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SUMMARY

This study presents some features in the numerical modelling of multi-class mixed freeway tra�c
described by extended LWR model. The evaluation of the eigenvalues and the right characteristic
matrix of the mixed tra�c system was reported in detail. To some extent, this is the key step in
the application of the second-order symmetrical total variation diminishing (TVD) numerical method
to tra�c modelling. Examples for four-class mixed tra�c �ows were given to illustrate the solution
feasibility. It was found that, when the global density wave keeps the same form, the variation of
vehicular composition in the initial density wave has no e�ect on the mean speed of propagation of
tra�c wave on freeways, but can a�ect the decay rate of the density wave in di�erent way. Tra�c
mixing and the impedance of the slow moving vehicles are reasons of the small amplitude density
oscillations downstream the main global density wave. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The operation of transportation system depends on tra�c �ow, for which, Lighthill and
Whitham [1] and Richards [2] have developed a model based on vehicular conservation.
This model is usually called LWR model that can predict the travelling of tra�c shock waves
on freeways. It has been extended to describe multi-class tra�c by Wong et al. [3]. The
extended LWR model was found to be able to show the pattern of tra�c hysteresis. LWR
type models require a tra�c state equation that relates the �ow to density, and should be
evaluated from careful tra�c observation.
Using a single parameter state equation of mixed tra�c �ow, Zhu et al. [4] have recently

found that mixed tra�c �ow is dependent on the free �ow speed, the vehicular proportions and
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the velocity ratio of di�erent vehicles. For freeway tra�c �ow, Zhu and Wu [5] have reported
a two-�uids model, and found that the mixing of tra�c �ow provides a mechanism of tra�c
density wave production. Zhu, Chang and Wu [6] have further studied the mixing induced
tra�c oscillation of freeway tra�c using a three-class model. Lebacque [7] has developed a
two-phase bounded-acceleration tra�c model. One phase is tra�c equilibrium: �ow and speed
are functions of density, and tra�c acceleration is low. The second phase is characterized by
constant acceleration. This two-phase model also extends the LWR model and recaptures the
fact that acceleration of tra�c is bounded. It admits analytical solutions for most situations
in which the LWR model exhibits them.
Zhang et al. [8] have used the WENO method [9] to study mixed tra�c �ow dynam-

ics. However, some features in the numerical solution process such as how to evaluate the
characteristic values were omitted.
The objective of this paper is to detail some features in the numerical modelling of mixed

freeway tra�c �ow, highlight the evaluation of the eigenvalues and the right characteristic
matrix. To some extent, this is the key step in the application of the second-order total-
variation-diminishing (TVD) method [10] to the modelling of mixed freeway tra�c �ow.
Particular four-class mixed tra�c �ows were studied numerically as examples of the method
application.

2. THE GOVERNING EQUATIONS

Similar to the reported work [6], the mixed tra�c �ow containing m classes of drivers satis�es
the following assumptions: (1) The ramp �ow e�ect on the main tra�c stream on the freeway
can be totally excluded; (2) The vehicular responses to the tra�c condition can be governed
by the global density, the free-�ow speed, the jam density, and most importantly the unique
speed–density relation.
Let the mixed tra�c �ow scale with the road capacity q0, and the relevant density scale

with the jam density kjam. If the length of the road segment L0 is chosen as the scale of length,
the time and speed should be scaled by t0 =L0kjam=q0, and q0=kjam, respectively. Hence, the
normalized governing equations for mixed freeway tra�c �ows can be written as

@ki
@t
+
@(uiki)
@x

=0; i=1; : : : ; m (1)

where t and x have been normalized by t0 and L0. Under the assumption of multi-class mixed
freeway tra�c �ows, the non-dimensional governing equation (1) is supplemented by

ui= vf; i(1− kni); i=1; : : : ; m (2)

where k=
∑m

i=1 ki; vf; i and ni are the free-�ow speed and the index of the speed–density
relation for the ith class of vehicles. When there is a deterministic road capacity, the index
value for ith class of vehicles should be a function of the optimal density, at which, the
tra�c �ow is just equal to the road capacity. The following relation between the index and
the optimal density (bi) has been suggested in Reference [6]:

bnii =1=(ni + 1); i=1; : : : ; m (3)
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This relation (3) was derived by seeking the maxima of the partial �ow qi(= kiui) of the ith
class of vehicles, taking the relevant free speed vf; i as constant. With respect to the single
state equation given in Reference [4], an analysis has indicated that it is reasonable for the
normalized optimal density bi should be ranged from 1

3 to 0.618.
Equation (2) to some extent re�ects the behaviour coupling between di�erent class of

vehicles. It was postulated with respect to the one parameter supplemental relationship for
single class tra�c �ows as mentioned in Reference [11]. It is noted that the partial speed ui
is an explicit function of the global density k and the partial free speed vf; i. In particular,
the speed ui linearly depends on the global density when the index ni is identical to unity.
For the mixed tra�c �ows governed by Equation (1), using Equation (2), numerical study is
possible to reveal some important performance in mixed freeway tra�c.
To seek the numerical solution of the governing equations, the �rst and second homogeneous

boundary conditions were used. The TVD method having second-order accuracy [10] was used.
In this application, the key problem is to evaluate the eigenvalues and the right characteristic
matrix which will be detailed in the next section.

3. SOME DETAILS IN SOLUTION PROCESS

The vector form of the governing equations can be written as follows:

@K
@t
+
@F(K)
@x

=0 (4)

where K=(k1; k2; : : : ; km)T is the density vector, and F(K)= (F1; F2; : : : ; Fm)T is the �ow �ux
vector, with the superscript T denoting the matrix transposition. The Jacobian matrix for
Equation (4) is given by

A=(aij); i; j=1; : : : ; m (5)

with element aij= @Fi=@kj. As reported by Wang et al. [12], using the Faddeev–Leverrier
method [13], the characteristic equation can be written as

�m −
m∑
i=1
pi�m−i=0 (6)

with
p1 = trA; A1 =A(A − p1I)
p2 = 1

2 trA1; A2 =A(A1 − p2I)
: : : ; : : :

pm−1 =
1

m− 1trAm−2; Am−1 =A(Am−2 − pm−1I)

pm=
1
m
trAm−1

(7)

where I is the unit matrix; while tr means the trace of a matrix. For example, the trace of the
characteristic matrix A is the summation of the diagonal elements given by

∑m
i=1 aii. It can

be proved that the inversion of the matrix A can be rewritten as A−1 = (Am−2 − pm−1I)=pm.
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The eigenvalues of the governing equation (4) are the roots of the characteristic
equation (6). When the speed–density relation (2) is used, the eigenvalues are all real.
Labelling with an increasing order, one obtains

�16�26 · · ·6�m (8)

For larger m, the eigenvalues can be evaluated by using Newton’s iteration method [14].
However, for the situation of m=4, according to Reference [15], the eigenvalues can be
evaluated with the following procedure. The roots of Equation (6) are identical to the roots
of the pair of quadratic equations

�2 + 1
2(−p1 ± [8y + p21 + 4p2]1=2)�+ (y ± (−p1y + p3)[8y + p21 + 4p2]−1=2)=0 (9)

where y are an arbitrary real root of the cubic equation

y3 + 1
2p2y

2 + 1
4(p1p3 + 4p4)y +

1
8[p4(4p2 + p

2
1)− p23]= 0 (10)

The solutions of Equation (10) can be sought with the method used in the reported work [6].
For the eigenvalues of mixed freeway tra�c �ow, there exists a right characteristic matrix

with the form

R=[r1; r2; : : : ; rm]=

⎛
⎜⎜⎜⎜⎜⎝

r11 r12 · · · r1m

r21 r22 · · · r2m

· · · · · ·
rm1 rm2 · · · rmm

⎞
⎟⎟⎟⎟⎟⎠

(11)

The matrix elements can be obtained in terms of Gauss elimination approach [14], with the
left characteristic matrix L(=R−1) obtained using the coe�cients of matrix R given by the
Faddeev–Leverrier method [13].
After evaluating matrices R and L, the TVD method [10] with second-order accuracy can be

applied conveniently to carry out the numerical modelling of mixed tra�c �ow on freeways.
It is expected these features in the solution process are invaluable in the numerical study

of other physical and engineering problems, such as in gas-dynamics and multiphase �uid
dynamics, where the numerical method TVD also has its market of application.

4. RESULTS AND DISCUSSION

This section presents examples in the numerical modelling of the particular four-class mixed
freeway tra�c �ows described by the extended LWR model. Initial parameters for performing
the numerical analyses are summarized below:

• The free-�ow speed of ith class is given by the expression
vf; i=1=[bi(1− bnii )]; i=1; : : : ; 4

• The optimal density values are assigned as bi=0:4; 0:41; 0:42, and 0.43, for which, the
parameters of speed–density relation (ni; i=1; 2; 3; 4) for these four driving classes can
be evaluated using Equation (3);
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• The total length of the freeway segment was assumed as 20 km, and used as the length
scale in the present simulation. The road capacity q0 and the jam density kjam were
assumed as 1800 vh=h and 120 vh=km, respectively.

Initial conditions given in Figures 1(a) and (b) were used in the modelling process.
Figure 1(a) shows two density square waves arisen from the local heterogeneity of the 1st
or 4th class of vehicles. The initial density distributions were represented, respectively, by
the dashed and solid lines. It was assumed that the wave has a magnitude 0.01, and occurs
in the range of x∈ (0:2; 0:3). The densities of the 2nd and the 3rd class of vehicles are 0.09
and 0.06, respectively, and have uniform initial distributions. Hence, outside the wave region,
the global density is about 0.3. While Figure 1(b) includes two density square waves with
the same magnitude, but occurs in the range x∈ (0:7; 0:8). For this case, the values of the
2nd and 3rd classes of vehicles are, respectively, 0.15 and 0.1, and also distribute uniformly.
Thus, outside the wave region, the global density is 0.5.
Since the optimal densities of the mixed tra�c for the four classes are, respectively, 0:4; 0:41;

0:42, and 0.43, the initial wave shown in Figure 1(a) should propagate forward, but the wave
shown in Figure 1(b) should travel backward.
Figure 2(a) shows that the density wave front initially positioned at x=0:3 has arrived at

about x=0:7 at the instant of t=0:306. The mean speed of the density wave propagation
during the initial period is approximately identical to 13:07 km=h (= (0:7−3)=0:306× q0=kjam).
Such a value is in the speed range of tra�c waves on freeways: from 10 to 20 km=h, as noted
by Helbing and Treiber [16] from the empirical �ndings of Kerner and Rehborn [17, 18]. It
should be noted that this particular consistency does not imply that the tra�c wave propagation
speed less than 10 km=h is impractical, since from theoretical point of view, the propagation
speed is dependent on the supplemented tra�c state equations, or more explicitly the values of
the optimal density selected. Practical tra�c wave propagation speed may also closely relate
to the generating sources of the tra�c waves.
As indicated by the solid curves in Figure 2(a), more evident in the near region of point

x=0:7, the small amplitude density oscillations downstream the main global density wave
are evidence of tra�c mixing and the impedance of the 4th class of vehicles, but not the
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Figure 1. Density disturbance in square wave form on the initial tra�c road for: (a) stable; and
(b) unstable highway tra�c �ows. The magnitude of the square wave is 0.01, it is represented by dash

or solid line as it occurs in the 1st or 4th class of vehicles.
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Figure 2. Density distribution for the three instants for the cases of: (a) forward; and
(b) backward propagation of tra�c wave. Note that the dashed curve denotes the case of
the 1st class disturbance in the initial �eld, with the solid curve representing the case of

the 4th class disturbance in the initial �eld.

implication of numerical instability. These small density oscillations should be pronounced
when the initial density is less the optimal density of the freeway tra�c [6].
Generally, the wave evolution occurs a decaying trend. By comparison with the dashed

and solid curves given in Figure 2(a), it was seen that, during the initial period, the mean
travelling speed of the density wave is rigid to the variation of vehicular composition in the
initial wave, or, in other words, without regard to the initial wave is arisen from the local
heterogeneity of the 1st or the 4th class of vehicles. When the initial wave is arisen from the
4th class local heterogeneity, as shown by the solid curve in Figure 2(a), at the same instant,
the wave magnitude is higher, implying the presence of a lower decaying rate. Furthermore,
as indicated by the solid curve in the range of x¿0:6, there is also a comparatively signi�cant
in�uence on the downstream density uniformity.
In contrast to what was seen in Figure 2(a), Figure 2(b) shows that the tra�c wave decays

a bit more rapidly when the initial density wave is arisen from the 4th class local heterogene-
ity. Similarly, the wave front given by the solid curve has been overlapped by the dashed
curves, indicating that again the mean speed of the backward tra�c wave during the initial
period is independent of the variation of vehicular composition in the initial wave. For this
case, the absolute value of the mean speed of wave propagation is about 18:09 km=h (= |0:7−
0:22|=0:398× 15 km=h), which are also coincident with the empirical �ndings of Kerner
and Rehborn [17, 18].

5. CONCLUSION

This paper has detailed some features in the numerical modelling of multi-class mixed tra�c
�ow model described by extended LWR model. The evaluation of the eigenvalues and the
right characteristic matrix has been presented in detail. Numerical solutions based on TVD
method indicate that, for the cases of the initial global density close to 0.3 and 0.5, when the
tra�c is composed of four-class of vehicles, and the initial density square wave is arisen from
the local heterogeneity of the slowest vehicular class in mixed freeway tra�c, comparatively
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signi�cant e�ect on the downstream uniformity occurs and the decay rate of the density wave
were lower when the wave propagates forward, but a higher decay rate appears when the wave
travels backward. Reverse wave decaying trend exists when the initial density square wave
is arisen from the fastest class heterogeneity. The mean wave propagation speed is almost
rigid to the variation of vehicular composition in the same initial wave. Tra�c mixing and
the impedance of the slow moving vehicles may cause small amplitude density oscillations
downstream the main global density wave.
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