channel flows subjected to the 
control of a spanwise travelling wave to reveal the 
response of the near-wall and surface-influenced 
turbulence to the spanwise travelling wave control. 
Some typical quantities, including the mean velocity, 
velocity fluctuations and the structures of turbulence 
fluctuations, are exhibited and analyzed. 

Gavrilakis[7] has presented the DNS results for 
the turbulent flow in a straight duct at a Reynolds 
number of 300, based on the mean-wall shear velocity 
and the duct width. His turbulence statistics along the 
wall bisectors agreed well with plane channel flow 
data despite the influence of the sidewalls in the duct 
flow. Joung et al.[8] performed the DNS of turbulent 
flow in a square duct at the same  recently. 
Their results indicated that the two counter-rotating 
secondary flows around the duct corner play a key 
role in momentum transfer between the corner and the 
centre of the duct. Huser and Biringen

= 300Re

[9] carried out 
the DNS of a fully developed turbulent duct flow at a 
relatively high Reynolds number of 600 (based on the 
mean wall-shear velocity and the duct width). They 
found that the mean secondary flow pattern, the 
distorted isotachs and the anisotropic Reynolds stress 
distribution could be explained by the preferred 
location of an ejection structure near the corner and 
the interaction between bursts from the two 
intersecting walls. The corner effects were also 
manifested in the behaviour of the pressure-strain and 
velocity-pressure gradient correlations. A more recent 
coarse grid DNS of air flow in a straight square duct at 
a friction Reynolds number 400 and heat transfer was 
conducted by Liang et al.[10]. It was concluded that the 
resolution of discretization of the momentum 
equations is a key feature for the turbulent duct flow 
simulation.  

This article presents the DNS results of the fully 
developed turbulent duct flow for the same case 
investigated by Huser and Biringen[9]. However, 
emphasis is laid on the calculation of  turbulence 
statistics including the main-flow variables, the root 
mean square and the skewness as well as flatness 
factors of velocity fluctuations along the wall 
bisectors. This is because it has been noticed that the 
higher order turbulence statistics for duct flow has not 
been highlighted in the previous works[7,9]. It is well 
known that the DNS is a research tool rather than a 
brute-force solution to the Navier-Stokes equations for 
engineering problems[11]. Hence, this numerical work 
is to verify that for the turbulent square duct flow at 

the Reynolds number of 600, satisfactory results can 
be obtained when the spatial resolution of 1.2 106 (= 
121 101 101) grid points is used and the sub-grid 
scale models are neglected. 

2. Governing equations and numerical methods 
2.1 Governing equations 

The origin of global coordinate was arranged at 
the center of the computational domain, and the duct- 
half width h and the mean wall-shear velocity 

with a constant factor of   were taken as the 
length and velocity scales, respectively. Thus, the 
mean driving pressure gradient of the duct flow can be 
expressed by . Denote the Reynolds number by 

u 1a

2
12 / a

1= / = 0.5sRe ha u a Re1 , with  representing the 
fluid kinematic viscosity, then the governing equations 
of the fully turbulent flow in a square duct can be 
written as 

= 0i

i

u
x

                                  (1) 

2

1 2
1

2 1+ = + +i i
j i

j i s

u u pu
t x x a Re 2

i

j

u
x

    (2)

The finite difference solutions in the 
computational domain can be sought using periodic 
boundary conditions in the main flow direction with a 
period of 12.824 and non-slip boundary condition on 
the duct walls when the initial field is obtained by 
disturbing a laminar duct flow. The turbulence 
statistics is calculated in the time range from 180 to 
280 when the duct flow is regarded as statistically 
steady. The time unit is given by 1/( )h a u .
2.2 Numerical methods

The accurate projection algorithm PmIII 
developed by Brown et al.[12] was used in the present 
DNS using a non-uniform staggered grid. The 
intermediate velocity was calculated excluding the 
pressure gradient terms, and the convective terms 
were calculated explicitly in terms of the second-order 
Adams-Bashforth scheme in time. In the calculation 
of the intermediate velocity, the present DNS did not 
follow the fractional methods of Gavrilakis[7], Huser 
and Biringen[9] which merged the streamwise 
diffusion terms into the convective terms, but 
employed the block-tridiagonal technique with respect 
to the streamwise periodic condition. The 
block-tridiagonal technique was also used in the 
calculation of the pressure potential.  

Specifically, a fourth-order upwind scheme based 
on the Taylor expansion was used to discretize the 
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nonlinear convective terms in the governing equations. 
This finite difference approximation scheme was 
detailed in the wake flow simulation work of Niu and 
Zhu[13]. The pressure potential field was predicted by 
the approximate factorization one (AF1) scheme 
reported by Baker[14], which was also used previously 
in the simulation of laminar natural convection in a 
tall cavity[15] and the turbulent Rayleigh-Benard 
convection[16]. The maximum iterative acceleration 
factor in AF1 was given in accord to the nearest grid 
spacing to the wall, i.e. 2

min4 /( )y , and the minimum 
acceleration factor was assigned as unity. Each 
iterative cycle had six steps with different iterative 
acceleration factors changing from its maximum to 
minimum. The convergence criterion of the AF1 
iteration was 4/( +10 )  whose value should 
be smaller than 10-6, where  represents the pressure 
potentials relevant to  in the accurate projection 
method.  

p

Table 1 Calculated mean velocity   in near-wall region +u

3. Results and discussion 
The DNS of the turbulent flow in a square duct 

was carried out in a personal computer with a memory 
of 1 Gb. The time step  in the unit of t 1/( )h a u
was set as 0.008. The  data  used  for  turbulence  

statistics calculation was sampled with a definitive 
time interval of 10 t  and in the time range from 180 
to 280. The CPU time for the data sampling process is 
21.5 h. The parameter  was assigned as 13. The 
nearest grid spacing to the wall was 5.6 10

1a
-4. The 

spatial grids with a number 121 101 101 were 
staggered for velocity and pressure, and were 
non-uniformly arranged in the computational domain 
12.824 2 2. The grid arrangement in the normal to 
the wall direction in the near wall region is listed in 
Table 1. The period in the streamwise direction was 
set as 12.824. The mean flow properties were used on 
an average over x and , in which the range used 
for the time average was given by . A 
prime represents a deviation from this average. The 
four aspects of calculation results will be discussed in 
this section, which include the mean flow properties, 
the turbulence statistics, the power spectra of 
velocities, and the turbulent flow fields. The 
experimental data of Niederschulte, Nishino and 
Kasagi were taken indirectly from the work of 
Gavrilakis

t
[180,280]t

[7] for comparison. 
3.1 Mean flow properties 

The mean flow varaibles based on the present 
DNS and those reported by Huser and Biringen (1993, 
hereinafter denoted as HB)[9] are summarized in Table 
2, where ,  are the bulk mean velocity and the  bU cU
mean velocity in the centreline of the square duct, 
respectively. It can be seen that the values of the mean 
flow variables agree quite well with the DNS results 
of HB for the case of duct flow at the same friction 
Reynolds number of 600.The mean streamwise 
velocity along the wall bisector in the wall coordinate 
is shown inFig.1, where the mean velocity profiles 
obtained at the different Reynolds numbers are 
illustrated together. It is seen that the profile labelled 
by solid line collapses with the circles and filled 
circles, indicating that the present DNS has given rise 
to favourable mean sreamwise velocity profile along 
the wall bisector. It is noted that the mean streamwise 
velocity obtained by Gavrilakis[7] is normalized by the 
unit of local shear velocity rather than the mean shear 
velocity. When the flow becomes fully turbulent, the 
Reynolds number determines the range of logarithmic 
region of the mean streamwise velocity profile. The 
the range is increased with increasing Reynolds 
number. 

The values of the calculated mean velocity in the 
near wall region are given in Table 1. The grid 
arrangement in this region is characterized by a fixed 
amplifying factor (20/17) of grid spacing, and the 
linear law in the region very close to the wall ( + 5y )
is approximately satisfied. 

+y +u +y +u

0.168 0.17057 6.954 5.98358

0.366 0.34907 8.349 7.02624

0.6 0.55878 9.993 8.14786

0.876 0.80509 11.925 9.31559

1.2 1.09425 14.196 10.4876

1.578 1.43354 16.872 11.6212

2.028 1.83125 20.016 12.6820

2.553 2.29678 23.718 13.6488

3.174 2.84039 28.074 14.5111

3.903 3.47268 33.195 15.2675

4.758 4.20353 39.222 15.9237

5.766 5.04004 46.314 16.4920
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Fig.1 Mean streamwise velocity along the wall bisector in the 
wall coordinate. Note that the law of the wall is given by 

, where + += 2.5ln + 5.5u y + += / ,  = /( / )u u u y y u ,
the velocity from the DNS of Gavrilakis[7] is normalized 
by the local wall-shear velocity. The friction Reynolds 
number for the LES of Madabhushi and Vanka[17] is 360 

Table 2 Comparison of mean flow properties

Variable Huser et al.[9] Present 

= 2 /Re u h 600 600

= 2 /b bRe U h 10320 9960

/bU u 17.21 16.61

2= 8 /( )w bf U 0.027 0.029

3.2 Turbulence statistics 
The turbulence statistics for fully developed flow 

in a straight square duct includes the root-mean square 
(rms) values of velocity fluctuations, the correlation 
coefficient of  and , and the skewness and 
flatness factors of velocities. Showing the statistics of 
turbulence of the duct flow is useful for the detailed 
understanding of the velocity fluctuation properties. In 
particular, calculating the skewness and flatness 
factors is helpful to know the flow heterogeneity, 
while giving the rms values is helpful to know the 
velocity fluctuating amplitude in the three spatial 
directions, and the turbulent diffusivity that further 
related to the velocity correlation coefficient. The 
corresponding results can be observed in Figs.2, 3, 4 
and 5. 

u v

The turbulence intensities (or rms values of 
velocities) labelled by squares in Figs.2(a)-2(c) are the 
experimental results of Kreplin and Eckelmann (1979, 
hereinafter denoted as KE)[18], which are relevant to 

the turbulent channel flow at  (based on 
the channel half width and the mean wall-shear 
velocity). While those labelled by triangles are the 
measured results given by Balint et al.

= 192Re

[19] for a 
turbulent boundary layer. In addition, for the 
convenience of comparison, the DNS results for 
channel flow at a friction of 180 of Kim, et al. (1987, 
hereinafter denoted as KMM)[20] are labelled by filled 
circles, with the results of HB and Gavrilakis[7]

labelled by circles and plus-symbols respectively. 

Fig.2 Root mean square values of velocities along the wall 
bisector in the wall coordinate  

It should be noted that the velocity fluctuations to 
some extent depend on the accuracy of the numerical 
scheme used in discretization, since the finite 
difference schemes suffer from the effects of 
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numerical viscosity and dispersion, and there are 
numerical error patterns even for transient 
one-dimensional linear wave equations[21]. It is also 
noted that for the thermal-induced turbulence in a 
differentially heated air-filled cavity, even for using a 
spectral method, it seems that the second-order 
treatment of the convective terms is responsible for 
the failure of correct prediction of the Reynolds shear 
stress along the bisector of the heating and cooling 
walls[22]. This is why the fourth-order upwind scheme 
is adopted in the present DNS. Examination of the 
DNS results of HB shows that the turbulence 
intensities are also dependent on the computation 
method, and it indicates that there is a fairly good 
agreement between them. The numerical results have 
qualitative consistency with the experimental results 
of KE and Balint et al..

On the other hand, as is shown in Fig.3, the curve 
of the correlation coefficient of u' and v' along the 
wall bisector in the global coordinate is in a good 
agreement with both the calculated and measured 
results. The data measured by Sabot and 
Comte-Bellot[23] is relevant to a circular pipe flow at 
much higher Reynolds number (from 6.8 104 to 
1.35 104, based on the centreline velocity and the 
pipe diameter). The results show that the correlation 
coefficient is almost independent of both the Reynolds 
number and the computation method.  

Fig.3 Correlation coefficient of u  , v

Since the skewness factor of the velocity 
fluctuation in the spanwise direction along the wall 
bisector is close to zero, in Figs.4(a)-4(b), only ( )S u
and  are plotted as functions of the global 
coordinate along the wall bisector. It can be seen, 
from Fig.4(a), that the skewness factor 

( )S v

( )S u  is in 
good consistency with the results of channel flows 
(KE and KMM), with noticeable discrepancy 
appearing at the  core region  of  the  duct  flow  
( | ) as compared with the DNS  results  of  / | 0.5y h

KMM. With respect to the DNS results of Gavrilakis, 
it indicates that the effects of the Reynolds number 
and solution method on the skewness factor ( )S u
are not significant. However, these effects on the 
distribution of the skewness factor  along the 
wall bisector are significant (see Fig.4(b)). It is noted 
that the skewness factor  labelled by the solid 
line in the present calculation shows a tendency of 
collapsing with the measured data of KE particularly 
in the near-wall region. While in the core region, it 
shows a good agreement with the measured data of 
Niederschulte

( )S v

( )S v

[24]. As is shown in Fig.4(b), it is noted 
that the calculated  is in a fairly good 
agreement with the DNS results of KMM and 
Gavrilakis. 

( )S v

Fig.4 Skewness factors of velocity along the wall bisector in 
global coordinate 

A comparison between the distribution of 
flatness factors along the wall bisector and the 
corresponding results of KMM for a turbulent channel 
flow is presented in Fig.5. Again, a noticeable 
discrepancy occurs in the core region of the flatness 
factors ( )F u , ( )F w , but for the flatness factor 

( )F v ,  the discrepancy appears in the vicinity of the 
wall.
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Fig.5 Flatness factors of velocity along the wall bisector in 
global coordinate  

Fig.6 Flatness factors along the wall bisector in wall coordinate. 
The data labeled by Barllow et al. are abstracted from 
Ref.[20]  

Another detailed comparison between the 
distribution of the flatness factors in a wall coordinate 
and the existing data (in the works of KE, KMM, and 
Barllow et al.) is shown in Figs.6(a)-6(c). It suggests 
that both the sidewall and the Reynolds number have 
no significant effects on the flatness factor along the 
wall bisector. The flatness factor   at the wall 
is around 3.5, a value reported by KE. 

( )F u

3.3 Flow fields 
The turbulent flow fields are shown in 

Figs.7(a)-7(b) and 8(a)-8(b) in the cross section at 
 at two different moments ( 260, 280). The 

turbulence-induced instantaneous secondary flows 
given in Fig.7 contain asymmetrical vortical structures 
with coherent flow patterns near the walls. These 
patterns are quite similar to the flow fields given by 
velocity vectors obtained at a lower Reynolds 
number

= 0x =t

[8].  The asymmetry of flow structures may 
come from the break-up of the traveling waves 
occurred in the flow transition period[25], whose 
mechanism is involved with the non-linear dynamics. 

Fig.7 Instantaneous contours of streamwise vorticity in the 
cross-section of  . Note that the vorticity contours 
are labelled by values from 4 to 4, with a vorticity 
increment of 0.8 

= 0x

These secondary motions correspond to the 
streamwise velocity fields shown in Figs.8(a)-8(b). 
The streamwise velocity fields contain the pattern in 
the core region consisting of transient array of 
plateaux separated by sharp cliffs similar to observed 
in scalar turbulence[26], and the wrinkled pattern near 
the wall, as shown in Figs.8(a)-8(b), suggesting that 
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the duct flow has certainly become fully turbulent. 
Note that the velocity is labelled by values from 0.1 to 
1.6 su , here = 13su u .

Fig.8 Contours of streamwise velocity in the cross-section of  
= 0x

4. Conclusion 
DNS of fully developed turbulent flow in a 

straight square duct at a friction Reynolds number of 
600 has been carried out using finite difference 
approximation. The DNS work on the staggered grid 
of number 1.2 106 has been focused on the 
calculation of the turbulence statistics including the 
rms values, the skewness and flatness factors of 
velocity fluctuations along the wall bisector. The 
comparison of the DNS results with the existing 
numerical and experimental data shows satisfactory 
consistence, indicating that for the duct flow at the 
particular friction Reynolds number of 600, when the 
spatial resolution is achieved at the level of about 106,
and neglecting the sub-grid scale model is probably 
reasonable. The instantaneous secondary flow fields 
show asymmetrical vertical structures which may 
come from the break-up of travelling waves that 
appear in the flow transition period, with the 
mechanism of wave break-up associated with 
nonlinear dynamics. 
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