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Abstract. The study of impacts of down-up hill road segment on the density threshold
of traffic shock formation in ring road vehicular flow is helpful to the deep understand-
ing of sags’ bottleneck effect. Sags are freeway segments along which the gradient
increases gradually in the traffic direction. The main aim of this paper is to seek the
density threshold of shock formation of vehicular flow in ring road with down-up hill
segment, because down-up hill roadway segment is a source to cause capacity reduc-
tion that is an attractive topic in vehicular traffic science. To seek the density threshold
numerically, a viscoelastic continuum model [1] is extended and used. To solve the
model equations, a fifth-order weighted essentially non-oscillatory scheme for spatial
discretization, and a 3rd order Runge-Kutta scheme for time partial derivative term
are used. Validation by existing observation data and the Navier-Stokes like model [2]
extended as EZM is done before conducting extensive numerical simulations. For ring
road vehicular flow with three separated down-up hill segments, it is found that the
density threshold of shock formation decreases monotonically with the relative differ-
ence of free flow speed, this variation can be simply fitted by a third order polynomial.

AMS subject classifications: 35Q80, 76A02

Key words: Down-up hill road segment, viscoelastic continuum model, sags’ bottleneck effect,
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1 Introduction

To investigate the effects of road infrastructure condition on traffic flow dynamics, a re-
search background has been given in [1], from which the existing results of several stud-
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ies reported in [3–8] can be sought.

However, less work has been done for the down-up hill segment effects on the density
threshold of traffic shock formation in ring road vehicular flow from macroscopic points
of view. Therefore, by assuming that traffic sound speed of traffic flow at a state over
second critical point is just equal to the second critical sound speed, this paper extends
the macroscopic viscoelastic continuum model (VEM) reported in [1] and uses the ex-
tended model to predict the density threshold of traffic shock formation and travel time
numerically. The ring road is composed of three separated down-up hill segments and
horizontal road segment, as shown in Fig. 1. As the down segment is linked immediately
by a length-identical uphill, thus we call the composed as the down-up hill segment or
the sag. Indeed, due to the role of gravitational acceleration, there is a shorter braking
distance for vehicles on uphill segment, but a longer braking distance for vehicles on
downhill segment, with the vehicles on horizontal segment having a braking distance
between the two. Generally, braking distance is a function of free flow speed [9]. Con-
sequently, there should have three relevant free flow speeds on the three road segments.
Therefore, for the ring road with down-up hill segment, the traffic fundamental diagram
is section dependent, as shown in Fig. 2.

To validate the VEM, the existing observation data are used for comparison of traf-
fic flow states, and the Navier-Stokes like model of Zhang [2] extended as EZM [10] is
adopted to provide the counterpart results for validation. It is assumed that the total
length of the ring road is 120km, and the single downhill or uphill length is 1km.

The main aim of this paper is to seek the density threshold of shock formation of ve-
hicular flow in ring road with down-up hill segment. Hence, on the basis of the VEM,
a fifth-order weighted essentially non-oscillatory scheme (WENO5) [11, 12] and a third-
order Runge-Kutta scheme (RK3) [13, 14] are used to build a simulation platform. Model
validation is done before conducting extensive numerical simulations of ring road vehic-
ular flow to explore the density threshold and its variation trend. We will introduce the
VEM and numerical method just before method of travel time prediction, then discuss
the results, and finally give the conclusions.

2 Viscoelastic traffic flow model

The viscoelastic traffic flow model (VEM) [1] uses traffic pressure derived by assuming
the explicit algebraic form of traffic sound speed and the definition of the sound speed
in classical mechanics, rather than governed by a partial differential equation in the gas-
kinetic-based model [15,16]. Assuming traffic density ρ is normalized by traffic jam den-
sity ρm, when velocity scale is v0, the traffic flow rate q has a unit of ρmv0. For length scale
l0, time scale is t0= l0/v0. Taking normalized traffic density ρ and normalized traffic flow
rate q as mandatory variables, neglecting ramp effects, and defining traffic elasticity by
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Figure 1: (a) Schematic diagram of ring traffic flow with three initial jams located at xJ = 40,80,120km for
J = D,E,F; (b) Road segments labeled by j = 1,2,3. Note that the downhill segment initiates at Xu

I and
terminates by the subsequent uphill segment ending at XI , thus the length of the downhill or uphill segment
can be calculated by Lh =(XI−Xu

I )/2, for I=A,B,C.

γ=0.68ντ, the non-dimensional form of VEM equations are{
ρt+qx =0,
ρ(ut+uux)=R,

(2.1)

where R satisfies the expression (Zhu and Yang [21]; Ma et al. [22])

R+[ργ(R/ρ)x]x =(qe−q)/τ−px+[ρ(ν+ν1)ux]x, (2.2)

where the traffic elasticity is denoted by γ, ρν1 = 3ργux, px(= c2ρx) is the gradient of
traffic pressure, c is traffic sound speed, qe is equilibrium traffic flow rate obtained by
fundamental diagram as shown in Fig. 2, R/ρ is traffic flow acceleration, ν is the kine-
matic viscosity of traffic flows, with τ denoting the relaxation time of traffic flow. When
the road is empty, the viscosity ν is zero. The term [ρ(ν+ν1)ux]x in the right hand side of
Eq. (2.2) reflects some properties of traffic self-organization. In reality, ahead of a vehicle
a speed increase tends to produce a positive value of uxx, and thus provides drivers’ mo-
tivation for acceleration, as the density reduction ahead of the vehicle can be foreseen in
congested traffic flows.
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Figure 2: Fundamental diagram for traffic flows on a ring road with downhill (krd=−1), horizontal (krd=0),

and uphill (krd=1) segments. Note that ρ is measured by jam density ρm, the flow rate q(krd)
e is measured by

ρ∗2v f 2, and q(krd)
es = cτj /e·[ρ∗jv f j/ρ∗2v f 2], krd= j−2=−1,0,1 for j=1,2,3 respectively.

The equilibrium traffic flow rate qe on road segment j is denoted by q(krd)
e , krd= j−2,

as shown in Fig. 2. Using traffic jam density ρm, the equilibrium flow rate in the VEM is
expressed by

q(krd)
e =


ρv f j for ρ∈ [0,ρ∗j],
−cτ jρln(ρ/ρm) for ρ∈ (ρ∗j,ρc2j],
Bjρ{1−sech[Λj ln(ρ/ρm)]} for ρ∈ (ρc2j,ρm],

(2.3)

where ρ∗j is the first critical density, i.e., the corresponding maximum permissible density,
over which the traffic flow becomes unstable. ρc2j is the second critical density, over
which the traffic flow becomes stable again. At the second critical density ρc2j, traffic
flow has an equilibrium speed uc2. When the speed is used to define a ratio Λj = cτ j/uc2,
the parameter Bj can be written as

Bj =uc2j/{1−sech[Λj ln(ρc2j/ρm)]}. (2.4)

For the braking distance Xbrj, the corresponding maximum permissible density ρ∗j at
free flow speed v f j is given by

ρ∗j =ρm exp(−v f j/cτ j). (2.5)

As safe traffic density (ρ∗j) itself implies that the distance between vehicles are not shorter
than the braking distance Xbrj, denoting average vehicle length by l, then ρ∗j is defined
by

ρ∗j =ρm[1+Xbrj/l]−1. (2.6)

Combining Eq. (2.5) and Eq. (2.6), we have

cτ j =v f j/ln[1+Xbrj/l]. (2.7)
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Table 1: Parameters of traffic flow on ring road.

v f 1(km/h) 130 Λ1 2.9187 l0(m) 100
v f 2(km/h) 120 Λ2 2.7802 Xu

A(km) 19
v f 3(km/h) 110 Λ3 2.6398 Xu

B(km) 59
Xbr1(m) 87 ρ∗1 0.08421 Xu

C(km) 99
Xbr2(m) 80 ρ∗2 0.09090 L(km) 120
Xbr3(m) 73 ρ∗3 0.09877 Lh(km) 1
τ01(s) 6.6403 ρc21 0.70991 ρm(veh/km) 124
τ02(s) 7.1937 ρc22 0.69790 l(m) 8.0
τ03(s) 7.8477 ρc23

† 0.68466 uc2(km/h) 18
cτ1 4.8159 XA(km) 21 v0(=ρ∗2v f 2)(m/s) 3.03
cτ2 4.5874 XB(km) 61 t0(= l0/v0)(s) 33
cτ3
∗ 4.3556 XC(km) 101

∗ cτ1, cτ2, and cτ3 are in the unit of v0.
† ρ∗1, ρ∗2, ρ∗3, ρc21, ρc22, and ρc23 are in the unit of ρm.

It is noted that for the relaxation time of traffic flow τ, its definition is the same as
that given by Zhang et al. [10]. As shown in Fig. 2, the fundamental diagrams labeled by
segment index krd=−1, 0, 1 are obtained using the free flow speeds v f j and the braking
distances Xbrj, for j=1, 2, 3, their values can be seen in Table 1. The subscript ′j′ is used
to label some variables on downhill segment (j=1), horizontal segment (j=2), and uphill
segment (j= 3) respectively (see Fig. 1). The equilibrium flow-density relation relevant
to the three situations described by Eq. (2.3) is assumed with respect to the existence
of second critical phenomenon observed in traffic reality. On the ring road with three
down-up hill segments, the uphill length is identical to the downhill length, given by
Lh=(XI−Xu

I )/2, (I=A, B, C). Considering the gravitational effect of vehicles, naturally
the free flow speed on downhill segment is larger but free speed on uphill segment is
smaller, with free flow speed on the horizontal segment between the two, as shown in
Table 1.

Similar to that reported previously [10], by assuming that on empty road traffic sound
speed is exactly equal to the free flow speed, using pressure model parameter obtained
by postulating that the sound speed at the second critical point is exactly equal to the
speed cτ j, and defining

Kj ={cτ j[1−αρc2j/ρm]}2,
c2
∗j =Kj/(1−αρ∗j/ρm)2,

B∗j =(v2
f j−c2

∗j)/ρ4
∗j,

B0j = c2
∗jρ∗j+B∗jρ

5
∗j/5−Kj ·[ρ∗j/(1−αρ∗j/ρm)],

B1j =Kj ·[ρc2j/(1−αρc2j/ρm)]+B0,j,
c0j = cτ j,


(2.8)
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further assuming c/c0 = 1 when traffic density is above ρc2j to extend the VEM [1], the
corresponding sound speed cj can be written as

cj =


√

c2
∗j+B∗j(ρ−ρ∗j)4 for ρ≤ρ∗j,

K1/2
j ·[1/(1−αρ/ρm)] for ρ∗j <ρ≤ρc2j,

cτ j, otherwise.

(2.9)

Therefore, using the definition of sound speed under isentropic condition in classical
mechanics

c2=∂p/∂ρ, (2.10)

traffic pressure pj can be written as

pj =


c2
∗jρ+

1
5

B∗j ·[ρ5
∗j+(ρ−ρ∗j)

5] for ρ≤ρ∗j,

Kj ·[ρ/(1−αρ/ρm)]+B0j for ρ∗j <ρ≤ρc2j,
c2

τ j(ρ−ρc2j)+B1j, otherwise,

(2.11)

where traffic pressure pj increases linearly with a slope c2
τ j when ρ>ρc2j.

In this work, the density threshold of shock formation of vehicular flow due to the
existence of the down-up hill road segment is particularly concerned, thus the free flow
speed v f 3 on uphill segment is allowed to be changeable. Assuming the second critical
speed uc2 = 18km/h, the v f 3− dependencies of critical densities ρ∗3, ρc23, speed ratio

Λ3(= cτ3/uc2), and q(1)e −ρ relationship can be obtained, as shown in Figs. 3(a)-(d). For a
given value of ξ [=(1−v f 3/v f 2)], the braking distance Xbr3 in Fig. 3(c) or the 2nd column

of Table 2 is determined simply by examining whether the q(1)e −ρ curve is as smooth as
the fundamental diagrams in Fig. 2. According to the values in the 2nd column of Table 2,
in the considered range of ξ from 0.0833 to 0.3333, the braking distance Xbr3 in the unit of
100m can be expressed as

Xbr3=0.8133−0.9342ξ. (2.12)

As shown in Figs. 4(a) and (b), the traffic density dependence of traffic sound speed
ratio c/c0 in part (a) and traffic pressure p in part (b) is calculated with respect to the road
segment index krd. The blue-solid, black-solid and green-solid curves represent c/c0 or
p respectively for traffic flows on downhill, horizontal and uphill road segments. When
the density is lower than the second critical density, the values of c/c0 and p for uphill
segment at a given traffic density are slightly higher, but the relevant values for downhill
segment are slightly lower, with the values of p and c/c0 for horizontal section located
between the two.

It is noted that the model has used pressure gradient px/ρ in describing traffic ac-
celeration R/ρ, suggesting that negative speeds in the solutions can possibly occur, as
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Figure 3: ξ− dependencies of ρ∗3 (a), ρc23 (b), braking distance Xbr3 (c), and q(1)e −ρ relationship (d). Note

that ξ=1−v f 3/v f 2, ρ is measured by jam density ρm, Xbr3 has a unit of 100m, and q(1)e is measured by ρmv2
f 2.
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Figure 4: Density dependence of traffic sound speed ratio c/c0 and traffic pressure p. Note that ρ is measured

by jam density ρm, and p is measured by ρmv2
f 2.

reported by Aw and Rascle [17], which leads to the development of anisotropic higher-
order traffic flow models (Rascle [18]; Xu et al. [19]).

In the VEM, what looks to be fresh is that three fundamental diagram curves are
adopted in describing the ring road vehicular flow including down-up hill segment.
Less is reported from a macroscopic point of view for the down-up hill effects on the
spatial-temporal evolutions of ring vehicular flows and travel time through the ring. As
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Table 2: ξ− dependencies of some model parameters and the density threshold (ρ+0 ) of traffic shock formation.

ξ∗ Xbr3 τ03 cτ3 Λ3 ρ∗3 ρc23 ρ+0
(100m) (s) (v0) (ρm) (ρm) (ρm)

0.0833 0.73 7.8477 4.3556 2.6398 0.09877 0.68466 0.257
0.1250 0.70 8.2214 4.2266 2.5615 0.10256 0.67679 0.231
0.1667 0.66 8.6324 4.1205 2.4973 0.10811 0.67003 0.220
0.2083 0.62 9.0868 4.0148 2.4332 0.11428 0.66300 0.213
0.2183 0.61 9.2022 3.9909 2.4187 0.11594 0.66137 0.211
0.2500 0.58 9.5916 3.9095 2.3694 0.12121 0.65571 0.202
0.2917 0.54 10.1558 3.8051 2.3061 0.12903 0.64815 0.196
0.3333 0.50 10.7905 3.70183 2.2435 0.13793 0.64036 0.187
∗ ξ=(v f 2−v f 3)/v f 2, is the relative difference of free flow speed.

reported [10], assuming the sound speed at zero density just equals to the free flow speed,
i.e., c=v f for ρ=0, is certainly a favourable strategy for modeling the specific traffic stop-
page problem specifically discussed by Daganzo [20], as it makes all the elements in the
first column of Jacobian matrix as seen in Eq. (3.2) become zero, leading to the traffic flow
q naturally totally not sensitive to the non-uniformity of density.

To predict the down-up hill segment effects on travel time through the ring road, as
shown schematically in Fig. 1, the VEM is adopted in numerical simulation, with the
model EZM also adopted to provide the counterpart results for comparison. In the sim-
ulation making use of EZM, the expressions for traffic sound speed and pressure are the
same as that adopted in the VEM.

3 Numerical method

To solve the governing equations of the VEM, a fifth-order weighted essentially non-
oscillatory scheme (WENO5) [11, 12] is adopted to calculate the numerical flux, and a
3rd order Runge-Kutta scheme (RK3) [13, 14] is used to handle time derivative terms. As
the WENO5 is the same as reported by Zhang et al. [23], we will not repeat it here, and
describe the numerical method in brief.

It is noted that the main reason for choosing the WENO5 scheme rather than other
Riemann solvers is that essentially non-oscillatory (ENO) reconstruction [24] is based
on adaptive stencils, such that the optimal stencil is chosen. This provides high-order
accuracy and essentially non-oscillatory behavior. WENO reconstruction [13] consists of
a convex combination of all the candidate stencils, and constitutes an improvement on
ENO schemes on many levels, as reported by Johnsen and Colonius [25].

Defining ∂p/∂ρ= c2 and px = c2ρx, and taking R1=R+px instead of R, the governing
equations (2.1) and (2.2) can be written elegantly in the form

∂U
∂t

+
∂F(U)

∂x
=S, (3.1)
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where U=(ρ,q)T, F(U)=(q,q2/ρ+p)T, and S=(0,R1)
T, with superscript ′T′ representing

vector transpose.
The eigenvalues of Eq. (3.1) λk, (k=1,2) may be expressed as λ1=u−c, and λ2=u+c,

where the Jacobian matrix is

A=

(
0 1

−u2+c2 2u

)
. (3.2)

Further defining

L (U)=−∂F(U)

∂x
+S, (3.3)

to seek the numerical solution of

∂U
∂t

=L (U), (3.4)

with the numerical flux F̂i+1/2 predicted by the WENO5 scheme [23], the RK3 scheme [13,
14] has the form 

U(1)
i =Un

i +∆tL (Un
i ),

U(2)
i =

(3Un
i +U(1)

i )

4
+

∆tL (U(1)
i )

4
,

Un+1
i =

(Un
i +2U(2)

i )

3
+

2∆tL (U(2)
i )

3
,

(3.5)

where the superscript n denotes time level.
Labeling the step ratio by ω=∆t/∆x, the Courant–Friedrichs–Lewy (CFL) condition

of the numerical method (WENO5+RK3) is given by

CFL=ω ·max|λk,i|<1, k=1,2, i=0,1,2,··· , Imax−1, (3.6)

where λk,i represents the kth eigenvalue for A at xi, Imax is the maximum number of
node, the Courant number CFL is assumed to be 0.7 [26] in the numerical tests to ensure
numerical stability and calculate time step length ∆t. Note that the numerical tests cannot
obtain convergent results when the CFL condition is not fulfilled, as the RK3 scheme is
explicit.

To increase the temporal discretization accuracy, source term linearization has been
used previously [10, 27]. However, in the present numerical tests, without using source
term linearization, we use the RK3 scheme with the total variation diminishing prop-
erty [13, 14].
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4 Density threshold definition and travel time prediction

4.1 Density threshold definition

In simulation, the initial density condition for ring road traffic flow is assumed to be

ρ(0,x)=

{
1 for x=∈ [xJ−1/2,xJ+1/2],
ρ0, otherwise,

(4.1)

with q(0,x) = qe(ρ(0,x)), where ρ0 is the ring road initial density, xJ , J = D,E,F are the
three positions of initial jams that are artificially assumed, their values are given in the
caption of Fig. 1. Considering sags cause bottleneck effect, the onset of traffic shock at the
density threshold (ρ+0 ) should result in density rise and traffic speed drop on the downhill
segment, making downhill mean travel time σ

(−1)
tav increases sharply. Hence, one method

is to define ρ+0 by inspecting the variation tendency of σ
(−1)
tav with ρ0. Another method

is to define ρ+0 by judging if there exist the onset of traffic shock through observing the
spatiotemporal density evolution intuitively. We found that both methods can obtain the
same value of density threshold ρ+0 .

4.2 Travel time prediction

Numerical tests based on the VEM or EZM can provide the grid traffic speed u(xi,tn).
Following the previous work (Zhang, et al. [27]), using a pre-assigned time period ∆0,
the local average speed ui(t) at the grid xi can be calculated to predict travel time. The
expression form is the same as reported [1], it should be omitted here.

5 Results and discussion

5.1 Simulation parameters and conditions

The numerical simulation uses uniform spatial grid, with a grid length fixed at l0 =
100(m). Simulation parameters of ring road traffic flow are shown in Table 1. In the
first column, for j =1,2,3, v f j and Xbrj are the free flow speed and braking distance on
the road segment j (see in Fig. 1), the value of τ0j is obtained by assuming τ0j = l0/cτ j,
while cτ j is calculated by Eq. (2.7) in the unit of v0. In the second column, for j=1,2,3, the
value of Λj is calculated by its definition Λj=cτ j/uc2, ρ∗j and ρc2j are the first and second
critical density on the road segment j, XI for I=A,B,C are the positions of uphill ends.

In the third column of Table 1, l0 is the grid length, Xu
I is the position of downhill

starting point, L is the total length of the ring road, Lh is the length of downhill or uphill
segment. ρm, l and uc2 are the jam density, the average length of vehicles and the second
critical speed respectively, with v0 and t0 (= l0/v0) being the speed and time scales in



Z. Hu et al. / Adv. Appl. Math. Mech., 15 (2023), pp. 1315-1334 1325

the simulation. When the free flow speed v f 3 is changeable, the relevant values of some
model parameters can be seen in the columns from the second to seventh of Table 2.

It was assumed that the Reynolds number (Re=l0v0/ν) is 64. The elasticity parameter
γ̂2{= γ2/l2

0 = [0.68×(l0v0/Re)τ02]/l2
0} equals 2.316×10−3 (Smirnova et al. [28, 29]). For

ring road traffic flow, periodic boundary conditions can be applied.

5.2 Model validation

The model VEM is validated by the model EZM, which is not repeated here, as it has
been reported previously [10]. In the flow simulation by the EZM, the expressions of
traffic pressure and sound speed are the same as adopted in the VEM, and so are the
numerical schemes for solving the EZM equations.

Travel time is a crucial indicator of the evolutions of ring road traffic flow. Table 3
shows the mean travel time σtav, the uphill and and downhill mean travel time σ

(krd)
tav (krd=

1,−1) at several values of ρ0 for Lh =1km. Comparing the values of sgtav in the 2nd and
5th columns of Table 3, it is seen that the VEM can certainly predict much the same mean
travel times. As shown in the 3rd and 4th columns of Table 3, the uphill mean travel time
σ
(1)
tav and the downhill mean travel time σ

(−1)
tav estimated by the VEM are almost identical

to those estimated by the EZM that can be seen in the 6th and 7th columns of Table 3. In
particular, the downhill mean travel time σ

(−1)
tav is larger than the uphill mean travel time

σ
(1)
tav , even though on the downhill segment the traffic flow has a larger free flow speed

v f 1.

The results consistency between the VEM and the EZM can be observed in the spa-
tiotemporal evolution of traffic flow, as shown in Fig. 5. For ρ0=0.257, the downhill road
segment plays a role of vehicular aggregation, leading to onset of traffic shock, which
causes traffic congestion. Overall, the right traffic flow pattern is almost the same as the
left, suggesting that the numerical results based on the VEM are reliable.

Figure 5: Spatial-temporal evolutions of traffic density on the ring road in the case of ξ=0.0833 and ρ0=0.257.
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Table 3: Density dependencies of σtav and σ
(krd)
tav (krd=1,−1) for Lh =1km.

VEM EZM

ρ0 σtav σ
(1)
tav σ

(−1)
tav σtav σ

(1)
tav σ

(−1)
tav

0.1 1.0824 0.0270 0.0314 1.0810 0.0269 0.0313
0.125 1.1766 0.0292 0.0341 1.1765 0.0292 0.0341
0.15 1.2840 0.0320 0.0379 1.2838 0.0321 0.0378
0.18 1.4229 0.0354 0.0424 1.4237 0.0353 0.0422
0.2 1.5192 0.0378 0.0461 1.5184 0.0377 0.0459
0.25 1.7656 0.0440 0.0575 1.7644 0.0441 0.0574

0.255 1.7907 0.0453 0.0619 1.7911 0.0451 0.0610
0.256 1.7962 0.0454 0.0630 1.7967 0.0453 0.0627
0.257 1.8366 0.0436 0.0952 1.8418 0.0437 0.0986

0.3 2.1174 0.0426 0.0755 2.0870 0.0442 0.0680
0.368 2.5517 0.0439 0.0629 2.5544 0.0437 0.0627

0.4 2.8436 0.0443 0.1016 2.7810 0.0453 0.0679
0.5 3.6143 0.0449 0.1041 3.6216 0.0448 0.1089

0.625 5.1149 0.1277 0.1374 5.1149 0.1277 0.1374

5.3 Transition of traffic flow pattern

Intuitively, near the density threshold of shock formation due to the existence of the
down-up hill segment, ring road vehicular flow pattern illustrated by spatiotemporal
evolution of traffic density should have a transition from a relatively smooth to a con-
gested regime. Such an intuitive point of view is confirmed by the flow patterns demon-
strated in Figs. 6(a)-(c), it is seen that with the decrease of relative difference of free flow
speed ξ [= (1−v f 3/v f 2)], the pattern transition becomes more and more apparent, fur-
thermore the density threshold ρ+0 becomes larger. For instance, if ξ =0.3333, ρ+0 =0.187,
while when ξ is 0.0833, the density threshold ρ+0 is 0.257.

To show clearly the impact of down-up hill segment on the ring road vehicular flow,
distributions of traffic density and traffic speed at two instants t = 1,2h in the case of
ξ = 0.0833 and ρ0 = 0.257 are given by Figs. 7-8, where the starting points of downhill
and uphill are labeled by dash-dot blue and red vertical line respectively, with the uphill
ends labeled by dash green vertical line. From Figs. 7(a)-(b), it is seen that the traffic shock
originates at the downhill end, and propagates backward. The occurrence of traffic shock
results in the drop the traffic speed, accordingly there is the so-called sags’ bottleneck
effect causing capacity reduction.

5.4 Comparison with measured data

The instantaneous traffic speed (u) and equilibrium speed (ue) at X=60km for ρ0 =0.18,
0.3 are plotted as a function of local traffic density in Figs. 9(a)-(b), but part (c) of Fig. 9
is used to compare the speed-flow u-q relationship at a downhill mid point X = 59.5
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Figure 6: Spatial-temporal evolutions of traffic density on the ring road for (a) ξ =0.3333; (b) ξ =0.2083; (c)
ξ=0.08333.
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Figure 7: Distribution of traffic density ρ on the ring road for ξ=0.0833, ρ0 =0.257 at (a) t=1h, (b) t=2h.

with field observation data. As the segment index krd =−1 at X = 60km, the instan-
taneous equilibrium speed ue is calculated with the blue-colored fundamental diagram
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Figure 8: Distribution of traffic speed u on the ring road for ξ=0.0833, ρ0 =0.257 at (a) t=1h, (b) t=2h.

curve given by Fig. 2, the speed ue is labeled by unfilled blue-triangles, some observation
date extracted from McShane, Roess and Prassas [30] are labeled by symbol ′+′ in parts
(a)-(c), with other measured data extracted from Patire and Cassidy [31] also labeled by
symbol ′+′ in part (d).

For ρ0 = 0.18, traffic speed u are calculated by the VEM using the 3rd order Runge-
Kutta method with the WENO5 scheme adopted for predicting the numerical flux. As
shown in Fig. 8(a), the u−ρ relationship depends on ξ value; almost all the traffic flow
points (ρ,u) fall within the range of measured data points, the calculated speed under
the unsaturated initial condition has taken some value almost completely in the range of
measured data, suggesting that numerical results based on the VEM are basically reliable.

From Fig. 9(b), for ρ0=0.3, it is seen that decreasing ξ can enhance the variation range
of density and speed. All flow points (ρ,u) are located in the scattered region of measured
data.

In Fig. 9(d), the measured data for median lane were recorded on December 23 of
2005, time-of-day tags from 6:30 to 7:10 hours, at the site of the Tomei expressway (near
Tokyo) instrumented with a series of eleven video cameras and two sets of loop detectors
at kilo-post (KP) 21.5 [31]. It is seen that for ρ0=0.15, 0.25, and 0.3, almost all of the traffic
flow points predicted by the VEM at the downhill mid point fall in the scattered region
of observed data points. The comparison shows a good consistency with the measured
data.

5.5 Travel time

Different from that reported by Chang and Mahmassani [32], who have examined two
heuristic rules proposed for describing urban commuters’ predictions of travel time as
well as the adjustments of departure time in response to unacceptable arrivals in their
daily commute under limited information, here we discuss the impacts of down-up hill
segment on the travel time through the ring road on the basis of the EZM and VEM, as
travel time is a crucial indicator of traffic flow performances.

The ρ0− dependencies of mean travel time σtav (in a unit of L/v f 2), its rms value σ′t ,
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Figure 9: Comparison of traffic speed with existing measured data for ξ=0.3333,0.0833 in the case of Lh=1km,
(a) ρ0=0.257; (b) ρ0=0.368 at x = 60km; and (c) Comparison of the instantaneous u-q relationship at the
downhill midpoint x = 59.5km with field observation data. The observation data used in parts (a) and (b)
are obtained from McShane, Roess and Prassas [30], and the jam density for normalization is assumed to be
200veh/mile; For the convenience of showing the field data from Patire and Cassidy [31], the speed and flow rate
for normalization are respectively assumed to be 130km/h[v f e=(v f 1+v f 2)/2], and 1465vph [≈v f e×(ρmρ∗2)].
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Figure 10: Density dependencies of mean travel time σtav (a), its rms value σ
′
t (b), uphill mean travel time σ

(1)
tav

(c), and downhill mean travel time σ
(1)
tav (d) at different value of ξ.

uphill mean travel time σ
(1)
tav and downhill mean travel time σ

(−1)
tav are shown in Figs. 9(a)-

(d). Examining Fig. 10(a), it is seen that the mean travel time σtav increases with the initial
density monotonically. With the increase of ξ [= (1−v f 3/v f 2)], when the density is in
the range from the density threshold ρ+0 to 0.5, ring road traffic flow has traffic shock
generated by the down-uphill segment, the mean travel time increases observably. Using
a 3rd order polynomial fitting in the following form

σtf= c0+c1ρ0+c2ρ2
0+c3ρ3

0, (5.1)

one yields (
c0 c1
c2 c3

)
ξ=0.0833

=

(
0.68775 3.60830
1.57089 6.32250

)
, (5.2a)(

c0 c1
c2 c3

)
ξ=0.3333

=

(
0.77608 1.5685
13.7579 −8.2363

)
. (5.2b)

As can be seen in Fig. 10(b), σ′t is rather sensitive to the density threshold of shock
formation ρ+0 , when ρ0 is below ρ+0 , σ′t is rather small but has an obvious jump in the case
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of ρ0 = ρ+0 , such as shown by the red curve with purple-color filled circles relevant to to
the line legend ξ=0.0833. For the case of ρ0=0.625, σ′t closes to zero. If ρ0 is in the range
from ρ+0 to 0.5, the variation of σ′t with the density ρ0 is determined by the value of ξ, in
general σ′t is below 0.2.

As shown in Fig. 10(c), when ρ0 is below ρ+0 , the uphill mean travel time σ
(1)
tav increases

almost linearly. When ρ0=ρ+0 , σ
(1)
tav reaches a value that does not vary with ρ0 until ρ0>0.5.

This is because the down-up hill segment has generated a traffic shock originating at the
downhill end. However, the variation of σ

(−1)
tav with the density ρ0 is obviously sensitive

to the value of ξ, as shown in Fig. 10(d). In particular, there is a apparent jump of downhill
mean travel time σ

(−1)
tav in the case of ρ0 = ρ+0 . For instance, when ξ = 0.2183, the jump

height is 0.16 when the density ρ0 changes from 0.210 to ρ+0 |ξ=0.2183=0.211, as illustrated
by the dashed curve labeled by blue color filled diamonds in in Fig. 10(d). In general, in
addition to the much dense case ρ0=0.625, it is seen that when ρ0 is above the threshold
ρ+0 , the downhill mean travel time σ

(−1)
tav is much larger than the uphill mean travel time

σ
(1)
tav .

5.6 Density threshold

The density threshold reflects a road condition under which down-up hill segment has
just originated a traffic shock, causing the occurrence of sags’ bottleneck effect. In this
work, the threshold is determined by numerical simulation of ring road traffic flows on
a platform built on the bases of the VEM. It is determined by examining the variation
of downhill mean travel time with density ρ0 or the spatiotemporal evolution of traffic
density to seek if traffic shock has been generated by the down-up hill segment.

Corresponding to the sound speed cτ3 given by Fig. 11(a), from Fig. 11(b), one can
see that the numerically predicted density threshold of shock formation decreases mono-
tonically with the increase of the relative difference of free flow speed ξ (=1−v f 3/v f 2).
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Figure 11: ξ− dependencies of cτ3 (a) and the density threshold ρ+0 (b) of traffic shock formation.
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Using a 3rd order polynomial fitting, one obtains

ρ+0 =0.3360−1.3194ξ+4.8495ξ2−6.7174ξ3, ξ∈ [0.0833,0.3333], (5.3)

which can predict a density threshold ρ+0 of shock formation of ring road vehicular flow
under the given range of ξ.

6 Conclusions

To explore the impacts of down-up hill segment on the density threshold of shock for-
mation in ring road vehicular flow, a viscoelastic continuum model VEM is extended
and used. Based on the VEM, a WENO5 scheme and a 3rd order Runge-Kutta scheme
are adopted to build a simulation platform. The numerical simulation has the following
conclusions:

1. Traffic pressure can be derived by assuming the traffic sound speed at first and then
using the sound definition in classical mechanics. With the explicit algebraic traffic
pressure and sound speed, the VEM can predict the mean travel time, the downhill
mean travel time and uphill mean travel time much the same as the Navier-Stokes
like model extended as EZM. In addition to the model comparison, the numerically
estimated traffic state points are found to fall in the scattered region of field obser-
vation data. This validation indicates the numerical results based on the VEM is
reliable.

2. The density threshold of shock formation by the down-up hill segment can be sim-
ply determined either by observing the spatiotemporal evolution of traffic density
to seek if there is traffic congestion near the down-up hill or by examining the vari-
ation of the downhill mean travel time with initial density. The threshold of shock
formation relies on the assumptions of modelling, but the existence of threshold to
some extent can deepen the understanding of the impacts of down-up hill segment
on vehicular flow and improve traffic management strategies.

3. With the increase of the relative difference of free flow speed, the mean travel time
becomes larger particularly when the initial density is beyond the density threshold
of traffic shock formation; the threshold decreases approximately in a third order
polynomial way when the relative difference is in the range from 0.0833 to 0.3333.

4. The traffic shock is originated at the downhill end and propagates backward. In
comparison with the downhill mean travel time and the uphill mean travel time,
the former is generally larger and much more sensitive to the relative difference of
free flow speed.
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