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Abstract: A two-phase fluids model for mixing traffic flow on freeways has been proposed, where vehicles are decomposed into two
parts(i.e., phases—slow moving and fast moving—denoted by subscriptsl and 2, respectively. Based on the fact that both phases
should be at rest under traffic jam conditions, it is assumed that the vehicular speeds for both phases are functions of the global traffi
density, so that traffic flux can be expressed explicitly, considering that the speed of the second phase may be decreased when the m;
fraction of the first phase becomes large. In addition to the relation to global density of traffic, it is assumed that the speed of vehicles in
the second phase also depends on the mass fraction for the first phase. By neglecting the traffic generation rate, the governing equatic
from the mass conservation law were solved numerically with the Yee-Roe-Davis second-order symmetrical total variable diminishing
algorithm. Two cases were considered: first, that there exists a soliton in the initial distribution of global density; second, that there is an
initial uniform global density. Both cases were allowed to have a soliton in the initial density for the slowly moving vehicles. The
numerical results indicate that the evolution of a soliton in traffic is quite different from those in water wave problems. The initial
solitary-wave perturbation has been distorted dramatically. It was found that the presence of a soliton just in the slowly moving vehicles
can increase global density, which means that traffic mixing can be viewed as a source of density wave production. Under very congeste
traffic flow, the speed for moving vehicles fast approaches that of vehicles in the first part.
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Introduction A two-fluid (moving and stopped vehiclesnodel of urban

o ) . traffic has been developed by Herman and Prigodit@79.
So far, it is clear that the early work associated with hydrody- gaseq on this model, trip time versus stop time and fuel consump-
namic analogy to traffic flow performed by Lighthill and o, characteristics of traffic in cities have been studied by Chang
Whitham (1955 and Richard$1956 has had an extensive impact and Herman(1981). Due to the work of Herman and Ardekani

within transportation engineering, where the single phase shock io,man and Ardekani 1984, 1985; Ardekani and Herman 1987
V\;a\t/e equa;[.lon WSas sowfd f?.y malélnlg use of ltlhe Scl)l'%allﬁd t[\?\];fF'{C the reasonableness of the two assumptions in the two-{foaV-
siale equation. such a tratiic modet 1S usuaty cafied the ing and stopped vehiclesnodel has been found by a series of
kinematic model, generalizations of which were carried out by De . ; . . .
experiments conducted in Austin, Texas, and by comparisons with

(1956 and Bick and Newell1960 just after its publication. It relevant data of various cities around the world. Further, not onl
has generated certain advantages in the treatment of traffic shoc% . . i ’ y
ave they studied the influence of stops on vehicle fuel consump-

on freeways. For example, recently, Daga Sa.b, 1997has tion in urban traffic, but they have measured the variables of

conducted a finite-difference approximation starting from the . . .
LWR model for the traffic on freeways, where the accuracy and network-wide traffic such as speed, flow, and the fraction of ve-

the transfer of approximating error were expressed and discussed!ic!eS Stopped by using aerial photographic surveys. These works
in detail. are of great theoretical and practical significance. Nevertheless,

In fact, due to the nature of mixing traffic flow on freeways, considering the behaviors of moving vehicles and proposing a

even for the evaluation of the simplest solution, the original LWR tWo-phase fluids modeffor fast and slow vehiclgsis also of
model for traffic can not be used directly without corresponding 9réat importance, since it may be useful for the understanding of
modifications related to the inherent nature of the traffic. the mechanism of density fluctuation arising from vehicular inter-

actions. In this regard, it will be used to simulate the evolution of
IAssociate Professor, Dept. of Thermal Science and Energy Engineer-traﬁ'c solitons on freeways, where stopped vehicles hold a very
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P.R. China. E-mail: zuojin@ustc.edu.torresponding authpr The two-phase fluids model is based on the mass conservation

2PhD Student, Dept. of Operations Research and Financial Engineer-law, where vehicles on freeways are first decomposed into two
ing, Princeton Univ., Princeton, NJ 08540. E-mail: twu@princeton.edu  parts reflecting the relevant running character. Then the governing

Note. Discussion open until June 1, 2003. Separate discussions muskquations for the density of the first part and the global traffic
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Table 1. Initial Parameters Used in Simulation For simplicity, we choose the one-parameter family polyno-
mial speed-density model as mentioned by Zhé&i®99:

Figure p P1 P1j P2j
numbers (vh/km) (vh/km) s (vh/km)  (vh/km) n;
f=1—| 2], =12 )
2(a), 3,4 see Eq(25 see Eq(25 (p1/p) 200 300 I Pm/ !
2(b), 5,6 see Eq(26) see Eq(26) (pi/p) 200 300

where p,,=maximum global density allowed for the traffic,
which is defined by

Pm=p1jStp2(1—s) 4)

A soliton, as discovered numerically by Zabusky and Kruskal This is a linear function of the mass fractisnwherep;; for i
(1965, is a large ampl_ltude coherent pulse or very stable solitary =12 is the jam density for the case sfquals 1 or 0, respec-
wave, the exact solution of a wave equation, whose shape andively. It is assumed that the average length of slow moving ve-

speed are not changed by a collision with other solitary waves. picjes (=1,5,) is just about 1.5 times that of those moving fast
Large amplitude wave motions have been observed in various, —

fields ranging from fluids and plasma to solid state, chemical, (=1unz). Thus, the assigned _valye o _shown n TabI(_a Lis less

) . . . 77" than the value ofp,;, and it gives rise to the rati@;/py;
biological, and geological systenigortewg and Devries 1895; — = ! rer
Chen 1988; Remoissenet 199®ue to the wide existence of = (luni/lun2)""=1/1.5. Note that the average length of the mix-
nonlinearity in the real world, the character of solitons has been IN9 traffic flow is proportional to the reciprocal of,.
used in optical communication systems and electrical networks. ~ From the continuity equations for the two-phase fluids system,
For instance, Hirotd1973 proposed a pulse soliton modulation PY neglecting the traffic generation rates and recallingshgthe
technique, and Singdf.996 has recently developed a technique ™MaSS fraction fo_r the first phase, we have the governing equations
considering a soliton train. Nevertheless, in the field of traffic, for freeway traffic in the form
there seems to be no published reports involved with solitons. Not a(sp) a(spuy)

only for a soliton but with a general density wave as well, as long ot + Ix (5)
as it is propagating along the corresponding characteristic line, its

shape remains unchanged. Intuitively, this may be the primary [(L—=s)p] 9[(1—s)pus]

reason that solitons have not been appreciated so far in the traffic ot + IX =0 (6)

field. The reason for applying the two-phase fluids model to simu- ] ) i
late the evolution of solitons is mainly due to smooth property of ~ BY taking the summation of Eqg5) and (6) as a governing.
its large amplitude wave, which might occur on multilane free- €quation for the global traffic density, we have the alternative

ways. form of the governing equations for the two-phase fluids traffic
system:
, , ap  d(pu)
Two-Phase Fluids Model for Freeway Traffic T v )
By considering mixing traffic flow on freeways, we divide the d(sp) d(spuy) ~0 8
vehicles into two parts. The first part is the vehicular cluster run- ot + ax ®)

ning slowly; the second is the cluster running fast. In other words,

we expect to study a two-phase fluid traffic system. Thus, it is where

convenient to assume that vehicles can pass themselves but the p1=5p, u=suy;K1(8)f1(p/pm)

macroscopic hypothesis is made postulating that flow can be rep- +(1—5)Uy (Ko(S)fo(plpm)
resented by global variables not taking into account the different

e o 9 p=p1+pz, Ur=UsKy(9)1(p/pp) ©

Let s denote the mass fraction for the first vehicular phase, Solutions for Eqs(7) and (8) must be sought that satisfy the
while us¢ andu, represent, respectively, the two free speeds for boundary conditions
the two phase system. Further, lgt andu, denote the relevant
b y gy 2 S|y—0=5(0t), |y =s(L,t)

vehicular speeds in the form
b=t Ky(S) Fa(plp) plx=0=p(01), plx=L=p(L,t) te[0w) (10)
1=Uzs-Ka(S)f1(p/pm . .

Up=Uys- Ko(S)Fo(plppm) 1) and the initial conditions

wheref;(p/p,,) for i=1,2 are relations to be obtained from the Sli—o=s(x,0), pli—o=p(x,0, xe[OL] (11)

observation of freeway traffig=mass fraction of the first phase;

and K, (s) andK,(s)=monotonic functions ok used to reflect

the vehicular interaction. Since the free speed for vehicles in the Numerical Algorithm

first phase must not be enlarged by vehicles in the second phase

even under the condition whemapproaches zero, we suppose We shall now use the second-order symmetrigalal variation

thatK,(s)=1. On the other hand, the increase of mass fragtion diminishing TVD) algorithm of (Roe 1981; Yee-Roe-Davis Yee

must lead to the decrease of the speed for vehicles in the second987; Davis 198B8to solve a traffic problem described by the

phase due to the impeding effects arising from the former. Thus, two-phase fluids model given in the previous section. $h998

we assume that has introduced this algorithm in detail. For convenience, we
choose a uniform time space grid system for the finite-difference

) approximation. From Eqg7) and (8), we have the alternative
vector form

1+

Ugf Uy ¢
Ko(s)=— ——1)(1—5)2
us ¢ Upf
52 / JOURNAL OF TRANSPORTATION ENGINEERING / JANUARY/FEBRUARY 2003

Downloaded 30 Mar 2009 to 158.132.12.80. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



ap  dF(p)
1T Tax =0 (12)
whose Jacobian matrix is given by
dF, oF;
A ( ag alZ) _ ap dpr (13)
ay, ap aF, dJF,
p apy

The two characteristic values for the Jacobian mairizan be
expressed as

aytag— V(an—ap)?+4agay,
a]_:
2
ay1tagt \(ag—az)*+4a,ay;
a2:
2
According to the speed-density relation figr, andf,, we have

e {}_ Ni(p/pm)™
27020 1—(plpm)™

(14)

1 pljpzjg“
P Pm  p°

1 nyplpm)™ |p1j—p2i 1
A 1(plpm) : P1j= P2j _”
p1 1-=(plpm)™| pPm P
1 No(p/pm)"™
aj;=apnt(Fi—Fy) A+
11 21 ( 1 2)[ 1 p—p1 1_(P/Pm)n2
1 — 0
«| =+ P1j= P2j p_;.
P Pm P
1 No(p/pm)"™
ajp=aynt(F1—Fy) A—
12 22 ( 1 2)[ 2 p—p1 17(P/pm)n2

o (15)
x|:p1] P2j E“
Pm P
where
2(uz¢/ugr—=1)(1=p1/p)/ps
A= Tuy—1)(1=py/p)? (16)
[1+(uz¢/us—1)(1—py1/p)]
:Z(Uzf/Ulf_l)(l_Pl/P)Pllpz
2 [1+(up e lug—1)(1—py1/p)?]
are, respectively, the terms arising frd€y(s).

By making use of the Jacobian matrix, we obtain the right
characteristic matrix in the form

17)

1 8
IEF K ay—ap
R=[f1(p),rz(p)]=[ }=
rai T2z A 1
Axp—a;
(18)
with its inverse, the left characteristic matrix
l1(p) 1 1 —l
L= =R 1= 19
l2(p) I-rgdo|—ry 1 (19)

Now we shall briefly describe the Yee-Roe-Davis symmetrical
TVD algorithm in the second order. First lgtandr,, wherek

0 0.I25 05 0.'75 1

p

Fig. 1. Diagram of traffic speed-density fop=n,=n=2, wherep*
andf, are, respectively, normalized global density and speed in unit
of free speediy; for vehicles in first phase

Amaxay j+ 12 <1
kij

where a j (112 is the kth characteristic value foA located at
Xj+(1/2)- By defining the coefficient of the viscous term as

lz|, if |z|=e€,
_] 242
Q) €k otherwise (20)
2€k ’

for the second-order symmetrical TVD algorithm due to Yee-Roe-
Davis, we have

P =N (Fj 12— Fi_1p2) (21)
where
2
~ 1
Fiviz =5 F(Pj)+F(Pj+1)+kZ:1 i jr1/2Mkj+1/2
1 2
Yy j+12 =~ X[(Aak,j-%—l/Z) Ok,j+1/2
+Qu(Nay j+1/2) (o j+1/2— Gk,j+1/2)] (22)
and
agirrz =hjri(pj+1—pj))
Okjr12 =minmoday 172,06 12,0k j+1/2)  (23)
while the minimum modification function is given by
sgnzy - min(|zy/,12,,z3)),
minmodz,,z,,23) = it sgnz;=sgnz,=sgnz;
0, otherwise (24)

where sgrz=sign function whose value is 1, 0, ofrl, if z is
positive, zero, or negative, respectively. The minimum modifica-
tion function plays the role of providing monotonic treatment for
the numerical solution.

The relation between traffic speed-densify(p/p,) and
fo(p/py) Will dominate the flow patterns for freeway flow. The
relations under definite circumstances with indingsn,=2 are
illustrated in Fig. 1. In addition, the flow patterns are also closely
dependent upon the initial and boundary conditions considered.

=1,2, denote the left and right characteristic vectors correspond-We shall discuss some numerical results obtained from the Yee-

ing to thekth characteristic value of the Jacobian mathixre-

Roe-Davis second-order symmetrical algorithm in the next sec-

spectively, and let the space grid and time level be denoted bytion, where evolution of solitons in traffic will be conveyed with

subscript and superscript distinctively—then define At/Ax as

respect to the results, the traffic speed is measured fgyand the

the ratio between time interval and grid space, which should sat- unit of distance isAx, from which it is seen that the time unit is

isfy the condition for computational stability as follows:

Ax/uqs .
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Results and Discussions 200 b

>

The following numerical results are obtained by using the two- 1% ,’
phase fluids model for traffic flow, for which the initial param- o'y :
eters are given in Table 1, and which contain some new phenom- 170 f .'
ena on the evolution of a soliton in traffic flow on freeways. A 160 | ;’
traffic soliton on freeways may occur in the region near a ramp, @ "™s /

where local density on the road may change due to the presence
of the ramp. 200 ¢
The speed-density relation used in the present calculation is

shown in Fig. 1, where the index is=2. This seems to be com- el

patible with the traffic situation on freeways. hadld
Two kinds of specific cases were considered. The expressions Q170 ¢
given below are the initial density-distributions for the first case: 160 ¢
150
p(X)ti=0  =py[0.5+0.3 Secﬁm b)'*o 50 l1(30 150
0.2(x—Xo) _ Fig. 2. Comparison with solution of LWR model at instant bf
P1(X)i=0  =py|0.2+0.2 sect 2 , X%o/Ax=100 =40: (a) first case, where curves labeled with 1, 2, and 3 are appro-
priate for LWR solutions when value of uniform mass fractien
and for the second case: (25) =0, 0.4, and 1, while curve labeled with 4 corresponds to solution of
' present model{b) second case, where solution of LWR model is
p(X) =0 =0.5py; same as initial distribution, while curves labeled with 1, 2, and 3 are
0.2(x— ) appropriate for solutions of present model when jam densities of first
p1(X)]t=o =pzj|0.2+0.2 secﬁf . Xo/Ax=100 phase are 200, 250, and 300 vh/km, respectively.
(26)

For the first case, solitary waves of global density and density of time and spread back and forth along the road. The frontal part of
the first phase occurred under initial conditions. But for the sec- the soliton alleviates and the rear part becomes steep, showing a
ond case, there was merely an initial soliton of density for the first wave distortion.

phase, as the initial global density was uniform. The speed distributions at four instants are illustrated in Fig.

We shall examine the evolutions of such solitary-wave pertur- 3(a), together with the distributions for the mass fractsend the
bations with respect to the proposed two-phase fluids model toglobal densityp. It is seen that the speed does decrease to some
reveal the vehicular interactions in freeway traffic. It should be extent due to the variation of global density and the mass fraction.
noted that the following results are obtained under the condition Fig. 3(b) shows that the wave shape for mass fraction generally
of uy ¢ /us=2. propagates downstream for the present case, while its shape

gradually adjusts to a single maxima type. It is noted that the
) ) perturbation propagated upstream correspondingly leads to a
Comparison with LWR Model slight drop ins. Fig. 3c) indicates the wave shape of global
densityp distorts transparently during propagation of the initial
solitary-wave type perturbation. The reason for this is that the
upstream vehicles belonging to the second phase would have ar-
rived earlier due to their faster running behavior.

From Fig. 4, the 3D presentations for traffic densities, it is
seen that the density wave of the first phase deforms dramatically
due to the interaction of both phases. The impact of fast running
vehicles on the first phase comes indirectly from the variation of
the global density, which plays a great role in the determination of
the vehicular speeds for both phases.

A comparison of the two-phase fluids model and the LWR model
is made using Fig. 2, where the numerical results at the instant of
t=40 are illustrated. From Fig.(d), it is seen that the results of
the LWR model depend on the values ®fThese are clearly
different from the result obtained by using the two-phase fluids
model(see curve # Interestingly, from Fig. @), since the initial
density is uniform, the LWR model can not predict a density wave
on the road. However, with a density soliton of the first phase, the
two-phase fluids model reveals a wave of global density, indicat-
ing that mixing can be viewed as a mechanism of density wave
production. Note that Fig.(B) also shows that the density wave
depends on the jam density of the first phase. Solutions for Second Case

To demonstrate the effects pf on the traffic flow more clearly,

the second case only allows the presence of a solitary-wave per-
turbation forp, while the global density remains uniform.

For the problem in hand, any perturbations due to density solitons  For this case, the numerical results are shown in Figs. 5 and 6.
will spread along their corresponding characteristic lines. Unlike From Fig. 5a), one can see that the vehicular speed evolutions
the propagation form of a soliton on free surface for a water wave are closely dependent on the distribution of the global density
problem (Chen 1988 where the mechanism of spread can be and the mass fractiom For the speed; measured by, from
described by a KDV equatiofKorteweg and Devries 1895the the dot-dashed curve, it is found that the minima occurred as the
initial soliton in a traffic flow should satisfy the vehicular conser- maxima ofs appeared. However, far,, the minima occurred as
vation relations and the relevant state relations and boundary conthe presence of the maxima pfrrived. From Fig. &), it is seen
ditions. For this reason, the solitary wave should deform with that the wave magnitude afpropagating downstream gradually

Solutions for First Case
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Fig. 3. Evolution of traffic wave in first case for which boprandp, Fig. 5. Evolution of traffic wave in second case where oplyhas a
have solitary-wave shapes given in Tablgd):for u; andus, in unit solitary-wave shape as given in Table(a) for u; andu, in unit of
of uy¢; (b) for mass fractiors of first vehicular phase(c) for global uyss; (b) for mass fractions of first vehicular phase(c) for global
densityp. densityp.

reduces, together with the distortion at the rear part of the wave, since all vehicles are at rest when a traffic jam appears, and the
as no bifurcation of the wave was observed. From Figa.&hd vehicles moving slowly have an impeding effect on the faster
C), it is seen that in the large value region, the speed of vehicles running cluster. The vehicular interactions are assumed to be con-

obviously reduces. cerned with the mass fraction of the slower running vehicles and
Similar to Fig. 4, Fig. 6 depicts the 3D presentationy @nd the global density.

py in the x—t plane, from which the behaviors involving with Two cases involved with initial solitary-wave perturbations in

traffic wave deformation and propagation can be observed. Thetraffic density were studied numerically by making use of the

wave influenced region increases with time. Yee-Roe-Davis second-order symmetrical TVD algorithm. A

comparison with the results of the LWR model was performed. It
was seen that the two-phase fluids model does have a clear ad-
Conclusions vantage over the LWR model in the prediction of vehicular mix-
ing on freeways. The mixing of traffic flow having different run-
In this work, a two-phase fluids model for the mixing traffic low ning behaviors provides a mechanism of density wave production
on freeways has been proposed from the mass conservation lawin traffic flow. When the initial global density is assumed to be

(a) =
Fig. 4. 3D presentation fop andp, for first case(a) and(b) denote Fig. 6. 3D presentation fop andp, for second case(@ and (b)
distributions ofp andp, in Xx—t plane, respectively denote distributions of andp, in Xx—t plane, respectively
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uniform, a soliton in the first phase can lead to a wave of global Superscript
density propagating along the characteristic directions. However, m =
using the LWR model, the density wave does not appear; that is, n
the density distribution remains unchandede Fig. 2b)].

The numerical results indicate that, in contrast to the results of
solitary-wave evolution in water wave problems, the solitary per- References
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