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Abstract: Traffic flow has been studied numerically by solving the kinematic wave equation with the second-order Monotone Upwind
Scheme of Conservation LamUSCL), together with the boundary and initial conditions, which are examined by a computer based
random generator derived from the Erlang process of order 250. With regard to traffic mixing, a fundamental flow-density diagram of roa
traffic is presented, where the ratio between the optimal and jam densities is used as a single parameter; its value is predicted by assun
that fast moving vehicles have a relatively large free speed but slow moving vehicles have a smaller free speed. Simple analysis for t
state equation indicates that the parameter should be in a proper range from 0.333 to 0.618 to ensure a free speed beyond the opti
traffic speed. The effects of the single parameter on the spread of traffic shock wave have been discussed. It is found that, for conges
traffic flow, in the case of a given flow density at the place of inlet and exit, the effects of the parameter on the propagation speed i
apparent, while in the case of assigned flow rate on the inlet and the exit boundaries, the propagation speed is slightly dependent on
parameter. The propagation of density and flow rate fluctuation can be observed clearly from the corresponding 3D presentations.
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Introduction (1971 and the research done by Michalopoulos et(4P84)
should be noted. However, the arguments proposed by Daganzo
(19954, b have caused much more attention.

Particularly, the application of LWR theory requires the fun-
damental diagram to be expressed by a state equation. In this
paper, a relation for the fundamental diagram with respect to the
ratio[b=(p,/pm) ] Of optimal density to that of a jam has been
proposed. Based on that, the LWR equation has been solved by
using the second-order Monotone Upwind Scheme of Conserva-
tion Law (MUSCL) [i.e., that of Van Leef1979, cf. Shui(1998]
to simulate the traffic flow. The density ratio for the traffic flow is
examined in the intuitive sense that a fast moving vehicle has a
relatively large ratio of free speed; to the optimal spee¥,, . It
is found that the density ratio has a significant impact on the
propagation of the traffic shock wave.

The mixing performance of the traffic flow is reflected by tak-
ing into account the inlet and exit flow reflecting the random
properties. When fast, medium, and slow vehicles travel on the
same road, the space gap of the consecutive vehicles is suggested
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view, it is important to propose a state equation regarding the
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It is well known that the kinematic wave model based upon the
hydrodynamic analogy to traffic flow was developed by Lighthill
and Whitham(1955 and Richard€1956 independently. As re-
ported by Haight(1974), the generalizations of the Lighthill-
Whitham-Richards theoryLWR) have been carried out by De
(1956 and Bick and Newel(1960. Despite its history of nearly
half a century, the kinematic wave model is still used extensively
in current traffic research and transportation engineering. To
simulate the congested traffic flow, the finite difference approxi-
mation of the kinematic wave equation was given using the Go-
dunov scheme by Bui et al1992. Several years later, using the
receiving and sending function, Dagan@®95a, b reported a
similar approach of approximation that can be shown to be a
member of Godunov family, but of the first order, to capture the
traffic shock wave. In addition, the development of traffic flow
study in the direction of the high-order model initiated by Payne

paper is part of theJournal of Transportation Engineering Vol. 128, optimal to jam density as a parameter, it is easy for one to see the
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Table 1. Existing Traffic Flow-Density Relationships

Case Expression Proof Parameter constraints
| q=C(1-plpm) Car following None

Il q=Cp In(pm/p) Car following C=V;

11} q=Vpe S Car following C=1lp,

v q=[Vip In(pm/p)/C+CyIn(pm/p)] Statistical WhenC=C,, C, C; Vanish
Y, q=[C1p(pm—p)/Copm+C,] Statistical C,=C,V;

VI g=pVi(l—p/pm) Empirical None

Vil a=[pVi(pm—p)¥4CV;p%+(pm—p) ¥4 Empirical None

@Abstracted from Haight1974); some appropriate changes have been made,ne;g-,Vs, p—q, A—p, etc.

q P—Po p—po\® b=1/3 anda=9/4 is for the fastest vehicles. This implies a fast
(1) vehicle can run more quickly than a slow one on an empty road.

—=1+A(b)| ——
a Pm Pm Fig. 1 conveys the fundamental diagram for different density ra-

2

+ B(b)(
[o]
whereq, andp,, are, respectively, the optimal flow capacity and tjgs.

the jam density; whiléd[ = (p,/pp)] is the single parameter; and Consider a traffic flow which consists df types of vehicles
A(b) andB(b) are functions ofb. By settingp=0 andp=pp, with theith free speed and relevant proportion to\hg andP;,
respectively, and remembering that traffic rgtshould vanish at  respectively. Further denote tité ratio for free to optimal speed
the limits of p, it follows that asa;, which is in the rang¢1,9/4]. Then if the traffic is homo-
A(b)b2—B(b)b3=—1 geneo_usly mix_ed with various type vehicles, the velocity ratio for
2 the mixed vehicles can be expressed by
A(b)(1—b)2+B(b)(1—b)3=—1 )
The solution of the foregoing equation féx(b) and B(b) is a=2 aiP; (10)
given by =1
A(b)=—[(1-b)3+b3]/[b2(1—b)?] Substituting it into Eq(8), the single parameter for fundamental
3) diagram can be obtained. However, this is just a compromise
B(b)=+[(1—b)?—b?]/[b?(1-b)?] strategy for the determination of, since in practice the homoge-

If the traffic flow rate and the density are normalized by the N€OUS traffic state on empty road needs arguments.

optimum flow capacity and the jam density, respectively, for con-
venience, by use of normalizatiag'q,—q and p/p,—p, the

normalized equation of traffic state can be written as Kinematic Wave Model
q(p,b)=1+A(b)(p—b)*+B(b)(p—b)? (4)  The kinematic wave model in the Lighthill-Whitham-Richards

The derivative with respect {@of this equation ap=0 is the free ~ (LWR) theory gives the dimensionless equation

speed of a vehicle in the unit of,/p, (say,«, which is the ratio ap  aq

between free speed and optimal speathce 5t a_x:0 (11)
a= ﬁ: Po li a(p.b) =biq(p,b) (5) which satisfies the conservation law, whereand g=mean den-

Vo Pmyo P dp sity and mean flow rate; andand x=dimensionless time and
That means space normalized by 44 and 1p,,, respectively. For simplicity,

it is assumed that the road segment is homogeneous, and that
a=—2A(b)b%2+3B(b)b3=(2—3b)/(1—b)? (6)

where the expressions féy(b) andB(b) have been substituted.

This equation is identical to 1.1

ab?+(3—2a)b+a—2=0 @) 0;

which can be observed as a quadratic equationbfo®nly its 0.8

positive real root of this equation attains the physical meaning. 07

Clearly, it is given by 06
o

b=[—-(3—2a)+y9—4a]/l2a (8) 05

0.4

where the determinant of E¢5) requiresa<9/4. Thus, the cor- 0.3

responding value fob should be 1/3. In practical situations, the 0'2

ratio a between free traffic speed and the optimal speed should be 0'1

greater than unity. In view of this reality for traffic flow, at this
limit, we have

b=(—1+/5)/2=0.618 (9)

It is assumed that such a value fvith respect tox=1 is rel-
evant to the slower moving vehicles. But the other pair of value

Fig. 1. Traffic flow-density diagram for several values of parameter
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vehicular interactions such as passing and overtaking have noboundary conditions can be examined. The results are shown in

impact on the vehicular proportions in the traffic flow. Fig. 2, where the fluctuated performance of traffic density is evi-
However, the kinematic wavgEq. (11)] must be solved nu-  dent.

merically together with the required initial and boundary condi-

tions, which can reflect a certain fluctuating performance of traffic

flow. Such conditions are obtained by using a numerical random Numerical Scheme

generator based on the Erlang prodg$aight 1974 of order 250.

Since the probability distribution of the Erlang process corre- For convenience, the governing equation, Bd), is discretized

sponds to the sum of 250 negative exponential gaps, it is noton a uniform time space grid system. Defimas the time level,

difficult to construct a computer-based random number generator.with j as the space node. Further &fp)=(dg/dp) denote the

By choosing the total number of random trails to be 250, and by propagation speed of small perturbations in traffic flow, while

truncating the lower and upper locations for gapsat (1/3p) Apji12=pj+1—p; denotes the density difference between the

and 7,=(3/p), the inlet and exit densities for our numerical consecutive nodes, ardp; is

[Smin[|Apj 1. [Apj_1d] i S=sgnApji1=5gnAp;_1p 15
Pi7l0 otherwise (12)

whereS=sign function. Then, ik = At/Ax, whereAt andAx are the time and space intervals, the MUSCL scheme proposed by Van Leer
(1979 gives the density at the new time level as

P?Jrl:p?_)\(aﬁllz_ajfl/z) (13)
with
1 1 a4 1\ 3p; _
j+1/2MOPj } .
> - + 5 i+12— — — if aj+1,>0
) ) 2C|(PL,1+1/2) zq{PL,]Jrl/Z 1+N(8j+ 12— @j-172) j+1/2 "
i+ 1 a1 12M8pj 41 -
50(pRrj-12) T 50| PRj+12~ : ] if @, q,<0
2 R,j—1/ 2 R,j+1/2 1+)\(aj+3/2_ aj+l/2) j+1/2
[
Wheregjﬂ,2 is expressed by case of congested traffic, since it is more attractive. First, to dem-
(pris19)—A(PL 1+ 1) onstrate clearly the influence of the single paramétem the
- atPrj+12 7 APLj+12) PR+ 127 DL+ 172 fundamental diagram on the traffic shock wave, we consider an
aj 112~ PRj+127 PLj+1/2 ' ' ideal situation, under which the random properties of arrival and
a(pLj+12) Otherwise departure of vehicles on the considered road segment have been
(15) neglected.
with Fig. 3(@ depicts the shock wave shape and its location at the

momentt=70At for several values ob assigned when the inlet

(16) density p;=0.2, the exit densityp,=0.8, and the jump of the

- initial solution is at the place of=30Ax. An inspection of the
PLj+12= Pj T 20p; density curves by comparing shock wave position for various

The finite-difference approximation to the kinematic wave equa- values ofb whent=70At with the initial one indicated that there

tion is a second-order member of the Godunov hierarchy, from

which it is easy to see that the propagation spegd for a small

disturbancegsee the stereo-view in Fig. és closely related to 1

the fundamental diagram. An arbitrary choice of such a diagram 0.9 ‘J\/\/\/\/\/\/\///\/\W
could not indicate the mixing performances of traffic. However, 08 2

—.Nn 1
PRj+1/2=Pj+17 20Pj+1

detailed consideration from the theoretical point of view as pro- & o7 Density:

vided in the preceding section shows that the single parameter £ 4¢

relationship(1) for the traffic state may be a reasonable alterna- A 0.5 1, Inlet

tive. In addition, what is required for the application of the nu- ‘E’ 0.4 2, Exit

merical scheme is only the paramelerrather than assigning of 8 o3 1

At andAx, respectively. It is important to note that the choice of ¥ o2 B T T Y T T T

\ should be less than unity to satisfy the Courant-Friedrichs-Lewy 01

condition, e.g.|a,,AVAX/<1. 0 . . . ) e '
0 10 20 30 n 40 50 60 70

Results and Discussions Fig. 2. Inlet and exit traffic densities predicted by computer-based

random generator, which was constructed in terms of Erlang process

. , 5 .
What are the patterns of the mixing traffic flow? Such questions of order 250

will be discussed by virtue of the numerical results obtained in the
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o5 ! Fig. 4. 3D presentation of traffic flow density, wheje=x/Ax, n
04 ; 4,b=0.6 =t/At
03 : 5,b=0.618
0.2 T i L L J
(b) "o 10 20 j %0 40 50 Subsequently, after discussing the effects of paranigtet-
tention is concentrated on the patterns of traffic flow in mixing. In
Fig. 3. Traffic shock wave shapes and locations at timet/At practice, the traffic flow is closed related to the microbehaviors of
=70 for several values of single parameter, wheag:for p;=0.2, drivers, the condition of the road, the climate conditions, and so
p2=0.38; (b) for q,=0.8,9,=0.3; andj=x/Ax on. The treatment of vehicular mixing, as mentioned in the pre-
ceding sections, is carried out with the following procedure:
1. Consider the flow to be constituted with several groups of
were two types of traffic shock waves, with one propagating vehicles distinguished by free traffic speed;;, i
backward corresponding to the relatively small valu®,adind the =1,2,...N; the sequence takes the order decreased in
other propagating forward for the larger valuelofThis verified 2. Assign a set ob; corresponding t&/;;, and letb; take the
that the foregoing assumptigmehicles moving fast would have a inverse order ol ; with respect to the postulation that fast
relatively large ratio between the free speed and the optimal moving implies a small value of the single parameigr

speed does reflect a certain reality of traffic flow, since, under an 3. Calculatex; with respect tdy; from Eq. (6), whereb anda
actual congested flow situation, on a given road, the faster the should be replaced by; and«;; and

vehicles run, the faster the shock wave backward spreads. 4. Calculate the speed ratio between the free speed and the
The backward propagation implies that a serious delay of ar- optimal speea from Eq.(10). By using Eq.(8), the value of
rival for drivers in upstream will happen. In fact, the direction of b can be obtained.

shock wave propagation is dependent on the fundamental diagranThe calculatedy; and the value ob have been summarized in

ascribed by the corresponding state equation. For, according toTable 2. From Table 2, when the total group numNet 6, and

the (p,q) curve characterized by the single paramétehe slope the binomial parametgu= 0.4, it follows thata andb are 2.126

of the line linked from p,,0d;) to (p,,0,) can be obtained. Since  and 0.460, respectively. The results illustrated in Figs. 4 and 5 are

the value of slope is the speed of shock wave spreading, the sigrobtained with these values.

of the slope must give rise to the direction of the shock wave  The 3D presentation of the traffic density of flow in thet(

traveling, i.e., backward or forward. plane is shown in Fig. 4. In simulation, the ratdd/Ax=0.25
However, in the cases of fixed inlet flow rajg= 0.8 and exit means the Courant-Friedrichs-Levy condition for the choice of

flow rate g,=0.3 [Fig. 3(b)], the effects of parametds on the time interval was satisfied; since the stereo-view in Fig. 6 indi-

traffic shock is not as significant as in the cases for fixed densitiescates that the absolute value of maximum wave speed is less than

at the same places. In fact, FigbBindicates that the shocks at 4.0, the corresponding Courant number is near 0.9. It is seen that,

the moment=70At for b=0.333 andb=0.4 seem to be over- in this case, when 70 time intervals have elapsed, the shock has

lapped. All shocks in this cases traveled backward, with those for propagated backward for about 17 meshes. This implies that the

the large value ob spreading slightly faster. It is clear that dif- wave speed of propagation is abou0.243, i.e. the actual wave

ferent shock wave shapes can be obtained from different choicesspeed is about-(17q,/70p,,). If the jam density for the traffic

of b. flow is p,,= 86 vh/km(here, vh denotes vehicle, while km denotes

Table 2. Parameteb for Mixing Traffic with b; Assigned

Value of b with respect tax;, Vi ;, andP; given by

Speed ratiax; corresponding td; assigned for vehicles with differeM; ; Pi={(N—-D)V/[(i—-1)(N=-)}p" Y (1-p)N", i=1,2,..N

Vi 70 km/h 60 km/h  50km/h 40 km/h 35 km/h 30 km/h N p a b

b; 0.333 0.4 0.45 0.5 0.55 0.618 6 0.2 2.210 0.411

o 2.250 2.222 2.149 2.000 1.728 1.000 6 0.3 2.176 0.436
6 0.4 2.126 0.460
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=08, q,,=0.3

q1av

Fig. 5. 3D presentation of traffic flow rate, where=x/Ax, n
=t/At

kilometep with a road optimal capacity,=1,440vh/hr, the
wave speed is about 4.066 km/fim denotes hour One advan-
tage of the 3D presentation is that it can clearly demonstrate the
behavior of wave spread. Fig. 5 shows the traffic flow rate distri-
bution on the urban road segment. The fluctuating flow rate im-
plies that an observer standing beside the road at a fixed position
will have insight of a view of maneuver patterns of vehicles; they
are traveling quickly at one time, but slowly at another.

Conclusions

In this work, the traffic flow on a road segment with shock wave
has been studied by virtue of a single parameter state equation for
the relation between the flow rate and density. The parameter,
which is the ratio between optimal density and jam density, is

The LWR model was used in the study, with the initial and

Notation

a:

a
B(b)
b

o

~ (NQ

Vi
fi

boundary conditions examined by using a computer-based ran-
dom generator. This random generator was constructed with re-
spect to the Erlang process of order 250. It was found that the
fluctuation in such a condition could clearly illustrate the behavior

of shock propagation in the considered traffic system.
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The following symbols are used in this paper:
A(b)

function ofb in state equation;

wave propagation speed;

wave propagation speed,

function of b in state equation;

single parameter;

parameter foith vehicular group;

total number of vehicular group;

proportion forith vehicular group in mixing traffic
flow;

parameter used to defii®g in binomial distribu-
tion;

normalized traffic flow rate;

sign;

time;

free vehicular speed;

free vehicular forith group;

space;

ratio between optimal free speed and optimal one;

closely related to the ratio between the free speed and the optimal “i = ][g';lt_)ﬂ:)etg\[/](_efrlla(:ptlrrgal Tree speed and optimal one
one. Simple analysis indicated that the parameter should be in the At = timtle in\t/ervIaIL'J group:
range between 0.333 and 0.618. For traffic flow with mixing, it is B . s
: . Ax = space interval;
dependent upon the free speed, the vehicular proportions, and the A = ratio between space and time interval;
velocity ratio of different vehicles. The impacts of such a param- — normalized traffic density: ’
eter on the spread of traffic wave has been discussed merely for P — iam densitv of traffic fl yj
an ideal situation, under which the mixing effects are completely Pm B Jam density of traffic flow; .
neglected. po = optimal density of trfafflc_flqw,
7 = 1/(3p), lower truncation limit; and
Ty = 3lp, upper truncation limit.
Subscripts
q,,=0.8, q,,=0.3 f = free:
i = vehicular group number;
j = space grid number;
L = left;
| = lower;
m = jam;
o = optimal; and
u = upper.
m -
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