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Two-Phase Fluids Model for Freeway Traffic Flow and
Its Application to Simulate Evolution of Solitons in Traffic

Zuojin Zhu1 and Tongqiang Wu2

Abstract: A two-phase fluids model for mixing traffic flow on freeways has been proposed, where vehicles are decomposed i
parts~i.e., phases!—slow moving and fast moving–denoted by subscriptsi 51 and 2, respectively. Based on the fact that both pha
should be at rest under traffic jam conditions, it is assumed that the vehicular speeds for both phases are functions of the glob
density, so that traffic flux can be expressed explicitly, considering that the speed of the second phase may be decreased whe
fraction of the first phase becomes large. In addition to the relation to global density of traffic, it is assumed that the speed of ve
the second phase also depends on the mass fraction for the first phase. By neglecting the traffic generation rate, the governing
from the mass conservation law were solved numerically with the Yee-Roe-Davis second-order symmetrical total variable dim
algorithm. Two cases were considered: first, that there exists a soliton in the initial distribution of global density; second, that the
initial uniform global density. Both cases were allowed to have a soliton in the initial density for the slowly moving vehicles
numerical results indicate that the evolution of a soliton in traffic is quite different from those in water wave problems. The
solitary-wave perturbation has been distorted dramatically. It was found that the presence of a soliton just in the slowly moving
can increase global density, which means that traffic mixing can be viewed as a source of density wave production. Under very c
traffic flow, the speed for moving vehicles fast approaches that of vehicles in the first part.
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Introduction

So far, it is clear that the early work associated with hydrod
namic analogy to traffic flow performed by Lighthill an
Whitham~1955! and Richards~1956! has had an extensive impa
within transportation engineering, where the single phase sh
wave equation was solved by making use of the so-called tra
state equation. Such a traffic model is usually called the LW
kinematic model, generalizations of which were carried out by
~1956! and Bick and Newell~1960! just after its publication. It
has generated certain advantages in the treatment of traffic s
on freeways. For example, recently, Daganzo~1995a,b, 1997! has
conducted a finite-difference approximation starting from
LWR model for the traffic on freeways, where the accuracy a
the transfer of approximating error were expressed and discu
in detail.

In fact, due to the nature of mixing traffic flow on freeway
even for the evaluation of the simplest solution, the original LW
model for traffic can not be used directly without correspond
modifications related to the inherent nature of the traffic.
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A two-fluid ~moving and stopped vehicles! model of urban
traffic has been developed by Herman and Prigogine~1979!.
Based on this model, trip time versus stop time and fuel consum
tion characteristics of traffic in cities have been studied by Cha
and Herman~1981!. Due to the work of Herman and Ardekani
~Herman and Ardekani 1984, 1985; Ardekani and Herman 198!,
the reasonableness of the two assumptions in the two-fluid~mov-
ing and stopped vehicles! model has been found by a series o
experiments conducted in Austin, Texas, and by comparisons w
relevant data of various cities around the world. Further, not on
have they studied the influence of stops on vehicle fuel consum
tion in urban traffic, but they have measured the variables
network-wide traffic such as speed, flow, and the fraction of v
hicles stopped by using aerial photographic surveys. These wo
are of great theoretical and practical significance. Neverthele
considering the behaviors of moving vehicles and proposing
two-phase fluids model~for fast and slow vehicles! is also of
great importance, since it may be useful for the understanding
the mechanism of density fluctuation arising from vehicular inte
actions. In this regard, it will be used to simulate the evolution
traffic solitons on freeways, where stopped vehicles hold a ve
small percentage.

The two-phase fluids model is based on the mass conserva
law, where vehicles on freeways are first decomposed into tw
parts reflecting the relevant running character. Then the govern
equations for the density of the first part and the global traffi
density are presented, by assuming that the speed for each pa
an explicit function of the mass fraction and the global densit
Since, the traffic flow is at rest when a jam is encountered, t
nature of the mixing traffic flow on freeways can be manifeste
by examining the evolution of a soliton initially appearing in th
mixing traffic flow.
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Table 1. Initial Parameters Used in Simulation

Figure
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2~a!, 3, 4 see Eq.~25! see Eq.~25! (r1 /r) 200 300

2~b!, 5, 6 see Eq.~26! see Eq.~26! (r1 /r) 200 300
kal
ary
an
es

iou
cal,
;
f
een
rks
n
e

fic,
No
ng
, it
ary
affi
u-
of
e-

e
un-
ds
t is
t t
rep
en

se,
for
t

e
;

the
ha
se
n
con
us

-

,

ns

e

e
e

52 / JOURNAL OF TRANSPORTATION ENGINEERING / JANUARY/FEBRU

Downloaded 30 Mar 2009 to 158.132.12.80. Redistribution subject to A
d
.
s

.

t

s

c

,

he
-
t

se

d
,

For simplicity, we choose the one-parameter family polyno
mial speed-density model as mentioned by Zhang~1999!:

f i512S r

rm
D ni

, i 51,2 (3)

where rm5maximum global density allowed for the traffic,
which is defined by

rm5r1 j s1r2 j~12s! (4)

This is a linear function of the mass fractions, wherer i j for i
51,2 is the jam density for the case ofs equals 1 or 0, respec-
tively. It is assumed that the average length of slow moving ve
hicles (5 l̄ vh1) is just about 1.5 times that of those moving fast
(5 l̄ vh2). Thus, the assigned value ofr1 j shown in Table 1 is less
than the value ofr2 j , and it gives rise to the ratior1 j /r2 j

'( l̄ vh1 / l̄ vh2)2151/1.5. Note that the average length of the mix-
ing traffic flow is proportional to the reciprocal ofrm .

From the continuity equations for the two-phase fluids system
by neglecting the traffic generation rates and recalling thats is the
mass fraction for the first phase, we have the governing equatio
for freeway traffic in the form

]~sr!

]t
1

]~sru1!

]x
50 (5)

]@~12s!r#

]t
1

]@~12s!ru2#

]x
50 (6)

By taking the summation of Eqs.~5! and ~6! as a governing
equation for the global traffic density, we have the alternativ
form of the governing equations for the two-phase fluids traffic
system:

]r

]t
1

]~ru!

]x
50 (7)

]~sr!

]t
1

]~sru1!

]x
50 (8)

where

r15sr, u5su1 fK1~s! f 1~r/rm!
1~12s!u2 fK2~s! f 2~r/rm!

r5r11r2 , u15u1 fK1~s! f 1~r/rm! (9)

Solutions for Eqs.~7! and ~8! must be sought that satisfy the
boundary conditions

sux505s~0,t !, sux5L5s~L,t !

rux505r~0,t !, rux5L5r~L,t ! tP@0,̀ ! (10)

and the initial conditions

su t505s~x,0!, ru t505r~x,0!, xP@0,L# (11)

Numerical Algorithm

We shall now use the second-order symmetrical~total variation
diminishing TVD! algorithm of ~Roe 1981; Yee-Roe-Davis Yee
1987; Davis 1988! to solve a traffic problem described by the
two-phase fluids model given in the previous section. Shui~1998!
has introduced this algorithm in detail. For convenience, w
choose a uniform time space grid system for the finite-differenc
approximation. From Eqs.~7! and ~8!, we have the alternative
vector form
A soliton, as discovered numerically by Zabusky and Krus
~1965!, is a large amplitude coherent pulse or very stable solit
wave, the exact solution of a wave equation, whose shape
speed are not changed by a collision with other solitary wav
Large amplitude wave motions have been observed in var
fields ranging from fluids and plasma to solid state, chemi
biological, and geological systems~Kortewg and Devries 1895
Chen 1988; Remoissenet 1999!. Due to the wide existence o
nonlinearity in the real world, the character of solitons has b
used in optical communication systems and electrical netwo
For instance, Hirota~1973! proposed a pulse soliton modulatio
technique, and Singer~1996! has recently developed a techniqu
considering a soliton train. Nevertheless, in the field of traf
there seems to be no published reports involved with solitons.
only for a soliton but with a general density wave as well, as lo
as it is propagating along the corresponding characteristic line
shape remains unchanged. Intuitively, this may be the prim
reason that solitons have not been appreciated so far in the tr
field. The reason for applying the two-phase fluids model to sim
late the evolution of solitons is mainly due to smooth property
its large amplitude wave, which might occur on multilane fre
ways.

Two-Phase Fluids Model for Freeway Traffic

By considering mixing traffic flow on freeways, we divide th
vehicles into two parts. The first part is the vehicular cluster r
ning slowly; the second is the cluster running fast. In other wor
we expect to study a two-phase fluid traffic system. Thus, i
convenient to assume that vehicles can pass themselves bu
macroscopic hypothesis is made postulating that flow can be
resented by global variables not taking into account the differ
lanes.

Let s denote the mass fraction for the first vehicular pha
while u1 f andu2 f represent, respectively, the two free speeds
the two phase system. Further, letu1 andu2 denote the relevan
vehicular speeds in the form

Hu15u1 f•K1~s! f 1~r/rm!
u25u2 f•K2~s! f 2~r/rm! (1)

where f i(r/rm) for i 51,2 are relations to be obtained from th
observation of freeway traffic;s5mass fraction of the first phase
and K1(s) and K2(s)5monotonic functions ofs used to reflect
the vehicular interaction. Since the free speed for vehicles in
first phase must not be enlarged by vehicles in the second p
even under the condition whens approaches zero, we suppo
that K1(s)51. On the other hand, the increase of mass fractios
must lead to the decrease of the speed for vehicles in the se
phase due to the impeding effects arising from the former. Th
we assume that

K2~s!5
u1 f

u2 f
F11S u2 f

u1 f
21D ~12s!2G (2)
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]F~r!

]x
50 (12)

whose Jacobian matrix is given by

A5S a11 a12

a21 a22
D 5S ]F1

]r

]F1

]r1

]F2

]r

]F2

]r1

D (13)

The two characteristic values for the Jacobian matrixA can be
expressed as

a15
a111a222A~a112a22!

214a12a21

2

a25
a111a221A~a112a22!

214a12a21

2
(14)

According to the speed-density relation forf 1 , and f 2 , we have

a215F2H 1

r
2

n1~r/rm!n1

12~r/rm!n1 F1r 1
r1 j2r2 j

rm

r1

r2G J
a225F2H 1

r1
1

n1~r/rm!n1

12~r/rm!n1 Fr1 j2r2 j

rm

1

r G J
a115a211~F12F2!H D11

1

r2r1
2

n2~r/rm!n2

12~r/rm!n2

3F1r 1
r1 j2r2 j

rm

r1

r2G J
a125a221~F12F2!H D22

1

r2r1
2

n2~r/rm!n2

12~r/rm!n2

3Fr1 j2r2 j

rm

1

r G J (15)

where

D152
2~u2 f /u1 f21!~12r1 /r!/r1

@11~u2 f /u1 f21!~12r1 /r!2#
(16)

D25
2~u2 f /u1 f21!~12r1 /r!r1 /r2

@11~u2 f /u1 f21!~12r1 /r!2#
(17)

are, respectively, the terms arising fromK2(s).
By making use of the Jacobian matrix, we obtain the rig

characteristic matrix in the form

R5@r1~r!,r2~r!#5F r 11 r 12

r 21 r 22
G5F 1 2

a12

a112a2

2
a21

a222a1
1

G
(18)

with its inverse, the left characteristic matrix

L5F l1~r!
l2~r!G5R215

1

12r 12r 21
F 1 2r 12

2r 21 1 G (19)

Now we shall briefly describe the Yee-Roe-Davis symmetri
TVD algorithm in the second order. First letlk and r k , wherek
51,2, denote the left and right characteristic vectors correspo
ing to thekth characteristic value of the Jacobian matrixA, re-
spectively, and let the space grid and time level be denoted
subscript and superscript distinctively—then definel5Dt/Dx as
the ratio between time interval and grid space, which should
isfy the condition for computational stability as follows:
JOURNAL OF
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lmax
k, j

uak, j 11/2u,1

where ak, j 1(1/2) is the kth characteristic value forA located at
xj 1(1/2) . By defining the coefficient of the viscous term as

Qk~x!5H uzu, if uzu>ek

z21ek
2

2ek
, otherwise

(20)

for the second-order symmetrical TVD algorithm due to Yee-R
Davis, we have

r j
m115r j

m2l~ F̂j 11/22F̂j 21/2! (21)

where

F̂j 11/2 5
1

2 FF~r j !1F~r j 11!1(
k51

2

ck, j 11/2r k, j 11/2G
ck, j 11/2 52

1

l
[(lak, j 11/2)

2gk, j 11/2

1Qk(lak, j 11/2)(ak, j 11/22gk, j 11/2)] (22)

and

ak, j 11/2 5 lk, j 11/2~r j 112r j !

gk, j 11/2 5min mod~ak, j 21/2 ,ak, j 11/2 ,ak, j 11/2! (23)

while the minimum modification function is given by

min mod~z1 ,z2 ,z3!5H sgnz1•min~ uz1u,uz2u,uz3u!,

if sgnz15sgnz25sgnz3

0, otherwise (24)

where sgnz5sign function whose value is 1, 0, or21, if z is
positive, zero, or negative, respectively. The minimum modifi
tion function plays the role of providing monotonic treatment f
the numerical solution.

The relation between traffic speed-density,f 1(r/rm) and
f 2(r/rm) will dominate the flow patterns for freeway flow. Th
relations under definite circumstances with indicesn15n252 are
illustrated in Fig. 1. In addition, the flow patterns are also clos
dependent upon the initial and boundary conditions conside
We shall discuss some numerical results obtained from the Y
Roe-Davis second-order symmetrical algorithm in the next s
tion, where evolution of solitons in traffic will be conveyed wi
respect to the results, the traffic speed is measured byu1 f , and the
unit of distance isDx, from which it is seen that the time unit i
Dx/u1 f .

Fig. 1. Diagram of traffic speed-density forn15n25n52, wherer*
and f 1 are, respectively, normalized global density and speed in
of free speedu1 f for vehicles in first phase
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Results and Discussions

The following numerical results are obtained by using the tw
phase fluids model for traffic flow, for which the initial param
eters are given in Table 1, and which contain some new phen
ena on the evolution of a soliton in traffic flow on freeways.
traffic soliton on freeways may occur in the region near a ram
where local density on the road may change due to the pres
of the ramp.

The speed-density relation used in the present calculatio
shown in Fig. 1, where the index isn52. This seems to be com
patible with the traffic situation on freeways.

Two kinds of specific cases were considered. The express
given below are the initial density-distributions for the first ca

r~x!u t50 5r2 j F0.510.3 sech2
0.3~x2x0!

2 G
r1~x!u t50 5r2 j F0.210.2 sech2

0.2~x2x0!

2 G , x0 /Dx5100

(25)
and for the second case:

r~x!u t50 50.5r2 j

r1~x!u t50 5r2 j F0.210.2 sech2
0.2~x2x0!

2 G , x0 /Dx5100

(26)

For the first case, solitary waves of global density and density
the first phase occurred under initial conditions. But for the s
ond case, there was merely an initial soliton of density for the fi
phase, as the initial global density was uniform.

We shall examine the evolutions of such solitary-wave per
bations with respect to the proposed two-phase fluids mode
reveal the vehicular interactions in freeway traffic. It should
noted that the following results are obtained under the condi
of u2 f /u1 f52.

Comparison with LWR Model

A comparison of the two-phase fluids model and the LWR mo
is made using Fig. 2, where the numerical results at the instan
t540 are illustrated. From Fig. 2~a!, it is seen that the results o
the LWR model depend on the values ofs. These are clearly
different from the result obtained by using the two-phase flu
model~see curve 4!. Interestingly, from Fig. 2~b!, since the initial
density is uniform, the LWR model can not predict a density wa
on the road. However, with a density soliton of the first phase,
two-phase fluids model reveals a wave of global density, indic
ing that mixing can be viewed as a mechanism of density w
production. Note that Fig. 2~b! also shows that the density wav
depends on the jam density of the first phase.

Solutions for First Case

For the problem in hand, any perturbations due to density solit
will spread along their corresponding characteristic lines. Unl
the propagation form of a soliton on free surface for a water w
problem ~Chen 1988!, where the mechanism of spread can
described by a KDV equation~Korteweg and Devries 1895!, the
initial soliton in a traffic flow should satisfy the vehicular conse
vation relations and the relevant state relations and boundary
ditions. For this reason, the solitary wave should deform w
54 / JOURNAL OF TRANSPORTATION ENGINEERING / JANUARY/FEBRU
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time and spread back and forth along the road. The frontal par
the soliton alleviates and the rear part becomes steep, showin
wave distortion.

The speed distributions at four instants are illustrated in F
3~a!, together with the distributions for the mass fractions and the
global densityr. It is seen that the speed does decrease to so
extent due to the variation of global density and the mass fracti
Fig. 3~b! shows that the wave shape for mass fraction genera
propagates downstream for the present case, while its sh
gradually adjusts to a single maxima type. It is noted that t
perturbation propagated upstream correspondingly leads to
slight drop in s. Fig. 3~c! indicates the wave shape of globa
densityr distorts transparently during propagation of the initia
solitary-wave type perturbation. The reason for this is that t
upstream vehicles belonging to the second phase would have
rived earlier due to their faster running behavior.

From Fig. 4, the 3D presentations for traffic densities, it
seen that the density wave of the first phase deforms dramatic
due to the interaction of both phases. The impact of fast runn
vehicles on the first phase comes indirectly from the variation
the global density, which plays a great role in the determination
the vehicular speeds for both phases.

Solutions for Second Case

To demonstrate the effects ofr1 on the traffic flow more clearly,
the second case only allows the presence of a solitary-wave p
turbation forr1 , while the global density remains uniform.

For this case, the numerical results are shown in Figs. 5 and
From Fig. 5~a!, one can see that the vehicular speed evolutio
are closely dependent on the distribution of the global densityr
and the mass fractions. For the speedu1 measured byu1 f , from
the dot-dashed curve, it is found that the minima occurred as
maxima ofs appeared. However, foru2 , the minima occurred as
the presence of the maxima ofr arrived. From Fig. 5~b!, it is seen
that the wave magnitude ofs propagating downstream gradually

Fig. 2. Comparison with solution of LWR model at instant oft
540: ~a! first case, where curves labeled with 1, 2, and 3 are app
priate for LWR solutions when value of uniform mass fractions
50, 0.4, and 1, while curve labeled with 4 corresponds to solution
present model;~b! second case, where solution of LWR model i
same as initial distribution, while curves labeled with 1, 2, and 3 a
appropriate for solutions of present model when jam densities of fi
phase are 200, 250, and 300 vh/km, respectively.
ARY 2003
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Fig. 3. Evolution of traffic wave in first case for which bothr andr1

have solitary-wave shapes given in Table 1:~a! for u1 andu2 in unit
of u1 f ; ~b! for mass fractions of first vehicular phase;~c! for global
densityr.
v

h
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Fig. 5. Evolution of traffic wave in second case where onlyr1 has a
solitary-wave shape as given in Table 1:~a! for u1 andu2 in unit of
u1 f ; ~b! for mass fractions of first vehicular phase;~c! for global
densityr.
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reduces, together with the distortion at the rear part of the wa
as no bifurcation of the wave was observed. From Figs. 5~a and
c!, it is seen that in the larger value region, the speed of vehicles
obviously reduces.

Similar to Fig. 4, Fig. 6 depicts the 3D presentations ofr and
r1 in the x2t plane, from which the behaviors involving with
traffic wave deformation and propagation can be observed. T
wave influenced region increases with time.

Conclusions

In this work, a two-phase fluids model for the mixing traffic flow
on freeways has been proposed from the mass conservation
A

,

e

w,

since all vehicles are at rest when a traffic jam appears, and
vehicles moving slowly have an impeding effect on the fas
running cluster. The vehicular interactions are assumed to be
cerned with the mass fraction of the slower running vehicles
the global densityr.

Two cases involved with initial solitary-wave perturbations
traffic density were studied numerically by making use of
Yee-Roe-Davis second-order symmetrical TVD algorithm.
comparison with the results of the LWR model was performed
was seen that the two-phase fluids model does have a clea
vantage over the LWR model in the prediction of vehicular m
ing on freeways. The mixing of traffic flow having different ru
ning behaviors provides a mechanism of density wave produc
in traffic flow. When the initial global density is assumed to
Fig. 4. 3D presentation forr andr1 for first case:~a! and~b! denote
distributions ofr andr1 in x2t plane, respectively
Fig. 6. 3D presentation forr and r1 for second case:~a! and ~b!
denote distributions ofr andr1 in x2t plane, respectively
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uniform, a soliton in the first phase can lead to a wave of glo
density propagating along the characteristic directions. Howe
using the LWR model, the density wave does not appear; tha
the density distribution remains unchanged@see Fig. 2~b!#.

The numerical results indicate that, in contrast to the result
solitary-wave evolution in water wave problems, the solitary p
turbation in traffic has its own propagation properties. At fir
such an initial perturbation in slowly moving vehicles leads t
wave of global densityr @see Figs. 2~b! and 5~c!#. Subsequently
the vehicular speed for fast moving vehicles tends to the spee
the slowly running part whens approaches unity. Finally, th
initial soliton will distort dramatically during its propagation.
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Notation

The following symbols are used in this paper:
A 5 Jacobian matrix;

a1 ,a2 5 wave propagation speeds;
F5(ru,r1u1)T

5 traffic flux, whereT denotes transpose of vec-
tor;

lk 5 left vector belonging tokth characteristic
value;

l̄ rmvh1 , l̄ vh2 5 average vehicular lengths for both phases;
L 5 left characteristic matrix;

Qk 5 coefficient of numerical viscous term;
r k 5 right vector forkth characteristic value;
R 5 right characteristic matrix;

u5(u,u1)T 5 vector of vehicular speed;
s5r1 /r 5 mass fraction of first phase;

t 5 time;
v f 5 free vehicular speed;
v i f 5 free vehicular fori th group;

x 5 space;
Dt 5 time interval;
Dx 5 space interval;

l5Dt/Dx 5 ratio of time and space intervals;
r5(r,r1)T 5 vector of traffic density;

r i j 5 jam density ofi phase traffic flow; and
r* 5 normalized traffic density.

Subscript
f 5 free;
i 5 vehicular group number;
j 5 space grid number, jam;

m 5 maximum, jam; and
vh 5 vehicle.
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Superscript
m 5 time level; and
n 5 speed-density index.
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