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Abstract

To estimate travel time through a composite ring road, a viscoelastic traffic flow model is developed by assuming traffic
ound speed on empty road is just equal to free flow speed. Based on the viscoelastic model, numerical tests of traffic flows
ere conducted to provide node traffic speed for estimating travel time. The composite ring road with three ramp intersections
as five parts, each part is composed of a tunnel, a horizontal, an uphill and a downhill segment. The length of uphill segment
s the same as the length of downhill segment, both are 1 km, while the tunnel length can be 1, 0.5, and 0.1km. To validate
he reliability and feasibility of the viscoelastic traffic flow model, the Navier–Stokes like model Zhang (2003) is extended
nd adopted to provide the counterpart numerical results for comparison. It was found that in case without ramp effects any
unnel inlet becomes a starting point of traffic congestion region when initial density normalized by its jam value is not below
.2. But in case with ramp effects, even if initial density is 0.15, downstream an on-ramp intersection, any tunnel inlet can
lso induce traffic shock when the tunnel is positioned upstream another off-ramp intersection. The off ramp flow can shorten
ean travel time and increase its root mean square value significantly. The fitted expression of mean travel time has the form

σtf = Aρm
0 + b

here A = 8.9686, m = 1.6260, b = 0.8424, ρ0 is the initial density varying from 0.1 to 0.625.
c 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.

eywords: Viscoelastic traffic flow model; Travel time; Ramp effects; Traffic sound speed; Tunnel speed limit

1. Introduction

Since traffic flow affects the work and life of human beings significantly, many macroscopic traffic flow models
ave been developed, what can be enumerated are the well-known model LWR [24,34], the Euler model [31], the
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gas-kinetic-based model [15,16,28], the Navier–Stokes like model [18], the generic model (Lebacque, et al. [22,23]),
and the urgent-gentle class traffic model [48], although researchers have to face the well-known violent criticism [5].

For the estimation of travel time, two heuristic rules were examined by Chang and Mahmassani [4], the rules were
roposed for describing urban commuters’ predictions of travel time as well as the adjustments of departure time in
esponse to unacceptable arrivals in their daily commute under limited information. A relatively complete research
ackground for travel time can be ascertained by tracing some references (Dailey [6]; Lint and der Zijpp [25]; Wu,
o and Lee [43]; van Lint, Hoogendoorn and Zuylen; [40]; Yildirimoglu and Geroliminis [45]; Hans, Chiabaut

nd Leclercq [14]; Kumar, et al. [20]; Ladino, et al. [21]; Ma, et al. [26]; Rahmani, et al. [32]).
In the study aimed to provide a step forward from that research by introducing a more sophisticated understanding

f the capacity drop phenomenon for the benefit of designers of street environments, Cepolina and Tyler [3] planned
ome experiments to evaluate the effects on capacity drop of the density at the bottleneck entrance, the pedestrians
esired speed and the pedestrian motivation in passing through the bottleneck.

For the influences of road infrastructure conditions on traffic flow dynamics, Patire and Cassidy [30] found that
ane changing patterns of bane and benefit and unveiled a mechanism by which congestion forms on a 3-lane,
phill expressway section, and causes reductions in output flow. Vehicular lane-changing is key to the mechanism,
articularly lane-changing induced by speed disturbances that periodically arise in the expressways median and
enter lanes.

As uphill segments have often been identified as capacity bottlenecks in freeway networks, Goñi-Ros et al. [8]
xplored whether equipping the leader of a platoon with an in-vehicle Gradient Compensation System can
mprove traffic flow efficiency on uphill segments. Sags are freeway segments along which the gradient changes
ignificantly from downward to upward, being considered as bottlenecks in freeway networks, extensive studies were
onducted by Goñi-Ros et al. [9–12]. It was revealed that mainstream traffic flow control strategies that use variable
peed limits have the potential to improve substantially the performance of freeway networks containing sags
Goñi-Ros et al. [10]); there exists a potentially highly effective and innovative way to reduce congestion at sags,
hich could possibly be implemented using cooperative adaptive cruise control systems (Goñi-Ros et al. [12]).
When vehicles accelerate away from the upstream queue, sags and tunnels can cause capacity reduction, capacity

rop, and extreme low acceleration rates. This fact promotes the development of a behavioral kinematic wave
odel [17], which introduces a tunnel time gap that increasing with the distance of the tunnel inlet. The model
as calibrated and validated with four trajectories at the Kobotoke tunnel in Japan, and may be helpful to develop
etter design and control strategies to improve the performance of a sag or tunnel bottleneck.

A class of models with nonlocal point constraints for traffic flow through bottlenecks were introduced and
nalyzed by Andreianov et al. [1], their numerical results show that these constraints are able to reproduce features
n vehicular traffic and crowd dynamics such as the self-organization.

However, for the effect of road segment condition on travel time from the view of macroscopic model, less
ork has been reported. In this paper, a viscoelastic traffic flow model (VEM) is developed to study the effect on

ravel time through a composite ring road. The road with three ramp intersections has five parts, each is composed
f a tunnel, a horizontal, an uphill, and a downhill segment arranging subsequently, as shown schematically in
ig. 1(a–b). The road segment is labeled by the index k̂, each has its particular fundamental diagram (FD)
haracterized by the corresponding braking distance, free flow speed of traffic flow. Note that in specific tunnel, the
ehicles must follow the tunnel speed limit. In fact, any vehicle running on downhill segment should have a larger
ree flow speed than on the uphill and horizontal segments. As braking distance is generally relevant to free flow
peed (Kiselev, et al. [19]), the composite ring road has four fundamental diagrams relating to the four segments,
s shown in Fig. 2.

In particular, in each road part, the tunnel is positioned upstream the uphill that linking directly with the downhill,
ith the horizontal segment separating the tunnel and uphill [see Fig. 1(b)]. As traffic flow has to subject to road

egment condition, how the segment condition affecting the travel time through the composite road is certainly an
cademic problem of traffic flow theory.

The VEM model describes traffic pressure algebraically, expresses traffic sound speed by using the definition of
ound speed under isentropic condition in classical mechanics. This approach of modelling is much easier than that
n the gas-kinetic-based models [15,16,28], in which traffic pressure is described by a partial differential equation.
herefore, we planned to build a simulation platform for vehicular traffic on the basis of the VEM, conduct a series

f numerical tests to estimate the travel time through a composite ringroad, and then use a linear regression after
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Fig. 1. (a) Schematic diagram of ring traffic flow with five initial jams located at X I , the tunnel starts at Xsi , the uphill starts at Xu
I and

s closely followed by the downhill that ends at X I so that the uphill or downhill section length can be calculated by Lh = (X I − Xu
I )/2,

for I = A, B, C, D, E, and i = 1, 2, . . . , 5. (b) Road segments labeled by k̂ = 1, 2, 3, 4.

Fig. 2. Fundamental diagram for traffic flows on a ring road with downhill (krd = −1), horizontal (krd = 0), uphill (krd = 1), and
specific tunnel (krd = 2) segments. Note that ρ is measured by jam density ρm , the flow rate q(krd)

e is measured by ρ∗2v f 2, and
(krd)
es = cτ k̂/e · [ρ

∗̂kv f k̂/ρ∗2v f 2], krd = k̂ − 2 = −1, 0, 1, 2 for k̂ = 1, 2, 3, 4 respectively.

ogarithmic processing to obtain a fitted expression for mean travel time. To validate the VEM, the Navier–Stokes
ike model [46] is extended and adopted to provide the counterpart numerical results for comparison. To show the
eliability of the VEM, the observation data from Ref. (McShane, Roess and Prassas [27]) and the field observation
ata extracted from Ref. (Patire and Cassidy [29]) are used for comparison.

We will introduce the VEM and numerical method before describing the method of travel time prediction and

odel for validation, then we will discuss the numerical results, and give the conclusions finally.
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Table 1
Simulation parameters of traffic flow on the ring road.

v f 1 (km/h) 140 cτ1/v0 5.003 ρc21 0.7191 Xu
A (km) 10

v f 2 (km/h) 120 cτ2/v0 4.587 ρc22 0.6979 Xu
B (km) 34

v f 3 (km/h) 100 cτ3/v0 4.146 ρc23 0.6716 Xu
C (km) 58

v f 4 (km/h) 80 cτ4/v0 3.702 ρc24
a 0.6404 Xu

D (km) 82

Xbr1 (m) 96 γ̂1 2.779×10−3 XR1 (km) 20 Xu
E (km) 106

Xbr2 (m) 80 γ̂2 2.316×10−3 XR2 (km) 60 XA (km) 12
Xbr3 (m) 65 γ̂3 1.985×10−3 XR3 (km) 100 XB (km) 36
Xbr4 (m) 50 γ̂4 3.474×10−3 σ1av 0.1 XC (km) 60
τ01 (s) 6.166 2β1 3.769×10−3 σ2av [−0.4,−0.1] XD (km) 84
τ02 (s) 7.194 2β2 3.406×10−3 σ3av −0.1 XE (km) 108
τ03 (s) 8.632 2β3 3.123×10−3 Xs1 (km) 5 Lh (km)b 1
τ04 (s) 10.791 2β4 4.221×10−3 Xs2 (km) 29 l (m) 8
Λ1 3.032 ρ∗1 0.0769 Xs3 (km) 53 ρm (veh/km) 124
Λ2 2.780 ρ∗2 0.0909 Xs4 (km) 77 uc2 (km/h) 18
Λ3 2.513 ρ∗3 0.1096 Xs5 (km) 101 l0 (m) 100
Λ4 2.244 ρ∗4 0.1379 Lsp (km) 1 v0 (m/s) 3.0303

aThe critical densities ρ
∗̂k , and ρc2̂k for k̂ = 1, 2, 3, 4 are measured by ρm .

The uphill or downhill length is Lh = (X I − Xu
I )/2, I = A, B, C, D, E.

. Viscoelastic traffic model

For the simplicity of mathematical modeling of traffic flow on a composite ring road, we assume: (i) traffic
ow satisfies a linear viscoelastic constitutive relation; (ii) on empty road, traffic sound speed is just equal to free
ow speed. (iii) the road is composed of tunnel, horizontal, uphill and downhill segments, it is a ring type for

he convenience of assigning boundary conditions in numerical tests, and has three ramp intersections. For the
rst assumption, the main reason is that in many high-order traffic models relaxation time that usually relates the
lasticity and viscosity of fluids (Han [13]) has been adopted to define the driven force of vehicles, while vehicular
otion may have a memory behavior for driver safety concern. The third assumption implies that we attempt to

escribe traffic flows by including more road segment conditions, such as tunnel speed limit.
The tunnel, horizontal, uphill and downhill segments are labeled by index k̂, as shown in Fig. 1(a–b).
Defining the traffic density and speed by ρ(x, t) and u(x, t) respectively so that the traffic flow rate can be written

s q(x, t) = ρu, assuming that the second critical traffic speed does not depend on the road segment condition, for
nstance uc2 = 18 km/h as shown in the 3rd-to-last line of the 4th column in Table 1, using a maximum relaxation
rder of 2 in viscoelastic traffic flow modeling (Ma, et al. [26]), the governing equations of the viscoelastic traffic
odel (VEM) have the following form{

ρt + qx = σq/ l0,

ρ(ut + uux ) = R.
(1)

here R satisfies the expression (Zhu and Yang [50]; Ma, et al. [26])

R + [ργ (R/ρ)x ]x = (qe − q)/τ − px + [(2Gτ + ρν1)ux ]x , (2)

here R/ρ represents traffic flow acceleration, ρν1 = 3ργ ux , ν (= 2Gτ/ρ) is traffic kinematic viscosity, γ (=
.68ντ ) is traffic elasticity, here G is the modulus of vehicular fluid elasticity, τ is relaxation time of traffic flow,

is the ramp parameter assigned by a random generator based on a Gaussian normal distribution, px is traffic
ressure gradient, qe is equilibrium traffic flow rate obtained by a fundamental diagram as given by Fig. 2.

The term [(2Gτ +ρν1)ux ]x on the right hand side of Eq. (2) reflects some properties of traffic self-organization.
n the reality of traffic flow, ahead of a vehicle, a speed increase tends to produce a positive value of uxx , and
hus provides drivers’ motivation for acceleration, as the density reduction ahead of the vehicle can be foreseen in
ongested traffic flows. If we assume traffic elasticity γ is a constant, then the kinematic viscosity ν is inversely

roportional to relaxation time τ , indicating that ν approaches to zero for τ → ∞.
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The ramp effects are described by using a ramp variable σ , its instantaneous value is based on random
number generator with Gaussian normal distribution, as reported previously (Zhang, et al. [48]). It is noted that
the coordinate x is road fitted rather than a horizontal line, as the road has included the uphill and downhill
segments [̂k = 3, 1, see in Fig. 1(b)].

The traffic equilibrium flow rate (qe) depends on segmental condition, as shown in Fig. 2. Let the jam density
be ρm , on the segment k̂(= krd + 2), the equilibrium flow [q (krd)

e ] can be written as

q (krd)
e =

⎧⎪⎨⎪⎩
ρv f k̂, for ρ ≤ ρ∗̂k ,

−cτ k̂ρ ln(ρ/ρm), for ρ∗ j < ρ ≤ ρc2̂k ,

Bk̂ρ{1 − sech[Λk̂ ln(ρ/ρm)]}, for ρc2̂k < ρ ≤ ρm .

(3)

t second critical density ρc2̂k , the equilibrium speed uc2̂k is called second critical speed, it is used to define a ratio
k̂ = cτ j/uc2̂k , the parameter Bk̂ is defined by

Bk̂ = uc2̂k/{1 − sech[Λk̂ ln(ρc2̂k/ρm)]}. (4)

t is noted that the fundamental diagrams in Fig. 2 labeled by the index krd(= −1, 0, 1, and 2) are obtained using the
ree flow speeds v f k̂ and braking distances Xbr̂k, as can be seen in Table 1. The subscript k̂ is used to distinguish
ariables that being relevant to the downhill (̂k = 1), horizontal (̂k = 2), uphill (̂k = 3), and tunnel (̂k = 4)
egments respectively. The equilibrium flow-density relations on the four segments described by Eq. (3) are based
n the assumption that the second critical point of traffic flow does exist.

On road segment k̂, for the braking distances Xbr̂k, the corresponding maximum permissible density ρ∗̂k at free
ow speed v f k̂ is given by

ρ∗̂k = ρm exp(−v f k̂/cτ k̂). (5)

s maximum permissible density (ρ∗̂k) itself implies that the distance between vehicles is not shorter than the
raking distance Xbr̂k, using average vehicle length l, then ρ∗̂k has the form

ρ∗̂k = ρm[1 + Xbr̂k/ l]−1, (6)

hich is generally referred as the 1st critical density. Combining Eqs. (5) and (6), we have

cτ k̂ = v f k̂/ ln[1 + Xbr̂k/ l] . (7)

As the details of how to describe traffic pressure and traffic sound speed mathematically for vehicular flow on
ring road have been reported recently (Zhang, et al. [49]), here we just directly show the relevant expressions

y using the road segment conditions distinguished by k̂. By assuming that on empty road traffic sound speed is
xactly equal to the free flow speed, using the parameter of traffic pressure obtained by postulating that the sound
peed at the second critical point is exactly equal to the speed cτ k̂ , further defining⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

K k̂ = {cτ k̂[1 − αρc2̂k/ρm]}2 ,

c2
∗̂k = K k̂/(1 − αρ∗̂k/ρm)2 ,

B∗̂k = (v2
f k̂ − c2

∗̂k)/ρ4
∗̂k ,

B0̂k = c2
∗̂kρ∗̂k + B∗̂kρ

5
∗̂k/5 − K k̂ · {ρ∗̂k/[1 − α(ρ∗̂k/ρm)]} ,

c0̂k = cτ k̂ ,

he traffic pressure pk̂ is

pk̂ =

{
c2
∗̂k

ρ +
1
5 B∗̂k · [ρ5

∗̂k
+ (ρ − ρ∗̂k)5] , for ρ ≤ ρ∗̂k ,

K k̂ · {ρ/[1 − α(ρ/ρm)]} + B0̂k , ρ∗̂k < ρ < ρm ,
(8)

sing the definition c2
= ∂p/∂ρ under isentropic condition in classical mechanics, the form of corresponding sound

peed ck̂ can be expressed by

ck̂ =

⎧⎪⎨⎪⎩
√

c2
∗̂k

+ B∗̂k(ρ − ρ∗̂k)4 , for ρ ≤ ρ∗̂k ,

K 1/2
/[1 − α(ρ/ρ )] , ρ < ρ < ρ .

(9)
k̂ m ∗̂k m
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It is assumed that the length scale l0 is just equal to the product of sound speed and relaxation time, i.e., l0 =

c0̂kτ0̂k , the speed cτ k̂ in the road segment k̂ is just equal to the sound speed c0̂k at the second critical point ρc2̂k (Zhang,
t al. [48]).

. Numerical method

To solve the governing equations of VEM, essentially non-oscillatory and non-free-parameter dissipation
ifference scheme (ENN) developed by Zhang et al. [47] is adopted for predicting the numerical flux, and the 3rd
rder Runge–Kutta scheme that also maintaining the total variation diminishing property [35,36] is used for time
arching in numerical tests. The ENN is the third order improvement of the non-oscillatory and non-free-parameter

issipation difference scheme (NND) (Shui [35]) that is well known in Aerodynamics, has been adopted to propose
roper weighted difference scheme (Wang and Shen [42]).

Using definition ∂p/∂ρ = c2, taking R1 = R + px + σq/ l0 · u instead of R, the governing Eqs. (1) and (2)
become

∂U
∂t

+
∂F(U)

∂x
= S, (10)

here U = (ρ, q)T , F(U) = (q, q2/ρ + p)T , and S = [σq, R1]T , with superscript ′T′ representing vector transpose.
The Jacobian matrix is

A =

⎛⎝ ∂ F1
∂U1

∂ F1
∂U2

∂ F2
∂U1

∂ F2
∂U2

⎞⎠ =

(
0 1

−u2
+ c2 2u

)
. (11)

here U1 = ρ, U2 = q . It is easy to see that the eigenvalues of Matrix A may be expressed as a1 = u − c, and
2 = u + c.

Let the eigenvalues, the left and right eigenvectors be

ak(U), lk(U), rk(U), k = 1, 2 , (12)

hen the A(U) can be written as

A(U) = RaL, L = R−1, (13)

here a = diag(a1(U), a2(U)) is a diagonal matrix composed of eigenvalues; R, L are respectively the left and right
haracteristic matrix being composed of relevant eigenvectors,

R = [r1, r2], L =

[
l1
l2

]
. (14)

ence, the splitting form of F(U) can be written as

F±(U) = A±(U)U, A±(U) = Ra±L, (15)

here

a±
= diag(a±

1 (U), a±

2 (U)),

a±

k (U) =
1
2

(ak(U) ± |ak(U)|), k = 1, 2 .

The essentially non-oscillatory and non-free-parameter dissipation difference scheme (ENN) has introduced a
function ms(c1, c2) in the form

ms(c1, c2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c1, for |c1| < |c2|,

c2, for |c1| > |c2|,

c1, for |c1| = |c2| and |c1 · c2 > 0|,

0, for |c1| = |c2| and |c1 · c2 ≤ 0|.

(16)

This function is symmetrical to its variables c1 and c2. Then labeling the time step and spatial node size respectively
by ∆t and ∆x , the difference scheme ENN discretizes ∂F(U)/∂x by

∂F(U)
⏐⏐⏐⏐ =

∆t
(̂Fi+1/2 − F̂i−1/2), (17)
∂x i ∆x
506
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where

F̂i+1/2 = F̂+

i+1/2 + F̂−

i+1/2.

By defining

∆i+1/2F+
= F+(Ui+1) − F+(Ui ), ∆i+1/2F−

= F−(Ui+1) − F−(Ui ),

the ENN gives the numerical flux as follows [37]

F̂+

i+1/2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F̂+(Ui ) +
1
2

ms
(
∆i+1/2F+,∆i−1/2F+

)
+

1
3

ms
(
∆i+1/2F+

− ∆i−1/2F+,

∆i−1/2F+
− ∆i−3/2F+

)
, for |∆i+1/2F+

| > |∆i−1/2F+
|;

F̂+(Ui ) +
1
2

ms
(
∆i+1/2F+,∆i−1/2F+

)
−

1
6

ms
(
∆i+1/2F+

− ∆i−1/2F+,

∆i+3/2F+
− ∆i+1/2F+

)
, otherwise .

(18)

F̂−

i+1/2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F̂−(Ui+1) −
1
2

ms
(
∆i+1/2F−,∆i+3/2F−

)
+

1
3

ms
(
∆i+3/2F−

− ∆i+1/2F−,

∆i+5/2F−
− ∆i+3/2F−

)
, for |∆i+1/2F−

| > |∆i−1/2F−
|;

F̂−(Ui+1) −
1
2

ms
(
∆i+1/2F−,∆i−1/2F−

)
−

1
6

ms
(
∆i+1/2F−

− ∆i−1/2F−,

∆i+3/2F−
− ∆i+1/2F−

)
, otherwise .

(19)

t is necessary to mention the numerical approach for the approximation of several, widely applied, macroscopic
raffic flow models (Delis, et al. [7]), where the family of spatial discretizations includes a second-order mono-
one upstream-centered scheme for conservation laws (MUSCL) scheme and a fifth-order weighted essentially
on-oscillatory (WENO) scheme, and a detailed formulation of the scheme, while emphasis is given on the WENO
cheme and its performance for solving the different traffic models. However, considering the ENN scheme that
aving a third-order accuracy in spatial discretization is essentially non oscillatory and non-free-parameter, and easy
or building simulation platform, it is adopted preferentially in this study.

Further defining

L (U) = −
∂F(U)

∂x
+ S , (20)

o seek the numerical solution of
∂U
∂t

= L (U) , (21)

he 3rd order Runge–Kutta scheme [35,36] has the form⎧⎪⎨⎪⎩
U(1)

i = Un
i + ∆tL (Un) ,

U(2)
i = (3Un

i + U(1)
i )/4 + ∆tL (U(1))/4 ,

Un+1
i = (Un

i + 2U(2)
i )/3 + 2∆tL (U(2))/3 ,

(22)

here the superscript n denotes the time level.
Labeling the step ratio by ω = ∆t/∆x , the Courant–Friedrichs–Lewy (CFL) condition of TVD is satisfied by

ω = CFL/max|ak,i |, k = 1, 2;

i = 0, 1, 2, . . . , Imax − 1, (23)

here ak,i represents the kth eigenvalue for A at xi , Imax is the maximum number of node. In the numerical tests,
e assumed that the Courant number CFL = 0.7 [37].
Note that as reported by Aw and Rascle [2], negative speeds can possibly occur in the solutions, if pres-

ure gradient px/ρ is used to describe the acceleration R/ρ. This promotes the development of anisotropic
odels (Rascle [33]; Xu, et al. [44]).
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4. Method of travel time prediction

Numerical tests based on the VEM can output the node traffic speed u(xi , tn). Following the previous
work (Zhang, et al. [48]), using a pre-assigned time period ∆0, the local average speed ui (t) at the node xi is

ui (t) =
1
∆0

∫ t

t−∆0

ui (ξ )dξ, (24)

he node number i depends on the segment index krd. As the road total length L is expressed by

L =

∑
krd

Lkrd,

he instantaneous travel time Tt(t) through the road is

Tt(t) =

2∑
krd=−1

T (krd)
t , (25)

T (krd)
t (t) =

∑
i

[∆xi/ui (t)](krd) . (26)

ote that ∆x (krd)
i = l0, and ∆0 is assumed to be 7.5 min. As the propagation and interaction of traffic wave causes

vident time dependent properties of traffic speed and density, we have to predict the mean travel time by time
veraging of Tt(t), which allows us to calculate the relevant root means square. The mean travel time Ttav and T (krd)

tav
can be expressed by⎧⎪⎪⎨⎪⎪⎩

Ttav =
1

tend − tst

∫ tend

tst

Tt(ξ )dξ ,

T (krd)
tav =

1
tend − tst

∫ tend

tst

T (krd)
t (ξ )dξ .

(27)

ith the root mean square (rms) values given by⎧⎪⎪⎨⎪⎪⎩
[T ′

t ]2
=

1
tend − tst

∫ tend

tst

[Tt(ξ ) − Ttav]2dξ ,

[T (krd)
t

′

]2
=

1
tend − tst

∫ tend

tst

[T (krd)
t (ξ ) − T (krd)

tav ]2dξ .

(28)

here tst is the time to start the simulation, in general tst = 0, with tend representing the time to end the simulation.
aking dimensionless by time scale t2 (= L/v f 2) gives⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σt = Tt/t2,

σtav = Ttav/t2, σ ′

t = T ′

t /t2 ,

σ
(krd)
t = T (krd)

t /t2 ,

σ
(krd)
tav = T (krd)

tav /t2, σ
(krd)
t

′

= T (krd)
t

′

/t2 .

(29)

here σt is the instantaneous travel time through the road, with the mean travel time and rms denoted respectively
y σtav and σ ′

t ; while σ
(krd)
t is the instantaneous travel time through the segment labeled by superscript (krd),

orresponding to the mean travel time [σ (krd)
tav ] and rms [σ (krd)

t
′

]. The time scale t2 represents the travel time through
he road in case at the free flow speed v f 2.

. Model for validation

On the other hand, to validate the VEM, the Navier–Stokes like traffic model (Zhang [46]) is extended and named
ZM by assuming that traffic pressure and sound speed have the same as adopted in the VEM. Further assuming

hat there is constant traffic elasticity, then we can describe the EZM in the following form{
ρt + qx = σq/ l0,

2 (30)

qt + {q /ρ + p + [(2βc0) · (c/c0)](q/ρ)}x = R,
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Fig. 3. Sound speed ratio c/c0 (a) and traffic pressure p (b) versus density ρ, where ρ is measured by jam density ρm , where p is measured
y ρmv2

f k̂
, k̂ = 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ith

R = (qe − q)/τ + [(2βc0) · (c/c0)ρ](q/ρ)xx + (q/ρ) [(2βc0) · (c/c0)ρ]x , (31)

here traffic equilibrium flow qe, traffic pressure p, sound speed c, and relaxation time τ are obtained by the same
xpressions as used in the VEM. c0 represents the sound speed at the second critical density. It is also assumed that
he product of sound speed and relaxation time is just equal to the length scale l0. β is the dimensionless traffic
inematic viscosity

β =
ν

2τ0c2
0
. (32)

In the EZM, the discretization of [(2βc0) · (c/c0)ρ]x is implemented by a second order upwind scheme [39]. The
extended traffic model EZM is adopted for validating the reliability and feasibility of the VEM.

The traffic density dependence of traffic sound speed ratio c/c0 and traffic pressure p on the four segments
abeled by krd are shown respectively in Fig. 3(a–b). The blue, black, green and purple solid curves represent the
ound speed ratio c/c0 of traffic flows respectively on the downhill, horizontal, uphill and tunnel segments [see
ig. 3(a)]. It is see that the c/c0 and p have the largest value in tunnel and the lowest on downhill segment for a
iven density, with the c/c0 and p curves on the uphill segment just below that in the tunnel, and the c/c0 and p
urves on horizontal segment just above that on the downhill segment.

.1. Parameters and conditions

To predict travel time of vehicles through the composite ring road [Fig. 1(a–b)], numerical tests of ring road
raffic flows are conducted by the VEM and EZM, with the macroscopic fundamental diagrams shown in Fig. 2. In
able 1, it can be seen the simulation parameters of traffic flow on the ring road, such as the free flow speeds v f k̂ ,
raking distances Xbr̂k , relaxation times τ0̂k . In particular, the second critical speed uc2 is assumed to be 18 km/h,
nd mean vehicle length l is 8 m, hence the jam density ρm is set to 124 veh/km. The five initial jams artificially
ssumed at X I , (I = A, B, C, D, E), the uphill and downhill length is identical and denoted by Lh , and tunnel
ength is labeled by Lsp. The normalized elasticity in the VEM γ̂

[
=

0.68×2G(τ0)
l0q0

]
is 2.178×10−3, corresponding to

2β = 3.023 × 10−3 in the EZM.
The initial density is assumed to be

ρ(x, 0) =

{
1, for x =∈ [x I − 1/2, x I + 1/2],

ρ0, otherwise.

}
(33)

with q(x, 0) = qe[ρ(x, 0)]. The initial density ρ0 plays a significant role in affecting the propagation of the traffic
jams artificially assumed to be located at X I , (I = A, B, C, D, E) [see, in Fig. 1], in addition to the traffic
ensitivities to the visco-elasticity γ , as reported (Smirnova,et al. [38]).

For the traffic flows on the composite ring road, the boundary condition is

ρ(x, t) = ρ(L + x, t), q(x, t) = q(L + x, t) (34)

here L is the total length of the ring road.
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Table 2
ρ0− dependence of σtav and σ

(krd)
tav (krd = 1, −1, 2) in case without ramp effects for Lsp = 1 km.

ρ0 VEM EZM

σtav σ
(1)
tav σ

(−1)
tav σ

(2)
tav σtav σ

(1)
tav σ

(−1)
tav σ

(2)
tav

0.1 1.1028 0.0547 0.0453 0.0569 1.1061 0.0547 0.0452 0.0574
0.15 1.3244 0.0679 0.0537 0.0759 1.3256 0.0683 0.0539 0.0760
0.17 1.4196 0.0730 0.0571 0.0892 1.4211 0.0734 0.0573 0.0893
0.185 1.4889 0.0730 0.0588 0.1103 1.4903 0.0736 0.0590 0.1097
0.2 1.5934 0.0672 0.0570 0.1724 1.5906 0.0681 0.0575 0.1700
0.368 2.8891 0.0814 0.0614 0.1755 2.9052 0.0778 0.0609 0.1829
0.625 5.1753 0.2299 0.2151 0.2034 5.1752 0.2299 0.2151 0.2036

Table 3
ρ0− dependence of σtav and σ

(krd)
tav (krd = 1, −1, 2) in case without ramp effects for Lsp = 0.5 km.

ρ0 VEM EZM

σtav σ
(1)
tav σ

(−1)
tav σ

(2)
tav σtav σ

(1)
tav σ

(−1)
tav σ

(2)
tav

0.1 1.0987 0.0552 0.0455 0.0267 1.0999 0.0552 0.0454 0.0269
0.15 1.3171 0.0681 0.0541 0.0355 1.3172 0.0681 0.0540 0.0355
0.17 1.4088 0.0732 0.0576 0.0433 1.4106 0.0735 0.0576 0.0432
0.185 1.4853 0.0684 0.0578 0.0755 1.4853 0.0698 0.0582 0.0727
0.2 1.5804 0.0682 0.0579 0.0925 1.5783 0.0681 0.0579 0.0925
0.368 2.8636 0.0860 0.0624 0.0938 2.8642 0.0828 0.0624 0.0939
0.625 5.1523 0.2287 0.2135 0.1057 5.1514 0.2287 0.2134 0.1058

5.2. Comparison of results

For Lsp = 1 km, the initial density ρ0− dependence of travel times σtav, and σ
(krd)
tav (krd = 1, −1, 2) in case

ithout ramp effects is shown in Table 2, where the left part including the 2 to 5 columns is predicted on the
asis of VEM, with the right part including the 6 to 9 columns based on the EZM. It is seen that in general the
ean travel time (σtav) grows monotonically with the increase of initial density ρo, and so are the mean travel

ime through the five separated uphills, thereafter called the uphill mean travel time [σ (1)
tav ] and the mean travel time

hrough the five separated downhills, thereafter called the downhill mean travel time [σ (−1)
tav ]. When ρ0 is below 0.2,

he mean travel time through the five separated tunnels, thereafter called the tunnel mean travel time [σ (2)
tav ] holds

n increasing trend with initial density ρ0, but for ρ0 ≥ 0.2, σ
(2)
tav keeps a value around 0.1868 with a maximum

eviation of 0.0168, indicating that the tunnel inlet has originated traffic shocks propagating backward rather than
n the tunnel and thus there exists a traffic congestion region generated by the tunnel bottleneck effect. Comparing
he left and right parts, it can be seen that the mean travel time σtav by the VEM is much the same as that predicted
y the EZM. For instance, when ρ0 increases from 0.1 to 0.625, the maximum deviation is less than 0.0065 that
ccurring at ρ0 = 0.625.

In Table 3, the ρ0− dependence of travel times σtav, and σ
(krd)
tav (krd = 1, −1, 2) for Lsp = 0.5 km are shown,

gain for model validation. For ρ0 ∈ [0.1, 0.625], in comparison with the mean travel time σtav predicted by the
ZM, the mean travel time σtav by the VEM shows a maximum deviation of 0.0023 that occurring at ρ0 = 0.125.
s the tunnel length is halved, for ρ0 ≥ 0.2, σ

(2)
tav holds a value around 0.0934 with a maximum deviation of 0.0114

hat occurring at ρ0 = 0.625. The uphill mean travel time σ
(1)
tav is slightly larger than the downhill mean travel time

(−1)
tav .

However, as shown in Table 4, for Lsp = 0.1 km, when ρ0 is in the range from 0.25 to 0.5, σ
(1)
tav can have above

oubled value than σ
(−1)
tav , indicating that for the case of Lsp = 0.1 km, the node traffic speed on uphill segment

ust be much lower than on the downhill segment. For ρ0 = 0.625, comparing the values of σtav in the second
nd sixth columns of Table 4, it is seen that the maximum deviation is 0.0297. Furthermore, the tunnel mean travel
ime σ

(2)
tav has a value of about 0.0186 for ρ0 > 0.2 with a maximum deviation of 0.0076.

The main reason of why there is the ρ0− dependence of travel times in Table 2 can be sought from traffic

ow patterns given by spatiotemporal evolution of density, as shown in Fig. 4(a–c), where patterns in the left part
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Table 4
ρ0− dependence of σtav and σ

(krd)
tav (krd = 1, −1, 2) in case without ramp effects for Lsp = 0.1 km.

ρ0 VEM EZM

σtav σ
(1)
tav σ

(−1)
tav σ

(2)
tav σtav σ

(1)
tav σ

(−1)
tav σ

(2)
tav

0.1 1.0923 0.0552 0.0454 0.0050 1.0925 0.0549 0.0454 0.0049
0.15 1.3056 0.0673 0.0540 0.0062 1.3060 0.0671 0.0540 0.0062
0.17 1.4022 0.0742 0.0580 0.0073 1.4040 0.0744 0.0580 0.0073
0.185 1.4758 0.0802 0.0610 0.0089 1.4745 0.0801 0.0611 0.0089
0.2 1.5484 0.0849 0.0636 0.0110 1.5488 0.0850 0.0636 0.0112
0.368 2.7244 0.1813 0.0706 0.0184 2.7114 0.1659 0.0703 0.0183
0.625 5.1379 0.2282 0.2122 0.0223 5.1367 0.2280 0.2122 0.0222

Fig. 4. Spatiotemporal evolutions of traffic density on the ring road in the case of no ramp effects for Lsp = 1 km, (a) ρ0 = 0.15; (b)
0 = 0.2; (c) ρ0 = 0.25. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

his article.)

btained by the VEM are much the same as those in the right obtained by the EZM. The flow patterns on the two
arts are extremely dependent on the initial density ρ0. In Fig. 4(a), for ρ0 = 0.15, showing by the cyan-colored
blique line, the traffic trajectories of the initial jams at X I , (I = A, B, C, D, E) have positive slope in initial
eriod, these jams propagate forward and arrive at the downstream tunnel inlets xsk (k = 1, 2, . . . , 5) at t ≈ 0.55 h.
n the initial period, tunnel inlet has generated a traffic jam also propagating forward, its trajectory has to change
lope due to the interaction with traffic rarefaction waves. The tunnel inlets become the slope change points of
rajectories of all forward moving traffic jams.

For ρ0 = 0.2, as shown in Fig. 4(b), any tunnel inlet becomes an origin of traffic congestion region, where
raffic density is above 0.6. There exists the interaction between the forward propagating initial jam and the tunnel
511
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Fig. 5. Spatiotemporal evolutions of traffic density on the ring road in the case of no ramp effects for Lsp = 0.1 km, (a) ρ0 = 0.15; (b)
0 = 0.2; (c) ρ0 = 0.25.

nlet induced backward propagating traffic shock wave, leading to self-generated traffic jams downstream the tunnel
utlet. In Fig. 4(c), the traffic flow pattern for ρ0 = 0.25 is shown, it is seen that the traffic congestion region
riginated from the tunnel inlet has a larger width, implying that the propagation speed of the tunnel-generated
raffic shock is larger.

For the tunnel length Lsp = 0.1 km, the traffic flow patterns obtained by the VEM and EZM can be seen in
ig. 5(a)(b)(c). The highly pattern similarity observed by comparing the left and right parts do provide evidence

o explain why the mean travel times predicted by the VEM is almost identical to that predicted by the EZM.
articularly, Fig. 5(c) transfers information to explain why the uphill mean travel time for Lsp = 0.1 km is above
oubled than the downhill mean travel time for ρ0 ∈ [0.2, 0.5], as on the uphill segments at x = 11, 35, 59, 83,
nd 107 km, the traffic density is generally higher than that on the downhill segments at x = 12, 36, 60, 84, and
08 km, implying that the node traffic speeds on uphill segments are lower, according to Eqs. (26)–(27), the uphill
ean travel time σ

(1)
tav should be larger.

For Lsp = 1 km, the temporal evolutions of traffic density and acceleration at x = 60 km in case without ramp
ffects for ρ0 = 0.15 and 0.25 are shown in Fig. 6(a–b), where R/ρ has the unit of 1.5 m/s2 (the permitted maximum
cceleration). The green solid curve obtained by the VEM shows that the evolution at x = 60 km has an overall
onsistency with the black-dashed curve obtained by the EZM. Any synchronous negative drop of acceleration
R/ρ) corresponds to a positive peak of density (ρ). At x = 60 km, the evolutions of ρ and R/ρ depend on initial
ensity ρ0. The absolute value of traffic flow acceleration in the time period t ∈ (0, 4 h) is generally less than 0.5.

Temporal evolutions of traffic density and acceleration at x = 60 km for Lsp = 0.1 km in the cases of ρ0 = 0.15
nd 0.368 are given by Fig. 7(a–b), where R/ρ is normalized by the permitted maximum acceleration 1.5 m/s2.
verally, the green solid curves predicted by the VEM are consistent with the black solid curves by the EZM.
orresponding to a positive peak of density (ρ), there is a synchronous negative drop of R/ρ, and vice versa.
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Fig. 6. Temporal evolutions of traffic speed and density at x = 60 km for Lsp = 1 km, (a) ρ0 = 0.15; (b) ρ0 = 0.25. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

At x = 60 km, the evolutions of ρ and R/ρ depend on initial density ρ0. The absolute value of traffic flow
acceleration in the time period t ∈ (0, 4 h) is generally less than 0.5, suggesting that the predicted acceleration
is reasonable.

Consequently, we can conclude that the numerical results based on the VEM certainly have some reliability and
reasonability, suggesting that traffic pressure and sound speed expressions have application potentials.

6. Results and discussion

6.1. Traffic flow patterns

To reflect ramp effects on traffic flow pattern, in the numerical simulation, the ramp parameter σ is generated
by a random number generator with Gaussian normal distribution, for which the relevant root mean square σ ′

k is
assumed to be 0.005, for k = 1, 2, 3, while the relevant mean value of σkav is assigned as shown in Table 1. In the
case with ramp effects, σ1av and σ3av are fixed respectively at 0.1 and −0.1, with σ2av chosen as −0.1, −0.2, −0.3,
or −0.4. Numerical tests based on the VEM permit obtaining the ring road traffic flow patterns for ρ0 = 0.15 and
0.2, that are shown respectively in the left and right parts of Fig. 7(a–d).

In the left part of Fig. 7(a), due to the effect of on ramp flow at intersection XR1 = 20 km, it can be seen that
raffic shocks occur at the downstream tunnel inlets Xs2 and Xs3 with certain time period of existence about 1 h,
hen disappear as a result of the influences of the off ramp flows at intersections XR2 = 60 km and XR3 = 100 km
s well as the use of periodic boundary condition. As seen in the right part of Fig. 7, traffic shocks appear at the
unnel inlets Xs1, Xs2, Xs3 and Xs4. The time period of existence of traffic shocks originated at the tunnel inlet Xs2

r Xs3 is longer than that in the left part, suggesting that the traffic flow pattern is not only affected by the ramp
ow significantly but also extremely dependent on the initial traffic density.

.2. Instantaneous distributions

To show the effect of road segment condition on the traffic flow pattern more elaborately, the instantaneous
istributions of density and speed for Lsp = 1 km in the case of ρ0 = 0.2 are given respectively by Figs. 8(a–b)
nd 9(a–b), where coarse blue-solid curves are labeled by σ1av = σ2av = σ3av = 0, green-dashed curves are labeled
y σ2av = −0.1, σ1av = −σ3av = 0.1, dashdotted purple curves are labeled by σ2av = −0.4, σ1av = −σ3av = 0.1,

the dashdotted black vertical lines are used to show the downhill end positions by X I , (I = A, B, C, D, E).
On and off ramp flows can certainly change the distributions of density and speed. In Fig. 8(a–b), it can be seen

that each tunnel inlet becomes a starting point of road congestion region.
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Fig. 7. Spatiotemporal evolutions of traffic density on the ring road in the case of no ramp effects (a) σ2av = −0.1; (b) σ2av = −0.2,
(c) σ2av = −0.3, (d) σ2av = −0.4. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

.3. Comparison with measured data

To show the reliability of the VEM, the predicted traffic speed (u) and equilibrium speed (ue) at x = 60 km
for ρ0 = 0.15, 0.368 are plotted as a function of traffic density as shown in Fig. 10(a–b), where the observation
data labeled by symbol ‘+’ are obtained from McShane, Roess and Prassas [27]. The instantaneous speed u at the
downhill midpoint x = 59.5 km for ρ0 = 0.15, 0.3 is plotted as a function of the local flow q in Fig. 10(c), where
the field observation data extracted from Ref. [29] are also labeled by symbol ‘+’.

In Fig. 11(a), it is seen that for ρ0 = 0.15, the initial traffic flow is generally unsaturated, as there are the five
initial jams, there are over-saturated points (ρ, u) located in the saturated and over saturated flow range ρ > 0.368,
but the point number are far less than that in the unsaturated range ρ < 0.368. Almost all points of traffic flow
state (ρ, u) fall within the range having scattered points of observation data, the predicted speed has taken some
value completely in the observation data range, indicating that the speed predicted by the VEM is reliable. From
Fig. 10(b), by comparing the left and right parts for ρ0 = 0.368, it can be seen that off-ramp flow at intersection

XR2 can affect the instantaneous u − ρ relationship at x = 60 km significantly.
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Fig. 8. Distribution of traffic density ρ on the ring road for Lsp = 1 km, ρ0 = 0.2 at (a) t = 0.25 h, (b) 0.5 h.

Fig. 9. Distribution of traffic speed u on the ring road for Lsp = 1 km, ρ0 = 0.2 at (a) t = 0.25 h, (b) 0.5 h.

In Fig. 11(c), the data for median lane were recorded on December 23 of 2005, time-of-day tags from 6:30 to
7:10 h, at the site of the Tomei expressway (near Tokyo) instrumented with a series of eleven video cameras and two
sets of loop detectors at kilo-post (KP) 21.5 [29]. It can be seen that for the predicted states (q, u) for ρ0 = 0.15,
nd 0.3 by the VEM at the downhill midpoint x = 59.5 km, many traffic state points (q, u) are located in the zone
aving scattered field observation points.

Fig. 11 shows that the traffic points (ρ, u) at x = 60 km and the traffic states (q, u) at the downhill midpoint
x = 59.5 km predicted by the VEM usually agree well with the observation data. The comparison shows that the
VEM is reliable and has some application potential.

6.4. Travel time

Being different from the work reported by Chang and Mahmassani [4], who have examined two heuristic rules
proposed for describing urban commuters’ predictions of travel time as well as the adjustments of departure time
in response to unacceptable arrivals in their daily commute under limited information, here we discuss the road
segment condition effects on the travel time through the composite ring road that are estimated with the method
given by Section 4.
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Fig. 10. Comparison of traffic speed with existing measured data for σ2av = −0.1, − 0.4 in the case of Lh = Lsp = 1 km, (a) ρ0 = 0.15;
b) ρ0 = 0.368 at x = 60 km; and (c) Comparison of the instantaneous u-q relationship at the downhill midpoint x = 59.5 km with field
bservation data extracted from Ref. (Patire and Cassidy [29]). It is noted that σ1av = −σ3av = 0.1, the observation data used in parts (a)
nd (b) are obtained from Ref. (McShane, Roess and Prassas [27]), and the jam density for normalization is assumed to be 200 veh/mile;
or the convenience of showing the field data from Ref. [29], the speed and flow rate for normalization are respectively assumed to be
30 km/h [v f e = (v f 1 + v f 2)/2], and 1465 vph [≈ v f e × (ρmρ∗2)].

Fig. 11. Travel time σt versus time on the ring road in the case of no ramp effects for (a) Lsp = 1 km, (b) Lsp = 0.5 km, (c) Lsp = 0.1
km.
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Fig. 12. Density dependence of travel time σtav (a), its rms value σ ′
t (b), travel time σ

(1)
av & σ

(−1)
av (c), and σ

(2)
av (d) in the case of no ramp

ffects at different tunnel length.

.4.1. Without ramp effects, σkav = 0
Affected only by road segment condition in case without ramp effects, when initial density varies from 0.1 to

.625, the mean travel time σtav, σ
(krd)
tav (krd = 1, −1, 2) predicted by Eqs. (27) and (29) for the specific tunnel

ength Lsp = 1 km and 0.1 km are predicted and shown in Tables 2 and 3 respectively. As discussed in Section 5,
he mean travel time predicted by the VEM is much the same as that predicted by the EZM.

For the four cases of ρ0 = 0.2, 025, 0.368, 0.5, and 0.6, the temporal evolutions of travel time σt are shown in
ig. 11(a–c). There is a similar evolution trend: the travel time predicted by Eqs. (25)–(26) increases with time in
n initial period of about 1 h, after which the travel time gradually arrives at a steady value. The initial growing
agnitude of travel time depends on the initial traffic density ρ0, with the maximum occurs near ρ0 = 0.368.
The mean travel time σtav estimated by Eq. (d.7a) is shown in Fig. 12(a). It increases with initial density ρ0

onotonically. Shortening the tunnel length can slightly increase the mean travel time that occurring when initial
ensity ρ0 is above 0.25, otherwise for traffic flow far from saturation ρ0 < 0.25, the effect of decreasing the tunnel
ength is small and almost negligible.

The variation of the root mean square (rms) values of travel time σ ′
t with initial density is shown in Fig. 12(b).

t is seen that for the case of Lsp = 0.5 km, for unsaturated traffic flows ρ0 < −.368, the σ ′
t is almost the same as

hat estimated for the Lsp = 1 km, when ρ0 ranges from 0.368 to 0.6, there is a smaller value of σ ′
t that existing

hen the tunnel length Lsp is shortened. But for the case of Lsp = 0.1 km, the σ ′
t holds the lowest in the initial

ensity range ρ0 ∈ [0.2, 0.6].
In Fig. 12(c), the ρ0− dependence of σ

(1)
tav and σ

(−1)
tav can be seen, where for Lsp = 0.1 km, the solid red line with

elta symbols denotes the uphill mean travel time (σ (1)
tav ), with the solid black line with gradient symbols representing

he downhill mean travel time (σ (−1)
tav ); otherwise for Lsp = 1, 0.5 km, the delta and gradient symbols not linked by

olid line are the relevant values of σ
(1)
tav and σ

(1)
tav respectively. Particularly, for ρ0 ∈ [0.2, 0.5], the uphill mean travel

ime σ
(1)
tav for Lsp = 0.1 km is much larger than that for other cases with larger values of Lsp, implying that there is

quite different flow pattern on uphill segment that occurring when the tunnel length Lsp changes from 0.5 km to

.1 km. Indeed, traffic flow pattern in Fig. 5(c) is quite different from that demonstrated in Fig. 4(c). In general, the
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Fig. 13. Travel time Tt versus time on the ring road in case with ramp effects for Lsp = 1 km, (a) ρ0 = 0.2, 0.25, and 0.368, (b) ρ0 = 0.45,
nd 0.6.

ownhill mean travel time σ
(−1)
tav is smaller than the uphill mean travel time σ

(1)
tav , with the time difference depending

n the initial density of traffic flow and the tunnel length.
The ρ0− dependence of the tunnel mean travel time σ

(2)
tav is given by Fig. 12(d). σ

(2)
tav grows with initial density

0 if ρ0 < 0.2. Otherwise, the σ
(2)
tav approaches to a constant value and shows a time plateau that depending on the

unnel length Lsp. The longer the tunnel length, the higher is the height of time plateau.

.4.2. With ramp effects, σkav ̸= 0
To show the effects of road segment condition on travel time in case with ramp effects σkav ̸= 0 for Lsp = 1 km,

t was assumed that σ1av = 0.1 and σ3av = −0.1, σ2av = −0.1, −0.2, −0.3, and −0.4, the temporal evolutions
f σt predicted by the VEM for ρ0 = 0.2, 0.368 and 0.5, 0.6 are shown respectively in Fig. 13(a) and (b).
ifferent from Fig. 11(a), as can be seen for the case of ρ0 = 0.368, the travel time σt grows with the increase of

ime initially, but starts to drop almost linearly after arriving at a peak, with the dropping rate being dependent on
2av. The smaller the value of σ2av, the larger is the dropping rate of travel time.

When σ2av is used to distinguish the numerical test for the prediction of the mean travel time σtav, the mean
alues of σtav through averaging by case number (= 5) can be obtained for a series values of ρ0, which have been
dopted in the regression analysis after logarithmic processing (Wang, et al. [41]) to obtain the fitted mean travel
ime σtf in the form

σtf = Aρm
0 + b, (35)

here A = 8.9686, m = 1.6260, b = 0.8424, ρ0 varies from 0.1 to 0.625. Note that the regression of log10 A and
has a linear correlation coefficient of 0.9985, with a residual standard deviation of about 2.44%. The expression

s shown by the fuchsia-colored solid curve in Fig. 14(a), which shows that the mean travel time decreases with
he decreasing σ2av, indicating that the ramp diversion at XR2 can shorten the mean travel time. For over-saturated
raffic flow on the ring road, it has a value around 0.1 for the rms of travel time that depending on the off-ramp
ow influence.

The ramp effects on the rms of travel time σ ′
t can be seen in Fig. 14(b). If σ2av = −0.1, σ ′

t is usually below
.1, as shown by the red solid curve with circles filled by yellow color. For ρ0 ∈ [0.2, 0.5], σ ′

t takes a value in the
ange from 0.1 to 0.3. Otherwise, σ ′

t has a value in the range from 0.17 to 0.45, depending on the choice of σ2av.
ndoubtedly, σ ′

t is determined by the traffic flow pattern on the composite ring road.
Comparing the ρ0− dependence of σ

(1)
tav and σ

(−1)
tav shown in Fig. 14(c) with that shown in Fig. 12(c), it is seen

hat for unsaturated traffic flow ρ0 < 0.368, the ramp effects on the uphill and downhill mean travel times [σ (1)
tav and

(−1)
tav ] are rather small; otherwise it becomes more evident. In general, σ

(1)
tav is the larger between the two.

Comparing Fig. 14(d) with Fig. 12(d), it is seen that the ρ0− dependence of the tunnel mean travel time σ
(2)
tav is

ifferent from that in case without ramp effects. Usually, the σ
(2)
tav is below 0.21 in case with ramp effects, takes a

(1) (−1)
alue above σtav and σtav .
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i

7

Fig. 14. Density dependence of travel time σtav (a), its rms value σ ′
t (b), travel time σ

(1)
tav & σ

(−1)
tav (c), and σ

(2)
av (d) for tunnel length

Lsp = 1 km in case with ramp effects. Note that in the fitted expression of σtav in part (a), A = 8.9686, m = 1.6260, and b = 0.8424. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

. Conclusions

In this last section we list the conclusions of our analysis as follows:

1. The traffic pressure expression proposed in the viscoelastic traffic flow model and the ENN scheme proposed
in aerodynamics have considerable potentialities in applications, as the mean travel time predicted by the
viscoelastic model coincides well with that estimated by the Navier–Stokes like model that is extended by
using the same traffic pressure, and the ENN scheme for predicting the numerical flux has no free-parameter
and third order accuracy in numerical flux approximation.

2. For traffic flow on a composite ring road in case without ramp effects, when the initial density normalized
by its jam value is not lower than 0.2, any tunnel inlet becomes a starting point of traffic congestion region,
causing traffic capacity reduction. The traffic shock propagates backward, interacts with rarefaction waves and
other traffic shocks. When the initial density is 0.15, the tunnel generates a forward moving traffic bottleneck,
whose trajectory is almost parallel to the trajectory of an initial jam. When the tunnel length is as short as
0.1 km, the uphill mean travel time is above the doubled, compared with the downhill mean travel time if
the initial density of the road permits ranging from 0.2 to 0.5. The tunnel mean travel time grows with initial
density if the density is lower than 0.2, otherwise, it reaches to a constant value and shows a time plateau
that depending on the tunnel length. The longer the tunnel length, the higher is the plateau height.

3. For the traffic flow in case with ramp effects, even if the initial density is as low as 0.15, as an on ramp
flow allows vehicles entering into the ring road, downstream the on-ramp intersection traffic shock can be
generated at any tunnel inlet if the tunnel is upstream another off-ramp intersection. For the ramp conditions
that are considered in the numerical tests, it was found that the tunnel induced traffic shock has a time period
of existence about 1 h, then disappears as a result of the influences of off ramp flows and the use of periodic
boundary condition.

4. The off ramp flow can shorten the mean travel time and increase its root mean square significantly. Generally,

the tunnel mean travel time is larger than the mean travel time through the uphill or downhill segment.
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5. According to the extensive numerical tests for the traffic flow on the composite ring road, a linear regression
after logarithmic processing has obtained the fitted mean travel time

σtf = Aρm
0 + b

where A = 8.9686, m = 1.6260, b = 0.8424, ρ0 varies from 0.1 to 0.625. When the road is initially
over-saturated, it is expected to be about 0.1 for the root mean square value of travel time that depending on
the off-ramp flow effect.
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