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Abstract:  The analyses of kinematic wave properties of a new dynamics model for traffic 

flow are carried out. The model does not exhibit the problem that one characteristic speed is 

always greater than macroscopic traffic speed, and therefore satisfies the requirement that 

traffic flow is anisotropic, Linear stability analysis shows that the model is stable under 

certain condition and the condition is obtained. The analyses also indicate that the model 

has a hierarchy of first- and second-order waves, and allows the existence of both smooth 

traveling wave and shock wave. However, the model has a distinctive criterion of shock 

wave compared with other dynamics models, and the distinction makes the model more 

realistic in dealing with some traffic problems such as wrong-way travel analysis. 
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Introduction 

Recently the authors presented a new dynamics model for traffic flowL1J. The model 

comprises a continuum equation and a dynamics equation 

3 k / 3 t  + 3 ( k u ) / 3 x  = O, (1) 

Ou 3u  u ~ ( k )  - u au  

O~[ + u Ox - T + a ~xx' (2) 

where k is traffic density; u is mean speed; x ,  t are space and time coordinates respectively. T 

is relaxation time; a is propagation speed of disturbance; u ~ ( k )  is equilibrium speed density 

relationship. Eq. (1)  indicates that the number of vehicles on the road is in conservation. The 

left-hand side of (2) is the acceleratio n of vehicles. The first term on the right-hand side of (2) 

is relaxation term, representing the process that driver adjusts the speed of the vehicle to 

equilibrium; the second term is anticipation term, representing the process that driver reacts to the 

traffic ahead. Compared with other correlative dynamics models, such as Payne model made up 
�9 [2] of the continuum Eq. ( 1 ) and the following dynamics equation 
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O u  3 u  u~ - u a 2 O]c 

0~[ + u 3 x  - T k O x '  (3)  

they have the same continuum equation, but in the new model,  speed gradient term replaces 

density gradient in the anticipation effect of  the dynamics equation. Just this replacement enables 

the new model to remove the problem that one characteristic speed is always greater than 

macroscopic traffic speed. The two characteristic speeds of  Eqs. (1)  and (2)  can be calculated as 

follows : 

~1 ---- / t -  a ,  A2 = U, (4)  

while for Payne model (1)  and ( 3 ) ,  the two characteristic speeds are 

21 = u - a ,  A~ = u + a .  (5)  

It is obvious that the second characteristic speed 22 in Payne model is greater than the macroscopic 

traffic speed u ,  but the new model does not exhibit this problem. Since the characteristic speed 

greater than u implies that vehicle will be affected by what is happening behind it, therefore the 

fundamental principle of  traffic flow that vehicles are anisotropic and respond only to that frontal 

stimuli is viotated [3] . From this point of  view, the new model is more realistic. 

The controlling Eqs. ( 1 )  and ( 2 ) o f  the new model constitute hyperbolic equations, and 

study of  kinematic wave phenomena in hyperbolic equations is very important, thus it is necessary 

to carry out the analyses of  the kinematic wave properties of  the new model.  In the following 

paragraphs we discuss the linear stability, wave hierarchy and shock condition respectively. 

1 L i n e a r  S tab i l i t y  A n a l y s i s  

Assuming k 0 and Uo = u e(k 0) are the steady state solutions of  Eqs. ( 1 )  and ( 2 ) ,  

k = ko + ~and  u = u0 + q are perturbed solutions of  (1 )  and ( 2 ) ,  with ~ = ~ ( x , t )  and 

= 7](x,  t )  small perturbations to the steady state solutions. Next we discuss how these 

perturbations evolve over time. Substituting the perturbed solutions k = ko + ~, u = Uo + q into 

(1)  and ( 2 ) ,  then taking Taylor series expansions of  the perturbed equations at ko and uo,  and 

neglecting higher order terms of  ~ and q ,  we obtain the following linearized equations 

~:~ + uo6:~ + koq~ : O, (6 )  

u'~( k o ) ~  - ,7 
r/, + Uoq~ = T + aqx,  (7)  

where u'~ = d u . / d k .  Making derivative to x on both sides o f  ( 7 ) ,  we have 

+ a r /~ .  (8)  q'~ + u~  r]~ = T 

From ( 6 ) ,  we obtain the relation 

q~ : -  (~:, + U o ~ ) / k o .  (9)  

Making derivative to x ,  t on both sides of  (9)  respectively, we have q ~  = - ( ~ + Uo ~ ) / k o ,  

q,~ = - (. ~ ,  + u o ~ ,  ) / k  o . Substituting r ]~ ,  q~ ' r]~ into ( 8 ) ,  and assuming Co = ( k u )  ~ Ik= ko = 

u0 + k0 u'~ (k  0 ) ,  we can eliminate r], and obtain the following second-order equation 

((~t + COOx)~ = -  T[(St  "1- ClSx)(Ot -1- C2Sx)~],  ( 1 0 )  

where 

c~ = u 0 -  a ,  c2 = u0. (11)  
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According to the traditional way of  linear stability analysis, considering the perturbation has 

the exponential Ibrm ~ ( x ,  t)  = ~0exp i( 7x - cot),  substituting the form into ( 1 0 ) ,  we have 

( -  ico + i c 0 7 ) ~  = -  T [ ( -  ico + c ~ i y ) ( -  ico + c z i T ) ] ~ .  (12) 

For ~ to be non-trivial solution of  ( 1 2 ) ,  we must have 

r ( c o  - c ~ 7 ) ( c o  - c 2 7 )  + i(co - c 0 7 )  : 0 .  ( 1 3 )  

So the linear stability of the new model is determined by the imaginary parts of  the solutions 

of the quadratic Eq. ( 13 ) about co. The new model is unstable if the imaginary part of  one of  the 

solutions is positive; only when the imaginary parts of  both solutions are less than or equal to zero 

can the new model be stable. For equation having the form as ( 1 3 ) ,  Whitham [4] and Zhang [5-I 

pointed out,  when the following inequality is met,  i t c an  be guaranteed that the imaginary parts of  

both solutions are less than or equal to zero 

cl ~< Co ~< c2. (14)  

This is the linear stable condition of  the new model. We may explain the physical sense of  the 

condition in next section. 

2 Wave  Hierarchy  

In this section, we discuss wave hierarchy of  the new model.  Note that the right-hand side 

of (10)  is a second-order wave operator, where Cl, c2 are the Characteristic speeds of  the second- 

order wave. The left-hand side of  ( 1 0 )  is a first-order wave operator, where Co is the 

characteristic speed of  the first-order wave.  Eq. ( 1 0 )  reveals that kinematic wave of  the new 

model is composed of  two hierarchies: first-order wave and secondiorder wave.  

Whitham [43 gave the second-order linearized equation of  Payne model ,  which has the same 

fbrm as ( 1 0 ) ,  the difference is that cl and c2 have a different expressions. In Payne model 

c~ = u0 - a ,  c2 = u0 + a .  (15) 

Comparing (4)  and (5)  with (11)  and ( 1 5 ) ,  we find that the characteristic speeds of  second- 

order wave is very similar to the characteristic speeds of  the corresponding model.  For 

linearization reason, u is replaced by the steady state speed u0.  

From above analyses, we learn that in both the new model and Payne model ,  the wave has 

two hierarchies, where first-order wave propagates with the same speed Co, and the second-order 

wave propagates with different speeds which are determined by the characteristic speeds of the 

model. 

It is known that the characteristic speeds c~ and c2 of  second-order wave are slowest and 

fastest propagation speeds of the perturbation signals, and the characteristic speed c o of  first-order 

wave is the propagation speed of  the main perturbation signals. When c 1 ~< c o ~< c2 is satisfied, 

there will be no conflict between the propagation of  different waves,  thus the system is stable. On 

the other hand, when Co > c2 or c o < c l ,  the propagation speed of  main signals is greater than 

fastest propagation speed of  signals or less than slowest propagation speed of  signals, conflict 

between the propagation of different waves arises, which leads to an unresolvable competition 

between first-order wave and second-order wave. As a consequence of  the competition, the 

system loses the stability. These explain the physical sense of  the stable condition ( 1 4 ) .  



412 JIANG Rui, WU Qing-song and ZHU Zuo-jin 

3 Shock  Condi t ion  

Whitham ~4] showed that in Payne model,  two constant states ( k ,  u)1,2 can be connected by 

a smooth steady wave traveling at a constant speed U if the following condition is met 

u - a < U < u + a .  (16) 

When the condition is not satisfied, the two constant states may be connected by a shock. In this 

section, we will discuss whether it is the case in the new model.  

Considering a steady profile solution with a constant translational speed U 

k : k ( X ) ,  u = u ( X ) ,  x =  x -  u t .  

Substituting the steady profile solution into (1)  and ( 2 ) ,  we can obtain 

- U k x  + ( u k ) x  = O, (17)  

T ( u  - a - U )  u x  = u~ - u .  (18) 

Integrating (17)  and reformulating, we have 

A 
u : U - i f ,  (19)  

where A is a constant. Substituting (19)  into ( 1 8 ) ,  and multiplying k on both sides, we obtain 

- T ( U -  u ) [ U -  ( u  - a ) ] k  x = qe - Uk + A ,  (20) 

where qe = u~ k.  At constant states ( k ,  u)1.2,  we have k x = 0.  So U and A should satisfy the 

following equation 

q ~ ( k l )  - Uk 1 + A = q~(k2)  - Uk 2 + A = 0 ,  (21)  

thus 

k =  k 2 

q ~ ( k l )  - q r  
U =  

k I - k 2 

k = kl k = kl 

(22)  

Fig. 1 Smooth wave profile Fig. 2 The profile that turns back and shock structure 

Defining h ( k )  = q ,  ( k )  - Uk  + A .  For traffic flow, qe ( k )  is strictly concave-down,  i . e .  , 

q"~(k) < O, so 

h " ( k )  = q ' ~ ( k )  < 0. (23)  

From ( 2 1 )  and ( 2 3 ) ,  when k 6 ( m i n ( k a , k z ) ,  m a x ( k l , k 2 ) ) ,  h ( k )  > 0.  Furthermore, 

q"o ( k ) < 0 also means that a steady wave connecting two constant states can only be compression 

wave [4'5] , thus k~ > k 2 . *  I f -  T ( U  - u ) [  U - ( u  - a ) ]  remains positive i n t h e  range 

Assuming kj ,  k 2 represent densities at the location downstream (right)/upstream (left) of the 

steady profile respectively, 
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k 2 < k < k 1 , then k s > 0, we:have a smooth profile as shown in F ig .  1. Obviously, solution to 

the i n e q u a l i t y -  T ( U -  u ) E U -  ( u  - a ) ]  > 0 i s  

u - a < U < u .  (24)  

Note that the left-hand side of  (20 )  is propor t ional  to relaxat ion t ime T. Wi th  the increase  of  

T,  - T( U - u ) [ U - ( u - a )  ] increases,  and the profile becomes smoother and smoother .  

W h e n  condit ion ( 2 4 )  is not satisfied, 

- T( U - u ) [ U - ( u - a ) ] changes sign in the 

profile,  as shown in Fig .  2 ,  and a s ingle-valued 

continuous profi le  is no longer possible ,  the 

profile turns back itself .  When  this is the case,  

the profile can be rectified by fitting in an 

appropriate shock as shown in Fig .  2.  * 

Comparing ( 1 6 )  with ( 2 4 ) ,  the difference 

be tween two models  is that u in the new model  

replaces u + a in Payne model .  Next we examine 

the different results caused by this difference 

through an example .  The ini t ial /boundary 

conditions are as follows (as  shown in Fig .  3) : 

Fig. 3 

f 
f 

x=0 

The incorrect smooth profile 

to the initial/boundary 

conditions (25) ,  (26) 

u = 0 ,  k = k i l l ( x ) ,  V x  <~ A ,  t = 0 ( A  > 0 ) ,  (25 )  

tt = 0,  x = A ,  t > 0 ,  (26)  

where H ( x )  is Heavyside  step function,  kj is j am densi ty .  

Under these ini t ial /boundary condi t ions,  the correct solution is that there  will be no 

movement  of  vehicles ,  i . e . ,  there is a shock with zero speed.  However ,  for Payne model ,  if a 

steady solution exis ts ,  then from (22)  we have U = 0.  Substituting u = 0 and U -- 0 into ( 1 6 ) ,  

it is cleat" that (16 )  is met ,  i . e . ,  the steady solution is a smooth prof i le ,  which implies wrong- 

way travel occurs (as  shown in Fig .  3 ) .  For the new model ,  substituting u = 0 and U = 0 into 

( 2 4 ) ,  (24)  i s  not satisfied,  thus it is a shock solution,  no wrong-way travel arises.  The analyses 

verify that characteristic speed u + a does cause incorrect traffic f low,  while that u in the new 

model  replaces u + a in Payne model  can remove the problem.  

4 C o n c l u s i o n s  

In this paper ,  the kinematic wave properties of  a new dynamics  model  for traffic flow 

recently presented by the authors have been studied,  that includes l inear s tabi l i ty,  wave hierarchy 

and shock condi t ion.  The analyses show that the new model  is stable under certain condit ion and 

we derive out the stable condit ion.  It also indicates that kinematic wave of  the new model  has two 

hierarchies, i . e . ,  f irst-order wave with characteristic speed Co and second-order  wave with 

characteristic speeds c~,  % .  For the reason that the f irst-order wave tries to violate the 

In traffic flow, apart from conservation of number of vehicles, it is not clear what conservation 

principle traffic speed obeys. Therefore it is somewhat difficult to obtain the correct shock speed. This 

difficulty is present in all dynamics model and is worthy of further investigation. 
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characteristic speeds of  second-order  wave ,  instability of  traffic flow arises.  Fur thermore,  the 

new model allows smooth profile solutions under some condit ions,  while under other conditions 

the profile that turns back itself should be rectified by inserting a proper  shock.  

Comparing with Payne model ,  we find out,  although kinematic wave properties of  the new 

model  are similar to those of  Payne model ,  important  differences exist .  The reason for the 

differences lies in that in the new model ,  characteristic speed greater than macroscopic traffic 

speed is removed .  Just the differences enable the new model  to describe traffic flow more 

realist ically,  which is verified by a traffic instance. From the analyses ,  it may be reasonable to 

conclude that the new model  provides a more accurate and realistic description of  traffic f low.  
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