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Numerical Study on Traffic Flow with Single Parameter
State Equation

Zuo-Jin Zhu1; Qing-Song Wu2; Rui Jiang3; and Tong-Qiang Wu4

Abstract: Traffic flow has been studied numerically by solving the kinematic wave equation with the second-order Monotone U
Scheme of Conservation Law~MUSCL!, together with the boundary and initial conditions, which are examined by a computer b
random generator derived from the Erlang process of order 250. With regard to traffic mixing, a fundamental flow-density diagram
traffic is presented, where the ratio between the optimal and jam densities is used as a single parameter; its value is predicted b
that fast moving vehicles have a relatively large free speed but slow moving vehicles have a smaller free speed. Simple analy
state equation indicates that the parameter should be in a proper range from 0.333 to 0.618 to ensure a free speed beyond
traffic speed. The effects of the single parameter on the spread of traffic shock wave have been discussed. It is found that, for
traffic flow, in the case of a given flow density at the place of inlet and exit, the effects of the parameter on the propagation
apparent, while in the case of assigned flow rate on the inlet and the exit boundaries, the propagation speed is slightly depend
parameter. The propagation of density and flow rate fluctuation can be observed clearly from the corresponding 3D presentati
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Introduction

It is well known that the kinematic wave model based upon
hydrodynamic analogy to traffic flow was developed by Lighth
and Whitham~1955! and Richards~1956! independently. As re-
ported by Haight~1974!, the generalizations of the Lighthill
Whitham-Richards theory~LWR! have been carried out by D
~1956! and Bick and Newell~1960!. Despite its history of nearly
half a century, the kinematic wave model is still used extensiv
in current traffic research and transportation engineering.
simulate the congested traffic flow, the finite difference appro
mation of the kinematic wave equation was given using the G
dunov scheme by Bui et al.~1992!. Several years later, using th
receiving and sending function, Daganzo~1995a, b! reported a
similar approach of approximation that can be shown to b
member of Godunov family, but of the first order, to capture
traffic shock wave. In addition, the development of traffic flo
study in the direction of the high-order model initiated by Pay
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~1971! and the research done by Michalopoulos et al.~1984!
should be noted. However, the arguments proposed by Dag
~1995a, b! have caused much more attention.

Particularly, the application of LWR theory requires the fu
damental diagram to be expressed by a state equation. In
paper, a relation for the fundamental diagram with respect to
ratio @b5(ro /rm)# of optimal density to that of a jam has bee
proposed. Based on that, the LWR equation has been solve
using the second-order Monotone Upwind Scheme of Conse
tion Law ~MUSCL! @i.e., that of Van Leer~1979!, cf. Shui~1998!#
to simulate the traffic flow. The density ratio for the traffic flow
examined in the intuitive sense that a fast moving vehicle ha
relatively large ratio of free speedVf to the optimal speedVo . It
is found that the density ratio has a significant impact on
propagation of the traffic shock wave.

The mixing performance of the traffic flow is reflected by ta
ing into account the inlet and exit flow reflecting the rando
properties. When fast, medium, and slow vehicles travel on
same road, the space gap of the consecutive vehicles is sugg
to be consistent with an Enlang process of order 250. This
implemented by a computer-based random generator.

Single Parameter State Equation for Traffic

The fundamental diagram can be expressed in terms of a
equation. Haight~1974! delineates seven types of state equati
some of which were derived from the car following model, wh
others were obtained from statistical data analysis. These
listed in Table 1. However, for mixing traffic flow, none of thes
is directly applicable without appropriate consideration of t
mixing performance. Therefore, from the theoretical point
view, it is important to propose a state equation regarding
behavior of different vehicles on the road. Taking the ratio
optimal to jam density as a parameter, it is easy for one to see
following equation with respect to both empty and jam road si
ations:

-

-
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Table 1. Existing Traffic Flow-Density Relationshipsa

Case Expression Proof Parameter constraints

I q5C(12r/rm) Car following None
II q5Cr ln(rm /r) Car following C5Vf

III q5Vfre2Cr Car following C51/ro

IV q5@Vfr ln(rm /r)/C1C1 ln(rm /r)# Statistical WhenC5C1 , C, C1 Vanish
V q5@C1r(rm2r)/C2rm1Cr# Statistical C15C2Vf

VI q5rVf(12r/rm) Empirical None
VII q5@rVf(rm2r)1/2/CVfr

21(rm2r)1/2# Empirical None
aAbstracted from Haight~1974!; some appropriate changes have been made, e.g.,m0→Vf , r→q, l→r, etc.
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D 2

1B~b!S r2ro

rm
D 3

(1)

whereqo andrm are, respectively, the optimal flow capacity an
the jam density; whileb@5(ro /rm)# is the single parameter; an
A(b) and B(b) are functions ofb. By settingr50 andr5rm ,
respectively, and remembering that traffic rateq should vanish at
the limits of r, it follows that

A~b!b22B~b!b3521
(2)

A~b!~12b!21B~b!~12b!3521

The solution of the foregoing equation forA(b) and B(b) is
given by

A~b!52@~12b!31b3#/@b2~12b!2#
(3)

B~b!51@~12b!22b2#/@b2~12b!2#

If the traffic flow rate and the density are normalized by t
optimum flow capacity and the jam density, respectively, for c
venience, by use of normalizationq/qo→q and r/rm→r, the
normalized equation of traffic state can be written as

q~r,b!511A~b!~r2b!21B~b!~r2b!3 (4)

The derivative with respect tor of this equation atr50 is the free
speed of a vehicle in the unit ofqo /rm ~say,a, which is the ratio
between free speed and optimal speed!, since

a5
Vf

Vo
5

ro

rm
lim
r→0

q~r,b!

r
5b

d

dr
q~r,b! (5)

That means

a522A~b!b213B~b!b35~223b!/~12b!2 (6)

where the expressions forA(b) andB(b) have been substituted
This equation is identical to

ab21~322a!b1a2250 (7)

which can be observed as a quadratic equation forb. Only its
positive real root of this equation attains the physical mean
Clearly, it is given by

b5@2~322a!1A924a#/2a (8)

where the determinant of Eq.~5! requiresa<9/4. Thus, the cor-
responding value forb should be 1/3. In practical situations, th
ratio a between free traffic speed and the optimal speed shoul
greater than unity. In view of this reality for traffic flow, at th
limit, we have

b5~211A5!/250.618 (9)

It is assumed that such a value ofb with respect toa51 is rel-
evant to the slower moving vehicles. But the other pair of va
168 / JOURNAL OF TRANSPORTATION ENGINEERING / MARCH/APRIL 2
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b51/3 anda59/4 is for the fastest vehicles. This implies a fa
vehicle can run more quickly than a slow one on an empty ro
Fig. 1 conveys the fundamental diagram for different density
tios.

Consider a traffic flow which consists ofN types of vehicles
with the ith free speed and relevant proportion to beVf ,i andPi ,
respectively. Further denote theith ratio for free to optimal speed
asa i , which is in the range@1,9/4#. Then if the traffic is homo-
geneously mixed with various type vehicles, the velocity ratio
the mixed vehicles can be expressed by

a5(
i 51

N

a i Pi (10)

Substituting it into Eq.~8!, the single parameter for fundament
diagram can be obtained. However, this is just a comprom
strategy for the determination ofa, since in practice the homoge
neous traffic state on empty road needs arguments.

Kinematic Wave Model

The kinematic wave model in the Lighthill-Whitham-Richard
~LWR! theory gives the dimensionless equation

]r

]t
1

]q

]x
50 (11)

which satisfies the conservation law, wherer and q5mean den-
sity and mean flow rate; andt and x5dimensionless time and
space normalized by 1/qo and 1/rm , respectively. For simplicity,
it is assumed that the road segment is homogeneous, and

Fig. 1. Traffic flow-density diagram for several values of parame
b
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vehicular interactions such as passing and overtaking have
impact on the vehicular proportions in the traffic flow.

However, the kinematic wave@Eq. ~11!# must be solved nu-
merically together with the required initial and boundary con
tions, which can reflect a certain fluctuating performance of tra
flow. Such conditions are obtained by using a numerical rand
generator based on the Erlang process~Haight 1974! of order 250.
Since the probability distribution of the Erlang process cor
sponds to the sum of 250 negative exponential gaps, it is
difficult to construct a computer-based random number gener
By choosing the total number of random trails to be 250, and
truncating the lower and upper locations for gaps att l5(1/3r)
and tu5(3/r), the inlet and exit densities for our numeric
ua-
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boundary conditions can be examined. The results are show
Fig. 2, where the fluctuated performance of traffic density is e
dent.

Numerical Scheme

For convenience, the governing equation, Eq.~11!, is discretized
on a uniform time space grid system. Definen as the time level,
with j as the space node. Further leta(r)5(dq/dr) denote the
propagation speed of small perturbations in traffic flow, wh
Dr j 11/25r j 112r j denotes the density difference between t
consecutive nodes, anddr j is
Leer
dr j5H Smin@ uDr j 11/2u,uDr j 21/2u# if S5sgnDr j 11/25sgnDr j 21/2

0 otherwise
(12)

whereS5sign function. Then, ifl5Dt/Dx, whereDt andDx are the time and space intervals, the MUSCL scheme proposed by Van
~1979! gives the density at the new time level as

r j
n115r j

n2l~ q̂ j 11/22q̂ j 21/2! (13)

with

q̂ j 11/25H 1

2
q~rL, j 11/2!1

1

2
qFrL, j 11/22

ā j 11/2ldr j

11l~ ā j 11/22ā j 21/2!
G if ā j 11/2.0

1

2
q~rR, j 21/2!1

1

2
qFrR, j 11/22

ā j 11/2ldr j 11

11l~ ā j 13/22ā j 11/2!
G if ā j 11/2<0

(14)
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whereā j 11/2 is expressed by

ā j 11/25H q~rR, j 11/2!2q~rL, j 11/2!

rR, j 11/22rL, j 11/2
if rR, j 11/2ÞrL, j 11/2

a~rL, j 11/2! otherwise
(15)

with

rR, j 11/25r j 11
n 2 1

2dr j 11 (16)
rL, j 11/25r j

n1 1
2dr j

The finite-difference approximation to the kinematic wave eq
tion is a second-order member of the Godunov hierarchy, fr
which it is easy to see that the propagation speeda(r) for a small
disturbances~see the stereo-view in Fig. 6! is closely related to
the fundamental diagram. An arbitrary choice of such a diag
could not indicate the mixing performances of traffic. Howev
detailed consideration from the theoretical point of view as p
vided in the preceding section shows that the single param
relationship~1! for the traffic state may be a reasonable alter
tive. In addition, what is required for the application of the n
merical scheme is only the parameterl, rather than assigning o
Dt andDx, respectively. It is important to note that the choice
l should be less than unity to satisfy the Courant-Friedrichs-Le
condition, e.g.,uamaxDt/Dxu<1.

Results and Discussions

What are the patterns of the mixing traffic flow? Such questi
will be discussed by virtue of the numerical results obtained in
r

case of congested traffic, since it is more attractive. First, to d
onstrate clearly the influence of the single parameterb on the
fundamental diagram on the traffic shock wave, we consider
ideal situation, under which the random properties of arrival a
departure of vehicles on the considered road segment have
neglected.

Fig. 3~a! depicts the shock wave shape and its location at
momentt570Dt for several values ofb assigned when the inle
density r150.2, the exit densityr250.8, and the jump of the
initial solution is at the place ofx530Dx. An inspection of the
density curves by comparing shock wave position for vario
values ofb whent570Dt with the initial one indicated that there

Fig. 2. Inlet and exit traffic densities predicted by computer-bas
random generator, which was constructed in terms of Erlang pro
of order 250
L OF TRANSPORTATION ENGINEERING / MARCH/APRIL 2002 / 169
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were two types of traffic shock waves, with one propagat
backward corresponding to the relatively small value ofb, and the
other propagating forward for the larger value ofb. This verified
that the foregoing assumption~vehicles moving fast would have
relatively large ratio between the free speed and the opti
speed! does reflect a certain reality of traffic flow, since, under
actual congested flow situation, on a given road, the faster
vehicles run, the faster the shock wave backward spreads.

The backward propagation implies that a serious delay of
rival for drivers in upstream will happen. In fact, the direction
shock wave propagation is dependent on the fundamental diag
ascribed by the corresponding state equation. For, accordin
the (r,q) curve characterized by the single parameterb, the slope
of the line linked from (r1 ,q1) to (r2 ,q2) can be obtained. Sinc
the value of slope is the speed of shock wave spreading, the
of the slope must give rise to the direction of the shock wa
traveling, i.e., backward or forward.

However, in the cases of fixed inlet flow rateq150.8 and exit
flow rate q250.3 @Fig. 3~b!#, the effects of parameterb on the
traffic shock is not as significant as in the cases for fixed dens
at the same places. In fact, Fig. 3~b! indicates that the shocks a
the momentt570Dt for b50.333 andb50.4 seem to be over
lapped. All shocks in this cases traveled backward, with those
the large value ofb spreading slightly faster. It is clear that di
ferent shock wave shapes can be obtained from different cho
of b.

Fig. 3. Traffic shock wave shapes and locations at timen5t/Dt
570 for several values of single parameter, where:~a! for r150.2,
r250.8; ~b! for q150.8, q250.3; andj 5x/Dx
170 / JOURNAL OF TRANSPORTATION ENGINEERING / MARCH/APRIL 2
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Subsequently, after discussing the effects of parameterb, at-
tention is concentrated on the patterns of traffic flow in mixing.
practice, the traffic flow is closed related to the microbehaviors
drivers, the condition of the road, the climate conditions, and
on. The treatment of vehicular mixing, as mentioned in the p
ceding sections, is carried out with the following procedure:
1. Consider the flow to be constituted with several groups

vehicles distinguished by free traffic speedVf ,i , i
51,2, . . . ,N; the sequence takes the order decreased ini;

2. Assign a set ofbi corresponding toVf ,i , and letbi take the
inverse order ofVf ,i with respect to the postulation that fa
moving implies a small value of the single parameterb;

3. Calculatea i with respect tobi from Eq. ~6!, whereb anda
should be replaced bybi anda i ; and

4. Calculate the speed ratio between the free speed and
optimal speeda from Eq.~10!. By using Eq.~8!, the value of
b can be obtained.

The calculateda i and the value ofb have been summarized i
Table 2. From Table 2, when the total group numberN56, and
the binomial parameterp50.4, it follows thata andb are 2.126
and 0.460, respectively. The results illustrated in Figs. 4 and 5
obtained with these values.

The 3D presentation of the traffic density of flow in the (x,t)
plane is shown in Fig. 4. In simulation, the ratioDt/Dx50.25
means the Courant-Friedrichs-Levy condition for the choice
time interval was satisfied; since the stereo-view in Fig. 6 in
cates that the absolute value of maximum wave speed is less
4.0, the corresponding Courant number is near 0.9. It is seen
in this case, when 70 time intervals have elapsed, the shock
propagated backward for about 17 meshes. This implies that
wave speed of propagation is about20.243, i.e. the actual wave
speed is about2(17qo/70rm). If the jam density for the traffic
flow is rm586 vh/km~here, vh denotes vehicle, while km denot

Fig. 4. 3D presentation of traffic flow density, wherej 5x/Dx, n
5t/Dt
Table 2. Parameterb for Mixing Traffic with bi Assigned

Speed ratioa i corresponding tobi assigned for vehicles with differentVf ,i

Value of b with respect toa i , Vf ,i , andPi given by
Pi5$(N21)!/@( i 21)!(N2 i )! #%pi 21(12p)N2 i , i 51,2,...,N

Vf ,i 70 km/h 60 km/h 50 km/h 40 km/h 35 km/h 30 km/h N p a b

bi 0.333 0.4 0.45 0.5 0.55 0.618 6 0.2 2.210 0.411
a i 2.250 2.222 2.149 2.000 1.728 1.000 6 0.3 2.176 0.436

6 0.4 2.126 0.460
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kilometer! with a road optimal capacityqo51,440 vh/hr, the
wave speed is about 4.066 km/hr~hr denotes hour!. One advan-
tage of the 3D presentation is that it can clearly demonstrate
behavior of wave spread. Fig. 5 shows the traffic flow rate dis
bution on the urban road segment. The fluctuating flow rate
plies that an observer standing beside the road at a fixed pos
will have insight of a view of maneuver patterns of vehicles; th
are traveling quickly at one time, but slowly at another.

Conclusions

In this work, the traffic flow on a road segment with shock wa
has been studied by virtue of a single parameter state equatio
the relation between the flow rate and density. The param
which is the ratio between optimal density and jam density
closely related to the ratio between the free speed and the op
one. Simple analysis indicated that the parameter should be in
range between 0.333 and 0.618. For traffic flow with mixing, it
dependent upon the free speed, the vehicular proportions, an
velocity ratio of different vehicles. The impacts of such a para
eter on the spread of traffic wave has been discussed merel
an ideal situation, under which the mixing effects are comple
neglected.

Fig. 5. 3D presentation of traffic flow rate, wherej 5x/Dx, n
5t/Dt

Fig. 6. 3D presentation of wave propagation speed, wherej
5x/Dx, n5t/Dt
JOURNA
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The LWR model was used in the study, with the initial a
boundary conditions examined by using a computer-based
dom generator. This random generator was constructed with
spect to the Erlang process of order 250. It was found that
fluctuation in such a condition could clearly illustrate the behav
of shock propagation in the considered traffic system.
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Notation

The following symbols are used in this paper:
A(b) 5 function of b in state equation;

a 5 wave propagation speed;
ā 5 wave propagation speed;

B(b) 5 function of b in state equation;
b 5 single parameter;

bi 5 parameter forith vehicular group;
N 5 total number of vehicular group;
Pi 5 proportion forith vehicular group in mixing traffic

flow;
p 5 parameter used to definePi in binomial distribu-

tion;
q 5 normalized traffic flow rate;
S 5 sign;
t 5 time;

Vf 5 free vehicular speed;
Vf ,i 5 free vehicular forith group;

x 5 space;
a 5 ratio between optimal free speed and optimal one;

a i 5 ratio between optimal free speed and optimal one
for ith vehicular group;

Dt 5 time interval;
Dx 5 space interval;

l 5 ratio between space and time interval;
r 5 normalized traffic density;

rm 5 jam density of traffic flow;
ro 5 optimal density of traffic flow;
t l 5 1/~3r!, lower truncation limit; and
tu 5 3/r, upper truncation limit.

Subscripts
f 5 free;
i 5 vehicular group number;
j 5 space grid number;
L 5 left;
l 5 lower;

m 5 jam;
o 5 optimal; and
u 5 upper.
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