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SUMMARY

To increase our understanding of the operations of traffic system, a visco-elastic traffic model was proposed
in analogy of non-Newtonian fluid mechanics. The traffic model is based on mass and momentum conser-
vations, and includes a constitutive relation similar to that of linear visco-elastic fluids. The further inclusion
of the elastic effect allows us to describe a high-order traffic model more comprehensively because the use
of relaxation time indicates that vehicle drivers adjust their time headway in a reasonable and safe range.
The self-organizing behaviour is described by introducing the effects of pressure and visco-elasticity from
the point of view in fluid mechanics. Both the viscosity and elasticity can be determined by using the relax-
ation time and the traffic sound speed. The sound speed can be approximately represented by the road oper-
ational parameters including the free-flow speed, the jam density, and the density of saturation if the jam
pressure in traffic flows is identical to the total pressure at the flow saturation point. A linear stability analysis
showed that the traffic flow should be absolutely unstable for disturbances with short spatial wavelengths.
There are two critical points of regime transition in traffic flows. The first point happens at the density of sat-
uration, and the second point occurs at a density relating on the sound speed and the fundamental diagram of
traffic flows. By using a triangular form flow–density relation, a numerical test based on the new model is
carried out for congested traffic flows on a loop road without ramp effect. The numerical results are discussed
and compared with the result of theoretical analysis and observation data of traffic flows. Copyright © 2011
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Traffic flow has been extensively studied because of its great importance to our modern society. Nu-
merous traffic flow models have been developed. The well-known (Lighthill Whitham Richards)
LWR model [1,2] merely based on vehicular mass conservation is probably the simplest one and is ca-
pable of capturing the important features of traffic flows on highways, such as the traffic shock waves
propagating in steeper slope of wave front. However, the LWR model cannot more satisfactorily pre-
dict the stop and moving waves that might be caused by red lights or traffic accidents. Nevertheless,
the development of the extended LWR models has been reported to be capable of predicting the traffic
hysteresis [3], observing the evolution of density waves [4] as well as explaining the critical transition
in bottleneck affected traffic [5].
The traffic flow models additionally concerned with vehicular momentum conservation are usually

termed as high-order models, among which we should mention the historical works based on the Euler
equation [6] and the gas-kinetic analogy [7]. The high-order models are successful in elucidating the
stop and moving phenomena in traffic and predicting traffic wave propagations, even though there is
a critic comment [8] that the high-order models are ineffective, which hinders not only the application
[9–11] but also the further development of high-order traffic flow models [12–16].
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There are also other kinds of traffic models based on the artificially assigned rules and computer-
game operations. These models are distinguished by the rules and are usually called as cellular
automaton [17–19], and the aim of these models is to find the state relation under traffic equilibrium
by a statistical decoupling. Traffic systems have been reported to have a surprisingly rich spectrum
of spatio-temporal pattern formation phenomena. Nagatani [20] has discussed the main models of traf-
fic including the car-following models, the cellular automaton models, the gas-kinetic models and the
fluid-dynamical models. By applying and extending methods from statistical physics and nonlinear
dynamics to self-driven many-particle systems, Helbing [21] had explained some questions concerned
with vehicle traffic.
Despite that some existing high-order models utilize traffic relaxation time to denote the external

force on vehicles in the momentum equation, there is little information associated with the elastic be-
haviour of vehicular clusters. Vehicle drivers intend to adjust their time headway to a value close to the
reciprocal of the traffic capacity. The vehicle driving behaviour was mentioned by Del Castillo [22],
who developed a random-motion model to consider the propagation of speed perturbations in con-
gested traffic flow. He remarked that even if changes like ramps and tunnels are not present, speed var-
iation is always present because of the random and non-homogeneous nature of driver behaviour.
Traffic speed variations in random form can also be found in the online material [23].
In this paper, with the principles of fluid mechanics, we develop a visco-elastic traffic model (VEM),

in which the viscosity and elasticity of traffic can be determined by using the traffic sound speed and
the traffic relaxation time. There are two noticeable features of considering the elasticity in modelling
traffic flows: the viscosity in traffic flows has some relation to driver’s memory, which can be seen in
the previous work [24]; the relaxation time used to denote the external force implies the traffic flows
involved with an elastic effect. In the proposed model, the relaxation time is assumed to be the travel
time of an infinitesimal disturbance through a given distance, such as the spatial step used in numerical
simulation of traffic flows. The sound speed can be represented approximately by the free-flow speed,
the jam density and the density at traffic saturation if the jam pressure in traffic flows is identical to the
total pressure at the saturation point. A linear stability analysis is carried out to evaluate a criterion for
traffic flow, which indicates that the visco-elastic traffic flows are absolutely unstable for larger wave
numbers. There are two critical points: the first point corresponds to the flow transition from a free-
flow stable regime to an oscillating unstable regime; the second point is related to the flow transition
from an oscillating unstable regime to another homogeneously stable regime.
Numerical test is carried out using the proposed new model. The simulation results suggest that the

second critical point is well consistent with analytically predicted value. When the sound speed in a
traffic jam is about 26.11% of the free-flow speed, the critical speed is found to be 15km/hour,
corresponding to a mean spatial headway of about 6m with the average vehicle length to be set as
5.8m.

2. VISCO-ELASTIC MODEL

When the instantaneous traffic flow rate (q) is not equal to the flow rate under a traffic equilibrium state
(qe), it is a function of instantaneous density of traffic flow; the vehicle drivers have a tendency of
adjusting the speed so that the time headway can approach 1/qe. The self-organization phenomenon
in traffic flows has been taken into account by introducing the traffic viscosity and pressure in high-
order models [25,26]. Because high-order models utilize the traffic relaxation time to represent the ex-
ternal force on vehicles, it seems reasonable to further include the elastic effect on traffic flows because
relaxation and elastic processes are inherently related from the view of mechanics. Both the theory of
micro-rheology and the experiments on the shear stress of macromolecule polymers have indicated that
the sum of relaxation spectra can be represented by a memory function [27]. Furthermore, the instan-
taneous traffic flow rate does fluctuate near the equilibrium flow rate in reality, which is similar to an
elastic process.
It is noted that, in the model introduced later, only the interaction between the lead and follower

vehicles is considered. The interaction of vehicles between different lanes occurring in the situations
of taking over and lane exchange is not included. As a result, the traffic flow rate and density can
be considered as one-dimensional variables.
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Traffic flow rate variation is commonly encountered in congested traffic flows in which the density
is larger than the density of saturation as illustrated by rc in Figure 1. The traffic flow rate arrives at the
road capacity qe(rc) at the density of saturation. Therefore, in congested traffic situations, the interac-
tion of vehicles becomes more significant. As a result of density disturbance propagation, the con-
gested traffic flows can occur at a synchronized flow regime in which the flow rate is oscillating or
at a jam existing regime [28], whereas highly dense traffic flows are homogeneous and stable [29].
Hence, there should exist a critical point at which a regime transition of congested traffic flow occurs.
The theoretical reason can be found in the present model, whose derivation process is presented in this
section.
For a linear visco-elastic fluid flow, the shear stress can be expressed as

Ts ¼
Z 1

0
f sð ÞH sð Þds (1)

here, f(s) is the memory function. With the experimental observation of the relaxation of shear stress of
macromolecule polymer and the theory of micro-rheology [30], we can write the memory function f(s)
in the following form

f sð Þ ¼ G
XN
1

1
tj

exp �s=tj
� �

(2)

Here, G is the modulus of fluid elasticity, and tj is the relaxation time with the jth order.
For simplicity, we make the three following assumptions: (i) the effect of ramp flow resulted from

the interaction between the mainline traffic stream and the external environment can be neglected; (ii)
the road capacity is insensitive to the vehicle drivers; and (iii) the traffic flow can be seen as one-
dimensional flow of linear visco-elastic fluids. The main reason that supports the third assumption is
that the relaxation time connecting the elastic and viscous properties of fluids has already been applied
in most of the high-order models to represent the driven force of vehicles. Vehicle motion for the drivers’
concerns of driving safety has memory behaviour. Therefore, to describe this traffic performance, the use
of a memory function is appropriate.
With these assumptions, we start from the constitutive equation of a general linear visco-elastic fluid

flow

ρ

q
e

A flow-density relation
in triangular form

ρmρc ρc2

Figure 1. The modelled traffic flow–density relation in triangular form. Note that the density of saturation (rc) is
the first critical density, at which there is a flow transition between the free-flow regime and the unstable regime.
On the other hand, rc2 is the second critical density, at which the flow transition between the unstable and ho-

mogeneous stable regimes occurs.

637VISCO-ELASTIC TRAFFIC FLOW MODEL

Copyright © 2011 John Wiley & Sons, Ltd. J. Adv. Transp. 2013; 47:635–649
DOI: 10.1002/atr



T ¼ �pIþ G
XN
1

Z 1

0

1
tj

exp �s=tj
� �

H sð Þds (3)

where T=�pI+Ts and p are respectively the stress tensor and the traffic pressure, and I is the unit ma-
trix.H sð Þ is the Finger deformation tensor, which can be expressed as C�1 � I

� �
,whereC�1 is the Finger

tensor charactering the scale of the cross-sectional area of a fluid element, and C is the right Cauchy–
Green tensor representing the length scale of a fluid element. For the maximum relaxation order

denoted by N, the Finger deformation tensor is given by H sð Þ ¼ PN
k¼1 �1ð Þkþ1 sk

k! Bk, where Bk is the

White–Metzner tensor, which is defined as dkC�1=dtk
� �

t¼s, and s is the elapsed time period [27].
In the analogy to the unsteady traffic flows, by using the second-order approximation in the case of

N=2 and the integration formula
R1
0 sk exp �asð Þds ¼ k!=akþ1 merely valid for the positive integer k

and the positive real number a, the traffic flow stress can be expressed as follows:

T ¼ �pþ G t1 þ t2ð ÞB1 � G t21 þ t22
� �

B2 (4)

If the traffic speed is defined by u, as shown in APPENDIX A, we have B1=2ux and

B2 ¼ B1t þ uB1x � B2
1 (5)

Because tj can be approximated by t1/j
2, the total relaxation time can be approximately expressed as

t=t1+t2. This means that t1=0.8t, and t2=0.2t. Generally, the fluid elasticity is given by s ¼
2G t21 þ t22

� �
=r . Noting that dynamic viscosity is m=rn=2Gt, we can express elasticity as s ¼

n t21 þ t22
� �

=t. This is equivalent to

s ¼ n t� 2t1t2=tð Þ ¼ 0:68nt (6)

According to the existing high-order traffic flow models, the general form of the forces acting on
vehicular clusters can be formulated by

F ¼ � q� qeð Þ=tþ Tx (7)

where qe is the traffic flow rate under the equilibrium traffic state, and Tx is the relevant surface force
related to the traffic stress. For the convenience of further analysis, as an example, we use a flow rate
that depends on traffic density piecewise linearly (also, in the triangular form as shown in Figure 1)

qe ¼ vfr; forr≤rc
vfrc rm � rð Þ= rm � rcð Þ; forr > rc

�
(8)

and a traffic pressure

p ¼ c20r (9)

where vf is the free-flow speed, rm is the jam density, c20 is the anticipation coefficient, and the subscript
‘e’ represents the relevant variables taken under the equilibrium traffic state. It is necessary to note that
the flow–density relation and pressure can also be expressed in other forms, whereas the form avail-
ability is explicitly dependent on the traffic operation condition. The equilibrium state mentioned ear-
lier refers to the designed state of traffic road, under which the traffic flow and density satisfy the state
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equation (8). As well known in the society of transportation research, c0 is the traffic sound speed. It
represents how fast the vehicle drivers response to a small speed disturbance. It is expected that the
traffic sound speed is close to a constant because it can be approximately denoted by the ratio of the
spatial headway to the drivers’ reaction time, which becomes smaller as the spatial headway is shorter.
It is noted that Helbing and Treiber [7] have suggested a constitutive relation for c20

c20 ¼ A0 þ A1 tanh r�ð Þ½ �u2

here, r*=(r�r1)/Δr, r1=0.28rm, Δr=0.1rm, A0=0.008 and A1=0.015. For the case of r!0 and the
previously used values of A0, A1, it is easy to find that c20 is negative when r* is close �2.8. This sug-
gests that it would be better to use a value of A0 larger than A1 in order to guarantee a positive antic-
ipation coefficient c20. It is also surprisingly noted that in the work of Zhang [24], the sound speed is
suggested to be

c0 ¼ rdue=dr

here, ue=qe/r. Explicitly, the sound speed is again negative for the case of due/dr<0. The problem of
whether the expression for traffic sound speed is reasonable can be ascertained by observing if the
critical values for traffic regime transition are consistent with the reality.
Considering that based on the physical meaning of c0, the sound speed in traffic flows should be

dependent on the traffic operational condition, we incline to suppose

c0 / vf (10)

If the pressure in a traffic jam is identical to the total pressure at the point of flow saturation, using
the triangular-form flow–density relation and the quasi-equilibrium approximation denoted by q�qe,
we can simply yield

c20 ¼
rc=rm

2 1� rc=rmð Þ v
2
f (11)

The involved parameters are the saturation and jam densities, both of which depend on the condition
of traffic road operation.
Using the definition of traffic flow rate q=ru and the expression of vehicular mass conservation rt+

qx=0 held under the assumption (i), we can represent B2 in expression (5) as follows:

rB2 ¼ rB1t þ ruB1x � rB2
1

¼ 2r ut þ uuxð Þx � 6ru2x
g (12)

indicating that we have

T ¼ �pþ rnþ m1ð Þux � rs ut þ uuxð Þx (13)

Here, m1=3rsux=rn1. Therefore, considering expressions (7), (9) and (13), and following the principles
of mass and momentum conservations, we have the governing equations of the visco-elastic traffic flows
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rt þ qx ¼ 0
r ut þ uuxð Þ ¼ R
Rþ rs R=rð Þx

� �
x
¼ �r u� ueð Þ=t� c20rx þ r nþ n1ð Þux½ �x

8<
: (14)

The external traffic force [r(ue�u)/t] has become more important, and the traffic state equation (8)
plays a more significant role in the traffic flow prediction in the visco-elastic traffic flow model. The
inclusion of elastic effect allows the traffic flow change with respect to an elastic force, implying that
the flow evolution has to make intimately reflection of the influences from operations in both the up-
stream and downstream neighbourhoods.
For the fixed obstruction problem discussed by Daganzo [8], there is a partition point on the road

segment: downstream such point, the traffic flow has a jam density, whereas upstream such point,
the traffic density is zero. Therefore, the vehicles on the road segment are fixed without any motion.
In the numerical treatment of the fixed obstruction problem, numerical approach plays a key role in
determining whether the results are reasonable or not.
The kinematic viscosity of traffic should be proportional to the product of the relaxation time and the

anticipation coefficient, that is n / c20t. Hence, the elasticity s can be calculated bys / l20; here, l(=tc0)
is a characteristic length scale in traffic flows. It is noted that the concern of Daganzo [8] in the application
of high-order models, such as the so-called back diffusion of vehicles can be avoided by defining a
properly averaged dynamic diffusivity (m) on the grid interface. For instance, the dynamic diffusivity
on the grid interface is defined as [mi�1/2=2mi�1mi/(mi�1+mi)]. The proposed visco-elastic model
reduces to a Navier–Stokes type as reported by Kerner and Konhauser [25] if the elasticity vanishes.
Some high-order models involve the replacement of the pressure gradient term in the momentum

equation with a velocity gradient term [13,15]. If we can deal with the pressure gradient term carefully
in traffic flow simulation, the improper traffic flow density variation for the fixed obstruction problem
discussed by Daganzo [8] should not occur.
It is noted that the ramp effect is ignored in the present study. With consideration of the ramp flow

effect, the mass conservation equation in Equation (14) should have a source term on the right-hand
side, and then, the momentum conservation equation used for describing the vehicular acceleration
must be changed accordingly. The traffic state equation (8) is chosen on the basis of the previous work
of Del Castillo [22] who proposed a model for the evolution of speed perturbations in dense traffic
flows. Another reason of selecting the simpler flow–density relation is that it can provide monotonic
values for q′e in both light and dense traffic flows. This allows us to evaluate the second critical points
in traffic flow more conveniently. Evidently, other general forms, such as the Greenshield’s model,
Greenberg’s model [31] and so on, can also be applied in the visco-elastic model, depending on the
demand of traffic flow predictions.
It is seen that the viscous diffusion term in Equation (14) includes the effect of n1, which is deter-

mined by the product of the elasticity and the traffic speed gradient. With the assumption of negligible
visco-elastic effect, the present model can be reduced to the Euler type model, for which Kiselev et al.
[32] has presented detailed analysis to include the propagation speed of traffic shock waves and the
derivation of the state relationship. They derived the explicit propagation speed of traffic shock waves
and found that the saturation density for Greenberg’s model is well consistent with the existing data.
The primary reason for further developing the visco-elastic model is that the second-order models

include the relaxation time to represent the traffic external force while the elastic effect is not included.
In fact, time relaxing is a behaviour in mechanics, and it represents an elastic role in the relevant pro-
cess. It is a fact that the traffic speed and flow fluctuations in the reality around the equilibrium states
also reflect the elastic phenomenon.

3. LINEAR STABILITY ANALYSIS

The values of n, t and s could be density dependent, but for the convenience of stability analysis, we
assume that they are constant parameters. The linear stability analysis is presented by using the linear
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stability theory of Chandrasekhar [33]. We express the variables with their exponential type
disturbances as

r ¼ r0 þ ~r exp ot þ ikxð Þ
u ¼ u0 þ ~u exp ot þ ikxð Þ
q ¼ q0 þ ~q exp ot þ ikxð Þ

8<
: (15)

The subscript ‘0’ refers to the base state of traffic flow, with the magnitude of the traffic flow rate
disturbance given by the supplementary expression ~q ¼ u0~rþ r0~u, and

qe rð Þ ¼ qe r0ð Þ þ q′e r0ð Þ~r (16)

where qe(r0)=q0=r0u0. As detailed in APPENDIX B, we can derive the dispersion relation as

o2 þ C þ i2ku0ð Þoþ ik Cu0 þ C1R þ i C1I þ ku20
� �� � ¼ 0 (17)

where q’e ¼ dqe=dr, and

C ¼ t�1 þ nk2ð Þ= 1� sk2ð Þ
C1 ¼ C1R þ iC1I ¼ q′e � u0

� �
t�1= 1� sk2ð Þ � ikc20= 1� sk2ð Þ

�
(18)

Bearing in mind that the real part of the angular frequency o should be negative, after some alge-
braic manipulations, we can express a stability criterion of traffic flows as

Jj j ¼ q′e � u0
c0

����
����≤ 1þ ntk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sk2
p
����

���� (19)

When inequality (19) is satisfied, the traffic flow is stable; when the visco-elasticity n=0, s=0, the
result is the same as what was preciously derived by Payne [34]. For the case of non-zero elasticity, it
can be concluded that the traffic flow is absolutely unstable as long as the wave number is greater than
the critical value 1/s, suggesting that traffic flow instability occurs for any disturbances with short spa-
tial wavelengths. This is completely consistent with the real traffic flow observations of Kuhne et al.
[23]. By defining sinθ ¼ k

ffiffiffi
s

p
, b0=s/(nt)=0.68, it is convenient to find that

cosθð Þcr ¼ 0:34 Jj jð Þ2 þ 1:68
h i0:5

� 0:34 Jj j; forjJj≥1 (20)

The critical condition for stable traffic flows becomes

kcr≤k≤1=
ffiffiffi
s

p
(21)

This means that the traffic flow should be stable for those states whose disturbance wave numbers
are in the range given by Equation (21).
With the triangular fundamental diagram shown in Figure 1, the sound speed in a traffic jam c0 is

about 26.11% of the free-flow speed for the operational parameters given in Table 1. The sound speed
is about 31.3km/hour, which is very close the analytical value 35km/hour, and the experimental data
17.2 miles/hour (=28km/hour) measured in Lincoln Tunnel in New York, as reported by Kiselev et al.
[32]. Hence, by according the flow stability criterion given by Equation (19), in the cases of n!0 and
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s!0, it is convenient for us to find that the critical density for the traffic flow transition from a free-
flow regime to a congested oscillating flow regime is equal to the density of saturation (rc). The critical
speed for the transition from a congested unstable flow regime to a homogeneously stable regime can
be expressed by

uc2 ¼ c0 � q′e
�� �� (22)

It has a value of 14.97km/hour, with the corresponding second critical density (rc2) close to 0.559
rm (�84 veh/km), at which the average spatial headway of vehicles is about 6m when the average ve-
hicle length is set as 5.8m.

4. NUMERICAL VERIFICATION

To verify the present model, numerical test by virtue of a total variation diminishing (TVD)
scheme [35] is carried out for congested traffic flows on a loop road with parameters specified in
Table 1. The initial traffic speeds, as shown in Figure 2, are assigned in terms of a symmetrical binomial-
distribution. The initial densities on the loop road are then evaluated on the basis of the piecewise linear
fundamental diagram illustrated in Figure 1. It is noted that the possible maximum magnitude of the
initial speed fluctuation is 30km/hour when the spatially averaged speed denoted by (vav) has values
of 72 and 90km/hour, with the possible maximum magnitude of 10km/hour corresponding to the cases
of vav=15, 16, 20 and c0 (=31.33) km/hour, respectively.
It is necessary to note that in the solution of Equation (14), the acceleration (R/r) and pressure gra-

dient (c20rx) are combined to form a new variable (f), which is solved under a periodic condition before
the evaluation of density and flow in terms of the TVD. Some detail of the TVD’s application can be
found elsewhere [4,5].
The parameters for the multiple-case numerical simulation are shown in Table 2. The length scale l0

is equal to the spatial step Δx. The speed scale is given by v0=rcvf/rm, with the time scale t0 calculated
by l0/v0. Because the density of traffic saturation rc is assigned as 12% of the jam density rm, hence,
using the approximation of Equation (11), the ratio of sound speed in a traffic jam to free-flow speed is

x
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Figure 2. Initial traffic speed on a loop road. It is generated randomly by assuming the speed roughly satisfies a
symmetrical binomial-distribution. The used probability density function is PDF(s)=6s(1�s), s2[0,1].

Table I. The main parameters of traffic flows on a loop road.

vf (km/hour) rc (veh/km/lane) rm (veh/km/lane)

120 18 150
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about 26.11%. The relaxation time is evaluated as the time taken by an infinitesimal disturbance used
to pass through the length l0, i.e. t= l0/c0. The periodical boundary condition is used in the numerical
test of traffic flow simulation.
With the increase of relaxation time, the visco-elastic effect is enhanced, and the distance of speed

propagation becomes larger. Therefore, from Figure 3, for vav=90km/hour, in the time range of R12
(0,5), the instant of speed peak occurrence has delayed. In the time range of R22(5,10), the evolution-
ary curves of traffic speed have evidently staggered. The valley of the traffic waves is wider in the case
of a larger relaxation time. This suggests that, under the same visco-elastic condition, the numerical
solutions are rather sensitive to the relaxation time or the spatial step.
A comparison of the visco-elastic traffic model and the purely viscous model can be observed in

Figure 4. The evolution of speed is recorded by an observer standing at the station of x=20. For the
case of an initial mean speed equal to 90km/hour, it is seen that the elastic effect can delay the prop-
agation of traffic speed waves. For example, the delay of the fifth valley arrival can be as large as 6
minutes. The delay effect becomes more evident with increasing time. This indicates that the visco-
elastic model can present different traffic flow simulation results as compared with a Navier–Stokes
model. To some extent the elastic effect has reflected the interaction between the lead and follower ve-
hicular clusters.
Furthermore, to illustrate the elastic effect, the instantaneous speed–density relation is plotted in Fig-

ure 5, in which the observation data extracted from the work of McShane et al. [31] are also included
and shown by green squares. It is seen that there are the hysteresis loops corresponding to the evolu-
tional records of speed and density at x=20. In particular, the hysteresis loop becomes narrow at the
right end (r>rc2�0.56) because of the elastic effect, indicating that the traffic flow speed converges
to a value that is slightly larger than the second critical value 15km/hour. On the other hand, the elastic
effect on the shape of hysteresis loop alleviates gradually with decreasing density.
From the measured data, it can be estimated that the normalized second critical density is about 0.6,

which is quite close to a value of 0.56 obtained on the basis of the sound speed assumption and the

Table II. The parameters for the cases of traffic flow simulation.

Case l0=Δx (m) Re=(l0v0/n)
a ŝ ¼ 0:68nt=l20 vav (km/hour) t(s)b

1 160 10 0 90 18.38
2 160 10 3.125�10�2 90 18.38
3 240 10 3.125�10�2 90 27.57
4 320 10 3.125�10�2 90 36.77
5 160 10 3.125�10�2 72 18.38
6 160 10 3.125�10�2 c0 18.38
7 160 10 3.125�10�2 20 18.38
8 160 10 3.125�10�2 16 18.38
9 160 10 3.125�10�2 15 18.38

aThe kinematic viscosity is evaluated by n ¼ 0:046c20t, c0 is given by Equation (11), v0=rcvf/rm=4m.
bThe relaxation time is evaluated by t= l0/c0.
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Figure 3. Speed evolution at x=20 at different relaxation times for vav=90km/hour.
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state equation. The simulated speed–density relations shown in Figure 5(a,b) for the case vav=90km/
hour are in good agreement with the observation results. The instantaneous traffic speed for the special
case is close to the observed value, even though the equilibrium flow–density relation is triangular as
shown in Figure 1. It suggests that the future inclusion of elastic effects can result in a different speed
evolution from that obtained by the VM model, and the difference becomes more evident at the obser-
vation section when the density exceeds the second critical density.
The traffic speed evolution at the location of x=20 for the cases of vav=15, 16 and 20km/hour is

shown in Figure 6. In these cases, the traffic flows are highly congested. For the case of vav=20km/
hour, the traffic flow gradually changes into a quasi-steady oscillating regime, and the initial het-
erogeneity can induce traffic waves propagating to upstream as can be seen in Figure 7(a). The
time interval from the speed valley P1 to another speed valley P2 is around 78minutes, whereas the
distance of the speed wave propagation is 120m�160m (case 7 in Table 2). Therefore, the reverse

t(min)

T
ra

ff
ic

 s
p

ee
d

(v
f)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

VM
VEM

Figure 4. Comparison of the visco-elastic model (VEM) with the pure viscous model (VM) by using the calcu-
lated speed evolution at x=20 for vav=90km/hour.
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Figure 5. Comparison of the visco-elastic model with the pure viscous model by using the instantaneous speed–
density relation at x=20 for vav=90km/hour. It is noted that the record number is about 12600 in the 10-hour
simulation. The observation data are extracted from Ref. [3], and the jam density used in density normalization

is assumed to be 200 veh/mile.
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propagation speed of traffic waves is about 14.8km/hour. It is noted that this predicted speed is located
in the range of 10 to 20km/hour for the reversely travelling traffic waves, as noted by Helbing and
Treiber [7].
However, for the case of vav=16km/hour, the speed is slightly higher than the second critical speed

14.97km/hour, corresponding to the second critical density denoted by rc2 shown in Figure 1, and the
initial speed disturbances can be suppressed to some degree by the visco-elastic effect. The weak initial
speed waves can be smoothed out, whereas extensive initial speed waves caused by larger gradient can
survive. For the case of vav=15km/hour, the evolutionary curve of traffic speed gradually becomes a
horizontal line, implying that the traffic flow has become homogeneous. This is consistent with the re-
sult of linear stability analysis. This finding also agrees with the result of Schonhof and Helbing [29]
who reported that highly congested traffic flows are homogeneous and stable.
The speed contours in the x–t plane under different conditions can be seen in Figure 7. Part (a) is

corresponding to vav=20km/hour, where the traffic waves travel in the upstream direction. These
waves propagate reversely at a speed close to 14.8km/hour. Part (b) is relevant to vav=90km/hour,
where the traffic speed waves travel to the downstream region. The propagation speed of traffic waves
is about 2.7km/hour.
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Figure 6. Speed evolution at x=20 under different initial mean speeds.

Figure 7. Speed contours in the x–t plane under different initial conditions. (a) vav=20km/hour, (b) vav=90km/
hour. In part (a), the speed contours are labelled by 0.1, 0.2, 0.3 and 0.4 vf, whereas in part (b), they are labelled by

0.4, 0.6, 0.7, 0.8 and 0.98 vf.
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The speed contours in the x–t plane for the cases of vav = c0, and 72km/hour are shown Figure 8.
From part (a), it is seen that the speed of reversely travelling traffic waves is about 7.1km/hour. On
the other hand, from Part (b), it is seen that the speed of forward travelling waves is about 2.9km/hour.
The reason that leads to the difference of wave speed as compared with that related to the cases of
Figure 7(a,b) can be attributed to the initial condition, as the relative heterogeneity of initial speed dis-
tribution is different as shown in Figure 2.

5. CONCLUSIONS

In summary, the visco-elastic traffic flow model is presented from the constitutive relation for flows of
linear visco-elastic fluids. It shows that the viscosity and elasticity are dependent on the traffic sound
speed and traffic relaxation time. With a linear stability analysis, it was found that the traffic flow
should be absolutely unstable for infinitesimal disturbances with short spatial wavelengths. There
are two critical points for the regime transition of traffic flow. First is the numerical calculation of
the second critical speed, which is consistent with the critical speed obtained from the theoretical anal-
ysis. The second critical point depends on the flow–density relation and the traffic sound speed. If the
flow–density relation is in a triangular form, the density of saturation is 12% of the jam density, and the
sound speed can be obtained by assuming that the traffic jam pressure is identical to the total pressure
at the flow saturation point, the numerical results indicated that the second critical speed is around 15
km/hour at which the flow transition from an oscillating regime to a homogeneously stable regime
occurs. For the cases of initial mean speed lower than the second critical speed, the traffic flow is sta-
ble, and the initial speed perturbations can be well smoothed out by the visco-elastic effect. For unsta-
ble flows, traffic wave propagation manoeuvre is dependent on the initial condition. Because of the
inclusion of elastic effect, the present model is more complete than the Navier–Stokes type traffic
models.

ACKNOWLEDGEMENTS

This work is supported by National Science Foundation of China (10972212). We are grateful to
Dr G.L Chang in University of Maryland and Dr N.N. Smirnov in Moscow State University for
some private communications. We also thank the anonymous referees’ suggestions.
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APPENDIX A. RELATION BETWEEN BN AND BN+1. In Chapter II of Ref.[34], it is easy to find
that for n≥1

Bnþ1 sð Þ ¼ dBn=ds� L1Bn � BnLT
1 (A1)

where L1 ¼ ru, and LT
1 is the transpose of tensor L1. B0 ¼ 1; andB1 ¼ L1 þ LT

1 :

APPENDIX B. STABILITY ANALYSIS. Some details in the linear stability analysis are given in
this appendix. with the perturbations shown in Equation (15), the right-hand term r can be written as

R ¼ q′e � u0
t

� kc20
� �

i

	 

r0

~r
r0

� �

�r0 t�1 þ k2nð Þ~uþ r0s k2oþ k2 u0kð Þi½ �~u
(B1)

whereas the left hand side should be

r0 o~uþ i u0kð Þ~u½ � (B2)

Therefore, from the second sub-equation in Equation (14), we have

C1
~r
r0

� �
þ �C � o� u0kð Þi½ �~u ¼ 0 (B3)

with coefficients C and C1 given by Equation (18).
On the other hand, from the first sub-equation in Equation (14), we can derive

oþ u0kð Þi½ � ~r
r0

� �
þ ik~u ¼ 0 (B4)

From the condition that the determinant of the matrix should be vanished

‖ C1 �C � o� u0kð Þi½ �
oþ u0kð Þi½ � ik ‖ ¼ 0 (B5)

we can obtain the dispersion relation given by Equation (17). The roots of o can be expressed as

o1;2 ¼ �C þ i2ku0
2

� aþ ib

2
(B6)

The real part of o1,2[=(�C�a)/2] should not be positive for stable traffic flows.
The coefficients a and b satisfies the following equations:

2ab ¼ �4kC1R

a2 � b2 ¼ C þ 4kC1I

�
(B7)

It means that a2 can be evaluated from relation

a4 � C2 þ 4kC1I
� �

a2 � 4k2C2
1R ¼ 0 (B8)
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From the stability criterion of C2≥a2, by some algebraic manipulation, we obtain

kC2
1R≤� C1IC

2 (B9)

Substituting the definitions of C, C1R and C1I, we have the traffic stability criterion

Jj j ¼ q′e � u0
c0

����
����≤ 1þ ntk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sk2
p
����

���� (B10)
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